JP2004314115A - Heat transfer element, and method for manufacturing the same - Google Patents

Heat transfer element, and method for manufacturing the same Download PDF

Info

Publication number
JP2004314115A
JP2004314115A JP2003110413A JP2003110413A JP2004314115A JP 2004314115 A JP2004314115 A JP 2004314115A JP 2003110413 A JP2003110413 A JP 2003110413A JP 2003110413 A JP2003110413 A JP 2003110413A JP 2004314115 A JP2004314115 A JP 2004314115A
Authority
JP
Japan
Prior art keywords
groove
lid
pipe
heat transfer
base member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003110413A
Other languages
Japanese (ja)
Other versions
JP4325260B2 (en
Inventor
Hisashi Hori
久司 堀
Shinya Makita
慎也 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2003110413A priority Critical patent/JP4325260B2/en
Publication of JP2004314115A publication Critical patent/JP2004314115A/en
Application granted granted Critical
Publication of JP4325260B2 publication Critical patent/JP4325260B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/22Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2220/00Closure means, e.g. end caps on header boxes or plugs on conduits

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat transfer element of excellent heat transfer property in which a pipe for heating medium or a heater is tightly fitted to a base member with the pipe or the heater built therein, and a heat transfer manufacturing method for reliably manufacturing the same. <P>SOLUTION: The heat transfer element 1 comprises a base member 2 having a lid trough 6 of rectangular section which is opened in a face side 3 and a recessed trough 8 which is opened in a bottom side of the lid trough 6, a pipe 16 for heating medium which is inserted in the recessed trough 8 of the base member 2, and a lid plate 10 to be fitted to the lid trough 6 of the base member 2. Joined parts W1 and W2 by the friction stirring and joining are formed along each butted surface of both side walls 5 and 5 in the lid trough 6 of the base member 2 and both side surfaces 13 and 14 of the lid plate 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば熱交換機や加熱機器あるいは冷却機器などに用いられる伝熱素子およびその製造方法に関する。
【0002】
【従来の技術】
熱交換、加熱、あるいは冷却すべき対象物に接触または近接して配置される伝熱素子は、その本体であるベース部材に例えば冷却水などの熱媒体を循環させるパイプを密着させて内蔵することが求められている。
係る伝熱素子の製造方法としては、例えばステンレス鋼からなるパイプを鋳型に内設した所定のキャビティ中に貫通させて配置し、係るキャビティ内に例えばアルミニウム合金の溶湯を鋳込んで一体化させる鋳包み方法がある。
しかしながら、上記鋳包み方法では、鋳造の後でベース部材となるアルミニウム合金が凝固する際に収縮するため、得られるベース部材と上記パイプとの間に隙間が生じる。この結果、上記パイプ中を循環する熱媒体からベース部材への熱伝達性が低下する、という問題があった。しかも、鋳型の制作費が高いため、比較的大型の伝熱素子を少量製造する際には、コスト高になる問題もあった。
【0003】
一方、異なる伝熱素子の製造方法としては、アルミニウム合金からなるベース部材の表面に形成した溝内に、例えばステンレス鋼からなるパイプ、または周囲にステンレス鋼の箔を巻き付けたヒータを挿入し且つ上記溝の開口部を覆うようにベース部材の表面に蓋板をロウ付けする方法がある。
しかしながら、上記ロウ付けを用いる方法では、例えば上記溝にヒータを挿入した場合、その発熱によりロウ材の接合強度が低下したり、係る事態に伴って蓋板が緩んでヒータとベース部材間の熱伝達性が低下する、という問題があった。しかも、ベース部材となるアルミニウム合金のうち、高温強度が高い2000系あるいは5000系の合金では、ロウ付けができない、という問題もあった。
【0004】
【発明が解決すべき課題】
本発明は、以上に説明した従来の技術における問題点を解決し、熱媒体用のパイプまたはヒータとこれを内蔵するベース部材とが密着した熱伝達性に優れた伝熱素子、およびこれを確実に製造できる伝熱素子の製造方法を提供する、ことを課題とする。
【0005】
【課題を解決するための手段および発明の効果】
本発明は、上記課題を解決するため、ベース部材に形成した蓋溝の底面に開口する凹溝などに熱媒体用のパイプなどを密着可能に挿入し、且つ上記蓋溝にほぼ同一断面の蓋板を嵌合すると共に、係る蓋板とベース部材とを固相状態で一体化する摩擦攪拌接合する、ことに着想して成されたものである。
即ち、本発明の第1の伝熱素子(請求項1)は、表面に開口する断面が矩形の蓋溝および係る蓋溝の底面に開口する凹溝を有するベース材と、係るベース材の凹溝に挿入される熱媒体用のパイプまたはヒータと、上記ベース材の蓋溝に嵌合される蓋板と、を備え、上記ベース材の蓋溝における両側壁と蓋板の両側面との各突き合わせ面に沿って摩擦攪拌接合による接合部が形成されている、ことを特徴とする。
また、本発明の第2の伝熱素子(請求項2)は、表面に開口する断面が矩形の蓋溝および係る蓋溝の底面に開口する凹溝を有するベース材と、係るベース材の蓋溝に嵌合され且つ底面に開口する凹溝を有する蓋板と、上記ベース材の凹溝と前記蓋板の凹溝とに跨って挿入される熱媒体用のパイプまたはヒータと、を備え、上記ベース材の蓋溝における両側壁と蓋板の両側面との各突き合わせ面に沿って摩擦攪拌接合による接合部が形成されている、ことを特徴とする。
【0006】
これらによれば、ベース部材と蓋板とは、両者の金属材料が固相状態で一体化される摩擦攪拌接合による接合部を介して接合されているため、蓋溝の底面に開口する凹溝に、または係る凹溝と蓋板の凹溝とに跨って、挿入したパイプまたはヒータからの熱による上記接合部における強度の低下をなくすことができる。しかも、摩擦攪拌接合の際に後述する接合シールにより蓋板とベース部材とが加圧されているため、第1の伝熱素子では、係る蓋板の底面に接触ないし押圧されるパイプなどは、当該ベース部材の凹溝と面接触しつつ密着する。一方、第2の伝熱素子では、パイプなどは、ベース部材の凹溝および蓋板の底面に位置する凹溝の全周面で面接触しつつ密着する。従って、上記パイプ中などを循環する熱媒体やヒータからの熱エネルギを効率良くベース部材を介して、伝熱すべき対象物に熱伝達することが可能となる。
尚、ベース部材および蓋板の材質は、特に限定されないが、特に高い熱伝導率で且つ加工性に優れたアルミニウム合金が推奨される。また、ベース部材および蓋板がアルミニウム合金からなる場合、前記パイプは、アルミニウム合金よりも高融点で且つ剛性の高いステンレス鋼管が望ましく、前記ヒータは、公知の電熱線の周囲にステンレス鋼の箔を巻き付けた形態が推奨される。更に、ベース部材は、蓋溝と凹溝を一体に成形できるアルミニウム合金の押出形材とし、第2の伝熱素子に用いる蓋板も凹溝を有する同様の押出形材としても良い。
【0007】
一方、本発明の伝熱素子の製造方法(請求項3)は、ベース部材の表面に開口する断面が矩形の蓋溝の底面に設けた凹溝に、または係るベース材の凹溝と上記蓋溝に嵌合される蓋板の底面に設けた凹溝とに跨って、熱媒体用のパイプまたはヒータを挿入する挿入工程と、上記ベース部材の蓋溝に断面がほぼ同じ上記蓋板を嵌合する閉塞工程と、上記ベース材の蓋溝における両側壁と上記蓋板の両側面との各突き合わせ面に沿って、摩擦攪拌接合を施す接合工程と、を含む、ことを特徴とする。
これによれば、ベース部材および蓋板を、両者の金属材料を固相状態で一体化する摩擦攪拌接合による接合部を介して強固に接合できる。しかも、前記蓋板の底面に凹溝がない形態では、ベース部材および蓋板を加圧しつつ接合するため、当該蓋板の底面がパイプまたはヒータに接触ないし押圧し、当該パイプなどとベース部材の凹溝とを広い面接触により密着させることができる。また、蓋板の底面にも凹溝がある形態では、パイプなどをベース部材および蓋板の各凹溝に全周面で面接触させつつ、密着させることができる。従って、熱伝達性に優れると共に、パイプやヒータなどからの熱エネルギによっても高い強度を維持できる接合部を有する伝熱素子を効率良く確実に製造することが可能となる。
【0008】
尚、ベース部材および蓋板の材質は、摩擦攪拌接合が異種金属間にも適用可能であるため、両者が同種のアルミニウム合金同士からなる場合のほか、異種のアルミニウム合金の組み合わせからなる場合も含まれる。また、ベース部材および蓋板がアルミニウム合金同士からなる場合、前記摩擦攪拌接合する際の接合温度が500℃以下の温度域であるため、予め前記ベース部材や蓋板の凹溝に挿入したヒータの特性が劣化することも防止できる。
【0009】
また、本発明には、前記ベース板の凹溝の少なくとも下半部の断面形状は、前記パイプまたはヒータの下半部の断面形状と同じか、あるいは係る断面形状とほぼ相似形である、伝熱素子の製造方法(請求項4)も含まれる。これによれば、パイプまたはヒータとベース板の凹溝の内壁や凹溝がない蓋板との接触面積を、係るパイプの全周面またはその50%以上にして密着させることができる。従って、パイプまたはヒータからの熱エネルギを確実にベース部材に伝達させられる。尚、パイプやヒータの断面が円形で且つ蓋板の底面が平坦な場合、ベース板の凹溝の下半部は、半円形の断面となり、パイプなどの断面が六角形以上の正多角形で且つ蓋板の底面が平坦な場合、凹溝の下半部は、長方形または台形などになり、断面の下半部で凹溝の内壁と面接触する。また、パイプなどの断面が正方形の場合、これとほぼ同じ正方形を呈する断面ベース部材の凹溝に挿入することで、当該パイプの全周面で係る凹溝および蓋板における凹溝のない底面と面接触が可能となる。一方、蓋板の底面に凹溝が位置する形態では、係る蓋板の凹溝とベース板の凹溝とは、対称で且つ同じ半円形または長方形の断面となる。
【0010】
更に、本発明には、前記蓋板の底面に凹溝がない形態における前記ベース板の前記凹溝の深さは、前記パイプまたはヒータの外径ないし係る外径の1.2倍未満の範囲にある、伝熱素子の製造方法(請求項5)も含まれる。これによれば、パイプまたはヒータの少なくとも下半部の周面を、ベース板の凹溝の内壁と確実に面接触により確実に密着させることができる。
尚、ベース板の凹溝の深さがパイプなどの外径よりも小さいと、パイプなどの全断面が凹溝内に挿入できなくなる。一方、上記凹溝の深さがパイプなどの外径の1.2倍以上になると、蓋板による押さえ込みがなくなり、パイプなどと上記凹溝の内壁との間に隙間を生じる。このため、係る範囲を除外したものである。
【0011】
また、本発明には、前記凹溝の幅は、前記パイプまたはヒータの外径ないし係る外径の1.1倍の範囲にある、伝熱素子の製造方法(請求項6)も含まれる。
これによっても、パイプまたはヒータの少なくとも下半部の周面または全周面を、ベース部材の凹溝あるいはこれと蓋板底面の凹溝と確実に面接触により確実に密着させることができる。尚、ベース部材や蓋板の凹溝の幅がパイプなどの外径よりも小さいと、係る凹溝にパイプなどが挿入できなくなり、凹溝の幅がパイプなどの外径の1.1倍を越えると、パイプなどと凹溝の内壁との間に隙間を生じる。このため、係る範囲を除外したものである。尚また、以上の凹溝の深さおよび幅の範囲は、前記ベース部材や蓋板がアルミニウム合金からなり、パイプなどが高い剛性のステンレス鋼管からなる場合に特に好適である。
【0012】
加えて、本発明には、前記接合工程における摩擦攪拌接合に用いる接合ツールは、ツール本体とその底面の中心部から同軸心で垂下する摩擦攪拌ピンとを含み、上記摩擦攪拌ピンの軸方向の長さは、前記突き合わせ面の深さ乃至その60%以上の範囲にある、伝熱素子の製造方法(請求項7)も含まれる。
これによれば、ベース部材と蓋板との突き合わせ面付近の表面を高速回転する接合ツールのツール本体で押さえ込みつつ、係るツール本体と共に高速回転して突き合わせ面付近に進入する摩擦攪拌ピンにより、ベース部材および蓋板を形成する金属材料を摩擦熱にて固相状態で流動化させて攪拌することができる。このため、蓋板をベース部材の蓋溝内に嵌合した状態で強固に接合できる。しかも、凹溝のない蓋板の底面に接近するパイプなどを、ベース部材の凹溝内に押し込んだり、ベース部材の凹溝と蓋板の凹溝との全周面で面接触させることができる。従って、パイプなどの周面と凹溝の内壁とを面接触により確実に密着できる。
尚、摩擦攪拌ピンの軸方向の長さが突き合わせ面の深さの60%未満になると、該突き合わせ面に沿って形成される接合部の深さが上記深さの約半分近くになり、接合強度が不足する事態になり得る。また、摩擦攪拌ピンの軸方向の長さが突き合わせ面の深さよりも長いと、流動化した金属材料が蓋溝と蓋板との間に進入して接合部の強度が不足するため、係る範囲を除外した。更に、突き合わせ面の深さは、接合ツールの軸方向に沿った押し込み量を差し引いた距離である。
【0013】
【発明の実施の形態】
以下において、本発明の実施に好適な形態を図面と共に説明する。
図1(A)は、本発明における第1の伝熱素子の1形態である伝熱素子1を示す斜視図であり、図1(B)は、係る伝熱素子1の垂直断面図である。
伝熱素子1は、図1(A),(B)に示すように、表面3および裏面4を有する厚板形状のベース部材2と、係るベース部材2の表面3に開口し且つ断面が長方形(矩形)の蓋溝6に嵌合される蓋板10と、前記蓋溝6の底面に開口する凹溝8に挿入される熱媒体用のパイプ16と、を備えている。上記ベース部材2は、例えばアルミニウム合金(JIS:A6061)からなり、図1(A)に示すように、図示の前後(長手)方向に沿って蓋溝6と、その底面の中央に凹溝8とが形成されている。係る凹溝8は、その下半部が断面半円形のアール面(凹溝)7であり、且つ蓋溝6寄りの上半部の断面は、上記アール面7の直径と同じ幅の長方形である。
【0014】
また、蓋板10も上記同様のアルミニウム合金からなり、図1(A),(B)に示すように、ベース部材2の蓋溝6の断面とほぼ同じ長方形(矩形)断面を形成する上面11、底面12、および左右の各側面13,14を有する。
更に、パイプ16は、例えばステンレス鋼(JIS:SUS304)からなり、図1(B)に示すように、その断面のほぼ下半分は、ベース部材2における凹溝8のアール面7とほぼ同じ相似形の半円形を呈する。因みに、係るパイプ16は、外径が3mmで且つ肉厚が0.5mmのサイズであり、断面円形の中空部18を内設している。係る中空部18には、例えば冷却水、冷却ガス、高温液、あるいは高温ガスなど熱媒体が循環して流される。
【0015】
後述するように、前記ベース部材2の凹溝8の深さは、パイプ16の外径と同じ深さ乃至係る外径の1.2倍未満の深さの範囲にあると共に、係る凹溝8のアール面7を除いたほぼ上半部の幅は、パイプ16の外径と同じ幅乃至係る外径の1.1倍以下の深さの範囲にある。従って、パイプ16の下半部の周面は、凹溝8のアール面7と面接触している。
図1(A),(B)に示すように、ベース部材2の蓋溝6の両側壁5,5と、係る蓋溝6に嵌合した蓋板10の両側面13,14との突き合わせ面に沿って、摩擦攪拌接合による接合部W1,W2が個別に形成されている。係る接合部W1,W2は、ベース部材2および蓋板10の金属材料を、後述する接合ツールを用いて摩擦熱により固相状態で流動化しつつ攪拌して一体化させたものである。因みに、接合部W1,W2の深さは、上記突き合わせ面の深さの約80%である。
【0016】
以上のような伝熱素子1によれば、ベース部材2と蓋板10とは、両者の金属材料が固相状態で一体化される摩擦攪拌接合による接合部W1,W2を介して接合されている。このため、蓋溝6の底面に開口する凹溝8に挿入したパイプ16からの熱による接合部W1,W2の強度の低下をなくすことができる。しかも、摩擦攪拌接合の際に蓋板10とベース部材2とが、後述する接合ツールのツール本体の底面(ショルダ)に加圧されているため、蓋板10の底面12に接触ないし押圧されるパイプ16は、凹溝8のアール面7と面接触しつつ密着する。従って、上記パイプ8中を循環する熱媒体からの熱エネルギを効率良くベース部材2を介して、その付近に位置する対象物に熱伝達することができる。
特に、凹溝8の深さおよび幅が、パイプ16の外径と同じか、これよりも極く僅かに小さい場合には、パイプ16と凹溝8の内壁との良好な密着が得られる。
【0017】
次に、前記伝熱素子1の製造方法について、図2〜図3に基づき説明する。
図2(A)は、表面3および裏面4を有し且つ前記同様のアルミニウム合金からなる厚板2aの断面を示す。係る厚板2aは、平面視で図示の前後方向が長手方向である長方形を呈する。係る厚板2aの表面3における長手方向の中央付近に沿って、エンドミルカッタなどを用いて公知の座ぐり加工を施す。その結果、図2(B)に示すように、表面3に開口し断面が長方形で且つ左右の側壁5,5を備えた蓋溝6を有する厚板2bが形成される。
上記厚板2bの蓋溝6における底面の中央部に対し、長手方向に沿って所定の幅で座ぐり加工した後、更にその下側を切削加工により半円形断面に切除する。その結果、図2(C)に示すように、上記蓋溝6およびその底面の中央部に開口する凹溝8を長手方向に沿って有するベース部材2が形成される。係る凹溝8は、上半部の断面が長方形であり、且つ下半部が断面半円形のアール面7である。
【0018】
尚、ベース部材2には、上記蓋溝6および凹溝8を長手方向に沿って予め一体に形成されているアルミニウム合金の押出形材を用いても良い。
図2(C)に示すように、凹溝8の深さ(最深部の深さ)Yは、次述する熱媒体用のパイプ16の外径と同じ乃至その1.2倍未満の範囲にあると共に、凹溝8の幅Xは、パイプ16の外径と同じ乃至その1.1倍以下の範囲にある。
次に、図2(D)に示すように、凹溝8に前記同様のステンレス鋼からなる熱媒体用のパイプ16を挿入する(挿入工程)。中空部18を内設する当該パイプ16の下半部の周面は、その全長において凹溝8の下半部を形成するアール面7と面接触する。また、係るパイプ16の上端部は、凹溝8の開口部付近で且つ蓋溝6の底面と同じレベルか、あるいは係る底面よりも僅かに低い位置となる。
【0019】
更に、図3(A)に示すように、凹溝8にパイプ16が挿入されたベース部材2の蓋溝6内に、前記同様のアルミニウム合金からなり、上面11、下面12、左右の側面13,14に囲まれた蓋溝6の断面とほぼ同じ長方形断面の蓋板10を嵌合する(閉塞工程)。この際、蓋板10の底面12の中央付近に、パイプ16の上端部が線接触または接近すると共に、当該蓋板10の上面11は、ベース部材2における左右の表面3,3と面一となる。
次いで、図3(B),(C)に示すように、ベース部材2の蓋溝6の両側壁5,5と蓋板10の両側面13,14との2列の突き合わせ面に沿って、摩擦攪拌接合を施す(接合工程)。係る接合には、図示の接合ツール20を用いる。
【0020】
即ち、接合ツール20は、例えば工具鋼からなり、図3(B),(C)に示すように、円柱形のツール本体22と、その底面24の中心部から同軸心で垂下する摩擦攪拌ピン26とを含む。尚、攪拌ピン26の周面には、その軸方向に沿って図示しない複数の小溝や径方向に沿ったネジ溝が形成されていても良い。
因みに、上記ツール本体22の直径は6〜20mm、摩擦攪拌ピン26の長さは3〜10mmで且つその直径は2〜8mmである。また、摩擦攪拌ツール20の回転数は500〜15000rpm、送り速度は0.05〜2m/分であり、当該ツール20の軸方向に加える押し込み力は1kN〜20kN程度である。
【0021】
図3(B),(C)に示すように、ベース材2および蓋板10を図示しない治具により拘束した状態で、蓋溝6における左側の側壁5と蓋板10の側面13との突き合わせ面に沿って、高速回転する接合ツール20を押し込む。この際、ツール本体22の底面24は、ベース部材2の表面3および蓋板10の上面11と平行となる。尚、上記摩擦攪拌ピン26の軸方向の長さは、図3(B)に示すように、上記突き合わせ面の深さH以下で且つその60%以上の範囲とされる。
図3(B),(C)に示すように、摩擦攪拌ツール20における摩擦攪拌ピン26の底面は、前記突き合わせ面のやや下方に達する。係る状態で高速回転する摩擦攪拌ピン26により、その周囲に位置するベース部材2および蓋板10のアルミニウム合金材料は、摩擦熱によって加熱され、半固相状態で塑性化し且つ流動化(物質移動)する。尚、摩擦攪拌ピン26の周面に軸方向に沿った小溝や径方向に沿ったネジ溝があると、上記アルミニウム合金材料の攪拌を一層活発化できる。
【0022】
係る摩擦攪拌ツール20が回転しつつ通過した跡には、図3(B),(C)に示すように、蓋溝6の側壁5と蓋板10の側面13との突き合わせ面に沿って、上記塑性・流動化したアルミニウム合金材料が固化した接合部W1が形成される。係る接合部W1の内部は、上記合金材料が十分に塑性流動している場合、多数の空孔である微細なトンネル欠陥などが皆無となる。尚、接合部W1の表面waは、前記ツール本体22の底面24の周縁に倣った細かなさざ波形の凹凸を有し、且つツール本体22の押し込み量によって、表面3などよりも僅かに凹んでいる。引き続いて、蓋溝6における右側の側壁5と蓋板10の側面14との突き合わせ面に沿っても、接合ツール20を用いて上記と同様の摩擦攪拌接合を施す。
【0023】
その結果、図3(D)に示すように、蓋溝6の両側壁5,5と蓋板10の両側面13,14との各突き合わせ面に沿って接合部W1,W2が形成され、これにより蓋板10がベース部材2の蓋溝6内に密嵌され且つ係る蓋板10の底面12が予め凹溝8中に挿入され且つ下半部で面接触しているパイプ16の上端部に当接または著しく近接した伝熱素子1が得られる。
以上のような伝熱素子1の製造方法によれば、熱伝達性に優れると共に、パイプ16からの熱エネルギによっても高い強度を維持できる接合部W1,W2を有する伝熱素子1を効率良く確実に製造することが可能となる。尚、パイプ16に替えて、例えば電熱線などの周囲にステンレス鋼の箔を巻き付けた断面円形のヒータをベース部材2の凹溝8に挿入しても良い。
【0024】
図4は、異なる形態の伝熱素子1aおよびその製造方法に関する。
先ず、前記同様のアルミニウム合金製の厚板の表面3を座ぐり加工や切削加工することにより、図4(A)に示すように、表面3に開口する断面長方形(矩形)の蓋溝6と、その底面中央に開口し且つ断面が正方形の凹溝9とを有するベース部材2cを形成する。尚、ベース部材2cには、上記蓋溝6および凹溝9を長手方向に沿って予め一体に有するアルミニウム合金の押出形材を用いても良い。
次に、上記凹溝9内に、その深さと幅とに縦・横寸法がほぼ同じ正方形断面である熱媒体用のパイプ17を挿入する(挿入工程)。係るパイプ17は、前記同様のステンレス鋼からなり、外形と相似形断面の中空部19を内設していると共に、上記凹溝9の底面および左右の両側壁に面接触する。
【0025】
次いで、図4(B)に示すように、凹溝9にパイプ17が挿入されたベース部材2cの蓋溝6内に、前記同様のアルミニウム合金からなり、蓋溝6の断面とほぼ同じ長方形断面の蓋板10を嵌合する(閉塞工程)。この際、蓋板10の底面12の中央付近に、上記パイプ17の上面が面接触または極く接近し、且つ当該蓋板10の上面11は、ベース部材2cの表面3,3と面一となる。
そして、蓋溝6における左右の側壁5,5と蓋板10の側面13,14との一対の突き合わせ面に沿って、それぞれ前記同様の接合ツール20を用いて前記同様の摩擦攪拌接合を個別に施す(接合工程)。
【0026】
その結果、図4(C)に示すように、一対の突き合わせ面に沿って接合部W1,W2が形成され、これにより蓋板10がベース部材2cの蓋溝6内に密嵌されると共に、係る蓋板10の底面12が予め凹溝9中に挿入され且つ面接触しているパイプ17の上面に面接触または近接して対向する伝熱素子1aが得られる。
係る伝熱素子1aは、図4(C)に示すように、断面正方形(角形)のパイプ17をほぼ同じか相似形断面の凹溝9に面接触により挿入され且つ係るパイプ17の上面に蓋板10の底面12が面接触または近接しているため、熱伝達特性が一層向上する。また、以上の伝熱素子1aの製造方法によれば、パイプ17からの熱エネルギによっても、ベース部材2cと蓋板10との間で高い強度を維持できる接合部W1,W2を有する伝熱素子1aを効率良く確実に製造可能となる。
【0027】
【実施例】
ここで、本発明の伝熱素子1の具体的な実施例について説明する。
アルミニウム合金(JIS:A6061)からなり、前記図1(A),(B)および図4(C)における長手方向が300mm、表面3と裏面4の幅が30mm、厚みが20mmであると共に、蓋溝6は深さ5mm×幅10mmである2つのベース部材2,2cを用意した。ベース部材2の凹溝8は、深さ(最深部)Y:3mm×幅X:3mmで且つ断面の下半部は半円形の前記アール面7である。また、ベース部材2cの凹溝9は、深さY:3mm×幅X:3mmの正方形断面である。
【0028】
上記ベース部材2の凹溝8にステンレス鋼(JIS:SUS304)製で、全長:340mm×外径:3mm×肉厚:0.5mmの熱媒体用のパイプ16を、その両端を突出させて挿入した。一方、ベース部材2cの凹溝9に同じ素材で、全長:340mm×縦:3mm×横:3mm×肉厚:0.5mmの断面正方形のパイプ17を、その両端を突出させて挿入した。係るベース部材2,2cの蓋溝6に、前記と同じアルミニウム合金からなり、全長300mm×幅9.8mm×厚み5mmの蓋板10を個別に嵌合した。係る蓋板10を含む上記ベース部材2,2cを拘束した状態で、蓋溝6の両側壁5,5と蓋板10の両側面13,14との一対の突き合わせ面に沿って、摩擦攪拌接合を接合を個別に行った。
【0029】
これに用いた接合ツール20は、工具鋼(SKD61)からなり、そのツール本体22の直径が15mmで、摩擦攪拌ピン26は、直径5mm×長さ3.8mmである。係る接合ツール20を、上記突き合わせ面に沿って、回転数:1400rpm、移動速度:300mm/分、軸方向の押し込み深さ(距離):0.2mmの同じ条件で、回転しつつ移動させて接合部W1,W2を個別に形成した。
ベース部材2を用いた伝熱素子1を実施例1、ベース部材2cを用いた伝熱素子1aを実施例2とした。これらを長手方向の4箇所で切断して目視し、接合部W1,W2におけるトンネル欠陥などの有無、パイプ16と凹溝8,9および蓋板10との隙間の有無を調べた。その結果を表1に示す。
【0030】
【表1】

