JP3641422B2 - Manufacturing method of cooling plate - Google Patents

Manufacturing method of cooling plate Download PDF

Info

Publication number
JP3641422B2
JP3641422B2 JP2000350565A JP2000350565A JP3641422B2 JP 3641422 B2 JP3641422 B2 JP 3641422B2 JP 2000350565 A JP2000350565 A JP 2000350565A JP 2000350565 A JP2000350565 A JP 2000350565A JP 3641422 B2 JP3641422 B2 JP 3641422B2
Authority
JP
Japan
Prior art keywords
pipe
metal
groove
cooling plate
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000350565A
Other languages
Japanese (ja)
Other versions
JP2002156195A (en
Inventor
康則 中嶋
典男 水口
Original Assignee
株式会社 正和
典男 水口
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 正和, 典男 水口 filed Critical 株式会社 正和
Priority to JP2000350565A priority Critical patent/JP3641422B2/en
Publication of JP2002156195A publication Critical patent/JP2002156195A/en
Application granted granted Critical
Publication of JP3641422B2 publication Critical patent/JP3641422B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Linear Motors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えばリニアモータコイルの冷却に用いられる冷却板の製造方法に関し、さらに詳しく言えば、対向的に組み合わせられる一対の金属板の内面間に、冷却液流路としての金属パイプを配置してなる冷却板の製造方法に関するものである。
【0002】
【従来の技術】
近年において、リニアモータの技術は、種々の分野に取り入れられており、その一つに、工作機械のワーク送り用リニアテーブルがであるが、リニアモータを作動させると、そのコイルには熱が発生するため冷却する必要がある。
【0003】
その冷却方法には、大別してリニアモータコイル間に冷却パイプをジグザク状に配管して、コイルと冷却パイプを熱伝導性の良好な樹脂でモールドする方法と、冷却液通路を有する冷却板をリニアモータコイルに添設する方法とがあるが、前者の方法は製造コストがかかるため、一般的には冷却板が用いられている。
【0004】
【発明が解決しようとする課題】
通常、冷却板は1枚の金属板に孔を開けて冷却回路を形成するようにしているが、一般の工作機械では孔の深さは直径の20倍程度とされている。例えば、直径6mmの孔では120mm程度が限度であり、それ以上の加工は困難である。
【0005】
リニアテーブルの場合、冷却板に要求される長さが500mm程度、もしくはそれ以上のこともあり得るため、一つの孔開け冷却板では対応できない場合が生ずる。このような場合、複数枚の冷却板を用いればよいのであるが、各冷却板相互の配管接続などが必要となるため、好ましい解決策とは言えない。
【0006】
また、別の方法として、金属板を2枚とし、その各内面にパイプ収納溝を形成して冷却パイプを金属板間に挟み込むことも考えられる。しかしながら、この方法では冷却パイプを金属板に密着させることができないため、所期の冷却能力が得られないという課題がある。
【0007】
本発明は、このような課題を解決するためになされたもので、その目的は、製造する上で技術的に特に長さ制限がなく、しかも冷却能力の高い冷却板の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明は、対向的に組み合わせられる一対の金属板の内面間に、冷却液流路としての金属パイプを配置してなる冷却板の製造方法において、上記一対の金属板の内面側の各々に、組み合わせ状態で上記金属パイプよりも実質的に大径で、かつ、上記金属板の合わせ面に対して逆テーパ状のパイプ収納溝を上記金属パイプの配管経路に沿って形成し、上記パイプ収納溝内に上記金属パイプを収納して、上記一対の金属板を所定の固定手段にて一体的に組み合わせた後、上記金属パイプ内に加圧流体を供給することにより、そのパイプ径を拡径させて上記パイプ収納溝に密着させることを特徴としている。
【0009】
この構成によれば、金属板に孔開け加工をする必要がないため、冷却板を要求に応じた長さにすることができる。また、金属パイプが拡径されてパイプ収納溝内に密着するため冷却損失が少なく、高い冷却能力が発揮される。
【0010】
そのうえ、パイプ収納溝が逆テーパ状であるため、拡径された金属パイプを2枚の金属板の固定手段に参加させることができる。
【0011】
また、当該冷却板によって冷却される被冷却体から発生する熱量が部分的に異なる場合には、その発生熱量が多い部分に対応する個所のパイプ収納溝の溝形状を部分的に大きく形成し、それに合わせて金属パイプを部分的に大きく拡径することにより、より効果的な冷却を行なうことができる。この点も本発明の特徴の一つである。
【0012】
【発明の実施の形態】
まず、図1ないし図3を参照して、本発明の第1実施形態について説明する。なお、図1は平面図、図2は側面図、図3は図1のA−A線断面図である。
【0013】
この冷却板1は、対向的に組み合わせられる平板状をなす一対の金属板10,20を備えている。材質は熱伝導性の高い金属がよい。この実施形態では、金属板10,20ともに同厚であるが、一方が薄く他方が厚くてもよい。
【0014】
金属板10,20の各内面側には、金属パイプ(冷却パイプ)30の配管経路に沿ってパイプ収納溝11,21が形成されている。パイプ収納溝11,21はそれぞれ半球面の樋溝であって、この場合、パイプ収納溝11,21の内径は、金属パイプ30の外径よりも若干大きめに形成される。金属パイプ30には、成形性の良好な例えばアルミニウム管や銅管などが用いられる。
【0015】
冷却板1を製造するには、金属パイプ30をパイプ収納溝11,21内に収納し、金属板10,20をボルトなどで固定する。そして、金属パイプ30の両端を図示しない加圧手段に接続し、金属パイプ30内に所定の液圧をかけて、金属パイプ30を拡径させてパイプ収納溝11,21に密着させる。これによれば、金属同士の密着により、熱伝導効率はきわめて高くなる。
【0016】
上記第1実施形態では、金属板10,20の各内面側にパイプ収納溝11,21をそれぞれ形成しているが、図4の側面図および図5の断面図に示されている第2実施形態のように、一方の金属板20の内面側のみに金属パイプ30の外径よりも若干大きめのパイプ収納溝21を形成するようにしてもよい。この第2実施形態において、他方の金属板10はパイプ収納溝21を塞ぐ蓋材として作用する。
【0017】
次に、図6の断面図および図7の要部拡大断面図を参照して、本発明の第3実施形態について説明する。この第3実施形態においても、上記第1実施形態と同じく、金属板10,20の各内面側にパイプ収納溝11,21が形成されるが、この場合、パイプ収納溝11,21は、金属板10,20の合わせ面に対して逆テーパ状に形成される。
【0018】
すなわち、パイプ収納溝11,21の開口幅をBとし、その開口から金属板10,20の内部に入った部分の溝幅をCとして、パイプ収納溝11,21はB<Cとなるように形成される。
