JP2010240671A - Method of manufacturing heat transfer plate - Google Patents

Method of manufacturing heat transfer plate Download PDF

Info

Publication number
JP2010240671A
JP2010240671A JP2009089690A JP2009089690A JP2010240671A JP 2010240671 A JP2010240671 A JP 2010240671A JP 2009089690 A JP2009089690 A JP 2009089690A JP 2009089690 A JP2009089690 A JP 2009089690A JP 2010240671 A JP2010240671 A JP 2010240671A
Authority
JP
Japan
Prior art keywords
recess
heat transfer
transfer plate
rotary tool
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009089690A
Other languages
Japanese (ja)
Other versions
JP5177059B2 (en
Inventor
Isato Sato
勇人 佐藤
Hisashi Hori
久司 堀
Nobushiro Seo
伸城 瀬尾
Tomohiro Kawamoto
知広 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2009089690A priority Critical patent/JP5177059B2/en
Publication of JP2010240671A publication Critical patent/JP2010240671A/en
Application granted granted Critical
Publication of JP5177059B2 publication Critical patent/JP5177059B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a heat transfer plate which improves watertightness and airtightness of the heat transfer plate and has high flatness. <P>SOLUTION: The method of manufacturing the heat transfer plate is used for forming the heat transfer plate by fixing a lid member 30 for sealing a second recess 13 to a body 10 having a first recess 12 recessed at a surface and a second recess 13 recessed at the bottom surface 12a of the first recess 12 by friction agitation welding. The method of manufacturing the heat transfer plate includes: a lid member fixing step for carrying out friction agitation welding along a butted portion 40 of the side wall 12b of the first recess 12 of the body 10 and the side surface 30a of the lid member 30; a second recess sealing step for carrying out friction agitation welding to an overlapping part 18 of the bottom surface 12a of the first recess 12 and the rear surface 30b of the lid member 30 by moving a rotating tool along the circumferential edge 14 of the opening of the second recess 13; and a correction step for carrying out friction agitation by moving the rotating tool to the rear surface of the body 10. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、伝熱板の製造方法に関する。   The present invention relates to a method for manufacturing a heat transfer plate.

金属部材同士を接合する方法として、摩擦攪拌接合(FSW=Friction Stir Welding)が知られている。摩擦攪拌接合とは、回転ツールを回転させつつ金属部材同士の突合部に沿って移動させ、回転ツールと金属部材との摩擦熱により突合部の金属を塑性流動させることで、金属部材同士を固相接合させるものである。   Friction stir welding (FSW = Friction Stir Welding) is known as a method for joining metal members. Friction stir welding is a technique in which metal members are fixed to each other by causing the metal at the abutting portion to plastically flow by frictional heat between the rotating tool and the metal member by moving the rotating tool along the abutting portion while rotating the rotating tool. Phase joining is performed.

例えば、特許文献1に示すように、半導体製造装置において冷却用に使用されるヒートプレート(伝熱板)は、板状を呈する本体と、本体の表面に形成された凹部を封止する蓋部材とを摩擦攪拌接合により一体成形されている。   For example, as shown in Patent Document 1, a heat plate (heat transfer plate) used for cooling in a semiconductor manufacturing apparatus is a lid member that seals a plate-shaped main body and a recess formed on the surface of the main body. Are integrally formed by friction stir welding.

具体的には、本体は、本体の表面に凹設された第一凹部と、第一凹部の底面に凹設された第二凹部とを有する。蓋部材は、第一凹部に隙間無く配置される形状を呈している。伝熱板は、第一凹部の側壁と蓋部材の側面との突合部に対して摩擦攪拌接合を行うことにより一体成形されている。摩擦攪拌接合によれば、比較的容易にかつ水密性及び気密性の高い製品を製造することができる。   Specifically, the main body has a first concave portion provided in the surface of the main body and a second concave portion provided in the bottom surface of the first concave portion. The lid member has a shape that is arranged in the first recess without any gap. The heat transfer plate is integrally formed by performing friction stir welding on the abutting portion between the side wall of the first recess and the side surface of the lid member. According to the friction stir welding, a product having high water tightness and air tightness can be manufactured relatively easily.

特開2002−257490号公報JP 2002-257490 A

従来の伝熱板の製造方法では、第一凹部の側壁と蓋部材の側面との突合部のみを摩擦攪拌接合するだけであるため、例えば第一凹部の底面と蓋部材の裏面との間には微細な隙間が形成されている。かかる隙間は伝熱板の水密性及び気密性を低下させる要因になっていた。また、本体の表面側から摩擦攪拌を行うため、熱収縮によって塑性化領域が縮むと、伝熱板が反って撓んでしまうという問題があった。   In the conventional method of manufacturing a heat transfer plate, only the abutting portion between the side wall of the first recess and the side surface of the lid member is friction stir welded. For example, between the bottom surface of the first recess and the back surface of the lid member. A fine gap is formed. Such a gap has been a factor of reducing the water tightness and air tightness of the heat transfer plate. In addition, since frictional stirring is performed from the surface side of the main body, there is a problem that when the plasticized region shrinks due to thermal contraction, the heat transfer plate warps and bends.

本発明は、かかる問題に鑑みてなされたものであり、伝熱板の水密性及び気密性を高めるとともに、平坦性の高い伝熱板を製造することができる伝熱板の製造方法を提供することを課題とする。   The present invention has been made in view of such problems, and provides a method of manufacturing a heat transfer plate that can improve the water tightness and air tightness of the heat transfer plate and can manufacture a heat transfer plate with high flatness. This is the issue.

前記課題を解決するための手段として、本発明は、表面に凹設された第一凹部と、この第一凹部の底面に凹設され熱発生体が発生する熱を外部に輸送する熱輸送流体が流れる第二凹部とを有する本体に、前記第二凹部を封止する蓋部材を摩擦攪拌接合によって固定して形成される伝熱板の製造方法であって、前記本体の前記第一凹部の側壁と前記蓋部材の側面との突合部に沿って回転ツールを移動させて少なくとも前記突合部の一部に対して摩擦攪拌接合を行う蓋部材固定工程と、前記第二凹部の開口周縁に沿って回転ツールを移動させて、前記第一凹部の底面と前記蓋部材の裏面との重ね合わせ部に対して摩擦攪拌接合を行う第二凹部密封工程と、前記伝熱板の裏面に対して回転ツールを移動させて摩擦攪拌を行う矯正工程と、を含むことを特徴とする。   As means for solving the above-mentioned problems, the present invention provides a heat transfer fluid for transporting heat generated by a heat generating body that is provided in a bottom surface of the first recess and is formed in a bottom surface of the first recess to the outside. A heat transfer plate formed by fixing a lid member sealing the second recess by friction stir welding to a main body having a second recess through which the first recess of the main body is formed. A lid member fixing step of moving the rotary tool along the abutting portion between the side wall and the side surface of the lid member to perform friction stir welding on at least a part of the abutting portion, and along the opening periphery of the second recess A second recess sealing step of moving the rotating tool to perform friction stir welding on the overlapping portion of the bottom surface of the first recess and the back surface of the lid member, and rotating with respect to the back surface of the heat transfer plate A correction step of moving the tool and performing frictional stirring. And features.

かかる製造方法によれば、第一凹部の底面と蓋部材の裏面との重ね合わせ部に対して摩擦攪拌接合を行うことにより、第一凹部の底面と蓋部材の裏面との微細な隙間を塞ぐことができる。これにより、伝熱板の水密性及び気密性を高めることができる。また、矯正工程では、伝熱板の裏面側から摩擦攪拌を行うことにより、蓋部材固定工程及び第二凹部密封工程によって発生した反りを解消し、伝熱板の平坦性を高めることができる。   According to this manufacturing method, the fine gap between the bottom surface of the first recess and the back surface of the lid member is closed by performing friction stir welding on the overlapping portion of the bottom surface of the first recess and the back surface of the lid member. be able to. Thereby, the watertightness and airtightness of a heat exchanger plate can be improved. Further, in the correction process, by performing frictional stirring from the back surface side of the heat transfer plate, the warp generated by the lid member fixing step and the second recess sealing step can be eliminated, and the flatness of the heat transfer plate can be improved.

また、前記伝熱板の裏面側に形成される塑性化領域の体積量を、前記伝熱板の表面側に形成された塑性化領域の体積量よりも小さく設定することが好ましい。かかる製造方法によれば、製造された伝熱板の平坦性をより高めることができる。   Moreover, it is preferable to set the volume amount of the plasticization area | region formed in the back surface side of the said heat exchanger plate smaller than the volume amount of the plasticization area | region formed in the surface side of the said heat exchanger plate. According to this manufacturing method, the flatness of the manufactured heat transfer plate can be further improved.

また、前記矯正工程では、この矯正工程で形成される塑性化領域の平面形状を、前記伝熱板の中心に対して略点対称となるように設定することが好ましい。また、前記矯正工程では、この矯正工程で形成される塑性化領域の平面形状を、前記伝熱板の外縁の形状と略相似形状となるように設定することが好ましい。また、前記矯正工程では、この矯正工程で形成される塑性化領域の平面形状を、前記伝熱板の表面側に形成された塑性化領域の平面形状と略同等形状となるように設定することが好ましい。また、前記矯正工程では、この矯正工程で形成される塑性化領域の全長を、前記伝熱板の表面側に形成された塑性化領域の全長と略同等となるように設定することが好ましい。   Moreover, in the said correction process, it is preferable to set the planar shape of the plasticization area | region formed in this correction process so that it may become substantially point symmetrical with respect to the center of the said heat exchanger plate. Moreover, in the said correction process, it is preferable to set the planar shape of the plasticization area | region formed in this correction process so that it may become a shape substantially similar to the shape of the outer edge of the said heat exchanger plate. In the straightening step, the planar shape of the plasticized region formed in the straightening step is set to be substantially the same shape as the planar shape of the plasticized region formed on the surface side of the heat transfer plate. Is preferred. Moreover, in the said correction process, it is preferable to set so that the full length of the plasticization area | region formed in this correction process may become substantially equal to the full length of the plasticization area | region formed in the surface side of the said heat exchanger plate.

かかる製造方法によれば、伝熱板の表面側と裏面側の反りをバランスよく解消することができ、伝熱板の平坦性を高めることができる。   According to this manufacturing method, the warpage of the front surface side and the back surface side of the heat transfer plate can be eliminated in a balanced manner, and the flatness of the heat transfer plate can be improved.

また、前記矯正工程では、この矯正工程で用いる前記回転ツールの移動軌跡の全長を、前記伝熱板の表面側に形成された塑性化領域の全長よりも短くなるように設定することが好ましい。また、前記矯正工程で用いる回転ツールのショルダ部の外径を、前記第二凹部密封工程で用いる回転ツールのショルダ部の外径よりも小さく設定することが好ましい。また、前記矯正工程で用いる回転ツールの攪拌ピンの長さを、前記第二凹部密封工程で用いる前記回転ツールの攪拌ピンの長さよりも短く設定することが好ましい。   Moreover, in the said correction process, it is preferable to set so that the full length of the movement locus | trajectory of the said rotary tool used in this correction process may become shorter than the full length of the plasticization area | region formed in the surface side of the said heat exchanger plate. Moreover, it is preferable to set the outer diameter of the shoulder part of the rotary tool used at the said correction process smaller than the outer diameter of the shoulder part of the rotary tool used at the said 2nd recessed part sealing process. Moreover, it is preferable to set the length of the stirring pin of the rotary tool used in the correction step to be shorter than the length of the stirring pin of the rotary tool used in the second recess sealing step.

かかる製造方法によれば、矯正工程における塑性化領域の体積量を、伝熱板の表面側に形成された塑性化領域の体積量よりも小さく設定することができるため、製造された伝熱板の平坦性をより高めることができる。   According to this manufacturing method, since the volume amount of the plasticized region in the straightening process can be set smaller than the volume amount of the plasticized region formed on the surface side of the heat transfer plate, the manufactured heat transfer plate The flatness can be further improved.

また、前記本体の厚みを、前記第二凹部密封工程で用いる回転ツールのショルダ部の外径の1.5倍以上に設定することが好ましい。また、前記本体の厚みを、前記第二凹部密封工程で用いる回転ツールの攪拌ピンの長さの3倍以上に設定することが好ましい。   Moreover, it is preferable to set the thickness of the main body to 1.5 times or more the outer diameter of the shoulder portion of the rotary tool used in the second recess sealing step. Moreover, it is preferable to set the thickness of the main body to be three times or more the length of the stirring pin of the rotary tool used in the second recess sealing step.

かかる製造方法によれば、回転ツールの各部位の大きさに対して本体が十分な厚みを備えているため、伝熱板の平坦性をより高めることができる。   According to this manufacturing method, since the main body has a sufficient thickness with respect to the size of each part of the rotary tool, the flatness of the heat transfer plate can be further improved.

また、前記本体が平面視多角形である場合、前記矯正工程では、前記伝熱板の隅部に対して回転ツールを用いて摩擦攪拌を行う隅部摩擦攪拌工程を含むことが好ましい。かかる製造方法によれば、本体の隅部において発生した反りを解消して伝熱板の平坦性を解消することができる。   Moreover, when the said main body is a planar view polygon, it is preferable that the said correction process includes the corner friction stirring process of performing friction stirring using the rotation tool with respect to the corner of the said heat exchanger plate. According to this manufacturing method, it is possible to eliminate the warp generated at the corners of the main body and to eliminate the flatness of the heat transfer plate.

また、矯正工程後に、前記伝熱板の裏面側を面削加工する面削工程を含み、前記面削加工の深さは、前記矯正工程で用いる回転ツールの攪拌ピンの長さよりも大きいことが好ましい。かかる製造方法によれば、伝熱板の裏面を平滑に形成することができる。   Further, it includes a chamfering process for chamfering the back surface side of the heat transfer plate after the straightening process, and the depth of the chamfering process is larger than the length of the stirring pin of the rotary tool used in the straightening process. preferable. According to this manufacturing method, the back surface of the heat transfer plate can be formed smoothly.

本発明によれば、水密性及び気密性が高く、かつ、平坦性の高い伝熱板を提供することができる。   According to the present invention, a heat transfer plate having high water tightness and air tightness and high flatness can be provided.