Figure 2004314115
【0031】
表1によれば、実施例1,2の伝熱素子1,1aの接合部W1,W2には、トンネル欠陥などは全く見当たらなかった。また、実施例1の凹溝8とパイプ16との下半部間には、隙間がなく、実施例2の蓋板10の底面12を含む凹溝9とパイプ17との間では、全周にて隙間のない密着性を有することが判明した。
次に、前記実施例1と同じベース部材2を10個用意し、表2に示すように、凹溝8の深さ(最深部)Yと幅Xを変化させ、前記と同じ熱媒体用のパイプ16を個別に挿入した。これらの蓋溝6の両側壁5,5と蓋板10の両側面13,14との各突き合わせ面に沿って、前記と同じ接合ツール20を用い且つ前記と同じ同じ条件により摩擦攪拌接合を個別に行った。
得られた10の伝熱素子(1)について、前記同様に切断して目視し、接合部W1,W2における欠陥などの有無や、パイプ16と凹溝8および蓋板10との隙間の有無を調べた。その結果も表2に示す。
【0032】
【表2】
Figure 2004314115
【0033】
表2によれば、パイプ16の外径よりも凹溝8の深さYが小さい(浅い)比較例1では、蓋板10の浮き上がりにより、接合部W1,W2にトンネル欠陥が生じ、且つパイプ16と凹溝8のアール面との間に隙間が生じた。また、凹溝8の深さYがパイプ16の外径の1.2倍である比較例2では、接合ツール20の加圧で蓋板10の中央部が凹み且つ側面13,14が浮き上がったため、接合部W1,W2にアルミニウム合金材料不足による欠陥が生じ且つ上記隙間も生じた。
更に、凹溝8の幅Xがパイプ16の外径の1.1倍を越えた比較例3〜5では、蓋板10が上記同様の撓み変形をしたため、接合部W1,W2にアルミニウム合金材料不足による欠陥が生じ且つ上記隙間も生じた。
一方、凹溝8の深さYがパイプ16の外径と同じかその1.2倍未満であり、凹溝8の幅Xがパイプ16の外径と同じかその1.1倍以下である実施例3〜7では、接合部W1,W2にトンネル欠陥などがなく、且つ凹溝8のアール面7とパイプ16の下半部とに隙間のない良好な密着状態となっていた。
【0034】
更に、前記実施例1と同じベース部材2、蓋板10、および熱媒体用のパイプ16を7組用意し、これらについて前記同様に挿入および嵌合して組立てた。
表3に示すように、前記接合ツール20における摩擦攪拌ピン26の軸方向の長さを変化させ、前記ツール本体22の押し込み量(距離)を一定とし、上記7組の蓋溝6の両側壁5,5と蓋板10の両側面13,14との突き合わせ面に沿って、上記押し込み量を含め前記と同じ条件により摩擦攪拌接合を個別に行った。
得られた7個の伝熱素子(1)について、前記同様に切断して目視し、接合部W1,W2における欠陥の有無、および凹溝8とパイプ16との隙間の有無を調べた。その結果も表3に示す。
【0035】
【表3】
Figure 2004314115
【0036】
表3によれば、摩擦攪拌ピン26の長さが前記突き合わせ面の深さH(押し込み量を除いた蓋溝6の深さ)よりも長い比較例6では、塑性流動化したアルミニウム合金材料が蓋溝6と蓋板10との間に差し込むため、ベース部材2およびパイプ16と蓋板10との間に隙間が生じていた。
また、摩擦攪拌ピン26の長さが前記突き合わせ面の深さHの60%未満である比較例7では、上記材料の組成流動および接合ツール20による加圧およびアルミニウム合金材料の塑性流動が不足し、接合部W1,W2の接合強度が低くなっため、パイプ16と蓋板10の底面12との間に隙間が生じていた。
一方、摩擦攪拌ピン26の長さが前記突き合わせ面の深さHと同じかその60%以上であった実施例8〜12では、接合部W1,W2に欠陥がなく、且つパイプ16と凹溝8との下半部およびパイプ16の上端部と蓋板10の底面12との間には、隙間がなく良好な密着状態となっていた。
以上の実施例1〜12の伝熱素子1により、本発明の効果が裏付けられた。
【0037】
図5(A)は、複数の前記伝熱素子1(伝熱素子1aも含む、以下同じ)を用いた伝熱ユニットU1の概略を示す。係る伝熱ユニットU1は、図5(A)に示すように、複数の伝熱素子1,1,…をそれらのベース部材2(ベース部材2cも含む、以下同じ)を離間して平行に配置すると共に、各ベース部材2の長手方向の両端から突出する熱媒体用のパイプ16(パイプ17も含む、以下同じ)に、ヘッダーパイプ27を直角に接続している。
また、図5(B)は、複数の前記伝熱素子1を用いた異なる形態の伝熱ユニットU2の概略を示す。係る伝熱ユニットU2は、図5(B)に示すように、複数の伝熱素子1,1,…をそれらのベース部材2を隣接させて平行に配置し、各ベース部材2の長手方向の両端から突出し且つ隣接する熱媒体用のパイプ16,16間をほぼU字形の連絡パイプ28を介して接続したものである。
以上のような伝熱ユニットU1,U2によれば、複数の前記伝熱素子1(1a)におけるパイプ16(17)に熱媒体を流通させることにより、これに密着したベース部材2(2c)および蓋板10を介して、これらに接触または近接する図示しない対象物を迅速に冷却または加熱することが可能となる。
【0038】
図6(A),(B)は、前記伝熱素子1の応用形態である伝熱素子1bおよびその製造方法を示す。図6(A)に示すように、予め、前記同様のアルミニウム合金からなり、表面3に開口する断面矩形の蓋溝6と、係る蓋溝6の底面に開口し且つ互いに平行な一対の凹溝8,8とを有するベース部材2dを形成する。
次に、上記ベース部材2dの凹溝8,8に、前記同様のパイプ16,16を個別に挿入し(挿入工程)した後、上記蓋溝6にこれとほぼ同じ断面の蓋板10を嵌合する(閉塞工程)。そして、上記蓋溝6の両側壁5,5と蓋板10の両側面13,14との突き合わせ面に沿って、前記接合ツール20を用いて摩擦攪拌接合前述した条件に沿ってを施す(接合工程)。その結果、図6(B)に示すように、上記突き合わせ面に沿って接合部W1,W2が形成され、これらにより各凹溝8のアール面7にパイプ16の下半部を面接触で密着させ、且つ各パイプ16の上端部に蓋板10の底面12が当接する伝熱素子1bを得ることができる。
【0039】
図6(C),(D)は、前記伝熱素子1aの応用形態である伝熱素子1cおよびその製造方法を示す。図6(C)に示すように、予め、前記同様のアルミニウム合金からなり、表面3に開口する断面矩形の蓋溝6と、係る蓋溝6の底面に開口し且つ互いに平行な一対の凹溝9,9とを有するベース部材2eを形成する。
次に、上記ベース部材2eの凹溝9,9に、前記同様のパイプ17,17を個別に挿入し(挿入工程)した後、上記蓋溝6にこれとほぼ同じ断面の蓋板10を嵌合する(閉塞工程)。そして、上記蓋溝6の両側壁5,5と蓋板10の両側面13,14との突き合わせ面に沿って、前記接合ツール20を用いて摩擦攪拌接合前述した条件に沿ってを施す(接合工程)。その結果、図6(D)に示すように、上記突き合わせ面に沿って接合部W1,W2が個別に形成され、これらにより各凹溝9内にパイプ16を面接触により密着させ、且つ各パイプ17の上面に蓋板10の底面12が面接触する伝熱素子1cを得ることができる。
尚、ベース部材2d,2eには、前記蓋溝6および凹溝8,9を長手方向に沿って一体に有するアルミニウム合金の押出形材を用いても良い。
【0040】
図7(A),(B)は、本発明の第2の伝熱素子1dとその製造方法を示す。
図7(A)に示すように、前記同様のアルミニウム合金からなり、表面3に開口する断面矩形の蓋溝6と、係る蓋溝6の底面に開口する断面半円形の凹溝7とを有するベース部材2fを予め用意する。また、断面が上記蓋溝6と同じ長方形で且つ底面12の中央に開口する断面半円形の凹溝15を有する蓋板10aを用意する。上記凹溝7と凹溝15とは、互いに同じ断面で且つ対向している。尚、ベース部材2fおよび蓋板10aには、押出形材を用いても良い。
【0041】
図7(A)中の矢印で示すように、ベース部材2fの凹溝7に、パイプ16の下半部を挿入した後、ベース部材2fの蓋溝6に蓋板10aを嵌合すると同時に、その凹溝15内に上記パイプ16の上半部を挿入する(挿入・閉塞工程)。
次いで、ベース部材2fの蓋溝6の両側壁5,5と蓋板10aの両側面13,14との突き合わせ面に沿って、前記接合ツール20を用いて摩擦攪拌接合前述した条件に沿ってを施す(接合工程)。その結果、図7(B)に示すように、上記突き合わせ面に沿って接合部W1,W2が形成されると共に、丸パイプ16がその全周面でベース部材2fの凹溝7と蓋板10aの凹溝15との内周面と密着した熱伝達性に優れた伝熱素子1dを、得ることができる。
【0042】
図7(C)は、前記伝熱素子1dの応用形態である伝熱素子1eを示す。
図7(C)に示すように、ベース部材2gは、前記同様のアルミニウム合金からなり、表面3に開口する断面矩形の蓋溝6と、係る蓋溝6の底面に開口し且つ互いに平行な一対の凹溝7とを有し、蓋板10bは、断面が上記蓋溝6と同じ長方形で且つ底面12に開口する一対の凹溝15を有する。上記凹溝7と凹溝15も、互いに同じ断面で且つ対向している。尚、ベース部材2gおよび蓋板10bにも、押出形材を用いても良い。
前記同様に、ベース部材2gの凹溝7,7に、パイプ16の下半部を個別に挿入した後、ベース部材2gの蓋溝6に蓋板10bを嵌合し、且つその凹溝15,15内に上記パイプ16の上半部を個別に挿入する(挿入・閉塞工程)。
次いで、ベース部材2gの蓋溝6の両側壁5,5と蓋板10bの両側面13,14との突き合わせ面に沿って、前記接合ツール20を用いて摩擦攪拌接合前述した条件に沿ってを施す(接合工程)。その結果、図7(C)に示すように、上記突き合わせ面に沿って接合部W1,W2が形成されると共に、一対の丸パイプ16がそれぞれの全周面でベース部材2gの凹溝7と蓋板10bの凹溝15との内周面と密着した熱伝達性に優れた伝熱素子1eを、得ることができる。
【0043】
図8(A),(B)は、本発明の第2の伝熱素子における異なる形態の伝熱素子1fとその製造方法を示す。
図8(A)に示すように、前記同様のアルミニウム合金からなり、表面3に開口する断面矩形の蓋溝6と、係る蓋溝6の底面に開口する断面長方形の凹溝9aとを有するベース部材2hを予め用意する。また、断面が上記蓋溝6と同じ長方形で且つ底面12の中央に開口し且つ断面長方形の凹溝15aを有する蓋板10cを用意する。上記凹溝9aと凹溝15aとは、互いに同じ断面で且つ対向している。尚、ベース部材2hおよび蓋板10cには、押出形材を用いても良い。
【0044】
図8(A)中の矢印で示すように、ベース部材2hの凹溝9aに、断面が正方形のパイプ17の下半部を挿入した後、ベース部材2hの蓋溝6に蓋板10cを嵌合すると同時に、その凹溝15a内に上記パイプ17の上半部を挿入する(挿入・閉塞工程)。次いで、ベース部材2hの蓋溝6の両側壁5,5と蓋板10cの両側面13,14との突き合わせ面に沿って、前記接合ツール20を用いた摩擦攪拌接合を前述した条件によって施す(接合工程)。
その結果、図8(B)に示すように、上記突き合わせ面に沿よって接合部W1,W2が形成されると共に、パイプ17がそのほぼ全周面でベース部材2hの凹溝9aと蓋板10aの凹溝15との内壁面と密着した熱伝達性に優れた伝熱素子1fを、得ることができる。
【0045】
図8(C)は、前記伝熱素子1fの応用形態である伝熱素子1gを示す。
図8(C)に示すように、ベース部材2jは、前記同様のアルミニウム合金からなり、表面3に開口する断面矩形の蓋溝6と、係る蓋溝6の底面に開口し且つ互いに平行な一対の凹溝9aとを有し、蓋板10dは、断面が上記蓋溝6と同じ長方形で且つ底面12に開口する一対の凹溝15aを有する。上記凹溝9aと凹溝15aも、互いに同じ断面で且つ対向している。尚、ベース部材2jおよび蓋板10dにも、押出形材を用いても良い。
前記同様に、ベース部材2jの各凹溝9aに、パイプ17の下半部を個別に挿入した後、ベース部材2jの蓋溝6に蓋板10dを嵌合し、且つその凹溝15a内に上記パイプ17の上半部を個別に挿入する(挿入・閉塞工程)。
【0046】
次いで、ベース部材2jの蓋溝6の両側壁5,5と蓋板10dの両側面13,14との突き合わせ面に沿って、前記接合ツール20を用いて摩擦攪拌接合前述した条件に沿ってを施す(接合工程)。その結果、図8(C)に示すように、上記突き合わせ面に沿って接合部W1,W2が形成されると共に、一対の角パイプ17がそれぞれの全周面でベース部材2jの凹溝9aと蓋板10bの凹溝15aとの内壁面と密着した熱伝達性に優れた伝熱素子1gを、得ることができる。
尚、上記凹溝9aと凹溝15aとは、互いに同じ断面でなく、幅のみが共通して、高さ(深さ)の相違する形態にしても良い。
【0047】
本発明は、以上に説明した各形態や実施例に限定されるものではない。
例えば、前記熱媒体用のパイプは、断面が6角形や8角形の正多角形の形態とし、蓋板が平板の形態であって、上記パイプを挿入するベース部材の凹溝の下半部の断面を当該パイプの下半部の断面とほぼ同じ台形などにしても良い。
また、前記熱媒体用のパイプは、熱伝導率の高い銅または銅合金、あるいは比較的軽量で所要の強度を有するチタン合金などからなるものであっても良い。
更に、前記ベース部材の材質は、熱伝導率の高い銅または銅合金などからなるものとしても良い。
また、前記ベース部材2などの表面3および裏面4の少なくとも一方や、前記蓋板10の上面11であって、前記接合ツール20の移動に支障のない位置に、熱交換促進用の凸条やフィンなどを突設しても良い。特に、ベース部材2などに、蓋溝6、凹溝8,9を押出成形により形成するアルミニウム合金の押出形材を用いる場合には、上記凸条やフィンなどを一体に突設できるため好適である。
【図面の簡単な説明】
【図1】(A)は本発明の第1の伝熱素子における1形態の斜視図、(B)は(A)中のB−B線に沿った矢視における断面図。
【図2】(A)〜(D)は上記伝熱素子の製造工程を示す概略図。
【図3】(A),(B),(D)は図2(D)に続く上記伝熱素子の製造工程を示す概略図、(C)は(B)中のC−Cに沿った矢視における断面図。
【図4】(A)〜(C)は異なる形態の第1の伝熱素子またはその製造工程を示す概略図。
【図5】(A),(B)は上記伝熱素子を複数用いた伝熱ユニットを示す概略図。
【図6】(A),(B)は図1の伝熱素子の応用形態またはその製造工程を示す概略図、(C),(D)は図4の伝熱素子の応用形態またはその製造工程を示す概略図。
【図7】(A),(B)は本発明の第2の伝熱素子における1形態またはその製造工程を示す概略図、(C)は上記伝熱素子の応用形態を示す概略図。
【図8】(A),(B)は異なる形態の第2の伝熱素子またはその製造工程を示す概略図、(C)は上記伝熱素子の応用形態を示す概略図。
【符号の説明】
1,1a〜1d…伝熱素子、 2,2c〜2j…ベース部材、
3…………………表面、 5…………………側壁、
6…………………蓋溝、 7,8,9,9a…ベース部材の凹溝、
10………………蓋板、 13,14………側面、
15,15a……蓋板の凹溝、 16,17………パイプ、
20………………接合ツール、 22………………ツール本体、
24………………ツール本体の底面、 26………………摩擦攪拌ピン、
W1,W2………接合部、 X…………………凹溝の幅、
Y…………………凹溝の深さ、 H…………………突き合わせ面の深さ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat transfer element used for, for example, a heat exchanger, a heating device or a cooling device, and a method for manufacturing the same.
[0002]
[Prior art]
The heat transfer element that is placed in contact with or in proximity to the object to be heat-exchanged, heated, or cooled, has a base member that is a main body thereof, and a pipe for circulating a heat medium such as, for example, cooling water is closely attached to the heat transfer element. Is required.
As a method of manufacturing such a heat transfer element, for example, a pipe made of stainless steel is penetrated and arranged in a predetermined cavity provided in a mold, and a molten metal of an aluminum alloy is cast and integrated into the cavity, for example. There is a wrapping method.
However, in the above cast-in method, a gap is generated between the obtained base member and the pipe because the aluminum alloy serving as the base member after casting is contracted when solidified. As a result, there has been a problem that heat transfer from the heat medium circulating in the pipe to the base member is reduced. In addition, since the production cost of the mold is high, there is also a problem that the cost increases when a relatively large heat transfer element is manufactured in a small amount.
[0003]
On the other hand, as a method for manufacturing a different heat transfer element, a stainless steel pipe or a heater having a stainless steel foil wound therearound is inserted into a groove formed on the surface of a base member made of an aluminum alloy, and There is a method of brazing a cover plate to the surface of the base member so as to cover the opening of the groove.
However, in the method using brazing, for example, when a heater is inserted into the groove, the heat generated by the heating lowers the bonding strength of the brazing material, or the lid plate is loosened due to such a situation, and the heat between the heater and the base member is reduced. There was a problem that the transmissibility was reduced. In addition, among the aluminum alloys used as the base member, there is also a problem that brazing cannot be performed with a 2000 or 5000 series alloy having high high-temperature strength.
[0004]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention solves the above-described problems in the related art, and has a heat transfer element excellent in heat transfer property in which a pipe or heater for a heat medium and a base member containing the same are in close contact with each other. It is another object of the present invention to provide a method of manufacturing a heat transfer element that can be manufactured at a high speed.
[0005]
Means for Solving the Problems and Effects of the Invention
In order to solve the above-mentioned problems, the present invention is to insert a heat medium pipe or the like into a concave groove or the like formed on a bottom surface of a lid groove formed in a base member so as to be in close contact therewith, and to cover the lid groove with substantially the same cross section. In addition to fitting the plates, the lid plate and the base member are friction stir welded to be integrated in a solid state.
That is, the first heat transfer element (Claim 1) of the present invention includes a base member having a lid groove having a rectangular cross section opening on the surface and a concave groove opening on the bottom surface of the lid groove, and a concave of the base material. A pipe or heater for a heat medium inserted into the groove, and a lid plate fitted in the lid groove of the base material, each of the side walls and both side surfaces of the lid plate in the lid groove of the base material A joint portion formed by friction stir welding is formed along the butt surface.
Further, a second heat transfer element of the present invention is a base material having a lid groove having a rectangular cross section opening on the surface and a concave groove opening on the bottom surface of the lid groove, and a lid of the base material. A lid plate having a concave groove fitted into the groove and opening on the bottom surface, a pipe or a heater for a heat medium inserted across the concave groove of the base material and the concave groove of the lid plate, A joint portion formed by friction stir welding is formed along each abutting surface between both side walls of the lid groove of the base material and both side surfaces of the lid plate.
[0006]
According to these, since the base member and the lid plate are joined via the joining portion by friction stir welding in which both metal materials are integrated in a solid state, the concave groove opening on the bottom surface of the lid groove Or between the groove and the groove of the lid plate, it is possible to prevent a decrease in strength at the joint portion due to heat from the inserted pipe or heater. Moreover, since the lid plate and the base member are pressurized by the bonding seal described later during the friction stir welding, in the first heat transfer element, a pipe or the like that is in contact with or pressed against the bottom surface of the lid plate is It comes into close contact with the concave groove of the base member while making surface contact. On the other hand, in the second heat transfer element, the pipe and the like are in close contact with each other on the entire peripheral surface of the concave groove of the base member and the concave groove located on the bottom surface of the cover plate. Therefore, it is possible to efficiently transfer heat energy from a heat medium or a heater circulating in the pipe or the like to an object to be transferred via the base member.
The materials of the base member and the cover plate are not particularly limited, but an aluminum alloy having particularly high thermal conductivity and excellent workability is recommended. When the base member and the cover plate are made of an aluminum alloy, the pipe is preferably a stainless steel pipe having a higher melting point and a higher rigidity than the aluminum alloy, and the heater is made of stainless steel foil around a known heating wire. Wound form is recommended. Further, the base member may be an extruded profile of an aluminum alloy capable of integrally forming the lid groove and the concave groove, and the lid plate used for the second heat transfer element may be a similar extruded profile having the concave groove.
[0007]
On the other hand, the method of manufacturing a heat transfer element according to the present invention (claim 3) is characterized in that a concave groove provided on the bottom surface of a lid groove having a rectangular cross section opened on the surface of the base member or the concave groove of the base material and the lid are formed. An insertion step of inserting a pipe or a heater for a heat medium over a concave groove provided on the bottom surface of the lid plate fitted into the groove, and fitting the lid plate having substantially the same cross section into the lid groove of the base member. And a joining step of performing friction stir welding along each abutting surface between both side walls of the lid groove of the base material and both side surfaces of the lid plate.
According to this, the base member and the lid plate can be firmly joined via the joining part by friction stir welding that integrates both metal materials in a solid state. Moreover, in a mode in which the bottom surface of the cover plate has no concave groove, the base member and the cover plate are joined while being pressed, so that the bottom surface of the cover plate contacts or presses against a pipe or a heater, and the pipe or the like and the base member are connected. The concave groove can be brought into close contact with a wide surface. Further, in the form in which the bottom surface of the lid plate also has a concave groove, a pipe or the like can be brought into close contact with the concave groove of the base member and the lid plate in the entire peripheral surface. Therefore, it is possible to efficiently and reliably manufacture a heat transfer element having a joint portion which has excellent heat transferability and can maintain high strength even by heat energy from a pipe, a heater, or the like.