【0019】
したがって、この溝形状に沿って金属パイプ30を拡径させることにより、金属板10,20を固定状態に保持することができる。なお、この固定をより有効とするには、パイプ収納溝11,21の溝底間の距離Dを金属パイプ30の外径とほぼ等しくすることが好ましい。
【0020】
また、この冷却板1によって冷却される被冷却体から発生する熱量が部分的に異なる場合には、図8の第4実施形態に示されているように、その発生熱量が多い部分に対応する個所のパイプ収納溝の溝形状を部分的に大きく形成し、それに合わせて金属パイプ30の一部分31を大きく拡径することもできる。
【0021】
以上、本発明のいくつかの実施形態を説明したが、本発明はこれに限定されるものではない。金属板および金属パイプの材質は任意に選択できる。また、金属パイプを拡径する加圧流体は液体だけでなく気体であってもよい。また、本発明の冷却板はリニアモータコイルの冷却に好適であるが、その用途はこれに限定されるものでもない。
【0022】
【発明の効果】
以上説明したように、本発明によれば、対向的に組み合わせられる一対の金属板の内面間に金属パイプ(冷却パイプ)を配置してなる冷却板を製造するにあたって、金属板の内面側の各々に、組み合わせ状態で金属パイプよりも実質的に大径で、かつ、金属板の合わせ面に対して逆テーパ状のパイプ収納溝を金属パイプの配管経路に沿って形成し、そのパイプ収納溝内において、金属パイプ内に加圧流体を供給して、そのパイプ径を拡径させてパイプ収納溝に密着させるようにしたことにより、被冷却体が要求する長さを有し、高い冷却能力を発揮し得る冷却板を製造することができる。
【図面の簡単な説明】
【図1】本発明により製造される冷却板の第1実施形態を示した平面図。
【図2】上記第1実施形態の側面図。
【図3】図1のA−A線拡大断面図。
【図4】本発明の第2実施形態を示した側面図。
【図5】上記第2実施形態の拡大断面図。
【図6】本発明の第3実施形態を示した断面図。
【図7】上記第3実施形態の要部拡大断面図。
【図8】本発明の第4実施形態を示した平面図。
【符号の説明】
1 冷却板
10,20 金属板
11,21 パイプ収納溝
30 金属パイプ(冷却パイプ)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a cooling plate used for cooling, for example, a linear motor coil, and more specifically, a metal pipe as a coolant flow path is disposed between the inner surfaces of a pair of opposing metal plates. The present invention relates to a manufacturing method of a cooling plate.
[0002]
[Prior art]
In recent years, linear motor technology has been adopted in various fields, and one of them is the linear table for workpiece feed of machine tools. When the linear motor is operated, heat is generated in the coil. To cool.
[0003]
The cooling method is roughly divided into a method in which cooling pipes are arranged in a zigzag shape between linear motor coils, the coil and the cooling pipe are molded with a resin having good thermal conductivity, and a cooling plate having a coolant passage is linearly provided. Although there is a method of attaching to a motor coil, since the former method requires a manufacturing cost, a cooling plate is generally used.
[0004]
[Problems to be solved by the invention]
Normally, the cooling plate is formed with a hole in a single metal plate to form a cooling circuit. In a general machine tool, the depth of the hole is about 20 times the diameter. For example, a hole with a diameter of 6 mm is limited to about 120 mm, and further processing is difficult.
[0005]
In the case of a linear table, the length required for the cooling plate may be about 500 mm or more, and therefore, a single perforated cooling plate cannot be used. In such a case, it is sufficient to use a plurality of cooling plates, but it is not a preferable solution because piping connection between the cooling plates is necessary.
[0006]
As another method, it is conceivable that two metal plates are formed, and a pipe housing groove is formed on each inner surface, and the cooling pipe is sandwiched between the metal plates. However, this method has a problem in that the desired cooling capacity cannot be obtained because the cooling pipe cannot be brought into close contact with the metal plate.
[0007]
The present invention has been made to solve such problems, and an object of the present invention is to provide a method of manufacturing a cooling plate that is technically not particularly limited in length and has a high cooling capacity. It is in.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a cooling plate manufacturing method in which a metal pipe as a coolant flow path is disposed between the inner surfaces of a pair of metal plates that are combined to face each other. A pipe storage groove having a substantially larger diameter than that of the metal pipe in a combined state and having a reverse taper shape with respect to the mating surface of the metal plate is provided along the piping path of the metal pipe. Forming and storing the metal pipe in the pipe storage groove and integrally combining the pair of metal plates with a predetermined fixing means, and then supplying a pressurized fluid into the metal pipe, The pipe diameter is increased and the pipe is closely attached to the pipe housing groove.