第一実施形態に係る伝熱板を示した分解斜視図である。It is the disassembled perspective view which showed the heat exchanger plate which concerns on 1st embodiment. (a)は、小型回転ツール、(b)は、大型回転ツールを示した側面図である。(A) is the small rotation tool, (b) is the side view which showed the large rotation tool. 第一実施形態に係る蓋部材固定工程を示した図であって、(a)は、平面図、(b)は、(a)のX1−X1断面図である。It is the figure which showed the cover member fixing process which concerns on 1st embodiment, Comprising: (a) is a top view, (b) is X1-X1 sectional drawing of (a). 第一実施形態に係る蓋部材固定工程を示した平面図である。It is the top view which showed the cover member fixing process which concerns on 1st embodiment. 第一実施形態に係る第二凹部密封工程を示した図であって、(a)は、平面図、(b)は、(a)のX2−X2断面図である。It is the figure which showed the 2nd recessed part sealing process which concerns on 1st embodiment, Comprising: (a) is a top view, (b) is X2-X2 sectional drawing of (a). 第一実施形態に係る第二凹部密封工程を示した平面図である。It is the top view which showed the 2nd recessed part sealing process which concerns on 1st embodiment. 第一実施形態に係る伝熱板の製造方法において、第二凹部密封工程を行った後を示した図であって、(a)は、斜視図、(b)は、地点c及び地点fを結ぶ線の断面図である。In the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, it is the figure which showed after performing a 2nd recessed part sealing process, Comprising: (a) is a perspective view, (b) shows the point c and the point f. It is sectional drawing of the line to connect. 第一実施形態に係る伝熱板の製造方法において、(a)は、矯正工程を示した斜視図、(b)は、矯正工程を示した平面図である。In the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, (a) is the perspective view which showed the correction process, (b) is the top view which showed the correction process. 第二実施形態に係る伝熱板を示した図であって、(a)は、分解斜視図、(b)は断面図を示す。It is the figure which showed the heat exchanger plate which concerns on 2nd embodiment, Comprising: (a) is a disassembled perspective view, (b) shows sectional drawing. 第二実施形態に係る第二凹部密封工程を段階的に示した平面図である。It is the top view which showed the 2nd recessed part sealing process which concerns on 2nd embodiment in steps. 第二実施形態に係る伝熱板の製造方法において、第二凹部密封工程を行った後を示した図であって、(a)は、斜視図、(b)は、地点c及び地点fを結ぶ線の断面図である。In the manufacturing method of the heat exchanger plate which concerns on 2nd embodiment, it is the figure which showed after performing a 2nd recessed part sealing process, (a) is a perspective view, (b) shows the point c and the point f. It is sectional drawing of the line to connect. 第二実施形態に係る伝熱板の製造方法の矯正工程を示した平面図である。It is the top view which showed the correction process of the manufacturing method of the heat exchanger plate which concerns on 2nd embodiment. 図12のX3−X3断面図である。It is X3-X3 sectional drawing of FIG. 第三実施形態に係る伝熱板を示した分解斜視図である。It is the disassembled perspective view which showed the heat exchanger plate which concerns on 3rd embodiment. 第三実施形態に係る第二凹部密封工程を示した平面図である。It is the top view which showed the 2nd recessed part sealing process which concerns on 3rd embodiment. 第三実施形態に係る伝熱板の製造方法において、矯正工程を示した平面図である。It is the top view which showed the correction process in the manufacturing method of the heat exchanger plate which concerns on 3rd embodiment. 第四実施形態に係る本体を示した斜視図である。It is the perspective view which showed the main body which concerns on 4th embodiment. 第四実施形態に係る第二凹部密封工程を示した図であって、(a)は、平面図、(b)は、(a)X4−X4断面図である。It is the figure which showed the 2nd recessed part sealing process which concerns on 4th embodiment, Comprising: (a) is a top view, (b) is (a) X4-X4 sectional drawing. 第四実施形態に係る伝熱板の製造方法において、矯正工程を示した平面図である。It is the top view which showed the correction process in the manufacturing method of the heat exchanger plate which concerns on 4th embodiment. 仮接合工程を示した図であって、(a)は、平面図、(b)は、(a)のX5−X5断面図である。It is the figure which showed the temporary joining process, Comprising: (a) is a top view, (b) is X5-X5 sectional drawing of (a). 矯正工程の変形例を示した平面図である。It is the top view which showed the modification of the correction process. 実施例における本体を示した図であって、(a)は、表面側の斜視図、(b)は、裏面側の平面図である。It is the figure which showed the main body in an Example, (a) is a perspective view of the surface side, (b) is a top view of the back side.

[第一実施形態]
本発明の第一実施形態に係る伝熱板の製造方法について図面を適宜参照して詳細に説明する。まず、本発明に係る伝熱板の製造方法によって形成される伝熱板1について説明する。
[First embodiment]
A method for manufacturing a heat transfer plate according to a first embodiment of the present invention will be described in detail with reference to the drawings as appropriate. First, the heat transfer plate 1 formed by the method for manufacturing a heat transfer plate according to the present invention will be described.

伝熱板1は、図1に示すように、本体10に、蓋部材30を摩擦攪拌接合によって固定して形成される。伝熱板1は、例えば、スパッタリング装置において、ターゲット材を冷却するために使用される。   As shown in FIG. 1, the heat transfer plate 1 is formed by fixing a lid member 30 to the main body 10 by friction stir welding. The heat transfer plate 1 is used for cooling the target material in, for example, a sputtering apparatus.

本体10は、略直方体の外観を呈し、本実施形態ではアルミニウム又はアルミニウム合金から形成されている。本体10は、本体10の表面(上面)10aに凹設された第一凹部12と、第一凹部12の内部に凹設された第二凹部13,13と、第二凹部13に連通する貫通孔16とを有する。本体10は、例えば、ダイキャスト、鋳造、鍛造などによって作製される。   The main body 10 has a substantially rectangular parallelepiped appearance, and is formed of aluminum or an aluminum alloy in the present embodiment. The main body 10 has a first recess 12 recessed in the surface (upper surface) 10 a of the main body 10, second recesses 13 and 13 recessed in the first recess 12, and a through hole communicating with the second recess 13. And a hole 16. The main body 10 is produced, for example, by die casting, casting, forging, or the like.

本体10は、本実施形態ではアルミニウム又はアルミニウム合金から形成したが、他の金属部材で形成してもよい。また、本体10は、本実施形態では外観視略直方体としたが、多角柱体、円柱体等であってもよい。   The main body 10 is formed of aluminum or an aluminum alloy in this embodiment, but may be formed of other metal members. Moreover, although the main body 10 is a substantially rectangular parallelepiped in appearance in the present embodiment, it may be a polygonal column, a cylinder, or the like.

第一凹部12は、蓋部材30が配置される部位である。第一凹部12は、本体10の上面10aよりも一段下がった位置に形成されており、平面視矩形を呈する底面12aと、底面12aから垂直に立設する4つの側壁12bとを有する。側壁12bの高さは、蓋部材30の厚みtと略同等に形成されている。   The first recess 12 is a part where the lid member 30 is disposed. The first recess 12 is formed at a position one step lower than the upper surface 10a of the main body 10, and has a bottom surface 12a that has a rectangular shape in plan view and four side walls 12b that stand vertically from the bottom surface 12a. The height of the side wall 12 b is formed substantially equal to the thickness t of the lid member 30.

第二凹部13,13は、熱輸送流体(本実施形態では冷却水)が流通する部分である。第二凹部13,13は、平面視矩形を呈し、それぞれ略同等の形状に形成されている。第二凹部13,13は、上方に開口しており、第一凹部12の内部において所定の間隔をあけて設けられている。第二凹部13,13の周囲には前記した第一凹部12の底面12aが拡がっている。つまり、第二凹部13,13は、第一凹部12に包囲されている。第二凹部13の形状や設置数は伝熱板1の用途に応じて適宜変更可能である。   The second recesses 13 and 13 are portions through which the heat transport fluid (cooling water in this embodiment) flows. The 2nd recessed parts 13 and 13 exhibit the planar view rectangle, and are each formed in the substantially equivalent shape. The second recesses 13 and 13 are opened upward, and are provided at predetermined intervals inside the first recess 12. Around the second recesses 13, the bottom surface 12 a of the first recess 12 extends. That is, the second recesses 13 and 13 are surrounded by the first recess 12. The shape and number of the second recesses 13 can be appropriately changed according to the use of the heat transfer plate 1.

貫通孔16は、図1に示すように、本体10の外部と第二凹部13とを連通し、熱輸送流体(冷却水)を循環させる部分である。貫通孔16は、第二凹部13,13に連通しつつ、本体10の対向する側面10b,10b間を貫通して形成されている。貫通孔16の形状、数及び形成位置は、冷却水の種類や流量に応じて適宜変更可能である。   As shown in FIG. 1, the through hole 16 is a portion that communicates the outside of the main body 10 with the second recess 13 and circulates a heat transport fluid (cooling water). The through hole 16 is formed so as to penetrate between the opposing side surfaces 10 b and 10 b of the main body 10 while communicating with the second recesses 13 and 13. The shape, number, and formation position of the through holes 16 can be changed as appropriate according to the type and flow rate of the cooling water.

蓋部材30は、図1に示すように、本体10と同等の材料からなる板状部材である。蓋部材30の平面形状は、本体10の第一凹部12の平面形状と同等に形成されている。蓋部材30は、第一凹部12に配置された後に、摩擦攪拌接合されることで第二凹部13の開口部を封止する。   The lid member 30 is a plate-like member made of the same material as the main body 10 as shown in FIG. The planar shape of the lid member 30 is formed equivalent to the planar shape of the first recess 12 of the main body 10. After the lid member 30 is disposed in the first recess 12, the opening of the second recess 13 is sealed by friction stir welding.

次に、後記する摩擦攪拌接合によって用いる小型の回転ツール(以下、「小型回転ツールF」という。)及び小型回転ツールFよりも大型の回転ツール(以下、「大型回転ツールG」という。)について図2を用いて説明する。   Next, a small rotating tool (hereinafter referred to as “small rotating tool F”) and a rotating tool larger than the small rotating tool F (hereinafter referred to as “large rotating tool G”) used by friction stir welding described later. This will be described with reference to FIG.

図2に示す小型回転ツールFは、工具鋼など本体10よりも硬質の金属材料からなり、円柱状を呈するショルダ部F1と、このショルダ部F1の下端面F11に突設された攪拌ピン(プローブ)F2とを備えて構成されている。小型回転ツールFの寸法・形状は、本体10の材質や厚さ等に応じて設定すればよいが、少なくとも、大型回転ツールG(図2の(b)参照)よりも小型にする。このようにすると、大型回転ツールGを用いる場合よりも小さな負荷で摩擦攪拌接合を行うことが可能となるので、摩擦攪拌装置に掛かる負荷を低減することが可能となり、さらには、小型回転ツールFの移動速度(送り速度)を大型回転ツールGの移動速度よりも高速にすることも可能になるので、摩擦攪拌接合に要する作業時間やコストを低減することが可能となる。   A small rotary tool F shown in FIG. 2 is made of a metal material harder than the main body 10 such as tool steel, and has a columnar shoulder portion F1 and a stirring pin (probe) protruding from a lower end surface F11 of the shoulder portion F1. ) F2. The size and shape of the small rotary tool F may be set according to the material, thickness, etc. of the main body 10, but at least smaller than the large rotary tool G (see FIG. 2B). In this way, it is possible to perform friction stir welding with a smaller load than when the large rotary tool G is used, so it is possible to reduce the load applied to the friction stirrer, and further to the small rotary tool F. Since the moving speed (feeding speed) can be made higher than the moving speed of the large rotary tool G, the working time and cost required for the friction stir welding can be reduced.

ショルダ部F1の下端面F11は、塑性流動化した金属を押えて周囲への飛散を防止する役割を担う部位であり、本実施形態では、凹面状に成形されている。ショルダ部F1の外径Xの大きさに特に制限はないが、本実施形態では、大型回転ツールGのショルダ部G1の外径Yよりも小さくなっている。 The lower end surface F11 of the shoulder portion F1 is a portion that plays a role of pressing the plastic fluidized metal and preventing scattering to the surroundings, and is formed in a concave shape in this embodiment. There is no particular limitation on the size of the outer diameter X 1 of the shoulder portion F1, in this embodiment, is smaller than the outer diameter Y 1 of the shoulder portion G1 of a large rotating tool G.

攪拌ピンF2は、ショルダ部F1の下端面F11の中央から垂下しており、本実施形態では、先細りの円錐台状に成形されている。また、攪拌ピンF2の周面には、螺旋状に刻設された攪拌翼が形成されている。攪拌ピンF2の外径の大きさに特に制限はないが、本実施形態では、最大外径(上端径)Xが大型回転ツールGの攪拌ピンG2の最大外径(上端径)Yよりも小さく、かつ、最小外径(下端径)Xが攪拌ピンG2の最小外径(下端径)Yよりも小さくなっている。攪拌ピンF2の長さLは、蓋部材30の厚みt(図1参照)よりも小さく形成されている。 The stirring pin F2 hangs down from the center of the lower end surface F11 of the shoulder portion F1, and is formed into a tapered truncated cone shape in this embodiment. In addition, a stirring blade engraved in a spiral shape is formed on the peripheral surface of the stirring pin F2. There is no particular limitation on the size of the outer diameter of the stirring pin F2, in the present embodiment, than the maximum outer diameter of the maximum outer diameter of the stirring pin G2 of (upper diameter) X 2 is large rotating tool G (upper end diameter) Y 2 It is small, and is smaller than the minimum outer diameter minimum outer diameter (bottom diameter) X 3 is the stirring pin G2 (lower diameter) Y 3. The length L A of the stirring pin F2 is formed to be smaller than the thickness t (see FIG. 1) of the lid member 30.

図2の(b)に示す大型回転ツールGは、工具鋼など本体10よりも硬質の金属材料からなり、円柱状を呈するショルダ部G1と、このショルダ部G1の下端面G11に突設された攪拌ピン(プローブ)G2とを備えて構成されている。ショルダ部G1の下端面G11は、小型回転ツールFと同様に、凹面状に成形されている。攪拌ピンG2は、ショルダ部G1の下端面G11の中央から垂下しており、本実施形態では、先細りの円錐台状に成形されている。攪拌ピンG2の長さLは、蓋部材30の厚みt(図1参照)よりも大きく形成されている。 A large-sized rotary tool G shown in FIG. 2B is made of a metal material harder than the main body 10 such as tool steel, and protrudes from a shoulder portion G1 having a columnar shape and a lower end surface G11 of the shoulder portion G1. A stirring pin (probe) G2 is provided. The lower end surface G11 of the shoulder portion G1 is formed in a concave shape like the small rotary tool F. The stirring pin G2 hangs down from the center of the lower end surface G11 of the shoulder portion G1, and is formed into a tapered truncated cone shape in this embodiment. The length L B of the stirring pin G2 is larger than the thickness of the lid member 30 t (see FIG. 1).

なお、本体10の厚みは、大型回転ツールGのショルダ部G1の外径Yの1.5倍以上に設定されている。また、本体10の厚みは、大型回転ツールGの攪拌ピンG2の長さLの3倍以上に設定されている。 The thickness of the main body 10 is set to be more than 1.5 times the outer diameter Y 1 of the shoulder portion G1 of a large rotating tool G. The thickness of the main body 10 is set to be more than 3 times the large rotating the stirring pin G2 of the tool G length L B.

次に、伝熱板の製造方法について説明する。本実施形態に係る伝熱板の製造方法では、蓋部材固定工程と、第二凹部密封工程と、矯正工程を実行する。   Next, the manufacturing method of a heat exchanger plate is demonstrated. In the heat transfer plate manufacturing method according to the present embodiment, a lid member fixing step, a second recess sealing step, and a correction step are executed.

まず、図3の(a)に示すように、蓋部材30を、本体10の第一凹部12(図1参照)に配置する。第一凹部12の側壁12bと、蓋部材30の側面30aとが突き合わされ、突合部40が構成される。なお、図3の(b)に示すように、第一凹部12の底面12aと、蓋部材30の裏面30bとが重なり合う部分を、重ね合わせ部18とする。   First, as shown to (a) of FIG. 3, the cover member 30 is arrange | positioned in the 1st recessed part 12 (refer FIG. 1) of the main body 10. FIG. The side wall 12b of the first recess 12 and the side surface 30a of the lid member 30 are abutted to form an abutting portion 40. As shown in FIG. 3B, a portion where the bottom surface 12 a of the first recess 12 and the back surface 30 b of the lid member 30 overlap is referred to as an overlapping portion 18.