[0008]
In addition, the material of the base member and the lid plate includes the case where both are made of the same kind of aluminum alloy and the case where they are made of a combination of different kinds of aluminum alloys because the friction stir welding can be applied between different kinds of metals. It is. Further, when the base member and the lid plate are made of aluminum alloys, since the joining temperature at the time of the friction stir welding is in a temperature range of 500 ° C. or less, the heater of the heater previously inserted into the concave groove of the base member or the lid plate is used. Deterioration of characteristics can also be prevented.
[0009]
Further, according to the present invention, the cross-sectional shape of at least the lower half of the concave groove of the base plate is the same as or substantially similar to the cross-sectional shape of the lower half of the pipe or heater. A method for manufacturing a thermal element (claim 4) is also included. According to this, the contact area between the pipe or the heater and the inner wall of the concave groove of the base plate or the lid plate without the concave groove can be brought into close contact with the entire peripheral surface of the pipe or 50% or more thereof. Therefore, the thermal energy from the pipe or the heater can be reliably transmitted to the base member. When the cross section of the pipe or heater is circular and the bottom surface of the lid plate is flat, the lower half of the concave groove of the base plate has a semicircular cross section, and the cross section of the pipe or the like is a hexagonal or higher regular polygon. When the bottom surface of the lid plate is flat, the lower half of the groove has a rectangular or trapezoidal shape, and the lower half of the cross section makes surface contact with the inner wall of the groove. Further, when the cross section of a pipe or the like is a square, by inserting into a concave groove of a cross-section base member having a substantially same square shape as the pipe, the bottom surface without a concave groove in the entire peripheral surface of the pipe and the concave plate in the cover plate is formed. Surface contact is possible. On the other hand, in a form in which the concave groove is located on the bottom surface of the lid plate, the concave groove of the lid plate and the concave groove of the base plate have the same symmetrical and semicircular or rectangular cross section.
[0010]
Further, in the present invention, the depth of the groove of the base plate in a form in which there is no groove on the bottom surface of the lid plate is an outer diameter of the pipe or the heater or a range of less than 1.2 times the outer diameter. The method for manufacturing a heat transfer element described in (5) is also included. According to this, the peripheral surface of at least the lower half of the pipe or the heater can be securely brought into close contact with the inner wall of the concave groove of the base plate by surface contact.
If the depth of the groove of the base plate is smaller than the outer diameter of the pipe or the like, the entire cross section of the pipe or the like cannot be inserted into the groove. On the other hand, when the depth of the groove is 1.2 times or more the outer diameter of the pipe or the like, the pressing by the cover plate is stopped, and a gap is generated between the pipe and the inner wall of the groove. Therefore, such a range is excluded.
[0011]
The present invention also includes a method for manufacturing a heat transfer element, wherein the width of the concave groove is within an outer diameter of the pipe or the heater or 1.1 times the outer diameter of the pipe or the heater (claim 6).
This also ensures that at least the peripheral surface or the entire peripheral surface of the lower half portion of the pipe or heater is brought into close contact with the concave groove of the base member or the concave groove of the bottom surface of the lid plate by surface contact. If the width of the concave groove of the base member or the cover plate is smaller than the outer diameter of the pipe or the like, a pipe or the like cannot be inserted into the concave groove, and the width of the concave groove is 1.1 times the outer diameter of the pipe or the like. If it exceeds, a gap is generated between the pipe or the like and the inner wall of the concave groove. Therefore, such a range is excluded. Further, the above-described depth and width ranges of the concave groove are particularly suitable when the base member and the cover plate are made of an aluminum alloy, and the pipe or the like is made of a highly rigid stainless steel pipe.
[0012]
In addition, according to the present invention, a welding tool used for friction stir welding in the welding step includes a tool main body and a friction stir pin that coaxially hangs from a center portion of a bottom surface of the tool body, and the axial length of the friction stir pin is long. The method also includes a method of manufacturing a heat transfer element having a depth in the range from the depth of the butted surface to 60% or more thereof.
According to this, while holding the surface near the butt surface of the base member and the lid plate with the tool body of the joining tool that rotates at high speed, the friction stir pin that rotates at a high speed with the tool body and enters near the butt surface, The metal material forming the member and the cover plate can be fluidized and stirred in a solid state by frictional heat. For this reason, it is possible to firmly join the lid plate in a state fitted in the lid groove of the base member. In addition, a pipe or the like approaching the bottom surface of the cover plate having no groove can be pushed into the groove of the base member, or can be brought into surface contact with the entire peripheral surface of the groove of the base member and the groove of the cover plate. . Therefore, the peripheral surface of the pipe or the like and the inner wall of the concave groove can be surely brought into close contact with each other by surface contact.
If the axial length of the friction stir pin is less than 60% of the depth of the butted surface, the depth of the joint formed along the butted surface becomes nearly half of the above depth, Insufficient strength can result. Further, if the axial length of the friction stir pin is longer than the depth of the abutting surface, the fluidized metal material enters between the lid groove and the lid plate, and the strength of the joint is insufficient. Was excluded. Further, the depth of the abutting surface is a distance obtained by subtracting the pushing amount along the axial direction of the joining tool.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings.
FIG. 1A is a perspective view showing a heat transfer element 1 which is one mode of a first heat transfer element according to the present invention, and FIG. 1B is a vertical sectional view of the heat transfer element 1. .
As shown in FIGS. 1A and 1B, the heat transfer element 1 has a thick plate-shaped base member 2 having a front surface 3 and a back surface 4, an opening in the front surface 3 of the base member 2, and a rectangular cross section. A cover plate 10 is fitted into the (rectangular) cover groove 6, and a heat medium pipe 16 is inserted into the concave groove 8 opened on the bottom surface of the cover groove 6. The base member 2 is made of, for example, an aluminum alloy (JIS: A6061). As shown in FIG. 1A, a cover groove 6 is formed along a front-rear (longitudinal) direction of the drawing, and a groove 8 is formed at the center of the bottom surface. Are formed. The concave groove 8 has a round surface (concave groove) 7 whose lower half is a semicircular cross section, and a cross section of the upper half near the lid groove 6 is a rectangle having the same width as the diameter of the round surface 7. is there.
[0014]
The lid plate 10 is also made of the same aluminum alloy as described above, and as shown in FIGS. 1A and 1B, an upper surface 11 which forms a rectangular (rectangular) cross section substantially the same as the cross section of the lid groove 6 of the base member 2. , A bottom surface 12 and left and right side surfaces 13 and 14.
Further, the pipe 16 is made of, for example, stainless steel (JIS: SUS304). As shown in FIG. 1 (B), the lower half of the cross section is substantially the same as the round surface 7 of the concave groove 8 in the base member 2. It has a semicircular shape. Incidentally, the pipe 16 has an outer diameter of 3 mm and a thickness of 0.5 mm, and has a hollow portion 18 having a circular cross section therein. A heat medium such as cooling water, cooling gas, high-temperature liquid, or high-temperature gas circulates and flows through the hollow portion 18.
[0015]
As will be described later, the depth of the concave groove 8 of the base member 2 is in the range of the same depth as the outer diameter of the pipe 16 or less than 1.2 times the outer diameter of the pipe 16. The width of the upper half except for the round surface 7 is in the range of the same width as the outer diameter of the pipe 16 or a depth of 1.1 times or less of the outer diameter. Therefore, the peripheral surface of the lower half portion of the pipe 16 is in surface contact with the round surface 7 of the concave groove 8.
As shown in FIGS. 1A and 1B, abutting surfaces of the side walls 5, 5 of the lid groove 6 of the base member 2 and the side surfaces 13, 14 of the lid plate 10 fitted in the lid groove 6. Along, joints W1 and W2 by friction stir welding are individually formed. The joining portions W1 and W2 are obtained by integrating the metal materials of the base member 2 and the cover plate 10 by using a joining tool described later while fluidizing in a solid state by frictional heat while stirring. Incidentally, the depth of the joints W1 and W2 is about 80% of the depth of the butted surface.
[0016]
According to the heat transfer element 1 as described above, the base member 2 and the cover plate 10 are joined via the joints W1 and W2 by friction stir welding in which both metal materials are integrated in a solid state. I have. For this reason, it is possible to prevent a decrease in the strength of the joints W1 and W2 due to heat from the pipe 16 inserted into the concave groove 8 opened on the bottom surface of the lid groove 6. In addition, since the lid plate 10 and the base member 2 are pressed against the bottom surface (shoulder) of the tool body of the welding tool described later during friction stir welding, the lid plate 10 and the base member 2 come into contact with or are pressed against the bottom surface 12 of the lid plate 10. The pipe 16 is in close contact with the round surface 7 of the groove 8 while making surface contact. Therefore, heat energy from the heat medium circulating in the pipe 8 can be efficiently transmitted to the object located near the heat medium via the base member 2.
In particular, when the depth and width of the groove 8 are the same as or slightly smaller than the outer diameter of the pipe 16, good adhesion between the pipe 16 and the inner wall of the groove 8 can be obtained.
[0017]
Next, a method for manufacturing the heat transfer element 1 will be described with reference to FIGS.
FIG. 2A shows a cross section of a thick plate 2a having a front surface 3 and a back surface 4 and made of the same aluminum alloy as described above. The thick plate 2a has a rectangular shape whose longitudinal direction is the front-rear direction shown in plan view. A known spot facing process is performed using an end mill cutter or the like along the vicinity of the longitudinal center of the surface 3 of the thick plate 2a. As a result, as shown in FIG. 2 (B), a thick plate 2b having a lid groove 6 having a rectangular cross section, a rectangular cross section, and left and right side walls 5, 5 is formed.
After counterboring the central portion of the bottom surface of the lid groove 6 of the thick plate 2b with a predetermined width in the longitudinal direction, the lower side is further cut out into a semicircular cross section by cutting. As a result, as shown in FIG. 2 (C), the base member 2 having the above-described lid groove 6 and the concave groove 8 opening at the center of the bottom surface thereof along the longitudinal direction is formed. The concave groove 8 has an upper surface having a rectangular cross section and a lower half having a semicircular cross section.
[0018]
The base member 2 may be made of an extruded aluminum alloy in which the lid groove 6 and the concave groove 8 are formed integrally in advance in the longitudinal direction.
As shown in FIG. 2C, the depth (depth of the deepest portion) Y of the concave groove 8 is set to be equal to or less than 1.2 times the outer diameter of the heat medium pipe 16 described below. At the same time, the width X of the concave groove 8 is in the range from the same as the outer diameter of the pipe 16 to 1.1 times or less.
Next, as shown in FIG. 2D, a heat medium pipe 16 made of the same stainless steel as described above is inserted into the groove 8 (insertion step). The peripheral surface of the lower half of the pipe 16 in which the hollow portion 18 is provided is in surface contact with the round surface 7 forming the lower half of the concave groove 8 over its entire length. The upper end of the pipe 16 is located near the opening of the groove 8 and at the same level as the bottom surface of the lid groove 6 or at a position slightly lower than the bottom surface.
[0019]
Further, as shown in FIG. 3A, the upper surface 11, the lower surface 12, and the left and right side surfaces 13 are made of the same aluminum alloy as described above in the lid groove 6 of the base member 2 in which the pipe 16 is inserted into the concave groove 8. , 14 are fitted with a lid plate 10 having a rectangular cross section substantially the same as the cross section of the lid groove 6 (closing step). At this time, the upper end of the pipe 16 is in line contact with or near the center of the bottom surface 12 of the cover plate 10, and the upper surface 11 of the cover plate 10 is flush with the left and right surfaces 3, 3 of the base member 2. Become.
Next, as shown in FIGS. 3B and 3C, along two rows of abutting surfaces of the side walls 5 and 5 of the cover groove 6 of the base member 2 and the side surfaces 13 and 14 of the cover plate 10, Perform friction stir welding (joining step). The joining tool 20 shown is used for such joining.
[0020]