[0009]
According to this structure, since it is not necessary to perforate the metal plate, the length of the cooling plate can be made as required. Further, since the metal pipe is expanded in diameter and is closely attached in the pipe housing groove, there is little cooling loss and a high cooling capacity is exhibited.
[0010]
In addition, since the pipe housing groove has an inverse taper shape, the expanded metal pipe can participate in the fixing means for the two metal plates.
[0011]
In addition, when the amount of heat generated from the object to be cooled that is cooled by the cooling plate is partially different, the groove shape of the pipe storage groove corresponding to the portion where the amount of generated heat is large is partially formed, A more effective cooling can be performed by partially enlarging the diameter of the metal pipe accordingly. This is also one of the features of the present invention.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
First, a first embodiment of the present invention will be described with reference to FIGS. 1 is a plan view, FIG. 2 is a side view, and FIG. 3 is a cross-sectional view taken along line AA of FIG.
[0013]
The cooling plate 1 includes a pair of metal plates 10 and 20 that form a flat plate shape that is opposed to each other. The material is preferably a metal with high thermal conductivity. In this embodiment, the metal plates 10 and 20 have the same thickness, but one may be thin and the other may be thick.
[0014]
Pipe storage grooves 11 and 21 are formed along the piping path of the metal pipe (cooling pipe) 30 on the inner surfaces of the metal plates 10 and 20. Each of the pipe storage grooves 11 and 21 is a hemispherical trough groove. In this case, the inner diameters of the pipe storage grooves 11 and 21 are slightly larger than the outer diameter of the metal pipe 30. For the metal pipe 30, for example, an aluminum tube or a copper tube having good formability is used.
[0015]
To manufacture the cooling plate 1, the metal pipe 30 is stored in the pipe storage grooves 11 and 21, and the metal plates 10 and 20 are fixed with bolts or the like. Then, both ends of the metal pipe 30 are connected to a pressurizing means (not shown), and a predetermined fluid pressure is applied to the metal pipe 30 to expand the diameter of the metal pipe 30 so that the metal pipe 30 is brought into close contact with the pipe housing grooves 11 and 21. According to this, the heat conduction efficiency becomes extremely high due to the adhesion between the metals.
[0016]
In the first embodiment, the pipe housing grooves 11 and 21 are formed on the inner surfaces of the metal plates 10 and 20, respectively. The second embodiment shown in the side view of FIG. 4 and the cross-sectional view of FIG. As in the embodiment, a pipe housing groove 21 slightly larger than the outer diameter of the metal pipe 30 may be formed only on the inner surface side of one metal plate 20. In the second embodiment, the other metal plate 10 acts as a lid member that closes the pipe housing groove 21.