蓋部材固定工程では、突合部40に摩擦攪拌接合を行って、本体10に蓋部材30を接合する。図3の(a)に示すように、小型回転ツールFを右回転させつつ、本体10の上面10aに設定した開始位置s1に挿入した後、突合部40に沿って移動させる。小型回転ツールFの押込み量、送り速度等は適宜設定すればよい。このとき、本体10の外周面に、本体10を四方向から囲む治具(図示せず)を予め当てておくのが好ましい。これによれば、小型回転ツールF及び大型回転ツールGの押圧力によって本体10が変形しにくくなる。   In the lid member fixing step, friction stir welding is performed on the abutting portion 40 to bond the lid member 30 to the main body 10. As shown in (a) of FIG. 3, the small rotary tool F is rotated to the right and inserted into the start position s <b> 1 set on the upper surface 10 a of the main body 10, and then moved along the abutting portion 40. What is necessary is just to set suitably the pushing amount, feed rate, etc. of the small rotation tool F. FIG. At this time, it is preferable that a jig (not shown) surrounding the main body 10 from four directions is applied in advance to the outer peripheral surface of the main body 10. According to this, the main body 10 is hardly deformed by the pressing force of the small rotary tool F and the large rotary tool G.

小型回転ツールFの移動について具体的に説明する。小型回転ツールFを、開始位置s1から突合部40の真上位置(小型回転ツールFの中心が突合部40と重なる位置)まで回転させながら移動させる。そして、小型回転ツールFの中心(軸芯)が突合部40上を移動するように、突合部40に沿って小型回転ツールFを移動させる。このとき、突合部40の周囲の本体10と蓋部材30は、一体的に塑性流動化されて表面側塑性化領域W1が形成される。「塑性化領域」とは、小型回転ツールFの摩擦熱によって加熱されて現に塑性化している状態と、小型回転ツールFが通り過ぎて常温に戻った状態の両方を含むこととする。なお、図3の(a)に示すように、表面側塑性化領域W1のうち、突合部40上に最初に突入した部分を始端W1aとする。   The movement of the small rotary tool F will be specifically described. The small rotating tool F is moved while rotating from the start position s1 to a position directly above the abutting portion 40 (a position where the center of the small rotating tool F overlaps the abutting portion 40). Then, the small rotating tool F is moved along the abutting portion 40 so that the center (axial center) of the small rotating tool F moves on the abutting portion 40. At this time, the main body 10 and the lid member 30 around the abutting portion 40 are integrally plastically fluidized to form a surface-side plasticized region W1. The “plasticization region” includes both a state in which the small rotating tool F is heated by frictional heat and is actually plasticized, and a state in which the small rotating tool F passes and returns to room temperature. In addition, as shown to (a) of FIG. 3, let the part which plunged first on the abutting part 40 among the surface side plasticization area | regions W1 be the start end W1a.

蓋部材固定工程では、図3の(b)に示すように、攪拌ピンF2の長さが蓋部材30の厚みtよりも小さく、表面側塑性化領域W1が第一凹部12の底面12aに接触しない程度に設定されている。摩擦攪拌接合を行うと、蓋部材30のような比較的薄い部材は、熱収縮によって変形する可能性が高い。したがって、攪拌ピンF2の長さ及び小型回転ツールFの押込み量を小さく設定することにより、蓋部材30の変形を防ぐことができる。
なお、蓋部材固定工程では、小型回転ツールFの攪拌ピンF2の長さを大きくしたり、小型回転ツールFを深く押し込んだりして、表面側塑性化領域W1と底面12aとを接触させてもよい。
In the lid member fixing step, as shown in FIG. 3B, the length of the stirring pin F2 is smaller than the thickness t of the lid member 30, and the surface-side plasticized region W1 contacts the bottom surface 12a of the first recess 12. It is set so as not to. When friction stir welding is performed, a relatively thin member such as the lid member 30 is likely to be deformed by heat shrinkage. Therefore, the deformation of the lid member 30 can be prevented by setting the length of the stirring pin F2 and the pushing amount of the small rotary tool F small.
In the lid member fixing step, even if the length of the stirring pin F2 of the small rotary tool F is increased or the small rotary tool F is pressed deeply, the surface side plasticizing region W1 and the bottom surface 12a are brought into contact with each other. Good.

小型回転ツールFの移動方向(図3(a)参照)と同じ方向に小型回転ツールFが回動するシアー側(被接合部に対する小型回転ツールFの外周の相対速さが、小型回転ツールFの外周における接線速度の大きさに移動速度の大きさを加算した値となる側)が、本体10上に位置するように、小型回転ツールFを回転、移動させる。つまり、突合部40における小型回転ツールFの回転方向(自転方向)が、移動方向(公転方向)と同じ方向となるようにする。具体的には、本実施形態では、小型回転ツールFを第二凹部13に対して右回りに移動させているので、小型回転ツールFも右回転させる。   The shear side where the small rotating tool F rotates in the same direction as the moving direction of the small rotating tool F (see FIG. 3A) (the relative speed of the outer periphery of the small rotating tool F with respect to the joined portion is the small rotating tool F). The small rotating tool F is rotated and moved so that the side of the tangential speed on the outer circumference of the main body 10 is positioned on the main body 10. That is, the rotation direction (spinning direction) of the small rotary tool F in the abutting portion 40 is set to be the same direction as the moving direction (revolution direction). Specifically, in the present embodiment, since the small rotary tool F is moved clockwise with respect to the second recess 13, the small rotary tool F is also rotated clockwise.

なお、小型回転ツールFを第二凹部13に対して左回りに移動させるときは、小型回転ツールFを左回転させることとなる。このようにすることによって、小型回転ツールFのシアー側が厚肉の本体10側に位置する。そして、薄肉の蓋部材30側は、小型回転ツールFのフロー側(被接合部に対する小型回転ツールFの外周の相対速さが、小型回転ツールFの外周における接線速度の大きさから移動速度の大きさを減算した値となる側)となる。このため、蓋部材30側は、メタルの流動量が少なくなり、空洞欠陥が発生しにくくなる。そして、摩擦攪拌によって空洞欠陥が発生したとしても、本体10側であって突合部40よりも外側位置の離間した部分に発生することとなり、熱輸送流体が外部に漏れにくくなるので、接合部の密閉性能を低下させることはない。   In addition, when moving the small rotation tool F counterclockwise with respect to the 2nd recessed part 13, the small rotation tool F will be rotated counterclockwise. By doing so, the shear side of the small rotary tool F is positioned on the thick main body 10 side. And the thin lid member 30 side is the flow side of the small rotating tool F (the relative speed of the outer periphery of the small rotating tool F with respect to the joined portion is determined from the magnitude of the tangential speed on the outer periphery of the small rotating tool F. The side that becomes the value obtained by subtracting the size). For this reason, on the lid member 30 side, the amount of metal flow is reduced, and cavity defects are less likely to occur. And even if a cavity defect occurs due to frictional stirring, it will occur on the main body 10 side and at a part spaced apart from the abutting portion 40, and the heat transport fluid will not leak easily to the outside. The sealing performance is not degraded.

小型回転ツールFの回転及び移動を継続し、図4に示すように、小型回転ツールFを、突合部40に沿って一周させる。小型回転ツールFが、表面側塑性化領域W1の始端W1a(図3の(a)参照)を通過したら、小型回転ツールFを本体10の上面10a側に移動させて、終了位置e1で小型回転ツールFを離脱させる。なお、表面側塑性化領域W1のうち、突合部40上に最後に形成される部分を終端W1bとする。   The rotation and movement of the small rotating tool F are continued, and the small rotating tool F is caused to make a round along the abutting portion 40 as shown in FIG. When the small rotating tool F passes the start end W1a (see FIG. 3A) of the surface side plasticizing region W1, the small rotating tool F is moved to the upper surface 10a side of the main body 10 and small rotating at the end position e1. Remove Tool F. In addition, let the part formed last on the abutting part 40 among the surface side plasticization area | regions W1 be the termination | terminus W1b.

このように、表面側塑性化領域W1の始端W1a(図3(a)参照)を小型回転ツールFが通り越すことにより、始端W1aと終端W1bとが互いにオーバーラップするため、表面側塑性化領域W1の一部が重複するように構成される。   Thus, since the start end W1a and the end W1b overlap each other when the small rotating tool F passes the start end W1a (see FIG. 3A) of the surface side plasticization region W1, the surface side plasticization region W1. Are configured to overlap.

終了位置e1は、突合部40から外側に外れた位置となっているので、小型回転ツールFの引抜跡が突合部40に形成されることはなく、本体10と蓋部材30との接合性をさらに高めることができる。なお、引抜跡は補修するようにしてもよい。   Since the end position e1 is a position deviated to the outside from the abutting portion 40, the drawing trace of the small rotary tool F is not formed in the abutting portion 40, and the joining property between the main body 10 and the lid member 30 is improved. It can be further increased. In addition, you may make it repair a drawing trace.

第二凹部密封工程では、第一凹部12の底面12aと、蓋部材30の裏面30bとが重なり合う重ね合わせ部18に対して摩擦攪拌接合を行う。第二凹部密封工程では、図5の(a)に示すように、回転させた大型回転ツールGを本体10の上面10aに設定した開始位置SM1に挿入した後、第二凹部13の開口周縁14に沿って移動させ、終了位置EM1まで移動させる。   In the second recess sealing step, friction stir welding is performed on the overlapping portion 18 where the bottom surface 12a of the first recess 12 and the back surface 30b of the lid member 30 overlap. In the second recessed portion sealing step, as shown in FIG. 5A, after the rotated large rotating tool G is inserted into the start position SM1 set on the upper surface 10a of the main body 10, the opening peripheral edge 14 of the second recessed portion 13 is obtained. And move to the end position EM1.

大型回転ツールGの移動について具体的に説明する。本体10の上面10aに設定した開始位置SM1に、大型回転ツールGを右回転させつつ挿入した後、蓋部材30側へ移動させる。大型回転ツールGが表面側塑性化領域W1を横断したら、重ね合わせ部18上において、第二凹部13の回りに沿って移動させる。大型回転ツールGを移動させることにより、第二凹部13の周囲には、表面側塑性化領域W2が形成される。図5の(b)に示すように、大型回転ツールGの攪拌ピンG2の長さLが、蓋部材30の厚みtよりも大きくなっているため、重ね合わせ部18を確実に摩擦攪拌接合することができる。 The movement of the large rotary tool G will be specifically described. The large rotary tool G is inserted into the start position SM1 set on the upper surface 10a of the main body 10 while rotating clockwise, and then moved to the lid member 30 side. When the large-sized rotating tool G crosses the surface side plasticizing region W <b> 1, it is moved along the second recessed portion 13 on the overlapping portion 18. By moving the large rotary tool G, the surface side plasticizing region W2 is formed around the second recess 13. FIG as shown in (b) of 5, the length L B of the stirring pin G2 of the large rotating tool G is, because larger than the thickness t of the lid member 30 securely friction stir welding the overlapping portion 18 can do.

本実施形態では、第二凹部13の開口周縁14から第一凹部12の側壁12bまでの距離D1は、大型回転ツールGのショルダ部G1の外径Yの2倍以上で形成されているため、重ね合わせ部18の幅を十分に確保することができ確実に摩擦攪拌接合を行うことができる。なお、隣り合う第二凹部13,13の間の距離D2(図3の(a)参照)は、少なくとも大型回転ツールGのショルダ部G1の外径Yよりも大きくければよいが、本実施形態ではショルダ部G1の外径Yの約3倍になっている。 In the present embodiment, the distance D1 from the opening peripheral edge 14 of the second recess 13 to the sidewall 12b of the first recess 12, which is formed by twice or more large rotating tool outer diameter Y 1 of the shoulder portion G1 of G The width of the overlapping portion 18 can be sufficiently secured, and the friction stir welding can be performed reliably. Incidentally, (see (a) in FIG. 3) the distance D2 between the second recess 13, 13 adjacent, may Kere larger than the outer diameter Y 1 of the shoulder portion G1 at least large rotating tool G, but the present embodiment in the form which is about 3 times the outer diameter Y 1 of the shoulder portion G1.

また、図5の(b)に示すように、本実施形態では、大型回転ツールGの中心から第二凹部13の開口周縁14までの距離E1は、ショルダ部G1の外径Yの半径よりも大きくなっている。このようにすれば、摩擦攪拌接合により塑性流動化された塑性流動材が第二凹部13に流入するのを防ぐことができる。 Further, as shown in (b) of FIG. 5, in the present embodiment, the distance E1 from the center of the large rotating tool G to the opening peripheral edge 14 of the second recess 13, than the radius of the outer diameter Y 1 of the shoulder portion G1 Is also getting bigger. In this way, it is possible to prevent the plastic fluidized material plasticized by friction stir welding from flowing into the second recess 13.

また、本実施形態では、第二凹部13の開口周縁14から大型回転ツールGの外周面までの距離E2は、4mmよりも大きくすることが好ましい。距離E2が4mm以下であると、大型回転ツールGと第二凹部13との距離が近くなり、摩擦攪拌接合の際に第二凹部13の内壁が変形する可能性がある。   Moreover, in this embodiment, it is preferable that the distance E2 from the opening peripheral edge 14 of the 2nd recessed part 13 to the outer peripheral surface of the large sized rotary tool G is larger than 4 mm. If the distance E2 is 4 mm or less, the distance between the large rotary tool G and the second recess 13 is reduced, and the inner wall of the second recess 13 may be deformed during friction stir welding.

大型回転ツールGを第二凹部13の回りに一周させたら、図5の(a)の矢印に示すように、表面側塑性化領域W2及び表面側塑性化領域W1を横断させて、本体10の上面10aに設定した終了位置EM1まで移動させる。大型回転ツールGが終了位置EM1に達したら、本体10から大型回転ツールGを離脱させる。なお、引抜跡は補修するようにしてもよい。   When the large rotary tool G makes a round around the second recess 13, the surface side plasticization region W2 and the surface side plasticization region W1 are traversed as shown by the arrows in FIG. Move to the end position EM1 set on the upper surface 10a. When the large rotary tool G reaches the end position EM1, the large rotary tool G is detached from the main body 10. In addition, you may make it repair a drawing trace.

第二凹部密封工程では、大型回転ツールGの移動方向と同じ方向に大型回転ツールGが回動するシアー側(被接合部に対する大型回転ツールGの外周の相対速さが、大型回転ツールGの外周における接線速度の大きさに移動速度の大きさを加算した値となる側)が、本体10上の第二凹部13から離間した部位に位置するように、大型回転ツールGを回転、移動させる。つまり、大型回転ツールGの回転方向(自転方向)が、移動方向(公転方向)と同じ方向となるようにする。具体的には、本実施形態では、大型回転ツールGを第二凹部13に対して右回りに移動させているので、大型回転ツールGも右回転させる。   In the second recessed portion sealing step, the shear side (the relative speed of the outer periphery of the large rotating tool G with respect to the joined portion is the same as the moving direction of the large rotating tool G is the relative speed of the outer periphery of the large rotating tool G). The large rotary tool G is rotated and moved so that the tangential speed at the outer circumference is added to the magnitude of the moving speed is located at a position away from the second recess 13 on the main body 10. . That is, the rotation direction (spinning direction) of the large rotary tool G is set to be the same direction as the moving direction (revolution direction). Specifically, in the present embodiment, since the large rotary tool G is moved clockwise with respect to the second recess 13, the large rotary tool G is also rotated clockwise.