That is, the joining tool 20 is made of, for example, tool steel, and as shown in FIGS. 3B and 3C, a cylindrical tool main body 22 and a friction stir pin hanging coaxially from the center of the bottom surface 24 thereof. 26. In addition, a plurality of small grooves (not shown) or thread grooves along the radial direction may be formed on the peripheral surface of the stirring pin 26 along the axial direction.
Incidentally, the diameter of the tool main body 22 is 6 to 20 mm, the length of the friction stir pin 26 is 3 to 10 mm, and the diameter thereof is 2 to 8 mm. The rotational speed of the friction stir tool 20 is 500 to 15000 rpm, the feed speed is 0.05 to 2 m / min, and the pushing force applied in the axial direction of the tool 20 is about 1 kN to 20 kN.
[0021]
As shown in FIGS. 3B and 3C, in a state where the base material 2 and the cover plate 10 are restrained by a jig (not shown), the left side wall 5 in the cover groove 6 and the side surface 13 of the cover plate 10 abut. A high-speed rotating joining tool 20 is pushed along the surface. At this time, the bottom surface 24 of the tool main body 22 is parallel to the surface 3 of the base member 2 and the upper surface 11 of the cover plate 10. The axial length of the friction stir pin 26 is, as shown in FIG. 3B, in a range not more than the depth H of the butted surface and not less than 60% thereof.
As shown in FIGS. 3B and 3C, the bottom surface of the friction stir pin 26 in the friction stir tool 20 reaches slightly below the abutting surface. In this state, the aluminum alloy material of the base member 2 and the cover plate 10 located therearound is heated by frictional heat by the friction stir pin 26 which rotates at high speed, and is plasticized and fluidized (mass transfer) in a semi-solid state. I do. If there are small grooves along the axial direction or screw grooves along the radial direction on the peripheral surface of the friction stir pin 26, the stirring of the aluminum alloy material can be further activated.
[0022]
As shown in FIGS. 3 (B) and 3 (C), the trace of the rotation and passage of the friction stir tool 20 is formed along the abutting surface between the side wall 5 of the lid groove 6 and the side surface 13 of the lid plate 10. The joint W1 in which the plasticized and fluidized aluminum alloy material is solidified is formed. When the alloy material has sufficiently flowed plastically, there is no minute tunnel defect, which is a large number of holes, in the inside of the joint W1. The surface wa of the joint W1 has fine irregularities in a wavy shape following the periphery of the bottom surface 24 of the tool body 22, and is slightly recessed from the surface 3 or the like due to the amount of pushing of the tool body 22. I have. Subsequently, the same friction stir welding as described above is performed using the welding tool 20 along the abutting surface between the right side wall 5 in the lid groove 6 and the side surface 14 of the lid plate 10.
[0023]
As a result, as shown in FIG. 3D, joints W1 and W2 are formed along the abutting surfaces of the side walls 5 and 5 of the cover groove 6 and the side surfaces 13 and 14 of the cover plate 10, respectively. As a result, the cover plate 10 is tightly fitted into the cover groove 6 of the base member 2, and the bottom surface 12 of the cover plate 10 is inserted into the concave groove 8 in advance, and the upper end of the pipe 16 is in surface contact with the lower half. A heat transfer element 1 abutting or very close is obtained.
According to the method for manufacturing the heat transfer element 1 as described above, the heat transfer element 1 having the junctions W1 and W2 which is excellent in heat transferability and can maintain high strength even by the heat energy from the pipe 16 is efficiently and reliably provided. Can be manufactured. Instead of the pipe 16, for example, a heater having a circular cross section in which a stainless steel foil is wound around a heating wire or the like may be inserted into the concave groove 8 of the base member 2.
[0024]
FIG. 4 relates to a different form of the heat transfer element 1a and its manufacturing method.
First, the surface 3 of a thick plate made of the same aluminum alloy as described above is counterbored or cut to form a lid groove 6 having a rectangular cross section (rectangle) opening on the surface 3 as shown in FIG. , A base member 2c having an opening at the center of the bottom surface and a concave groove 9 having a square cross section is formed. The base member 2c may be made of an extruded aluminum alloy having the lid groove 6 and the concave groove 9 integrally in the longitudinal direction in advance.
Next, a pipe 17 for a heat medium having a square cross section having substantially the same vertical and horizontal dimensions as its depth and width is inserted into the concave groove 9 (insertion step). The pipe 17 is made of the same stainless steel as that described above, has a hollow portion 19 having a cross section similar to the outer shape, and is in surface contact with the bottom surface of the concave groove 9 and the left and right side walls.
[0025]
Next, as shown in FIG. 4 (B), a rectangular section made of the same aluminum alloy as described above is formed in the lid groove 6 of the base member 2c in which the pipe 17 is inserted into the concave groove 9, and is substantially the same as the cross section of the lid groove 6. (Closed step). At this time, the upper surface of the pipe 17 comes into surface contact with or extremely near the center of the bottom surface 12 of the lid plate 10, and the upper surface 11 of the lid plate 10 is flush with the surfaces 3, 3 of the base member 2c. Become.
Then, along the pair of abutting surfaces of the left and right side walls 5 and 5 in the cover groove 6 and the side surfaces 13 and 14 of the cover plate 10, the same friction stir welding is individually performed using the similar welding tool 20. (Joining step).
[0026]
As a result, as shown in FIG. 4C, joints W1 and W2 are formed along the pair of butted surfaces, whereby the cover plate 10 is tightly fitted in the cover groove 6 of the base member 2c, The heat transfer element 1a in which the bottom surface 12 of the cover plate 10 is inserted into the concave groove 9 in advance and faces the surface of the pipe 17 which is in surface contact with or in close proximity to the pipe 17 is obtained.
As shown in FIG. 4 (C), the heat transfer element 1a has a pipe 17 having a square (square) cross section inserted into the groove 9 having substantially the same or similar cross section by surface contact, and a lid is provided on the upper surface of the pipe 17. Since the bottom surface 12 of the plate 10 is in surface contact or close proximity, heat transfer characteristics are further improved. Further, according to the above-described method for manufacturing heat transfer element 1a, heat transfer element having junctions W1 and W2 that can maintain high strength between base member 2c and cover plate 10 even by thermal energy from pipe 17. 1a can be efficiently and reliably manufactured.
[0027]
【Example】
Here, specific examples of the heat transfer element 1 of the present invention will be described.
1 (A), (B) and 4 (C), the longitudinal direction is 300 mm, the width of the front surface 3 and the back surface 4 is 30 mm, the thickness is 20 mm, and the lid is made of aluminum alloy (JIS: A6061). For the groove 6, two base members 2 and 2c each having a depth of 5 mm and a width of 10 mm were prepared. The concave groove 8 of the base member 2 has a depth (deepest part) Y: 3 mm × width X: 3 mm, and a lower half of the cross section is the semicircular round surface 7. The concave groove 9 of the base member 2c has a square cross section of a depth Y: 3 mm × a width X: 3 mm.
[0028]
A heat medium pipe 16 made of stainless steel (JIS: SUS304) and having a total length of 340 mm, an outer diameter of 3 mm and a thickness of 0.5 mm is inserted into the concave groove 8 of the base member 2 with both ends protruding. did. On the other hand, a pipe 17 of the same material and having a square section with a total length of 340 mm × length: 3 mm × width: 3 mm × wall thickness: 0.5 mm was inserted into the concave groove 9 of the base member 2 c with both ends protruding. The lid plate 10 made of the same aluminum alloy as described above and having a total length of 300 mm, a width of 9.8 mm and a thickness of 5 mm was individually fitted into the lid grooves 6 of the base members 2 and 2c. In a state where the base members 2 and 2c including the cover plate 10 are restrained, friction stir welding is performed along a pair of abutting surfaces of both side walls 5 and 5 of the cover groove 6 and both side surfaces 13 and 14 of the cover plate 10. Were joined individually.
[0029]
The welding tool 20 used for this is made of tool steel (SKD61), the tool body 22 has a diameter of 15 mm, and the friction stir pin 26 has a diameter of 5 mm and a length of 3.8 mm. The welding tool 20 is rotated and moved along the abutting surface under the same conditions of a rotational speed of 1400 rpm, a moving speed of 300 mm / min, and an axial depth of penetration (distance) of 0.2 mm, and bonding. The parts W1 and W2 were individually formed.
The heat transfer element 1 using the base member 2 was Example 1, and the heat transfer element 1a using the base member 2c was Example 2. These were cut at four locations in the longitudinal direction and visually inspected to determine the presence or absence of a tunnel defect or the like at the joints W1 and W2 and the presence of gaps between the pipe 16 and the grooves 8, 9 and the cover plate 10. Table 1 shows the results.
[0030]
[Table 1]
Figure 2004314115
[0031]
According to Table 1, no tunnel defect or the like was found at the junctions W1 and W2 of the heat transfer elements 1 and 1a of Examples 1 and 2. Further, there is no gap between the concave groove 8 of the first embodiment and the lower half of the pipe 16, and between the concave groove 9 including the bottom surface 12 of the cover plate 10 of the second embodiment and the pipe 17, It was found that the sample had good adhesion without gaps.
Next, ten base members 2 which were the same as those in the first embodiment were prepared, and as shown in Table 2, the depth (the deepest portion) Y and the width X of the concave grooves 8 were changed to obtain the same heat medium as the above. Pipes 16 were individually inserted. The friction stir welding is individually performed along the abutting surfaces of the side walls 5 and 5 of the cover groove 6 and the side surfaces 13 and 14 of the cover plate 10 using the same welding tool 20 and under the same conditions as above. I went to.
The obtained 10 heat transfer elements (1) were cut and observed in the same manner as described above, and the presence or absence of defects or the like at the joints W1 and W2 and the presence or absence of gaps between the pipe 16 and the concave groove 8 and the cover plate 10 were determined. Examined. Table 2 also shows the results.
[0032]
[Table 2]
Figure 2004314115
[0033]
According to Table 2, in Comparative Example 1 in which the depth Y of the concave groove 8 is smaller (shallower) than the outer diameter of the pipe 16, a tunnel defect occurs at the joints W1 and W2 due to the lifting of the cover plate 10, and A gap was formed between the groove 16 and the round surface of the concave groove 8. In Comparative Example 2 in which the depth Y of the groove 8 is 1.2 times the outer diameter of the pipe 16, the center of the cover plate 10 is dented and the side surfaces 13 and 14 are lifted by the pressing of the joining tool 20. In addition, defects due to the shortage of the aluminum alloy material occurred in the joints W1 and W2, and the above-described gap also occurred.
Further, in Comparative Examples 3 to 5 in which the width X of the concave groove 8 exceeds 1.1 times the outer diameter of the pipe 16, the lid plate 10 bends and deforms as described above. Defects occurred due to shortage and the above gaps also occurred.
On the other hand, the depth Y of the concave groove 8 is equal to or less than 1.2 times the outer diameter of the pipe 16, and the width X of the concave groove 8 is equal to or less than 1.1 times the outer diameter of the pipe 16. In Examples 3 to 7, the junctions W1 and W2 did not have a tunnel defect or the like, and the round surface 7 of the concave groove 8 and the lower half portion of the pipe 16 were in good contact with no gap.
[0034]
Further, seven sets of the base member 2, the cover plate 10, and the pipe 16 for the heat medium, which were the same as those of the first embodiment, were prepared and inserted and fitted in the same manner as described above.
As shown in Table 3, the axial length of the friction stir pin 26 in the welding tool 20 was changed so that the pushing amount (distance) of the tool main body 22 was constant, and both side walls of the seven sets of lid grooves 6 were formed. Friction stir welding was individually performed along the abutting surfaces of the side surfaces 5 and 5 and the side surfaces 13 and 14 of the lid plate 10 under the same conditions as described above, including the amount of pushing.
The obtained seven heat transfer elements (1) were cut and visually inspected in the same manner as described above, and the presence or absence of defects at the joints W1 and W2 and the presence or absence of a gap between the concave groove 8 and the pipe 16 were examined. Table 3 also shows the results.
[0035]
[Table 3]
Figure 2004314115
[0036]
According to Table 3, in Comparative Example 6 in which the length of the friction stir pin 26 is longer than the depth H of the abutting surface (the depth of the lid groove 6 excluding the pushing amount), the plasticized fluidized aluminum alloy material is used. Since the cover member 10 is inserted between the cover groove 6 and the cover plate 10, a gap is formed between the base member 2 and the pipe 16 and the cover plate 10.
Further, in Comparative Example 7 in which the length of the friction stir pin 26 is less than 60% of the depth H of the abutting surface, the composition flow of the material, the pressurization by the welding tool 20 and the plastic flow of the aluminum alloy material are insufficient. Since the joining strength of the joining portions W1 and W2 is low, a gap is generated between the pipe 16 and the bottom surface 12 of the cover plate 10.
On the other hand, in Examples 8 to 12 in which the length of the friction stir pin 26 was equal to or more than 60% of the depth H of the abutting surface, the joints W1 and W2 had no defects, and the pipe 16 and the groove 8 and the upper end of the pipe 16 and the bottom surface 12 of the cover plate 10 were in good contact with no gap.