[0017]
Next, a third embodiment of the present invention will be described with reference to the cross-sectional view of FIG. 6 and the enlarged cross-sectional view of the main part of FIG. In the third embodiment, as in the first embodiment, the pipe storage grooves 11 and 21 are formed on the inner surfaces of the metal plates 10 and 20, but in this case, the pipe storage grooves 11 and 21 It is formed in a reverse taper shape with respect to the mating surfaces of the plates 10 and 20.
[0018]
That is, assuming that the opening width of the pipe storage grooves 11 and 21 is B, and the groove width of the portion that enters the inside of the metal plates 10 and 20 from the opening is C, the pipe storage grooves 11 and 21 satisfy B <C. It is formed.
[0019]
Therefore, the metal plates 10 and 20 can be held in a fixed state by expanding the diameter of the metal pipe 30 along the groove shape. In order to make this fixing more effective, it is preferable that the distance D between the groove bottoms of the pipe housing grooves 11 and 21 is substantially equal to the outer diameter of the metal pipe 30.
[0020]
Further, when the amount of heat generated from the object to be cooled that is cooled by the cooling plate 1 is partially different, as shown in the fourth embodiment of FIG. 8, it corresponds to a portion where the amount of generated heat is large. The groove shape of the pipe housing groove at the location can be partially enlarged, and the diameter of the portion 31 of the metal pipe 30 can be greatly expanded accordingly.
[0021]
As mentioned above, although several embodiment of this invention was described, this invention is not limited to this. The material of the metal plate and the metal pipe can be arbitrarily selected. Further, the pressurized fluid for expanding the diameter of the metal pipe may be a gas as well as a liquid. Moreover, although the cooling plate of this invention is suitable for cooling of a linear motor coil, the use is not limited to this.
[0022]
【The invention's effect】
As described above, according to the present invention, in manufacturing the cooling plate between the inner surfaces of the pair of metal plates to be combined oppositely formed by arranging the metal pipe (cooling pipe), each of the inner surface side of the metal plate In addition, a pipe storage groove having a diameter substantially larger than that of the metal pipe in the combined state and having a reverse taper shape with respect to the mating surface of the metal plate is formed along the pipe path of the metal pipe . In this case, a pressurized fluid is supplied into the metal pipe, and the pipe diameter is expanded so as to be in close contact with the pipe housing groove. A cooling plate that can be exhibited can be manufactured.
[Brief description of the drawings]
FIG. 1 is a plan view showing a first embodiment of a cooling plate manufactured according to the present invention.
FIG. 2 is a side view of the first embodiment.
FIG. 3 is an enlarged cross-sectional view taken along line AA in FIG.
FIG. 4 is a side view showing a second embodiment of the present invention.
FIG. 5 is an enlarged cross-sectional view of the second embodiment.
FIG. 6 is a sectional view showing a third embodiment of the present invention.
FIG. 7 is an enlarged cross-sectional view of a main part of the third embodiment.
FIG. 8 is a plan view showing a fourth embodiment of the present invention.
[Explanation of symbols]
1 Cooling plates 10 and 20 Metal plates 11 and 21 Pipe storage groove 30 Metal pipe (cooling pipe)