なお、大型回転ツールGを第二凹部13に対して左回りに移動させるときは、大型回転ツールGを左回転させる。かかる方法によれば、大型回転ツールGのシアー側が本体10の第二凹部13から離間した部位に位置する。本体10の第二凹部13に近い部位は、大型回転ツールGのフロー側(被接合部に対する大型回転ツールGの外周の相対速さが、大型回転ツールGの外周における接線速度の大きさから移動速度の大きさを減算した値となる側)となる。このため、本体10の第二凹部13に近い部位は、メタルの流動量が少なくなり、空洞欠陥が発生しにくくなる。そして、摩擦攪拌によって空洞欠陥が発生したとしても、第二凹部13から離間した部分に発生することとなり、熱輸送流体が外部に漏れにくくなるので、接合部の密閉性能を低下させることはない。   When the large rotary tool G is moved counterclockwise with respect to the second recess 13, the large rotary tool G is rotated counterclockwise. According to such a method, the shear side of the large-sized rotary tool G is located at a site separated from the second recess 13 of the main body 10. The portion of the main body 10 near the second recess 13 is located on the flow side of the large rotating tool G (the relative speed of the outer periphery of the large rotating tool G with respect to the joined portion is moved from the magnitude of the tangential velocity on the outer periphery of the large rotating tool G. The side on which the magnitude of the speed is subtracted). For this reason, the part close | similar to the 2nd recessed part 13 of the main body 10 reduces the flow amount of a metal, and becomes difficult to generate | occur | produce a cavity defect. And even if a cavity defect occurs due to frictional stirring, it will occur in a portion away from the second recess 13 and the heat transport fluid will not leak to the outside, so the sealing performance of the joint will not be reduced.

次に、図6に示すように、他方の第二凹部13の回りに形成された重ね合わせ部18に対して、摩擦攪拌接合を行う。本体10の上面10aに設定した開始位置SM2に大型回転ツールGを挿入した後、蓋部材30側へ移動させる。大型回転ツールGが表面側塑性化領域W1を横断したら、重ね合わせ部18上において、第二凹部13回りに沿って移動させる。大型回転ツールGを移動させることにより、第二凹部13の周囲に表面側塑性化領域W2が形成される。大型回転ツールGを第二凹部13の回りに一周させたら、図6の矢印に示すように、表面側塑性化領域W2及び表面側塑性化領域W1を横断させて、本体10の上面10aに設定された終了位置EM2まで移動させる。大型回転ツールGが終了位置EM2に達したら、本体10から大型回転ツールGを離脱させる。以上の工程により、伝熱板1が形成される。   Next, as shown in FIG. 6, friction stir welding is performed on the overlapping portion 18 formed around the other second concave portion 13. After the large rotary tool G is inserted into the start position SM2 set on the upper surface 10a of the main body 10, it is moved to the lid member 30 side. When the large-sized rotary tool G crosses the surface side plasticizing region W <b> 1, it is moved along the second concave portion 13 on the overlapping portion 18. By moving the large rotary tool G, the surface side plasticizing region W2 is formed around the second recess 13. When the large-sized rotary tool G makes a round around the second recess 13, as shown by the arrow in FIG. 6, the surface side plasticization region W <b> 2 and the surface side plasticization region W <b> 1 are traversed and set on the upper surface 10 a of the main body 10. It is moved to the finished end position EM2. When the large rotary tool G reaches the end position EM2, the large rotary tool G is detached from the main body 10. The heat transfer plate 1 is formed by the above steps.

なお、第二凹部密封工程において、開始位置SM1,SM2及び終了位置EM1,EM2は、突合部40よりも外側であれば、他の位置であっても構わない。   In the second recess sealing step, the start positions SM1 and SM2 and the end positions EM1 and EM2 may be other positions as long as they are outside the abutting portion 40.

図7に示すように、蓋部材固定工程と、第二凹部密封工程を行った後、伝熱板1には、表面側塑性化領域W1,W2が形成される。表面側塑性化領域W1,W2は、熱収縮によって縮むため、伝熱板1の表面Za側において、本体10の各隅部側から中心側に向かって圧縮応力が作用する。これにより、伝熱板1は表面Za側が凹となるように(裏面Zb側に凸となるように)、撓んでしまう可能性がある。特に、伝熱板1の表面Zaに示す地点a〜地点jのうち、伝熱板1の四隅に係る地点a,c,f,hにおいては、その反りの影響が顕著に現れる傾向がある。なお、地点jは、伝熱板1の中心地点を示し、地点b,d,e,gは、本体10の各辺の中間地点を示す。また、伝熱板1の表面Zaに示す地点a〜地点jに対応する裏面Zbの各点を地点a’〜j’とする。また、伝熱板1の地点aから地点f方向を縦方向、地点aから地点c方向を横方向とする。   As shown in FIG. 7, after performing the lid member fixing step and the second concave portion sealing step, the surface side plasticized regions W1 and W2 are formed in the heat transfer plate 1. Since the surface side plasticizing regions W1 and W2 are contracted by thermal contraction, compressive stress acts from the respective corners of the main body 10 toward the center on the surface Za side of the heat transfer plate 1. Thereby, the heat exchanger plate 1 may bend so that the surface Za side may be concave (so that it may be convex on the back surface Zb side). In particular, among the points a to j shown on the surface Za of the heat transfer plate 1, at the points a, c, f, and h related to the four corners of the heat transfer plate 1, the influence of the warp tends to be noticeable. In addition, the point j shows the center point of the heat exchanger plate 1, and the points b, d, e, and g show the intermediate points of each side of the main body 10. Further, the points on the back surface Zb corresponding to the points a to j indicated on the front surface Za of the heat transfer plate 1 are defined as points a ′ to j ′. Further, the direction from the point a to the point f of the heat transfer plate 1 is the vertical direction, and the direction from the point a to the point c is the horizontal direction.

矯正工程では、大型回転ツールGを用いて本体10の裏面Zbから摩擦攪拌を行う。矯正工程は、前記した蓋部材固定工程及び第二凹部密封工程で発生した反り(歪み)を解消するために行う工程である。矯正工程は、タブ材を配置するタブ材配置工程と、本体10の裏面Zbに対して摩擦攪拌を行う矯正摩擦攪拌工程と、を含む。   In the correction process, friction stirring is performed from the back surface Zb of the main body 10 using the large rotary tool G. The correction process is a process performed to eliminate the warp (distortion) generated in the lid member fixing process and the second recess sealing process. The straightening step includes a tab material arranging step for arranging the tab material and a straightening friction stirring step for performing friction stirring on the back surface Zb of the main body 10.

タブ材配置工程では、図8に示すように、後記する矯正摩擦攪拌工程の開始位置及び終了位置を設定するタブ材31を配置する。タブ材31は、本実施形態では直方体を呈し、本体10と同等の組成からなる。タブ材31は、本体10の側面10bの一部を覆い隠すようにして、側面10b当接されている。また、タブ材31は、タブ材31の両側面と本体10の側面10bとを溶接によって仮接合されている。タブ材31の表面は、本体10の裏面Zbと面一に形成することが好ましい。   In the tab material arranging step, as shown in FIG. 8, a tab material 31 for setting a start position and an end position of a correction friction stirring step described later is arranged. In this embodiment, the tab material 31 has a rectangular parallelepiped shape and has a composition equivalent to that of the main body 10. The tab material 31 is in contact with the side surface 10b so as to cover a part of the side surface 10b of the main body 10. Moreover, the tab material 31 is temporarily joined by welding the both side surfaces of the tab material 31 and the side surface 10b of the main body 10. The surface of the tab material 31 is preferably formed flush with the back surface Zb of the main body 10.

矯正摩擦攪拌工程では、図8の(a)及び(b)に示すように、大型回転ツールGを用いて、本体10の裏面Zbに対して摩擦攪拌を行う。矯正摩擦攪拌工程では、前記した第二凹部密封工程と略同等の押込み量で摩擦攪拌を行う。矯正摩擦攪拌工程のルートは、本実施形態では、中心地点j’を囲み、かつ、矯正摩擦攪拌工程によって形成される裏面側塑性化領域W3が中心地点j’に対して放射状となるように設定する。   In the straightening friction stirring step, friction stirring is performed on the back surface Zb of the main body 10 using a large rotary tool G as shown in FIGS. In the straightening friction stirring step, friction stirring is performed with a pushing amount substantially equal to that in the second recess sealing step. In the present embodiment, the route of the straightening friction stirring step is set so as to surround the central point j ′ and the back side plasticized region W3 formed by the straightening friction stirring step is radial with respect to the central point j ′. To do.

矯正摩擦攪拌工程では、図8の(a)に示すように、タブ材31の表面に開始位置SK1を設定し、大型回転ツールGの攪拌ピンをタブ材31に押し込む(押圧する)。大型回転ツールGのショルダ部の一部がタブ材31に接触したら、本体10に向かって大型回転ツールGを相対移動させる。そして、本体10の裏面Zbにおける地点f’、地点a’、地点c’及び地点h’付近で平面視凸状となるとともに、地点g‘、地点d’、地点b’及び地点e’付近で平面視凹状となるように大型回転ツールGを相対移動させて摩擦攪拌を行う。図8の(b)に示すように、本体10の中心線(一点鎖線)に対して線対称となるように裏面側塑性化領域W3が形成される。本実施形態では、開始位置SK1と終了位置EK1をタブ材31に設け、一筆書きの要領で摩擦攪拌を行う。これにより、摩擦攪拌を効率よく行うことができる。矯正摩擦攪拌工程が終了したら、タブ材31を切除する。   In the straightening friction stirring step, as shown in FIG. 8A, the start position SK1 is set on the surface of the tab material 31, and the stirring pin of the large rotary tool G is pushed (pressed) into the tab material 31. When a part of the shoulder portion of the large rotary tool G comes into contact with the tab material 31, the large rotary tool G is relatively moved toward the main body 10. And it becomes convex in plan view near the point f ′, the point a ′, the point c ′, and the point h ′ on the back surface Zb of the main body 10, and near the point g ′, the point d ′, the point b ′, and the point e ′. Friction stirring is performed by relatively moving the large rotary tool G so as to have a concave shape in plan view. As shown in FIG. 8B, the back surface plasticized region W <b> 3 is formed so as to be line symmetric with respect to the center line (one-dot chain line) of the main body 10. In the present embodiment, a start position SK1 and an end position EK1 are provided on the tab material 31, and friction stirring is performed in the manner of one stroke. Thereby, friction stirring can be performed efficiently. When the straightening friction stirring step is completed, the tab material 31 is cut out.

なお、本実施形態では、大型回転ツールGの軌跡、即ち、裏面側塑性化領域W3の形状が、中心地点j’を囲み、かつ、中心地点j’に対して略放射状となるように形成したが、これに限定されるものではない。大型回転ツールGの軌跡のバリエーションについては後記する。   In the present embodiment, the locus of the large-sized rotary tool G, that is, the shape of the back side plasticizing region W3 is formed so as to surround the central point j ′ and to be substantially radial with respect to the central point j ′. However, the present invention is not limited to this. The variations of the locus of the large rotating tool G will be described later.

本実施形態では、裏面Zb側の大型回転ツールGの軌跡の長さ(裏面側塑性化領域W3の長さ)は、表面Za側の小型回転ツールF及び大型回転ツールGの軌跡の長さ(表面側塑性化領域W1及び表面側塑性化領域W2長さの和)よりも短くなるように設定している。即ち、矯正工程における加工度が、蓋部材固定工程及び第二凹部密封工程の加工度よりも小さくなるように設定している。これにより、伝熱板1の平坦性を高めることができる。この理由については実施例で説明する。ここで、加工度とは、摩擦攪拌によって形成された塑性化領域の体積量を示す。
また、本実施形態では矯正工程において、タブ材を配置したが、矯正摩擦攪拌工程における摩擦攪拌のルートによってはタブ材を設けずに、裏面Zb上に摩擦攪拌の開始位置及び終了位置を設けてもよい。
In the present embodiment, the length of the trajectory of the large rotary tool G on the back surface Zb side (the length of the back surface plasticizing region W3) is the length of the trajectory of the small rotary tool F and the large rotary tool G on the front surface Za side ( It is set to be shorter than the sum of the lengths of the surface side plasticization region W1 and the surface side plasticization region W2. That is, the processing degree in the correction process is set to be smaller than the processing degrees in the lid member fixing step and the second recess sealing step. Thereby, the flatness of the heat exchanger plate 1 can be improved. The reason for this will be described in Examples. Here, the workability indicates the volume amount of the plasticized region formed by friction stirring.
In the present embodiment, the tab material is arranged in the correction process. However, depending on the friction stirring route in the correction friction stirring process, the tab material is not provided, and the friction stirring start position and end position are provided on the back surface Zb. Also good.

以上説明した伝熱板の製造方法によれば、突合部40に対する摩擦攪拌接合に加えて、第二凹部13の周囲において、重ね合わせ部18に対して摩擦攪拌接合を行うことにより、第一凹部12の底面12aと蓋部材30の裏面30bとの微細な隙間を塞ぐことができる。また、第二凹部13の周囲において、本体10と蓋部材30とを密着させることができる。これにより、伝熱板1の水密性及び気密性を高めることができる。   According to the manufacturing method of the heat transfer plate described above, in addition to the friction stir welding to the abutting portion 40, the first concave portion is formed by performing the friction stir welding to the overlapping portion 18 around the second concave portion 13. Thus, a minute gap between the bottom surface 12a of the twelve and the back surface 30b of the lid member 30 can be closed. Further, the main body 10 and the lid member 30 can be brought into close contact with each other around the second recess 13. Thereby, the watertightness and airtightness of the heat exchanger plate 1 can be improved.

また、蓋部材固定工程及び第二凹部密封工程による熱収縮によって、伝熱板1が歪んでしまったとしても、伝熱板1の裏面Zbにも摩擦攪拌を行うことで、表面Zaに発生した反りを解消して伝熱板1の平坦性を容易に高めることができる。即ち、伝熱板1の裏面Zbに形成された裏面側塑性化領域W3が、熱収縮により縮むため、伝熱板1の裏面Zb側において、本体10の各隅部側から中心側に向かって圧縮応力が作用する。これにより、蓋部材固定工程及び第二凹部密封工程によって形成された反りが解消されて、伝熱板1の平坦性を高めることができる。   Moreover, even if the heat transfer plate 1 is distorted due to the heat shrinkage by the lid member fixing step and the second recess sealing step, it is generated on the surface Za by performing frictional stirring on the back surface Zb of the heat transfer plate 1. Warpage can be eliminated and the flatness of the heat transfer plate 1 can be easily increased. That is, since the back surface side plasticized region W3 formed on the back surface Zb of the heat transfer plate 1 contracts due to heat shrinkage, from each corner side of the main body 10 toward the center side on the back surface Zb side of the heat transfer plate 1. Compressive stress acts. Thereby, the curvature formed by the cover member fixing process and the 2nd recessed part sealing process is eliminated, and the flatness of the heat exchanger plate 1 can be improved.

また、本実施形態における矯正工程では、この矯正工程で形成される裏面側塑性化領域W3の平面形状を、伝熱板1の中心地点j’に対して略点対称となるように摩擦攪拌を行うため、バランスよく矯正することができる。   Further, in the correction process in the present embodiment, the friction stir is performed so that the planar shape of the back side plasticized region W3 formed in the correction process is substantially point symmetric with respect to the center point j ′ of the heat transfer plate 1. Because it does, it can be corrected in a well-balanced manner.