The effects of the present invention were supported by the heat transfer elements 1 of Examples 1 to 12 described above.
[0037]
FIG. 5A schematically shows a heat transfer unit U1 using a plurality of the heat transfer elements 1 (including the heat transfer element 1a, the same applies hereinafter). As shown in FIG. 5A, the heat transfer unit U1 has a plurality of heat transfer elements 1, 1,... Arranged in parallel with their base members 2 (including the base member 2c, the same applies hereinafter). At the same time, a header pipe 27 is connected at right angles to a heat medium pipe 16 (including the pipe 17, the same applies hereinafter) protruding from both ends in the longitudinal direction of each base member 2.
FIG. 5B schematically shows a heat transfer unit U <b> 2 in a different form using a plurality of the heat transfer elements 1. The heat transfer unit U2 has a plurality of heat transfer elements 1, 1,... Arranged in parallel with their base members 2 adjacent to each other as shown in FIG. The pipes 16 projecting from both ends and adjacent to each other for the heat medium are connected via a substantially U-shaped connecting pipe 28.
According to the heat transfer units U1 and U2 as described above, the heat medium flows through the pipes 16 (17) in the plurality of heat transfer elements 1 (1a), so that the base members 2 (2c) and Through the cover plate 10, it is possible to quickly cool or heat an object (not shown) in contact with or in proximity to them.
[0038]
FIGS. 6A and 6B show a heat transfer element 1 b which is an application of the heat transfer element 1 and a method of manufacturing the same. As shown in FIG. 6A, a lid groove 6 made of the same aluminum alloy as described above and having a rectangular cross section opened on the surface 3 and a pair of concave grooves opened on the bottom surface of the lid groove 6 and parallel to each other. Then, a base member 2d having 8, 8 is formed.
Next, the same pipes 16 and 16 as described above are individually inserted into the concave grooves 8 and 8 of the base member 2d (insertion step), and a cover plate 10 having substantially the same cross section as this is fitted into the cover groove 6. (Blocking step). Then, along the abutting surfaces of the side walls 5 and 5 of the cover groove 6 and the side surfaces 13 and 14 of the cover plate 10, friction stir welding is performed using the welding tool 20 in accordance with the above-described conditions (joining). Process). As a result, as shown in FIG. 6 (B), joints W1 and W2 are formed along the abutting surface, and the lower half of the pipe 16 is brought into close contact with the round surface 7 of each groove 8 by surface contact. Then, the heat transfer element 1b in which the bottom surface 12 of the lid plate 10 abuts on the upper end of each pipe 16 can be obtained.
[0039]
FIGS. 6C and 6D show a heat transfer element 1c which is an application of the heat transfer element 1a and a method of manufacturing the same. As shown in FIG. 6C, a lid groove 6 made of the same aluminum alloy as described above and having a rectangular cross section opened on the surface 3 and a pair of concave grooves opened on the bottom surface of the lid groove 6 and parallel to each other. The base member 2e having the components 9 and 9 is formed.
Next, the same pipes 17, 17 as described above are individually inserted into the concave grooves 9, 9 of the base member 2e (insertion step), and a lid plate 10 having substantially the same cross section as this is fitted into the lid groove 6. (Blocking step). Then, along the abutting surfaces of the side walls 5 and 5 of the cover groove 6 and the side surfaces 13 and 14 of the cover plate 10, friction stir welding is performed using the welding tool 20 in accordance with the above-described conditions (joining). Process). As a result, as shown in FIG. 6 (D), joints W1 and W2 are individually formed along the abutting surfaces, whereby the pipes 16 are brought into close contact with the respective grooves 9 by surface contact, and The heat transfer element 1c in which the bottom surface 12 of the cover plate 10 is in surface contact with the upper surface of 17 can be obtained.
The base members 2d and 2e may be made of an extruded aluminum alloy having the lid groove 6 and the concave grooves 8 and 9 integrally along the longitudinal direction.
[0040]
FIGS. 7A and 7B show a second heat transfer element 1d of the present invention and a method of manufacturing the same.
As shown in FIG. 7A, the cover groove 6 is made of the same aluminum alloy as described above and has a rectangular cross section opened on the surface 3 and a semicircular concave groove 7 opened on the bottom surface of the cover groove 6. A base member 2f is prepared in advance. In addition, a lid plate 10 a having a rectangular cross section, which is the same as the lid groove 6, and having a semicircular concave groove 15 opening at the center of the bottom surface 12 is prepared. The groove 7 and the groove 15 have the same cross section and face each other. In addition, an extruded shape member may be used for the base member 2f and the lid plate 10a.
[0041]
As shown by the arrow in FIG. 7A, after inserting the lower half of the pipe 16 into the concave groove 7 of the base member 2f, the cover plate 10a is fitted into the cover groove 6 of the base member 2f, The upper half of the pipe 16 is inserted into the groove 15 (insertion / closing step).
Next, along the abutting surfaces of the side walls 5, 5 of the lid groove 6 of the base member 2f and the side surfaces 13, 14 of the lid plate 10a, friction stir welding is performed using the welding tool 20 according to the above-described conditions. (Joining step). As a result, as shown in FIG. 7B, the joints W1 and W2 are formed along the abutting surface, and the round pipe 16 is formed on the entire peripheral surface thereof with the concave groove 7 of the base member 2f and the cover plate 10a. A heat transfer element 1d having excellent heat transfer properties, which is in intimate contact with the inner peripheral surface of the concave groove 15 can be obtained.
[0042]
FIG. 7C shows a heat transfer element 1e which is an application of the heat transfer element 1d.
As shown in FIG. 7 (C), the base member 2g is made of the same aluminum alloy as described above, and has a lid groove 6 having a rectangular cross section opened on the front surface 3 and a pair of parallel holes opened on the bottom surface of the lid groove 6 and parallel to each other. The lid plate 10 b has a pair of concave grooves 15 which are rectangular in cross section as in the lid groove 6 and open to the bottom surface 12. The grooves 7 and 15 also have the same cross section and face each other. Note that an extruded profile may be used for the base member 2g and the lid plate 10b.
Similarly, after individually inserting the lower halves of the pipes 16 into the grooves 7, 7 of the base member 2g, the cover plate 10b is fitted into the cover groove 6 of the base member 2g, and the grooves 15, 7 are formed. The upper half of the pipe 16 is individually inserted into the pipe 15 (insertion / closing step).
Next, along the abutting surfaces of the side walls 5, 5 of the lid groove 6 of the base member 2g and the both side surfaces 13, 14 of the lid plate 10b, friction stir welding is performed using the welding tool 20 according to the above-described conditions. (Joining step). As a result, as shown in FIG. 7 (C), the joints W1 and W2 are formed along the abutting surface, and the pair of round pipes 16 are formed with the concave grooves 7 of the base member 2g on the entire circumferential surface. It is possible to obtain a heat transfer element 1e having excellent heat transfer properties, which is in close contact with the inner peripheral surface of the cover plate 10b with the concave groove 15.
[0043]
FIGS. 8A and 8B show a different form of the heat transfer element 1f in the second heat transfer element of the present invention and a method of manufacturing the same.
As shown in FIG. 8A, a base made of the same aluminum alloy as described above and having a rectangular-shaped cover groove 6 opened on the surface 3 and a rectangular-shaped concave groove 9a opened on the bottom surface of the cover groove 6. The member 2h is prepared in advance. In addition, a lid plate 10c having a rectangular cross section, which has the same rectangular shape as the lid groove 6 and is opened at the center of the bottom surface 12 and has a concave groove 15a having a rectangular cross section, is prepared. The concave groove 9a and the concave groove 15a have the same cross section and face each other. Note that an extruded member may be used for the base member 2h and the lid plate 10c.
[0044]
As shown by the arrow in FIG. 8A, after inserting the lower half of the pipe 17 having a square cross section into the concave groove 9a of the base member 2h, the cover plate 10c is fitted into the cover groove 6 of the base member 2h. At the same time, the upper half of the pipe 17 is inserted into the groove 15a (insertion / closing step). Then, friction stir welding using the welding tool 20 is performed along the abutting surfaces of the side walls 5, 5 of the cover groove 6 of the base member 2h and the side surfaces 13, 14 of the cover plate 10c under the conditions described above ( Joining process).
As a result, as shown in FIG. 8 (B), the joints W1 and W2 are formed along the abutting surface, and the pipe 17 is formed with the concave groove 9a of the base member 2h and the cover plate 10a on almost the entire circumferential surface. And a heat transfer element 1f excellent in heat transfer property in close contact with the inner wall surface with the concave groove 15 can be obtained.
[0045]
FIG. 8C shows a heat transfer element 1g which is an application form of the heat transfer element 1f.
As shown in FIG. 8 (C), the base member 2j is made of the same aluminum alloy as described above, and has a lid groove 6 having a rectangular cross section opened on the surface 3 and a pair of parallel holes opened on the bottom surface of the lid groove 6 and parallel to each other. The lid plate 10d has a pair of concave grooves 15a having a rectangular cross section the same as the lid groove 6 and opening to the bottom surface 12. The grooves 9a and 15a also have the same cross section and face each other. Note that an extruded profile may be used for the base member 2j and the lid plate 10d.
Similarly to the above, after individually inserting the lower half of the pipe 17 into each groove 9a of the base member 2j, the cover plate 10d is fitted into the cover groove 6 of the base member 2j, and is inserted into the groove 15a. The upper half of the pipe 17 is individually inserted (insertion / closing step).
[0046]
Next, along the abutting surfaces of the side walls 5 and 5 of the lid groove 6 of the base member 2j and the side surfaces 13 and 14 of the lid plate 10d, friction stir welding is performed using the welding tool 20 according to the above-described conditions. (Joining step). As a result, as shown in FIG. 8 (C), the joints W1 and W2 are formed along the abutting surface, and the pair of square pipes 17 are formed with the concave grooves 9a of the base member 2j on the entire circumferential surface. It is possible to obtain a heat transfer element 1g which is in close contact with the inner wall surface with the concave groove 15a of the cover plate 10b and has excellent heat transfer properties.
The grooves 9a and the grooves 15a may not have the same cross section but may have a common width only and different heights (depths).
[0047]
The present invention is not limited to the embodiments and examples described above.
For example, the pipe for the heat medium has a regular polygonal shape having a hexagonal or octagonal cross section, a lid plate having a flat plate shape, and a lower half of a concave groove of a base member into which the pipe is inserted. The cross section may be substantially the same as the cross section of the lower half of the pipe, such as a trapezoid.
Further, the pipe for the heat medium may be made of copper or a copper alloy having a high thermal conductivity, or a titanium alloy having a relatively light weight and a required strength.
Further, the material of the base member may be made of copper or copper alloy having high thermal conductivity.
In addition, at least one of the front surface 3 and the rear surface 4 of the base member 2 and the like, and the upper surface 11 of the lid plate 10 at a position where the movement of the joining tool 20 is not hindered, Fins or the like may be protruded. In particular, it is preferable to use an extruded aluminum alloy material in which the lid groove 6 and the concave grooves 8 and 9 are formed by extrusion for the base member 2 and the like, because the above-mentioned ridges and fins can be integrally provided. is there.
[Brief description of the drawings]
FIG. 1A is a perspective view of one embodiment of a first heat transfer element of the present invention, and FIG. 1B is a cross-sectional view taken along line BB in FIG.
2 (A) to 2 (D) are schematic views showing a manufacturing process of the heat transfer element.
FIGS. 3A, 3B, and 3D are schematic views showing a manufacturing process of the heat transfer element following FIG. 2D, and FIG. 3C is along a line CC in FIG. Sectional drawing in the direction of the arrow.
FIGS. 4A to 4C are schematic views showing different first heat transfer elements or manufacturing steps thereof.
FIGS. 5A and 5B are schematic diagrams showing a heat transfer unit using a plurality of the heat transfer elements.
6 (A) and 6 (B) are schematic views showing an application form of the heat transfer element of FIG. 1 or a manufacturing process thereof, and FIGS. 6 (C) and (D) are application forms of the heat transfer element of FIG. 4 or manufacture thereof. The schematic diagram which shows a process.
FIGS. 7A and 7B are schematic views showing one embodiment or a manufacturing process of the second heat transfer element of the present invention, and FIG. 7C is a schematic view showing an application form of the heat transfer element.
FIGS. 8A and 8B are schematic views showing different forms of a second heat transfer element or manufacturing steps thereof, and FIG. 8C is a schematic view showing an applied form of the heat transfer element.
[Explanation of symbols]
1, 1a-1d: heat transfer element, 2, 2c-2j: base member,
3 ………………………………………………………………………………………………………………………………….
6 ... lid groove 7, 8, 9, 9a ... concave groove of base member,
10 ............ lid plate, 13, 14 ... side,
15, 15a ... groove of the cover plate, 16, 17 ... pipe,
20 joining tool, 22 tool body,
24 ……………………………………………………………………………………………………………………………………….
W1, W2 ... joint, X ... width of groove,
Y: Depth of groove, H: Depth of butt surface