Claims (2)

対向的に組み合わせられる一対の金属板の内面間に、冷却液流路としての金属パイプを配置してなる冷却板の製造方法において、
上記一対の金属板の内面側の各々に、組み合わせ状態で上記金属パイプよりも実質的に大径で、かつ、上記金属板の合わせ面に対して逆テーパ状のパイプ収納溝を上記金属パイプの配管経路に沿って形成し、上記パイプ収納溝内に上記金属パイプを収納して、上記一対の金属板を所定の固定手段にて一体的に組み合わせた後、上記金属パイプ内に加圧流体を供給することにより、そのパイプ径を拡径させて上記パイプ収納溝に密着させることを特徴とする冷却板の製造方法。
In the manufacturing method of a cooling plate formed by arranging a metal pipe as a coolant flow path between the inner surfaces of a pair of metal plates that are opposed to each other,
Each of the inner surfaces of the pair of metal plates has a pipe storage groove that is substantially larger in diameter than the metal pipe in a combined state and has a reverse taper shape with respect to the mating surface of the metal plate. Formed along the piping path, the metal pipe is accommodated in the pipe accommodation groove, the pair of metal plates are integrally combined by a predetermined fixing means, and then a pressurized fluid is introduced into the metal pipe. A method for manufacturing a cooling plate, characterized in that the pipe diameter is expanded by being supplied, and the pipe diameter is brought into close contact with the groove.
上記金属板の内面側に上記パイプ収納溝を形成するにあたって、当該冷却板によって冷却される被冷却体から発生する熱量が部分的に異なる場合、その発生熱量が多い部分に対応する個所のパイプ収納溝の溝形状を部分的に大きく形成し、それに合わせて上記金属パイプを部分的に大きく拡径することを特徴とする請求項1に記載の冷却板の製造方法。  When forming the pipe housing groove on the inner surface side of the metal plate, if the amount of heat generated from the object to be cooled that is cooled by the cooling plate is partially different, the pipe is stored at a location corresponding to the portion where the generated heat amount is large. 2. The method of manufacturing a cooling plate according to claim 1, wherein the groove shape of the groove is partially formed large, and the diameter of the metal pipe is partially expanded correspondingly.
JP2000350565A 2000-11-17 2000-11-17 Manufacturing method of cooling plate Expired - Lifetime JP3641422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000350565A JP3641422B2 (en) 2000-11-17 2000-11-17 Manufacturing method of cooling plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000350565A JP3641422B2 (en) 2000-11-17 2000-11-17 Manufacturing method of cooling plate

Publications (2)

Publication Number Publication Date
JP2002156195A JP2002156195A (en) 2002-05-31
JP3641422B2 true JP3641422B2 (en) 2005-04-20

Family

ID=18823769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000350565A Expired - Lifetime JP3641422B2 (en) 2000-11-17 2000-11-17 Manufacturing method of cooling plate