また、第一凹部12内に第二凹部13,13を内包するように形成されているため、第二凹部13が複数個形成される場合や第二凹部13の形状が複雑になる場合であっても、容易に伝熱板1を製造することができる。従来は、例えば第二凹部が平面視蛇行状を呈する場合、その形状に合わせて平面視蛇行状に蓋部材の平面形状を成形していた。これにより、蓋部材の成形作業が煩雑になるとともに、本体と蓋部材とを精度よく配置するのが困難になるという問題があった。
しかし、本実施形態によれば、第二凹部13が複数個ある場合であっても、第二凹部13,13を包囲するように平面視矩形の第一凹部12を形成するとともに、第一凹部12の形状に合わせて蓋部材30を矩形に形成することで、蓋部材30の形状を単純化することができる。これにより、蓋部材30を容易に成形できるとともに、第一凹部12に蓋部材30を精度よく配置することができ、伝熱板1を容易に製造することができる。
In addition, since the first recess 12 is formed so as to include the second recesses 13, 13, a plurality of the second recesses 13 are formed or the shape of the second recess 13 is complicated. However, the heat transfer plate 1 can be easily manufactured. Conventionally, for example, when the second recess has a serpentine shape in plan view, the planar shape of the lid member is formed in a serpentine shape in plan view in accordance with the shape. Accordingly, there is a problem that the molding operation of the lid member becomes complicated and it is difficult to accurately arrange the main body and the lid member.
However, according to this embodiment, even when there are a plurality of second recesses 13, the first recess 12 having a rectangular shape in plan view is formed so as to surround the second recesses 13, 13, and the first recess By forming the lid member 30 in a rectangular shape in accordance with the shape of 12, the shape of the lid member 30 can be simplified. Thereby, while being able to shape | mold the cover member 30 easily, the cover member 30 can be accurately arrange | positioned in the 1st recessed part 12, and the heat exchanger plate 1 can be manufactured easily.

また、本実施形態では、第二凹部密封工程の前に蓋部材固定工程を行うため、蓋部材30を本体10に固定した状態で第二凹部密封工程を行うことができるため、作業性を高めることができる。   In this embodiment, since the lid member fixing step is performed before the second concave portion sealing step, the second concave portion sealing step can be performed in a state where the lid member 30 is fixed to the main body 10, thereby improving workability. be able to.

また、本実施形態に係る第二凹部密封工程では、第二凹部13の開口周縁14に沿って大型回転ツールGを一周させるとともに、表面側塑性化領域W2をオーバーラップさせて重複させることにより、第二凹部13の周囲の重ね合わせ部18の気密性及び水密性を高めることができる。   Further, in the second recess sealing step according to the present embodiment, the large rotation tool G is made a round along the opening peripheral edge 14 of the second recess 13, and the surface side plasticizing region W2 is overlapped and overlapped. The air tightness and water tightness of the overlapping portion 18 around the second concave portion 13 can be enhanced.

また、大型回転ツールGを金属部材に挿入する際には、金属部材に大きな負荷が作用するため、摩擦攪拌の開始位置SM1,SM2を蓋部材30上に設定すると、蓋部材30が変形してしまう可能性がある。しかし、本実施形態に係る第二凹部密封工程では、摩擦攪拌の開始位置SM1,SM2を突合部40の外側に設定したため、大型回転ツールGの挿入時における蓋部材30の変形を防ぐことができる。また、本実施形態では、摩擦攪拌の終了位置EM1,EM2を肉厚の本体10側に設定したため、大型回転ツールGの引抜跡の補修を容易に行うことができる。   Further, when the large rotating tool G is inserted into the metal member, a large load acts on the metal member. Therefore, when the friction stirring start positions SM1 and SM2 are set on the lid member 30, the lid member 30 is deformed. There is a possibility. However, in the second recess sealing step according to the present embodiment, the friction stirring start positions SM1 and SM2 are set outside the abutting portion 40, so that deformation of the lid member 30 when the large rotary tool G is inserted can be prevented. . Further, in the present embodiment, the friction stirring end positions EM1 and EM2 are set on the thick main body 10 side, so that it is possible to easily repair the extraction trace of the large-sized rotating tool G.

また、本体10の厚みは、大型回転ツールGのショルダ部G1の外径Yの1.5倍以上に設定されており、また、本体10の厚みは、大型回転ツールGの攪拌ピンG2の長さLの3倍以上に設定されている。つまり、大型回転ツールGに対して本体10が薄いと、熱収縮による変形が大きくなる可能性があるが、本実施形態では、大型回転ツールGの各部位の大きさに対して本体10が十分な厚みを備えているため、伝熱板1の平坦性をより高めることができる。 The thickness of the main body 10 is set to more than 1.5 times the outer diameter Y 1 of the shoulder portion G1 of a large rotating tool G, The thickness of the body 10 of the stirring pin G2 of the large rotating tool G It is set to be more than 3 times the length L B. That is, if the main body 10 is thin with respect to the large-sized rotary tool G, there is a possibility that deformation due to thermal contraction may increase, but in this embodiment, the main body 10 is sufficient for the size of each part of the large-sized rotary tool G. Since the thickness is provided, the flatness of the heat transfer plate 1 can be further improved.

[第二実施形態]
次に、本発明の第二実施形態について説明する。第二実施形態では、本体10に形成された第二凹部51の形状が、平面視矩形枠状を呈する点で第一実施形態と相違する。なお、第二実施形態の説明においては、第一実施形態と重複する部分については説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. In 2nd embodiment, the shape of the 2nd recessed part 51 formed in the main body 10 differs from 1st embodiment by the point which exhibits planar view rectangular frame shape. In the description of the second embodiment, the description of the same parts as those in the first embodiment is omitted.

第二実施形態に係る伝熱板101は、図9の(a)に示すように、本体10と、本体10に摩擦攪拌接合される蓋部材30とを備えている。
本体10は、本体10の上面10aに凹設された第一凹部12と、第一凹部12の中央に凹設された第二凹部51と、第二凹部51に連通する貫通孔16とを有する。
As shown in FIG. 9A, the heat transfer plate 101 according to the second embodiment includes a main body 10 and a lid member 30 that is friction stir welded to the main body 10.
The main body 10 includes a first recess 12 that is recessed in the upper surface 10 a of the main body 10, a second recess 51 that is recessed in the center of the first recess 12, and a through hole 16 that communicates with the second recess 51. .

第一凹部12は、本体10の上面10aよりも一段下がった位置に形成されており、蓋部材30が配置される部位である。第一凹部12は、平面視矩形を呈する底面12aと、底面12aから垂直に立設した4つの側壁12bとを有する。本実施形態では、第二凹部51を平面視矩形枠状に形成したため、底面12aが第二凹部51の内側と外側の両方に形成されている。   The first recess 12 is formed at a position one level lower than the upper surface 10a of the main body 10, and is a part where the lid member 30 is disposed. The first recess 12 has a bottom surface 12a that has a rectangular shape in plan view, and four side walls 12b that stand vertically from the bottom surface 12a. In this embodiment, since the 2nd recessed part 51 was formed in planar view rectangular frame shape, the bottom face 12a is formed in both the inner side and the outer side of the 2nd recessed part 51. FIG.

第二凹部51は、熱輸送流体(本実施形態では冷却水)が流通する部分である。第二凹部51は、第一凹部12内において、平面視矩形枠状に形成されており、上方に開口している。第二凹部51の開口部には、開口周縁53a,53bがそれぞれ形成されている。   The second recess 51 is a portion through which the heat transport fluid (cooling water in the present embodiment) flows. The second recess 51 is formed in a rectangular frame shape in plan view in the first recess 12 and opens upward. Opening rims 53a and 53b are formed in the opening of the second recess 51, respectively.

図9の(b)に示すように、第一凹部12に蓋部材30を配置すると、第一凹部12の側壁12bと蓋部材30の側面30aとで突合部40が形成される。また、第一凹部12の底面12aと蓋部材30の裏面30bとで重ね合わせ部18が形成される。本実施形態では、重ね合わせ部18は、第二凹部51の内側と外側の両方に形成される。   As shown in FIG. 9B, when the lid member 30 is disposed in the first recess 12, the abutting portion 40 is formed by the side wall 12 b of the first recess 12 and the side surface 30 a of the lid member 30. Further, the overlapping portion 18 is formed by the bottom surface 12 a of the first recess 12 and the back surface 30 b of the lid member 30. In the present embodiment, the overlapping portion 18 is formed on both the inside and the outside of the second recess 51.

次に、第二実施形態に係る伝熱板の製造方法について図8を用いて説明する。本実施形態に係る伝熱板の製造方法では、蓋部材固定工程と、第二凹部密封工程と、矯正工程と、面削工程を実行する。   Next, the manufacturing method of the heat exchanger plate which concerns on 2nd embodiment is demonstrated using FIG. In the heat transfer plate manufacturing method according to the present embodiment, a lid member fixing step, a second recess sealing step, a correction step, and a chamfering step are executed.

蓋部材固定工程では、突合部40に摩擦攪拌接合を行って、本体10に蓋部材30を接合する。蓋部材固定工程では、図10の(a)に示すように、小型回転ツールFを右回転させつつ、突合部40上に設定した開始位置s2に挿入し、突合部40に沿って終了位置e2まで摩擦攪拌接合を行う。第一実施形態では、突合部40の全周に亘って摩擦攪拌接合を行ったが、本実施形態では、突合部40を構成する各辺の中間部分のみに対して摩擦攪拌接合を行う。即ち、突合部40を構成する各辺の一点に開始位置s2及び終了位置e2をそれぞれ設定し摩擦攪拌接合を行う。蓋部材固定工程では、突合部40の一方の対辺の中間部分を摩擦攪拌接合した後に、他方の対辺の中間部分を摩擦攪拌接合することが好ましい。これにより、蓋部材30をバランスよく固定することができ、蓋部材30の本体10に対する位置決め精度が向上する。蓋部材固定工程によって、表面側塑性化領域W1が形成される。   In the lid member fixing step, friction stir welding is performed on the abutting portion 40 to bond the lid member 30 to the main body 10. In the lid member fixing step, as shown in FIG. 10A, the small rotary tool F is inserted to the start position s <b> 2 set on the abutting portion 40 while rotating to the right, and the end position e <b> 2 along the abutting portion 40. Friction stir welding is performed. In the first embodiment, the friction stir welding is performed over the entire circumference of the abutting portion 40, but in the present embodiment, the friction stir welding is performed only on the intermediate portion of each side constituting the abutting portion 40. That is, the start position s2 and the end position e2 are set at one point on each side of the abutting portion 40, and friction stir welding is performed. In the lid member fixing step, it is preferable that after the frictional stir welding is performed on the middle part of one opposite side of the abutting portion 40, the middle part of the other opposite side is friction stir welded. Thereby, the lid member 30 can be fixed with good balance, and the positioning accuracy of the lid member 30 with respect to the main body 10 is improved. By the lid member fixing step, the surface side plasticized region W1 is formed.

第二凹部密封工程では、図10の(a)に示すように、第一凹部12の底面12aと、蓋部材30の裏面30bとが重なり合う重ね合わせ部18に対して摩擦攪拌接合を行う。第二凹部密封工程では本体10の上面10aに設定した開始位置SM3に、大型回転ツールGを左回転させつつ挿入した後、蓋部材30側へ移動させる。大型回転ツールGが突合部40を横断したら、重ね合わせ部18上において、第二凹部51の開口周縁53aの外周に沿って大型回転ツールGを移動させる。大型回転ツールGを移動させることにより、第二凹部51の周囲には、表面側塑性化領域W2が形成される。   In the second recess sealing step, as shown in FIG. 10A, friction stir welding is performed on the overlapping portion 18 where the bottom surface 12a of the first recess 12 and the back surface 30b of the lid member 30 overlap. In the second recessed portion sealing step, the large rotary tool G is inserted into the start position SM3 set on the upper surface 10a of the main body 10 while rotating counterclockwise, and then moved to the lid member 30 side. When the large rotary tool G crosses the abutting portion 40, the large rotary tool G is moved along the outer periphery of the opening peripheral edge 53 a of the second recess 51 on the overlapping portion 18. By moving the large rotary tool G, a surface side plasticizing region W2 is formed around the second recess 51.

大型回転ツールGを第二凹部51の回りに一周させたら、図10の(b)に示すように、表面側塑性化領域W2を横断させて、本体10の上面10aに設定した終了位置EM3まで移動させる。大型回転ツールGが終了位置EM3に達したら、本体10から大型回転ツールGを離脱させる。   When the large-sized rotary tool G makes a round around the second recess 51, as shown in FIG. 10 (b), the surface side plasticization region W2 is traversed to the end position EM3 set on the upper surface 10a of the main body 10. Move. When the large rotary tool G reaches the end position EM3, the large rotary tool G is detached from the main body 10.

次に、本実施形態に係る第二凹部密封工程では、第二凹部51の内側の重ね合わせ部18(図9の(b)参照)に対しても摩擦攪拌接合を行う。図10の(b)に示すように、蓋部材30の中央に摩擦攪拌の開始位置SM4を設定し、第二凹部51の開口周縁53bの内側に沿って大型回転ツールGを移動して摩擦攪拌接合を行う。第二凹部51の内側には、表面側塑性化領域W2が形成される。大型回転ツールGが第二凹部51の内側を一周したら、既存の表面側塑性化領域W2と重複させて、蓋部材30の中央に設定した終了位置EM4まで大型回転ツールGを移動させる。   Next, in the second recessed portion sealing step according to the present embodiment, friction stir welding is also performed on the overlapping portion 18 (see FIG. 9B) inside the second recessed portion 51. As shown in FIG. 10 (b), the friction stirring start position SM4 is set at the center of the lid member 30, and the large rotating tool G is moved along the inner periphery of the opening periphery 53b of the second recess 51 to thereby generate friction stirring. Join. Inside the second recess 51, a surface-side plasticized region W2 is formed. When the large rotary tool G makes a round around the inside of the second recess 51, the large rotary tool G is moved to the end position EM4 set at the center of the lid member 30 so as to overlap the existing surface side plasticizing region W2.

図11に示すように、蓋部材固定工程と、第二凹部密封工程を行った後、伝熱板101の表面Zaには、表面側塑性化領域W1,W2が形成される。表面側塑性化領域W1,W2は、熱収縮によって縮むため、伝熱板101の表面Za側において、本体10の各隅部側から中心側に向かって圧縮応力が作用する。これにより、伝熱板101は表面Za側が凹となるように(裏面Zb側に凸となるように)、撓んでしまう可能性がある。特に、伝熱板101の表面Zaに示す地点a〜地点jのうち、伝熱板101の四隅に係る地点a,c,f,hにおいては、その反りの影響が顕著に現れる傾向がある。   As shown in FIG. 11, after performing the lid member fixing step and the second recess sealing step, the surface side plasticized regions W <b> 1 and W <b> 2 are formed on the surface Za of the heat transfer plate 101. Since the surface side plasticized regions W1 and W2 are contracted by heat shrinkage, compressive stress acts from the respective corners of the main body 10 toward the center on the surface Za side of the heat transfer plate 101. As a result, the heat transfer plate 101 may be bent so that the front surface Za side is concave (ie, convex toward the back surface Zb side). In particular, among the points a to j shown on the surface Za of the heat transfer plate 101, at the points a, c, f, and h related to the four corners of the heat transfer plate 101, the influence of the warp tends to be noticeable.

矯正工程では、大型回転ツールGを用いて伝熱板101の裏面Zbから摩擦攪拌を行う。矯正工程は、前記した蓋部材固定工程及び第二凹部密封工程で発生した反り(歪み)を解消するために行う工程である。本実施形態に係る矯正工程は、伝熱板101の裏面Zbに対して摩擦攪拌を行う矯正摩擦攪拌工程と、伝熱板101の裏面Zbの隅部に摩擦攪拌を行う隅部摩擦攪拌工程を含む。   In the correction process, friction stirring is performed from the back surface Zb of the heat transfer plate 101 using the large rotating tool G. The correction process is a process performed to eliminate the warp (distortion) generated in the lid member fixing process and the second recess sealing process. The correction process according to the present embodiment includes a correction friction stirring process for performing friction stirring on the back surface Zb of the heat transfer plate 101, and a corner friction stirring process for performing friction stirring on the corner of the back surface Zb of the heat transfer plate 101. Including.