Claims (7)

表面に開口する断面が矩形の蓋溝および係る蓋溝の底面に開口する凹溝を有するベース材と、
上記ベース材の凹溝に挿入される熱媒体用のパイプまたはヒータと、
上記ベース材の蓋溝に嵌合される蓋板と、を備え、
上記ベース材の蓋溝における両側壁と蓋板の両側面との各突き合わせ面に沿って摩擦攪拌接合による接合部が形成されている、ことを特徴とする伝熱素子。
A base material having a concave groove opening on the bottom surface of the lid groove and the lid groove having a rectangular cross section opening on the surface,
A pipe or heater for a heat medium inserted into the concave groove of the base material,
A lid plate fitted into the lid groove of the base material,
A heat transfer element, wherein a joint portion formed by friction stir welding is formed along each abutting surface between both side walls of the lid groove of the base material and both side surfaces of the lid plate.
表面に開口する断面が矩形の蓋溝および係る蓋溝の底面に開口する凹溝を有するベース材と、
上記ベース材の蓋溝に嵌合され且つ底面に開口する凹溝を有する蓋板と、
上記ベース材の凹溝と上記蓋板の凹溝とに跨って挿入される熱媒体用のパイプまたはヒータと、を備え、
上記ベース材の蓋溝における両側壁と蓋板の両側面との各突き合わせ面に沿って摩擦攪拌接合による接合部が形成されている、ことを特徴とする伝熱素子。
A base material having a concave groove opening on the bottom surface of the lid groove and the lid groove having a rectangular cross section opening on the surface,
A lid plate having a concave groove fitted into the lid groove of the base material and opening on the bottom surface,
A heat medium pipe or heater inserted across the concave groove of the base material and the concave groove of the lid plate,
A heat transfer element, wherein a joint portion formed by friction stir welding is formed along each abutting surface between both side walls of the lid groove of the base material and both side surfaces of the lid plate.
ベース部材の表面に開口する断面が矩形の蓋溝の底面に設けた凹溝に、または係るベース材の凹溝と上記蓋溝に嵌合される蓋板の底面に設けた凹溝とに跨って、熱媒体用のパイプまたはヒータを挿入する挿入工程と、
上記ベース部材の蓋溝に断面がほぼ同じ上記蓋板を嵌合する閉塞工程と、
上記ベース材の蓋溝における両側壁と上記蓋板の両側面との各突き合わせ面に沿って、摩擦攪拌接合を施す接合工程と、を含む、
ことを特徴とする伝熱素子の製造方法。
The cross-section opening on the surface of the base member extends over the concave groove provided on the bottom surface of the rectangular lid groove or over the concave groove of the base material and the concave groove provided on the bottom surface of the lid plate fitted into the lid groove. An insertion step of inserting a pipe or heater for a heat medium,
A closing step of fitting the lid plate having substantially the same cross section to the lid groove of the base member,
A joining step of performing friction stir welding along each abutting surface of both side walls of the lid groove of the base material and both side surfaces of the lid plate,
A method for manufacturing a heat transfer element, comprising:
前記ベース板の凹溝の少なくとも下半部の断面形状は、前記パイプまたはヒータの下半部の断面形状と同じか、あるいは係る断面形状とほぼ相似形である、ことを特徴とする請求項3に記載の伝熱素子の製造方法。4. The cross-sectional shape of at least the lower half of the concave groove of the base plate is the same as or substantially similar to the cross-sectional shape of the lower half of the pipe or heater. 3. The method for manufacturing a heat transfer element according to claim 1. 前記蓋板の底面に凹溝がない形態における前記ベース板の前記凹溝の深さは、前記パイプまたはヒータの外径ないし係る外径の1.2倍未満の範囲にある、ことを特徴とする請求項3または4に記載の伝熱素子の製造方法。The depth of the groove of the base plate in a form in which there is no groove on the bottom surface of the lid plate is in the range of less than 1.2 times the outer diameter of the pipe or heater or the outer diameter thereof. The method for manufacturing a heat transfer element according to claim 3. 前記凹溝の幅は、前記パイプまたはヒータの外径ないし係る外径の1.1倍の範囲にある、
ことを特徴とする請求項3乃至5の何れか一項に記載の伝熱素子の製造方法。
The width of the groove is 1.1 times the outer diameter or the outer diameter of the pipe or heater,
The method for manufacturing a heat transfer element according to claim 3, wherein:
前記接合工程における摩擦攪拌接合に用いる接合ツールは、ツール本体とその底面の中心部から同軸心で垂下する摩擦攪拌ピンとを含み、
上記摩擦攪拌ピンの軸方向の長さは、前記突き合わせ面の深さ乃至その60%以上の範囲にある、
ことを特徴とする請求項3乃至6の何れか一項に記載の伝熱素子の製造方法。
The welding tool used for friction stir welding in the welding step includes a tool stirrer and a friction stir pin that hangs coaxially from the center of the bottom surface thereof,
The axial length of the friction stir pin is in the range of the depth of the abutting surface to 60% or more thereof.
The method for manufacturing a heat transfer element according to claim 3, wherein:
JP2003110413A 2003-04-15 2003-04-15 Manufacturing method of heat transfer element Expired - Lifetime JP4325260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003110413A JP4325260B2 (en) 2003-04-15 2003-04-15 Manufacturing method of heat transfer element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003110413A JP4325260B2 (en) 2003-04-15 2003-04-15 Manufacturing method of heat transfer element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009005371A Division JP4998481B2 (en) 2009-01-14 2009-01-14 Manufacturing method of heat transfer element