Country Status (1)

Country Link
JP (1) JP3641422B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4507607B2 (en) * 2004-01-19 2010-07-21 セイコーエプソン株式会社 projector
JP4148230B2 (en) 2005-03-01 2008-09-10 セイコーエプソン株式会社 COOLING UNIT MANUFACTURING METHOD, COOLING UNIT, OPTICAL DEVICE, AND PROJECTOR
JP4238867B2 (en) * 2005-03-01 2009-03-18 セイコーエプソン株式会社 COOLING UNIT MANUFACTURING METHOD, COOLING UNIT, OPTICAL DEVICE, AND PROJECTOR
JP4140610B2 (en) * 2005-03-01 2008-08-27 セイコーエプソン株式会社 Optical device and projector
JP4238833B2 (en) 2005-03-01 2009-03-18 セイコーエプソン株式会社 COOLING UNIT MANUFACTURING METHOD, COOLING UNIT, OPTICAL DEVICE, AND PROJECTOR
JP4127271B2 (en) 2005-03-01 2008-07-30 セイコーエプソン株式会社 Optical device and projector
KR100688978B1 (en) 2005-04-21 2007-03-08 삼성전자주식회사 Image projecting apparatus
CN101952079B (en) * 2008-02-21 2014-04-02 日本轻金属株式会社 Method of manufacturing heat transfer plate
JP2010112656A (en) * 2008-11-07 2010-05-20 Hitachi Cable Ltd Joining method of heat pipe and heat transfer member
JP4998481B2 (en) * 2009-01-14 2012-08-15 日本軽金属株式会社 Manufacturing method of heat transfer element
JP5408285B2 (en) 2012-04-27 2014-02-05 ダイキン工業株式会社 Refrigerator, electrical component unit and refrigeration system
JP7097951B2 (en) * 2018-03-20 2022-07-08 三菱電機株式会社 Car charger
KR102473569B1 (en) * 2020-01-15 2022-12-02 세메스 주식회사 Apparatus for transporting substrate and system for treating substrate with the apparatus

Also Published As

Publication number Publication date
JP2002156195A (en) 2002-05-31

Similar Documents

Publication Publication Date Title
JP3641422B2 (en) Manufacturing method of cooling plate
EP1276362B1 (en) Flattened tube cold plate for liquid cooling electrical components
US5423376A (en) Heat exchanger for electronic components and electro-technical equipment
US5829516A (en) Liquid cooled heat sink for cooling electronic components
US6170567B1 (en) Heat exchanger
EP1540260B1 (en) Method of manufacturing a heat exchanger
US9561563B2 (en) Method for producing a heat exchanger for a motor vehicle and a heat exchanger for a motor vehicle
WO2007017945A1 (en) Heat sink and method of producing the same
WO2003073816A1 (en) Finned- tube heat exchangers and cold plates, self-cooling electronic component systems using same, and methods for cooling electronic components using same
JP2005090794A (en) Method of manufacturing cooling plate
JP2005191527A (en) Stacked cooler
US20040206482A1 (en) Integrated heat exchanger for vehicle and method for manufacturing the same
JP4076129B2 (en) Conjugate and binding method
JP2006003071A (en) Heat exchanger
JP4458872B2 (en) heatsink
US11959709B2 (en) Heat transport device and method for manufacturing same
JP7206609B2 (en) Metal laminate and method for manufacturing metal laminate
JP2008159757A (en) Cooling structure of heat generating substance, and manufacturing method of same cooling structure
CN105473976B (en) The manufacture method of heat exchanger and correlation with the adapter unit being fixed on end plate
JP2004335846A (en) Heat exchanger
KR100948968B1 (en) A Block For Cooling System Of Computer and Method For Making This
JPH04340091A (en) Heat exchanger composed of three laminated metal plates and manufacture thereof
JPH01147294A (en) Heat exchanger
KR200218976Y1 (en) Condenser tube expanding device
JPH09318282A (en) Heat pipe type heat exchanger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3641422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term