矯正摩擦攪拌工程では、図12に示すように、大型回転ツールGを用いて、伝熱板101の裏面Zbに対して摩擦攪拌を行う。矯正摩擦攪拌工程では、前記した第二凹部密封工程と略同等の押込み量で摩擦攪拌を行う。矯正摩擦攪拌工程のルートは、本実施形態では、中心地点j’を囲み、かつ、矯正摩擦攪拌工程によって形成される裏面側塑性化領域W3が伝熱板101の平面形状と相似形状となるように設定する。   In the correction friction stirring step, as shown in FIG. 12, friction stirring is performed on the back surface Zb of the heat transfer plate 101 using a large rotating tool G. In the straightening friction stirring step, friction stirring is performed with a pushing amount substantially equal to that in the second recess sealing step. In this embodiment, the root of the straightening friction stirrer step surrounds the center point j ′, and the back side plasticized region W3 formed by the straightening friction stirrer step is similar to the planar shape of the heat transfer plate 101. Set to.

具体的には矯正摩擦攪拌工程では、図12に示すように、伝熱板101の裏面Zbの任意の位置に大型回転ツールGの攪拌ピンを押し込む(押圧する)。大型回転ツールGのショルダ部の一部が裏面Zbに接触したら、平面視矩形に大型回転ツールGを相対移動させて摩擦攪拌を行う。本実施形態では、伝熱板101の外縁の平面形状と大型回転ツールGの移動軌跡の平面形状とが相似形状となるように摩擦攪拌を行う。   Specifically, in the correction friction stirring step, as shown in FIG. 12, the stirring pin of the large rotary tool G is pushed (pressed) into an arbitrary position on the back surface Zb of the heat transfer plate 101. When a part of the shoulder portion of the large rotating tool G comes into contact with the back surface Zb, the large rotating tool G is relatively moved in a rectangular shape in plan view, and friction stirring is performed. In the present embodiment, the friction stir is performed so that the planar shape of the outer edge of the heat transfer plate 101 and the planar shape of the movement locus of the large rotating tool G are similar to each other.

隅部摩擦攪拌工程では、図12に示すように、本体10の地点a’、地点c’、地点f’及び地点h’に係る各隅部において、重点的に摩擦攪拌を行う。即ち、地点a’に係る隅部を構成する一辺2a側に摩擦攪拌の開始位置Sを設定し、他辺2b側に終了位置Eを設定する。そして、開始位置Sで大型回転ツールGを押し込み、摩擦攪拌を行った後、終了位置Eで大型回転ツールGを離脱させる。同様の工程を、地点c’、地点f’及び地点h’の各隅部にも行う。隅部摩擦攪拌工程によれば、特に反りの大きい伝熱板101の隅部に重点的に摩擦攪拌を行うことができるため、より伝熱板101の平坦性をより高めることができる。 In the corner friction agitation step, as shown in FIG. 12, friction agitation is intensively performed at each corner of the main body 10 at points a ′, c ′, f ′, and h ′. That is, the friction stirring start position SM is set on the side 2a that forms the corner of the point a ', and the end position E M is set on the other side 2b. Then, pushing a large rotating tool G at the start S M, after the friction stir, disengaging the large rotating tool G at the end position E M. The same process is performed on each corner of the point c ′, the point f ′, and the point h ′. According to the corner friction agitation step, the friction agitation can be performed mainly on the corners of the heat transfer plate 101 having a large warp, so that the flatness of the heat transfer plate 101 can be further improved.

隅部摩擦攪拌工程は、本実施形態では、大型回転ツールGの軌跡が各隅部において、対角線と直交するように形成されているが、これに限定されるものではない。隅部の反りの大きさを考慮して適宜摩擦攪拌のルートを設定すればよい。なお、隅部摩擦攪拌工程で形成される対向する裏面側塑性化領域W4,W4、裏面側塑性化領域W4,W4はそれぞれ中心地点j’に対して対称となるように形成されることが好ましい。これにより、伝熱板101の表面Za側と裏面Zb側の反りをバランスよく解消して伝熱板101の平坦性を高めることができる。   In this embodiment, the corner friction stirring step is formed so that the trajectory of the large rotary tool G is perpendicular to the diagonal line at each corner, but is not limited thereto. A route for friction stirring may be set as appropriate in consideration of the degree of warping of the corner. The opposing back side plasticized regions W4 and W4 and back side plasticized regions W4 and W4 formed in the corner friction stirring step are preferably formed so as to be symmetrical with respect to the center point j ′. . Thereby, the curvature of the surface Za side and the back surface Zb side of the heat-transfer plate 101 can be eliminated in a balanced manner, and the flatness of the heat-transfer plate 101 can be improved.

また、本実施形態では、裏面Zb側の大型回転ツールGの軌跡の長さ(裏面側塑性化領域W3及び裏面側塑性化領域W4の長さの和)は、表面Za側の小型回転ツールF及び大型回転ツールGの軌跡の長さ(表面側塑性化領域W1及び表面側塑性化領域W2長さの和)よりも短くなるように設定している。即ち、矯正工程における加工度が、蓋部材固定工程及び第二凹部密封工程の加工度よりも小さくなるように設定している。これにより、伝熱板101の平坦性を高めることができる。この理由については実施例で説明する。加工度とは、摩擦攪拌によって形成された塑性化領域の体積量を示す。   Further, in the present embodiment, the length of the locus of the large rotary tool G on the back surface Zb side (the sum of the lengths of the back surface plasticizing region W3 and the back surface plasticizing region W4) is the small rotating tool F on the front surface Za side. And the length of the trajectory of the large rotary tool G (the sum of the lengths of the surface side plasticization region W1 and the surface side plasticization region W2) is set to be shorter. That is, the processing degree in the correction process is set to be smaller than the processing degrees in the lid member fixing step and the second recess sealing step. Thereby, the flatness of the heat transfer plate 101 can be improved. The reason for this will be described in Examples. The degree of work indicates the volume of the plasticized region formed by friction stirring.

面削工程では、公知のエンドミル等を用いて伝熱板101の裏面Zbを面削する。図13に示すように、伝熱板101の裏面Zbには、各回転ツールの抜き穴(図示省略)や、各回転ツールを押し込むことによって発生する溝(図示省略)、バリ等が発生する。したがって、面削工程を行うことにより、伝熱板101の裏面Zbを平滑に形成することができる。本実施形態では、図13に示すように、面削加工の厚みMaは、裏面塑性化領域W3の厚みWaよりも大きく設定する。これにより、伝熱板101の裏面Zbに形成される裏面側塑性化領域W3,W4が除去されるため、伝熱板101の性質の均一性を図ることができる。また、裏面Zbに裏面側塑性化領域W3,W4等が露出しないため、意匠性等にも好適である。   In the chamfering process, the back surface Zb of the heat transfer plate 101 is chamfered using a known end mill or the like. As shown in FIG. 13, on the back surface Zb of the heat transfer plate 101, a punched hole (not shown) of each rotary tool, a groove (not shown) generated by pushing each rotary tool, a burr, and the like are generated. Therefore, the back surface Zb of the heat transfer plate 101 can be formed smoothly by performing the chamfering process. In the present embodiment, as shown in FIG. 13, the thickness Ma of the chamfering process is set larger than the thickness Wa of the back surface plasticizing region W3. Thereby, since the back surface side plasticization area | regions W3 and W4 formed in the back surface Zb of the heat exchanger plate 101 are removed, the uniformity of the property of the heat exchanger plate 101 can be aimed at. Moreover, since the back surface side plasticization area | region W3, W4, etc. are not exposed to the back surface Zb, it is suitable also for designability etc.

なお、本実施形態では、面削加工の厚みは、裏面側塑性化領域の厚みよりも大きく設定したが、これに限定されるものではない。面削加工の厚みは、例えば、大型回転ツールGの攪拌ピンG2の長さよりも大きく設定してもよい。
また、本実施形態では、大型回転ツールGを用いて矯正工程を行ったが、攪拌ピンG2を備えない回転ツールを用いて矯正工程を行っても構わない。かかる回転ツールによれば、裏面側塑性化領域の深さを浅くすることができるため、面削する厚みを小さくすることができる。これにより、面削部分が少ないため本体10のロスを小さくすることができ、コストを低減することができる。
In the present embodiment, the thickness of the chamfering process is set larger than the thickness of the back side plasticizing region, but is not limited to this. The thickness of the chamfering process may be set to be larger than the length of the stirring pin G2 of the large rotary tool G, for example.
Moreover, in this embodiment, although the correction process was performed using the large sized rotation tool G, you may perform a correction process using the rotation tool which is not equipped with the stirring pin G2. According to such a rotating tool, the depth of the back side plasticizing region can be reduced, so that the thickness to be chamfered can be reduced. Thereby, since there are few chamfering parts, the loss of the main body 10 can be made small and cost can be reduced.

以上説明した第二実施形態に係る伝熱板の製造方法によれば、突合部40に対する摩擦攪拌接合に加えて、第二凹部51の周囲において、重ね合わせ部18に対して摩擦攪拌接合を行うことにより、第一凹部12の底面12aと蓋部材30の裏面30bとの微細な隙間を塞ぐことができる。これにより、伝熱板101の水密性及び気密性を高めることができる。本実施形態では、第二凹部51を平面視矩形枠状に形成したため、第二凹部51の内側に形成された重ね合わせ部18に対しても摩擦攪拌接合を行った。これにより、伝熱板101の水密性及び気密性をさらに高めることができる。   According to the method for manufacturing a heat transfer plate according to the second embodiment described above, in addition to the friction stir welding to the abutting portion 40, the friction stir welding is performed to the overlapping portion 18 around the second recess 51. Thus, a fine gap between the bottom surface 12a of the first recess 12 and the back surface 30b of the lid member 30 can be closed. Thereby, the watertightness and airtightness of the heat transfer plate 101 can be enhanced. In the present embodiment, since the second recess 51 is formed in a rectangular frame shape in plan view, the friction stir welding is also performed on the overlapping portion 18 formed inside the second recess 51. Thereby, the water-tightness and airtightness of the heat transfer plate 101 can be further enhanced.

また、矯正工程を行うことにより、蓋部材固定工程及び第二凹部密封工程による熱収縮によって伝熱板101が歪んでしまったとしても、表面Zaに発生した反りを解消して伝熱板101の平坦性を容易に高めることができる。また、本実施形態における矯正工程では、大型回転ツールGの移動軌跡が、伝熱板101の外縁の平面形状と相似となるように移動させるとともに、表面側塑性化領域W2と略同等の平面形状を呈するように移動させるため、バランスよく摩擦攪拌を行うことができる。   Further, by performing the correction process, even if the heat transfer plate 101 is distorted due to heat shrinkage by the lid member fixing process and the second recess sealing process, the warp generated on the surface Za is eliminated and the heat transfer plate 101 Flatness can be easily increased. Further, in the correction process in the present embodiment, the movement locus of the large rotary tool G is moved so as to be similar to the planar shape of the outer edge of the heat transfer plate 101, and the planar shape substantially equivalent to the surface side plasticizing region W2. Therefore, the friction stir can be performed in a balanced manner.

[第三実施形態]
次に、本発明の第三実施形態について説明する。第三実施形態では、本体10に形成された第二凹部61の形状が、平面視円形状を呈する点で第一実施形態と相違する。なお、第三実施形態の説明においては、第一実施形態と重複する部分については説明を省略する。
[Third embodiment]
Next, a third embodiment of the present invention will be described. In 3rd embodiment, the shape of the 2nd recessed part 61 formed in the main body 10 differs from 1st embodiment by the point which exhibits a planar view circular shape. In the description of the third embodiment, the description of the same parts as those in the first embodiment is omitted.

第三実施形態に係る伝熱板102は、図14に示すように、本体10と、本体10に摩擦攪拌接合される蓋部材30とを備えている。
本体10は、本体10の上面10aに凹設された第一凹部12と、第一凹部12に凹設された第二凹部61と、第二凹部61に連通する貫通孔16とを有する。
As shown in FIG. 14, the heat transfer plate 102 according to the third embodiment includes a main body 10 and a lid member 30 that is friction stir welded to the main body 10.
The main body 10 has a first recess 12 that is recessed in the upper surface 10 a of the main body 10, a second recess 61 that is recessed in the first recess 12, and a through hole 16 that communicates with the second recess 61.

第一凹部12は、本体10の上面10aよりも一段下がった位置に形成されており、蓋部材30が配置される部位である。第一凹部12は、平面視矩形を呈する底面12aと、底面12aから垂直に立設した4つの側壁12bとを有する。   The first recess 12 is formed at a position one level lower than the upper surface 10a of the main body 10, and is a part where the lid member 30 is disposed. The first recess 12 has a bottom surface 12a that has a rectangular shape in plan view, and four side walls 12b that stand vertically from the bottom surface 12a.

第二凹部61は、熱輸送流体(本実施形態では冷却水)が流通する部分である。第二凹部61は、第一凹部12内において平面視円形状を呈し、上方に開口している。第二凹部61の開口部には開口周縁62が形成されている。   The second recess 61 is a portion through which the heat transport fluid (cooling water in the present embodiment) flows. The second recess 61 has a circular shape in a plan view inside the first recess 12 and opens upward. An opening periphery 62 is formed in the opening of the second recess 61.

次に、第三実施形態に係る伝熱板の製造方法について図15を用いて説明する。本実施形態に係る伝熱板の製造方法では、蓋部材固定工程と、第二凹部密封工程と、矯正工程を実行する。   Next, the manufacturing method of the heat exchanger plate which concerns on 3rd embodiment is demonstrated using FIG. In the heat transfer plate manufacturing method according to the present embodiment, a lid member fixing step, a second recess sealing step, and a correction step are executed.

蓋部材固定工程では、突合部40に摩擦攪拌接合を行って、本体10に蓋部材30を接合する。蓋部材固定工程では、図15に示すように、突合部40の四隅に断続的に摩擦攪拌接合を行う。即ち、突合部40の各四隅に設定された開始位置s3から終了位置e3まで小型回転ツールFを右回転させて摩擦攪拌接合を行う。蓋部材固定工程では、突合部40の一方の対角同士を先に摩擦攪拌接合した後に、他方の対角同士を摩擦攪拌することが好ましい。これにより、蓋部材30をバランスよく固定することができ、蓋部材30の本体10に対する位置決め精度が向上する。   In the lid member fixing step, friction stir welding is performed on the abutting portion 40 to bond the lid member 30 to the main body 10. In the lid member fixing step, friction stir welding is intermittently performed at the four corners of the abutting portion 40 as shown in FIG. That is, friction stir welding is performed by rotating the small rotary tool F to the right from the start position s3 set at each of the four corners of the abutting portion 40 to the end position e3. In the lid member fixing step, it is preferable to first frictionally stir one diagonal of the abutting portion 40 and then stir the other diagonal. Thereby, the lid member 30 can be fixed with good balance, and the positioning accuracy of the lid member 30 with respect to the main body 10 is improved.

第二凹部密封工程では、第一凹部12の底面12a(図14参照)と、蓋部材30の裏面30bとが重なり合う重ね合わせ部18に対して摩擦攪拌接合を行う。第二凹部密封工程では、本体10の上面10aに設定した開始位置SM5に、大型回転ツールGを右回転させつつ挿入した後、蓋部材30側へ移動させる。大型回転ツールGが突合部40を横断したら、重ね合わせ部18上において、第二凹部61の外周に沿って大型回転ツールGを移動させる。大型回転ツールGを移動させることにより、表面側塑性化領域W2が形成される。   In the second recess sealing step, friction stir welding is performed on the overlapping portion 18 where the bottom surface 12a (see FIG. 14) of the first recess 12 and the back surface 30b of the lid member 30 overlap. In the second recess sealing step, the large rotary tool G is inserted in the start position SM5 set on the upper surface 10a of the main body 10 while rotating clockwise, and then moved to the lid member 30 side. When the large rotary tool G crosses the abutting portion 40, the large rotary tool G is moved along the outer periphery of the second recess 61 on the overlapping portion 18. By moving the large rotary tool G, the surface side plasticizing region W2 is formed.