Publications (2)

Publication Number Publication Date
JP2004314115A true JP2004314115A (en) 2004-11-11
JP4325260B2 JP4325260B2 (en) 2009-09-02

Family

ID=33471277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003110413A Expired - Lifetime JP4325260B2 (en) 2003-04-15 2003-04-15 Manufacturing method of heat transfer element

Country Status (1)

Country Link
JP (1) JP4325260B2 (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169777A (en) * 2005-10-18 2007-07-05 Applied Materials Inc Heated type substrate support and its manufacturing method
JP2007175729A (en) * 2005-12-27 2007-07-12 Kawasaki Heavy Ind Ltd Hollow body manufacturing method
JP2007203347A (en) * 2006-02-02 2007-08-16 Fuji Electric Systems Co Ltd Cooling body and its manufacturing method
JP2007209987A (en) * 2006-02-07 2007-08-23 Hitachi Ltd Friction stir welding method
JP2008254046A (en) * 2007-04-06 2008-10-23 Mitsubishi Heavy Ind Ltd Heat exchanging plate
WO2008132900A1 (en) 2007-04-16 2008-11-06 Nippon Light Metal Company, Ltd. Method of producing heat transfer plate and heat transfer plate
JP2009061470A (en) * 2007-09-06 2009-03-26 Nippon Light Metal Co Ltd Method for manufacturing heat exchanging plate, and heat exchanging plate
JP2009082990A (en) * 2009-01-14 2009-04-23 Nippon Light Metal Co Ltd Method for manufacturing heat transfer element
JP2009090295A (en) * 2007-10-04 2009-04-30 Nippon Light Metal Co Ltd Method for producing shape material, and shape material
JP2009178762A (en) * 2008-02-01 2009-08-13 Nippon Light Metal Co Ltd Method for manufacturing heat transfer plate
WO2009104426A1 (en) * 2008-02-21 2009-08-27 日本軽金属株式会社 Method of manufacturing heat transfer plate
JP2009195940A (en) * 2008-02-21 2009-09-03 Nippon Light Metal Co Ltd Manufacturing method of heat transfer plate
WO2009142070A1 (en) * 2008-05-20 2009-11-26 日本軽金属株式会社 Method for producing heat exchanger plate, and heat exchanger plate
JP2009279594A (en) * 2008-05-20 2009-12-03 Nippon Light Metal Co Ltd Method for manufacturing heat exchanger plate, and heat exchanger plate
JP2009291800A (en) * 2008-06-03 2009-12-17 Nippon Light Metal Co Ltd Heat transmit plate manufacturing method and heat transmit plate
JP2009297761A (en) * 2008-06-16 2009-12-24 Nippon Light Metal Co Ltd Method for producing heat transmit plate
WO2009157519A1 (en) * 2008-06-27 2009-12-30 日本軽金属株式会社 Heat exchange plate manufacturing method and heat exchange plate
JP2010005664A (en) * 2008-06-27 2010-01-14 Nippon Light Metal Co Ltd Method for manufacturing heat exchanger plate, and heat exchanger plate
JP2010017739A (en) * 2008-07-10 2010-01-28 Nippon Light Metal Co Ltd Method for manufacturing heat transfer plate
JP2010075938A (en) * 2008-09-24 2010-04-08 Nippon Light Metal Co Ltd Method of manufacturing heat transfer plate
WO2010041529A1 (en) * 2008-10-06 2010-04-15 日本軽金属株式会社 Method of manufacturing heat transfer plate
JP2010089147A (en) * 2008-10-10 2010-04-22 Nippon Light Metal Co Ltd Manufacturing method of heat transfer plate
JP2010105019A (en) * 2008-10-30 2010-05-13 Nippon Light Metal Co Ltd Method for manufacturing heat transfer plate
JP2010201447A (en) * 2009-03-02 2010-09-16 Nippon Light Metal Co Ltd Method for manufacturing heat transfer plate
JP2010240671A (en) * 2009-04-02 2010-10-28 Nippon Light Metal Co Ltd Method of manufacturing heat transfer plate
JP2010264467A (en) * 2009-05-13 2010-11-25 Nippon Light Metal Co Ltd Method for manufacturing heat exchange plate
KR101018514B1 (en) * 2007-04-06 2011-03-03 미츠비시 쥬고교 가부시키가이샤 A heat exchanging plate and a method thereof
JP2011041954A (en) * 2009-08-19 2011-03-03 Nippon Light Metal Co Ltd Method for manufacturing heat transfer plate
JP2012213809A (en) * 2012-06-29 2012-11-08 Nippon Light Metal Co Ltd Method for manufacturing heat transfer plate
JP2013049091A (en) * 2012-10-26 2013-03-14 Nippon Light Metal Co Ltd Method for manufacturing heat exchanger plate and heat exchanger plate
JP2013091104A (en) * 2012-12-28 2013-05-16 Nippon Light Metal Co Ltd Method for manufacturing heat transfer plate
JP2013099786A (en) * 2012-12-28 2013-05-23 Nippon Light Metal Co Ltd Method for manufacturing heat transfer plate
JP2014028402A (en) * 2013-09-20 2014-02-13 Nippon Light Metal Co Ltd Method for manufacturing heat exchanger plate
JP2014050890A (en) * 2013-10-24 2014-03-20 Nippon Light Metal Co Ltd Method for manufacturing heat exchanger plate
TWI485023B (en) * 2012-12-11 2015-05-21 Metal Ind Res & Dev Ct Aluminum alloy oil hot plate manufacturing method
CN104718049A (en) * 2012-10-10 2015-06-17 日本轻金属株式会社 Method for producing heat sink and method for producing heat exchanger plate
CN105658370A (en) * 2013-10-21 2016-06-08 日本轻金属株式会社 Method for manufacturing heat transfer plate and joining method
US9821419B2 (en) 2012-10-10 2017-11-21 Nippon Light Metal Company, Ltd. Method for manufacturing heat exchanger plate and method for friction stir welding
US10335894B2 (en) 2014-01-27 2019-07-02 Nippon Light Metal Company, Ltd. Joining method
US11413700B2 (en) 2018-08-27 2022-08-16 Nippon Light Metal Company, Ltd. Method for manufacturing heat transfer plate
US11654507B2 (en) 2017-12-18 2023-05-23 Nippon Light Metal Company, Ltd. Method for manufacturing liquid-cooling jacket
US11654508B2 (en) 2017-09-27 2023-05-23 Nippon Light Metal Company, Ltd. Method for producing liquid-cooled jacket
US11707798B2 (en) 2018-04-02 2023-07-25 Nippon Light Metal Company, Ltd. Method for manufacturing liquid-cooled jacket
US11707799B2 (en) 2018-12-19 2023-07-25 Nippon Light Metal Company, Ltd. Joining method
US11712748B2 (en) 2017-09-27 2023-08-01 Nippon Light Metal Company, Ltd. Method for producing liquid-cooled jacket