大型回転ツールGを第二凹部61回りに一周させたら、図15の矢印にしたがって、表面側塑性化領域W2を横断させ、本体10の上面10aに設定した終了位置EM5まで移動させる。大型回転ツールGが終了位置EM5に達したら、本体10から大型回転ツールGを離脱させる。   When the large-sized rotary tool G makes a round around the second recess 61, the surface side plasticizing region W2 is traversed and moved to the end position EM5 set on the upper surface 10a of the main body 10 according to the arrow in FIG. When the large rotary tool G reaches the end position EM5, the large rotary tool G is detached from the main body 10.

矯正工程では、図16に示すように、中型回転ツールHを用いて伝熱板102の裏面Zbに対して摩擦攪拌を行う。矯正工程は、前記した蓋部材固定工程及び第二凹部密封工程で発生した反り(歪み)を解消するために行う工程である。本実施形態に係る矯正工程は、伝熱板102の裏面Zbに対して摩擦攪拌を行う矯正摩擦攪拌工程と、伝熱板102の裏面Zbの隅部に摩擦攪拌を行う隅部摩擦攪拌工程を含む。   In the straightening process, as shown in FIG. 16, friction stirring is performed on the back surface Zb of the heat transfer plate 102 using a medium-sized rotating tool H. The correction process is a process performed to eliminate the warp (distortion) generated in the lid member fixing process and the second recess sealing process. The correction process according to the present embodiment includes a correction friction stirring process for performing friction stirring on the back surface Zb of the heat transfer plate 102 and a corner friction stirring process for performing friction stirring on the corner of the back surface Zb of the heat transfer plate 102. Including.

本実施形態に係る矯正工程では、中型の回転ツール(以下、「中型回転ツールH」という。)を用いる。中型回転ツールHは、具体的な図示はしないが、大型回転ツールGと相似形状を呈し、大型回転ツールGよりも小さく、かつ、小型回転ツールFよりも大きい大きさからなる。つまり、中型回転ツールHの攪拌ピンの長さは、大型回転ツールGの攪拌ピンG2よりも小さく形成されている。また、中型回転ツールHのショルダ部の外径は、大型回転ツールGのショルダ部G1よりも小さく形成されている。   In the correction process according to the present embodiment, a medium-sized rotating tool (hereinafter referred to as “medium-sized rotating tool H”) is used. Although not specifically illustrated, the medium-sized rotary tool H has a similar shape to the large rotary tool G, and is smaller than the large rotary tool G and larger than the small rotary tool F. That is, the length of the stirring pin of the medium-sized rotating tool H is formed smaller than the stirring pin G2 of the large-sized rotating tool G. Further, the outer diameter of the shoulder portion of the medium-sized rotating tool H is formed smaller than the shoulder portion G1 of the large-sized rotating tool G.

矯正摩擦攪拌工程では、伝熱板102の裏面Zbの地点c’付近に設定された開始位置SK2に、中型回転ツールHを左回転させつつ挿入した後、第二凹部61の外周に沿って右回りに中型回転ツールHを移動させる。中型回転ツールHを移動させることにより、裏面側塑性化領域W3が形成される。伝熱板102の裏面Zbに形成された裏面側塑性化領域W3は、表面Zaに形成された表面側塑性化領域W2と同等の平面形状を呈し、表面側塑性化領域W2と裏面側塑性化領域W3とは同等の長さで形成されている。   In the straightening friction stirring step, the medium-sized rotary tool H is inserted while rotating counterclockwise at the start position SK2 set near the point c ′ on the back surface Zb of the heat transfer plate 102, and then right along the outer periphery of the second recess 61. The medium size rotating tool H is moved around. By moving the medium-sized rotary tool H, the back surface side plasticized region W3 is formed. The back surface side plasticized region W3 formed on the back surface Zb of the heat transfer plate 102 has a planar shape equivalent to the surface side plasticized region W2 formed on the surface Za, and the front surface side plasticized region W2 and the back surface side plasticized. The region W3 is formed with the same length.

隅部摩擦攪拌工程では、図16に示すように、本体10の地点a’、地点c’、地点f’及び地点h’に係る各隅部において、重点的に摩擦攪拌を行う。即ち、地点a’に係る隅部を構成する一辺2a側に摩擦攪拌の開始位置SK3を設定し、他辺2b側に終了位置EK3を設定する。そして、開始位置SK3で小型回転ツールFを押し込み、摩擦攪拌を行った後、終了位置EK3で小型回転ツールFを離脱させる。裏面側塑性化領域W4,W4,W4,W4は、伝熱板102の表面Zaに形成された表面側塑性化領域W1,W1,W1,W1と略同等の形状を呈する。また、各裏面側塑性化領域W4は、各表面側塑性化領域W1の真裏に位置するように形成される。   In the corner friction stirring step, as shown in FIG. 16, friction stirring is intensively performed at each corner portion of the main body 10 at the points a ′, c ′, f ′, and h ′. In other words, the friction stirring start position SK3 is set on the side 2a side that forms the corner of the point a ', and the end position EK3 is set on the other side 2b side. Then, the small rotary tool F is pushed in at the start position SK3, and after frictional stirring is performed, the small rotary tool F is detached at the end position EK3. The back side plasticized regions W4, W4, W4, and W4 have substantially the same shape as the front side plasticized regions W1, W1, W1, and W1 formed on the surface Za of the heat transfer plate 102. Moreover, each back surface side plasticization area | region W4 is formed so that it may be located in the back of each front surface side plasticization area | region W1.

以上説明した第三実施形態に係る伝熱板の製造方法によれば、突合部40に対する摩擦攪拌接合に加えて第二凹部61の周囲において、重ね合わせ部18に対して摩擦攪拌接合を行うことにより、第一凹部12の底面12aと蓋部材30の裏面30bとの間の隙間を塞ぐことができる。これにより、伝熱板102の水密性及び気密性を高めることができる。   According to the manufacturing method of the heat transfer plate according to the third embodiment described above, the friction stir welding is performed on the overlapping portion 18 around the second recess 61 in addition to the friction stir welding on the abutting portion 40. Thus, the gap between the bottom surface 12a of the first recess 12 and the back surface 30b of the lid member 30 can be closed. Thereby, the watertightness and airtightness of the heat transfer plate 102 can be enhanced.

また、矯正工程では、蓋部材固定工程及び第二凹部密封工程による熱収縮によって伝熱板102が歪んでしまったとしても、表面Zaに発生した反りを解消して伝熱板102の平坦性を容易に高めることができる。本実施形態における矯正工程では、伝熱板102の表面Zaに形成される表面側塑性化領域W1,W2と、裏面Zbに形成される塑性化領域W3,W4とが同等の平面形状を呈するように形成した。つまり、表面側塑性化領域W1,W2の長さの和と、裏面側塑性化領域W3,W4の長さの和が略同等の長さとなるように形成したが、伝熱板102の裏面Zbにおいては、大型回転ツールGよりも小さい中型回転ツールHを用いたため、摩擦攪拌の加工度(塑性化領域の体積量)は裏面Zbの方が小さい。これにより、伝熱板102の平坦性をより高めることができる。このように、伝熱板102の表裏で摩擦攪拌を行う回転ツールの大きさを変更することで加工度を変えてもよい。   Further, in the correction process, even if the heat transfer plate 102 is distorted due to heat shrinkage by the lid member fixing process and the second recess sealing process, the warp generated on the surface Za is eliminated and the flatness of the heat transfer plate 102 is improved. Can be easily increased. In the correction process in the present embodiment, the front side plasticized regions W1 and W2 formed on the front surface Za of the heat transfer plate 102 and the plasticized regions W3 and W4 formed on the rear surface Zb have an equivalent planar shape. Formed. That is, although the sum of the lengths of the front surface side plasticized regions W1 and W2 and the sum of the lengths of the back surface side plasticized regions W3 and W4 are formed to be substantially the same length, the back surface Zb of the heat transfer plate 102 is formed. Since the medium-sized rotary tool H smaller than the large-sized rotary tool G is used, the degree of work of friction stirring (volume amount of the plasticized region) is smaller on the back surface Zb. Thereby, the flatness of the heat transfer plate 102 can be further improved. In this way, the degree of processing may be changed by changing the size of the rotary tool that performs friction stirring on the front and back of the heat transfer plate 102.

また、本実施形態では、第二凹部61を平面視円形状に形成しているが、第二凹部61の周囲を包囲するように平面視矩形の第一凹部12を形成し、第一凹部12と同等の平面形状からなる蓋部材30で封止している。つまり、第二凹部61の形状が平面視円形であったとしても蓋部材30の形状は平面視矩形のものを用いることができる。これにより、蓋部材30の形状は平面視矩形の単純な形状のものを用いることができるため、蓋部材30の成形を容易に行うことができるとともに、第一凹部12に蓋部材30を精度よく配置することができる。   In the present embodiment, the second recess 61 is formed in a circular shape in plan view, but the first recess 12 having a rectangular shape in plan view is formed so as to surround the second recess 61, and the first recess 12 is formed. It is sealed with a lid member 30 having a planar shape equivalent to the above. That is, even if the shape of the second recess 61 is circular in plan view, the shape of the lid member 30 can be rectangular in plan view. Thereby, since the shape of the lid member 30 can be a simple shape having a rectangular shape in plan view, the lid member 30 can be easily formed, and the lid member 30 can be accurately placed in the first recess 12. Can be arranged.

また、本実施形態に係る蓋部材固定工程では、突合部40の四隅のみに対して摩擦攪拌接合を行うため、作業手間を省略することができる。   Further, in the lid member fixing step according to the present embodiment, since the friction stir welding is performed only on the four corners of the abutting portion 40, work labor can be omitted.

[第四実施形態]
次に、本発明の第四実施形態について説明する。第四実施形態では、本体70に形成された第二凹部71の形状が、平面視U字状を呈する点で第一実施形態と相違する。なお、第四実施形態の説明においては、第一実施形態と重複する部分については説明を省略する。
[Fourth embodiment]
Next, a fourth embodiment of the present invention will be described. In 4th embodiment, the shape of the 2nd recessed part 71 formed in the main body 70 differs from 1st embodiment by the point which exhibits planar view U shape. In the description of the fourth embodiment, the description of the same parts as those in the first embodiment is omitted.

第四実施形態に係る伝熱板103は、図17及び図18に示すように、本体70と、本体70に配置される蓋部材80とを摩擦攪拌接合によって一体成形される。
本体70は、直方体を呈し、平面視直方形を呈する。本体70は、本体70の上面70aに凹設された第一凹部12と、第一凹部12に凹設された第二凹部71と、第二凹部71に連通する貫通孔16とを有する。蓋部材80は、図18に示すように、第一凹部12と略同等の平面形状を呈する板状部材である。
As shown in FIGS. 17 and 18, the heat transfer plate 103 according to the fourth embodiment is integrally formed by friction stir welding of a main body 70 and a lid member 80 disposed on the main body 70.
The main body 70 has a rectangular parallelepiped shape and a rectangular shape in plan view. The main body 70 includes a first recess 12 that is recessed in the upper surface 70 a of the main body 70, a second recess 71 that is recessed in the first recess 12, and a through hole 16 that communicates with the second recess 71. As shown in FIG. 18, the lid member 80 is a plate-like member that has a planar shape substantially equivalent to that of the first recess 12.

第一凹部12は、本体70の上面70aよりも一段下がった位置に形成されており、蓋部材80が配置される部位である。第一凹部12は、平面視矩形を呈する底面12aと底面12aから垂直に立設した4つの側壁12bとを有する。   The first recess 12 is formed at a position lower than the upper surface 70a of the main body 70, and is a part where the lid member 80 is disposed. The first recess 12 has a bottom surface 12a that has a rectangular shape in plan view, and four side walls 12b that are erected vertically from the bottom surface 12a.

第二凹部71は、熱輸送流体(本実施形態では冷却水)が流通する部分である。第二凹部71は、平面視U字状を呈し、上方に開口している。第二凹部71の開口部には、開口周縁72が形成されている。   The second recess 71 is a portion through which the heat transport fluid (cooling water in the present embodiment) flows. The second recess 71 has a U shape in plan view and opens upward. An opening peripheral edge 72 is formed in the opening of the second recess 71.

次に、第四実施形態に係る伝熱板の製造方法について、図18を用いて説明する。本実施形態に係る伝熱板の製造方法では、蓋部材固定工程と、第二凹部密封工程と、矯正工程を実行する。   Next, the manufacturing method of the heat exchanger plate which concerns on 4th embodiment is demonstrated using FIG. In the heat transfer plate manufacturing method according to the present embodiment, a lid member fixing step, a second recess sealing step, and a correction step are executed.

蓋部材固定工程では、突合部40に摩擦攪拌接合を行って、本体70に蓋部材80を接合する。蓋部材固定工程では、図18の(a)に示すように、小型回転ツールFを用いて突合部40の四隅に断続的に摩擦攪拌接合を行うとともに、突合部40を構成する各辺の中間部分に対して摩擦攪拌接合を行う。蓋部材固定工程によって表面側塑性化領域W1が形成される。   In the lid member fixing step, friction stir welding is performed on the abutting portion 40, and the lid member 80 is bonded to the main body 70. In the lid member fixing step, as shown in FIG. 18A, the friction stir welding is intermittently performed at the four corners of the abutting portion 40 using the small rotary tool F, and the middle of each side constituting the abutting portion 40 is performed. Friction stir welding is performed on the part. The surface side plasticizing region W1 is formed by the lid member fixing step.

第二凹部密封工程では、図18の(a)及び(b)に示すように、第一凹部12の底面12aと、蓋部材80の裏面80bとが重なり合う重ね合わせ部18に対して摩擦攪拌接合を行う。第二凹部密封工程では、本体70の上面70aに設定した開始位置SM6に、大型回転ツールGを右回転させつつ挿入した後、蓋部材80側へ移動させる。大型回転ツールGが突合部40を横断したら、重ね合わせ部18上において、第二凹部71の開口周縁72の外周に沿って大型回転ツールGを移動させる。大型回転ツールGを移動させることにより、表面側塑性化領域W2が形成される。   In the second recess sealing step, as shown in FIGS. 18A and 18B, friction stir welding is performed on the overlapping portion 18 where the bottom surface 12a of the first recess 12 and the back surface 80b of the lid member 80 overlap. I do. In the second recess sealing step, the large rotary tool G is inserted while being rotated to the right at the start position SM6 set on the upper surface 70a of the main body 70, and then moved to the lid member 80 side. When the large rotating tool G crosses the abutting portion 40, the large rotating tool G is moved along the outer periphery of the opening peripheral edge 72 of the second recess 71 on the overlapping portion 18. By moving the large rotary tool G, the surface side plasticizing region W2 is formed.

大型回転ツールGを第二凹部71に沿って一周させたら、図18の(a)の矢印にしたがって、表面側塑性化領域W2を横断させ、本体70の上面70aに設定した終了位置EM6まで移動させる。大型回転ツールGが終了位置EM6に達したら、本体70から大型回転ツールGを離脱させる。   When the large rotary tool G makes a round along the second recess 71, the surface side plasticizing region W2 is traversed and moved to the end position EM6 set on the upper surface 70a of the main body 70 in accordance with the arrow in FIG. Let When the large rotary tool G reaches the end position EM6, the large rotary tool G is detached from the main body 70.