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169777A (en) * 2005-10-18 2007-07-05 Applied Materials Inc Heated type substrate support and its manufacturing method
JP2007175729A (en) * 2005-12-27 2007-07-12 Kawasaki Heavy Ind Ltd Hollow body manufacturing method
JP2007203347A (en) * 2006-02-02 2007-08-16 Fuji Electric Systems Co Ltd Cooling body and its manufacturing method
US7766214B2 (en) 2006-02-07 2010-08-03 Hitachi, Ltd. Friction stir welding method
JP2007209987A (en) * 2006-02-07 2007-08-23 Hitachi Ltd Friction stir welding method
JP2008254046A (en) * 2007-04-06 2008-10-23 Mitsubishi Heavy Ind Ltd Heat exchanging plate
KR100967254B1 (en) * 2007-04-06 2010-07-01 미츠비시 쥬고교 가부시키가이샤 A heat exchanging plate
KR101018514B1 (en) * 2007-04-06 2011-03-03 미츠비시 쥬고교 가부시키가이샤 A heat exchanging plate and a method thereof
WO2008132900A1 (en) 2007-04-16 2008-11-06 Nippon Light Metal Company, Ltd. Method of producing heat transfer plate and heat transfer plate
US8365408B2 (en) 2007-04-16 2013-02-05 Nippon Light Metal Company, Ltd. Heat transfer plate and method of manufacturing the same
CN102248276A (en) * 2007-04-16 2011-11-23 日本轻金属株式会社 Heat transfer plate snd method of manufacturing the same
CN102248276B (en) * 2007-04-16 2013-10-30 日本轻金属株式会社 Heat transfer plate and method of manufacturing same
EP2679331A1 (en) 2007-04-16 2014-01-01 Nippon Light Metal Company Ltd. Method of producing heat transfer plate and heat transfer plate
US8782892B2 (en) 2007-04-16 2014-07-22 Nippon Light Metal Company, Ltd. Heat transfer plate and method of manufacturing the same
JP2009061470A (en) * 2007-09-06 2009-03-26 Nippon Light Metal Co Ltd Method for manufacturing heat exchanging plate, and heat exchanging plate
JP2009090295A (en) * 2007-10-04 2009-04-30 Nippon Light Metal Co Ltd Method for producing shape material, and shape material
JP2009178762A (en) * 2008-02-01 2009-08-13 Nippon Light Metal Co Ltd Method for manufacturing heat transfer plate
KR101194097B1 (en) 2008-02-21 2012-10-24 니폰게이긴조쿠가부시키가이샤 Method of manufacturing heat transfer plate
CN101952079A (en) * 2008-02-21 2011-01-19 日本轻金属株式会社 Method of manufacturing heat transfer plate
JP2009195940A (en) * 2008-02-21 2009-09-03 Nippon Light Metal Co Ltd Manufacturing method of heat transfer plate
CN101952079B (en) * 2008-02-21 2014-04-02 日本轻金属株式会社 Method of manufacturing heat transfer plate
CN103551722A (en) * 2008-02-21 2014-02-05 日本轻金属株式会社 Method of manufacturing heat transfer plate
CN103551723A (en) * 2008-02-21 2014-02-05 日本轻金属株式会社 Method of manufacturing heat transfer plate
WO2009104426A1 (en) * 2008-02-21 2009-08-27 日本軽金属株式会社 Method of manufacturing heat transfer plate
TWI558970B (en) * 2008-05-20 2016-11-21 Nippon Light Metal Co A method of manufacturing a heat transfer plate and a heat transfer plate
TWI417500B (en) * 2008-05-20 2013-12-01 Nippon Light Metal Co A method of manufacturing a heat transfer plate and a heat transfer plate
JP2009279594A (en) * 2008-05-20 2009-12-03 Nippon Light Metal Co Ltd Method for manufacturing heat exchanger plate, and heat exchanger plate
WO2009142070A1 (en) * 2008-05-20 2009-11-26 日本軽金属株式会社 Method for producing heat exchanger plate, and heat exchanger plate
CN102036779A (en) * 2008-05-20 2011-04-27 日本轻金属株式会社 Method for producing heat exchanger plate, and heat exchanger plate
JP2009291800A (en) * 2008-06-03 2009-12-17 Nippon Light Metal Co Ltd Heat transmit plate manufacturing method and heat transmit plate
JP2009297761A (en) * 2008-06-16 2009-12-24 Nippon Light Metal Co Ltd Method for producing heat transmit plate
JP2010005664A (en) * 2008-06-27 2010-01-14 Nippon Light Metal Co Ltd Method for manufacturing heat exchanger plate, and heat exchanger plate
WO2009157519A1 (en) * 2008-06-27 2009-12-30 日本軽金属株式会社 Heat exchange plate manufacturing method and heat exchange plate
TWI402476B (en) * 2008-06-27 2013-07-21 Nippon Light Metal Co The method of manufacturing the heat transfer plate and the heat conducting plate
JP2010017739A (en) * 2008-07-10 2010-01-28 Nippon Light Metal Co Ltd Method for manufacturing heat transfer plate
JP2010075938A (en) * 2008-09-24 2010-04-08 Nippon Light Metal Co Ltd Method of manufacturing heat transfer plate
CN103624396A (en) * 2008-10-06 2014-03-12 日本轻金属株式会社 Method of manufacturing heat transfer plate
CN102159357B (en) * 2008-10-06 2014-04-16 日本轻金属株式会社 Method of manufacturing heat transfer plate
WO2010041529A1 (en) * 2008-10-06 2010-04-15 日本軽金属株式会社 Method of manufacturing heat transfer plate
CN102159357A (en) * 2008-10-06 2011-08-17 日本轻金属株式会社 Method of manufacturing heat transfer plate
KR101249186B1 (en) * 2008-10-06 2013-04-02 니폰게이긴조쿠가부시키가이샤 Method of manufacturing heat transfer plate
TWI402477B (en) * 2008-10-06 2013-07-21 Nippon Light Metal Co Manufacture of heat transfer plates
JP2010089147A (en) * 2008-10-10 2010-04-22 Nippon Light Metal Co Ltd Manufacturing method of heat transfer plate
JP2010105019A (en) * 2008-10-30 2010-05-13 Nippon Light Metal Co Ltd Method for manufacturing heat transfer plate
JP2009082990A (en) * 2009-01-14 2009-04-23 Nippon Light Metal Co Ltd Method for manufacturing heat transfer element
JP2010201447A (en) * 2009-03-02 2010-09-16 Nippon Light Metal Co Ltd Method for manufacturing heat transfer plate
JP2010240671A (en) * 2009-04-02 2010-10-28 Nippon Light Metal Co Ltd Method of manufacturing heat transfer plate
JP2010264467A (en) * 2009-05-13 2010-11-25 Nippon Light Metal Co Ltd Method for manufacturing heat exchange plate
JP2011041954A (en) * 2009-08-19 2011-03-03 Nippon Light Metal Co Ltd Method for manufacturing heat transfer plate
JP2012213809A (en) * 2012-06-29 2012-11-08 Nippon Light Metal Co Ltd Method for manufacturing heat transfer plate
US9821419B2 (en) 2012-10-10 2017-11-21 Nippon Light Metal Company, Ltd. Method for manufacturing heat exchanger plate and method for friction stir welding
CN104718049A (en) * 2012-10-10 2015-06-17 日本轻金属株式会社 Method for producing heat sink and method for producing heat exchanger plate
US10518369B2 (en) 2012-10-10 2019-12-31 Nippon Light Metal Company, Ltd. Method for manufacturing heat exchanger plate and method for friction stir welding
TWI492806B (en) * 2012-10-10 2015-07-21 Nippon Light Metal Co The method of manufacturing the heat sink and the method of manufacturing the heat transfer plate
JP2013049091A (en) * 2012-10-26 2013-03-14 Nippon Light Metal Co Ltd Method for manufacturing heat exchanger plate and heat exchanger plate
TWI485023B (en) * 2012-12-11 2015-05-21 Metal Ind Res & Dev Ct Aluminum alloy oil hot plate manufacturing method
JP2013099786A (en) * 2012-12-28 2013-05-23 Nippon Light Metal Co Ltd Method for manufacturing heat transfer plate
JP2013091104A (en) * 2012-12-28 2013-05-16 Nippon Light Metal Co Ltd Method for manufacturing heat transfer plate
JP2014028402A (en) * 2013-09-20 2014-02-13 Nippon Light Metal Co Ltd Method for manufacturing heat exchanger plate
CN105658370A (en) * 2013-10-21 2016-06-08 日本轻金属株式会社 Method for manufacturing heat transfer plate and joining method
CN105658370B (en) * 2013-10-21 2018-05-01 日本轻金属株式会社 The manufacture method and joint method of heat transfer plate
JP2014050890A (en) * 2013-10-24 2014-03-20 Nippon Light Metal Co Ltd Method for manufacturing heat exchanger plate
US10335894B2 (en) 2014-01-27 2019-07-02 Nippon Light Metal Company, Ltd. Joining method
US11654508B2 (en) 2017-09-27 2023-05-23 Nippon Light Metal Company, Ltd. Method for producing liquid-cooled jacket
US11712748B2 (en) 2017-09-27 2023-08-01 Nippon Light Metal Company, Ltd. Method for producing liquid-cooled jacket
US11654507B2 (en) 2017-12-18 2023-05-23 Nippon Light Metal Company, Ltd. Method for manufacturing liquid-cooling jacket
US11707798B2 (en) 2018-04-02 2023-07-25 Nippon Light Metal Company, Ltd. Method for manufacturing liquid-cooled jacket
US11413700B2 (en) 2018-08-27 2022-08-16 Nippon Light Metal Company, Ltd. Method for manufacturing heat transfer plate
US11707799B2 (en) 2018-12-19 2023-07-25 Nippon Light Metal Company, Ltd. Joining method

Also Published As

Publication number Publication date
JP4325260B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
JP2004314115A (en) Heat transfer element, and method for manufacturing the same
RU2488470C2 (en) Method of connecting tube plates and tube in making heat exchangers
US20210146473A1 (en) Method for producing liquid-cooled jacket
KR20180104172A (en) Method for producing heat exchanger plate and method for producing composite plate without channel in the inside
WO2020095483A1 (en) Liquid-cooled jacket manufacturing method and friction stir welding method
CN102728948B (en) Method of welding dissimilar metal materials and welded body of dissimilar metal materials
KR101665275B1 (en) Method for producing heat sink and method for producing heat exchanger plate
US20190210148A1 (en) Method for the Production of a Cast Engine Block for a Combustion Engine and Engine Block
WO2019123679A1 (en) Method for manufacturing liquid cooling jacket
JP2010089147A (en) Manufacturing method of heat transfer plate
JP5440676B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP2000042762A (en) Friction stirring joining method
JP2004167498A (en) Jointing method and extruding shape used for the same
JP4888422B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP4998481B2 (en) Manufacturing method of heat transfer element
JP2006130562A (en) Method for repairing hole of metallic workpiece
JP2002538965A (en) Manifold for heat exchanger
JP7347234B2 (en) Liquid cooling jacket manufacturing method and friction stir welding method
JPS5870989A (en) Joining of different kind members
JP7127618B2 (en) Heat exchanger manufacturing method
CN114929423A (en) Method for manufacturing liquid-cooled jacket and friction stir welding method
JP6365752B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP2021186862A (en) Heat exchanger manufacturing method
WO2021171637A1 (en) Method for manufacturing heat exchanger
JP6547517B2 (en) Heat exchanger manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4325260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term