矯正工程では、図19に示すように、大型回転ツールGを用いて、伝熱板103の裏面Zbに対して摩擦攪拌を行う。矯正工程では、平面視長方形を呈するように、大型回転ツールGを移動させる。伝熱板103の裏面Zbには、裏面側塑性化領域W3が形成される。裏面側塑性化領域W3の長さは、表面側塑性化領域W1,W2の和よりも短く形成されている。   In the correction process, as shown in FIG. 19, friction stirring is performed on the back surface Zb of the heat transfer plate 103 using a large rotary tool G. In the correction process, the large rotating tool G is moved so as to exhibit a rectangular shape in plan view. On the rear surface Zb of the heat transfer plate 103, a rear surface side plasticized region W3 is formed. The length of the back side plasticizing region W3 is shorter than the sum of the front side plasticizing regions W1 and W2.

以上説明した第四実施形態に係る伝熱板の製造方法によれば、突合部40に対する摩擦攪拌接合に加えて第二凹部71の周囲において、重ね合わせ部18に対して摩擦攪拌接合を行うことにより、第一凹部12の底面12aと蓋部材80の裏面80bとの微細な隙間を塞ぐことができる。これにより、伝熱板103の水密性及び気密性を高めることができる。   According to the manufacturing method of the heat transfer plate according to the fourth embodiment described above, the friction stir welding is performed on the overlapping portion 18 around the second recess 71 in addition to the friction stir welding on the abutting portion 40. Thus, a fine gap between the bottom surface 12a of the first recess 12 and the back surface 80b of the lid member 80 can be closed. Thereby, the water-tightness and airtightness of the heat transfer plate 103 can be enhanced.

また、矯正工程を行うことにより、蓋部材固定工程及び第二凹部密封工程による熱収縮によって伝熱板103が歪んでしまったとしても、表面Zaに発生した反りを解消して伝熱板103の平坦性を容易に高めることができる。   Further, by performing the correction process, even if the heat transfer plate 103 is distorted by the heat shrinkage due to the lid member fixing process and the second recess sealing process, the warp generated on the surface Za is eliminated and the heat transfer plate 103 Flatness can be easily increased.

また、本実施形態では、第二凹部71を平面視U字状に形成しているが、第二凹部71の周囲を包囲するように平面視矩形の第一凹部12を形成し、第一凹部12と同等の平面形状からなる蓋部材80で封止している。つまり、第二凹部71の形状が平面視U字状のような複雑な形状であったとしても、蓋部材80は、平面視矩形のものを用いることができる。これにより、蓋部材80の形状は平面視矩形の単純な形状のものを用いることができるため、蓋部材80の成形を容易に行うことができるとともに、第一凹部12に蓋部材80を精度よく配置することができる。   In the present embodiment, the second recess 71 is formed in a U shape in plan view. However, the first recess 12 having a rectangular shape in plan view is formed so as to surround the second recess 71, and the first recess 12 is sealed with a lid member 80 having a planar shape equivalent to 12. That is, even if the shape of the second recess 71 is a complicated shape such as a U shape in plan view, the lid member 80 can be rectangular in plan view. As a result, since the lid member 80 can be a simple shape having a rectangular shape in plan view, the lid member 80 can be easily formed, and the lid member 80 is accurately placed in the first recess 12. Can be arranged.

以上、本発明の実施形態について説明したが、本発明の趣旨に反しない範囲において適宜設計変更が可能である。例えば、第四実施形態のように蓋部材80が比較的大きい場合、蓋部材固定工程を行う前に、仮接合工程を行ってもよい。   Although the embodiments of the present invention have been described above, design changes can be made as appropriate without departing from the spirit of the present invention. For example, when the lid member 80 is relatively large as in the fourth embodiment, the temporary joining step may be performed before the lid member fixing step.

仮接合工程では、図20の(a)及び(b)に示すように、突合部40の内側であって、かつ、第二凹部71の外側において、蓋部材80の上方から回転した中型回転ツールHを押し込んで、第一凹部12の底面12aと、蓋部材80の裏面80bとが重ね合わされた重ね合わせ部18に対して摩擦攪拌接合を行う。当該摩擦攪拌接合によって裏面側塑性化領域W5が形成される。   In the temporary joining step, as shown in FIGS. 20A and 20B, the middle-sized rotary tool rotated from above the lid member 80 inside the abutting portion 40 and outside the second recess 71. H is pushed in, and friction stir welding is performed on the overlapping portion 18 where the bottom surface 12a of the first recess 12 and the back surface 80b of the lid member 80 are overlapped. The back side plasticized region W5 is formed by the friction stir welding.

仮接合工程により、本体70と蓋部材80とが仮接合される。蓋部材80が大きい場合、蓋部材固定工程を行うと、摩擦攪拌接合の熱収縮により蓋部材が反って蓋部材80の中央部分と本体70とが離間してしまい、第二凹部密封工程の作業が煩雑になる可能性がある。しかし、本実施形態の仮接合工程を行うことで、蓋部材80の反りを抑制することができるため、第二凹部密封工程を好適に行うことができる。   The main body 70 and the lid member 80 are temporarily bonded by the temporary bonding step. When the lid member 80 is large, when the lid member fixing step is performed, the lid member warps due to the heat shrinkage of the friction stir welding, and the central portion of the lid member 80 and the main body 70 are separated from each other. Can be cumbersome. However, since the warp of the lid member 80 can be suppressed by performing the temporary joining step of the present embodiment, the second recess sealing step can be suitably performed.

仮接合工程は、重ね合わせ部18において、連続的に摩擦攪拌接合を行ってもよいし、本実施形態のように断続的に行ってもよい。また、仮接合工程では、使用する回転ツールの大きさは、蓋部材30の大きさに応じて適宜設定すればよい。   The temporary joining step may be performed continuously by friction stir welding in the overlapping portion 18 or may be performed intermittently as in the present embodiment. Moreover, what is necessary is just to set suitably the magnitude | size of the rotary tool to be used according to the magnitude | size of the cover member 30 in a temporary joining process.

また、前記した実施形態では、第二凹部密封工程の前に、蓋部材固定工程を行ったが、第二凹部密封工程を行った後に、蓋部材固定工程を行ってもよい。   In the above-described embodiment, the lid member fixing step is performed before the second recess sealing step. However, the lid member fixing step may be performed after the second recess sealing step.

また、大型回転ツールGを挿入する位置に、挿入時の摩擦抵抗を軽減するために、予め下穴を形成しておいてもよい。   Moreover, in order to reduce the frictional resistance at the time of insertion in the position which inserts the large sized rotation tool G, you may form a pilot hole previously.

また、本実施形態では、第一凹部及び蓋部材の平面形状は矩形としたが、これに限定されるものではなく、平面視円形、楕円系、又は角形であってもよい。第一凹部及び蓋部材の形状は、成形しやすく、かつ、精度良く配置可能な形状であることが好ましい。   In the present embodiment, the planar shape of the first concave portion and the lid member is rectangular, but is not limited thereto, and may be circular, elliptical, or rectangular in plan view. The shapes of the first recess and the lid member are preferably shapes that are easy to mold and can be placed with high precision.

また、矯正工程に係る摩擦攪拌のルートは、前記した形態に限定されるものではなく、以下の形態でもよい。図21は、伝熱板の裏面側の平面図であって(a)は第一変形例、(b)は第二変形例、(c)は第三変形例、(d)は第四変形例、(e)は第五変形例、(f)は第六変形例を示す。   Further, the route of friction stirring related to the correction process is not limited to the above-described form, and the following form may be used. FIG. 21 is a plan view of the back side of the heat transfer plate, where (a) is a first modification, (b) is a second modification, (c) is a third modification, and (d) is a fourth modification. For example, (e) shows a fifth modification, and (f) shows a sixth modification.

図21の(a)及び(b)に示す第一変形例及び第二変形例の矯正用回転ツールの軌跡(裏面側塑性化領域W3)は、いずれも本体10の中心地点j’を囲むように形成されていることを特徴とする。また、第一変形例は、本体10の外形形状に対して相似になるように形成されている。また、図21の(b)に示す第二変形例のように、格子状に形成してもよい。   The trajectories (back surface plasticizing region W3) of the correction rotary tool of the first and second modifications shown in FIGS. 21A and 21B all surround the center point j ′ of the main body 10. It is characterized by being formed. The first modification is formed so as to be similar to the outer shape of the main body 10. Moreover, you may form in a grid | lattice form like the 2nd modification shown in FIG.21 (b).

図21の(c)及び(d)に示す第三変形例及び第四変形例の矯正用回転ツールの軌跡(裏面側塑性化領域W3)は、いずれも本体10の中心地点j’を通過して放射状となるように形成されていることを特徴とする。図21の(c)に示す第三変形例は、中心地点j’を始点・終点とするループを複数含み、中心地点j’に対して点対称となるように形成されている。また、第三変形例は、一筆書きの要領で形成することができるため、作業効率を高めることができる。図21の(d)に示す第四変形例は、中心地点j’を通過するとともに、本体10の対角線に対して平行となるように形成されている。   Each of the trajectories (back surface plasticizing region W3) of the correction rotating tool of the third modification and the fourth modification shown in FIGS. 21C and 21D passes through the center point j ′ of the main body 10. It is characterized by being formed radially. The third modification shown in FIG. 21C includes a plurality of loops having a center point j ′ as a start point and an end point, and is formed so as to be point-symmetric with respect to the center point j ′. Moreover, since the 3rd modification can be formed in the way of one-stroke writing, work efficiency can be improved. The fourth modified example shown in FIG. 21D is formed so as to pass through the central point j ′ and to be parallel to the diagonal line of the main body 10.

図21の(e)及び(f)に示す第五変形例及び第六変形例の矯正用回転ツールの軌跡(裏面側塑性化領域W3)は、中心地点j’を通る直線で四分割した領域に、同形状の4つの軌跡がそれぞれ独立して形成されるとともに、中心地点j’を挟んで斜めに対向する軌跡が点対称となるように形成されている。4つの軌跡の形状は、同形状であれば、どのような形状であっても構わない。   The trajectories (back surface plasticizing region W3) of the correction rotary tool of the fifth and sixth modified examples shown in FIGS. 21 (e) and (f) are divided into four by a straight line passing through the central point j ′. In addition, four trajectories having the same shape are formed independently, and trajectories diagonally opposed across the center point j ′ are formed to be point-symmetric. The four trajectories may have any shape as long as they have the same shape.

以上説明したように、矯正工程は、本体10に行われる接合工程の摩擦攪拌の軌跡に応じて適宜摩擦攪拌のルートを設定して行えばよい。   As described above, the correcting step may be performed by appropriately setting the route of friction stirring according to the locus of friction stirring in the joining step performed on the main body 10.

次に、本発明の実施例について説明する。本発明に係る実施例は、図22の(a)及び(b)に示すように平面視正方形の本体10の表面Za及び裏面Zbにそれぞれ3つの円を描くように摩擦攪拌を行い、表面Za側で発生した反りの変形量と、裏面Zb側で発生した反りの変形量を測定した。即ち、表面Za側で発生した反りの変形量の値と、裏面Zb側で発生した反りの変形量の値とが近いほど、本体10の平坦性が高いことを示す。   Next, examples of the present invention will be described. In the embodiment according to the present invention, as shown in FIGS. 22 (a) and 22 (b), friction stirring is performed so as to draw three circles on the front surface Za and the rear surface Zb of the square body 10 in plan view, and the surface Za The deformation amount of the warp generated on the side and the deformation amount of the warp generated on the back surface Zb side were measured. That is, the closer the value of the warp deformation amount generated on the front surface Za side and the value of the warp deformation amount generated on the back surface Zb side, the higher the flatness of the main body 10.

本体10は、平面視500mm×500mmの直方体であって、厚みが30mm、60mmの二種類ものを用いてそれぞれ測定を行った。本体10の素材は、JIS規格の5052アルミニウム合金である。   The main body 10 was a rectangular parallelepiped having a plan view of 500 mm × 500 mm, and the measurement was performed using two types having a thickness of 30 mm and 60 mm. The material of the main body 10 is a JIS standard 5052 aluminum alloy.

摩擦攪拌の軌跡である3つの円は、本体10の中心に設定した地点j又は地点j’を中心とし、表面Za及び裏面Zbともに半径r1=100mm(以下、小円ともいう)、r2=150mm(以下、中円ともいう)、r3=200mm(以下、大円ともいう)に設定した。摩擦攪拌の順序は、小円、中円、大円の順番で行った。   The three circles that are the locus of frictional stirring are centered on the point j or the point j ′ set at the center of the main body 10, and both the surface Za and the back surface Zb have a radius r1 = 100 mm (hereinafter also referred to as a small circle), r2 = 150 mm. (Hereinafter also referred to as a middle circle), r3 = 200 mm (hereinafter also referred to as a great circle). Friction stirring was performed in the order of small circle, middle circle, and great circle.

回転ツールは、表面Za側及び裏面Zb側ともに同じ大きさの回転ツールを用いた。回転ツールのサイズは、ショルダ部の外径が20mm、攪拌ピンの長さが10mm、攪拌ピンの根元の大きさ(最大径)が9mm、攪拌ピンの先端の大きさ(最小径)が6mmのものを用いた。回転ツールの回転数は、600rpm、送り速度は、300mm/minに設定した。また、表面Za側及び裏面Zb側ともに回転ツールの押込み量は一定に設定した。図22に示すように、表面Za側において形成された塑性化領域を小円から大円に向けてそれぞれ塑性化領域W21乃至塑性化領域W23とする。また、裏面Zb側において形成された塑性化領域を小円から大円に向けて塑性化領域W31乃至W33とする。当該実施例における各測定結果を以下の表1〜表4に示す。   As the rotation tool, a rotation tool having the same size was used on both the front surface Za side and the back surface Zb side. The size of the rotating tool is such that the outer diameter of the shoulder portion is 20 mm, the length of the stirring pin is 10 mm, the base size (maximum diameter) of the stirring pin is 9 mm, and the tip size (minimum diameter) of the stirring pin is 6 mm. A thing was used. The rotational speed of the rotary tool was set to 600 rpm, and the feed rate was set to 300 mm / min. Further, the pressing amount of the rotary tool was set constant on both the front surface Za side and the back surface Zb side. As shown in FIG. 22, the plasticized regions formed on the surface Za side are designated as a plasticized region W21 to a plasticized region W23 from a small circle to a large circle, respectively. Further, the plasticized regions formed on the back surface Zb side are designated as plasticized regions W31 to W33 from the small circle to the great circle. Each measurement result in the said Example is shown in the following Tables 1-4.

表1は、本体の板厚が30mmであって、表面側から摩擦攪拌を行った場合の測定値を示した表である。「FSW前」は、摩擦攪拌を行う前において、中心地点j(基準j)と各地点(地点a〜地点h)との高低差を示している。「FSW後」は、基準jをゼロとして、3つの円の摩擦攪拌を行った後において、基準jと各地点との高低差を示している。「表面側変形量」は、各地点における(FSW後−FSW前)の値を示している。「表面側変形量」の最下欄は、地点a〜地点hの平均値を示す。「FSW前」及び「FSW後」のマイナス値は、基準jよりも下方に位置していることを意味する。   Table 1 is a table showing the measured values when the plate thickness of the main body is 30 mm and frictional stirring is performed from the surface side. “Before FSW” indicates the height difference between the central point j (reference j) and each point (point a to point h) before the friction stir. “After FSW” indicates a difference in height between the reference j and each point after performing frictional stirring of three circles with the reference j being zero. The “surface side deformation amount” indicates a value of (after FSW−before FSW) at each point. The lowermost column of “surface side deformation amount” indicates an average value of the points a to h. Negative values of “before FSW” and “after FSW” mean that they are located below the reference j.

Figure 2010240671
Figure 2010240671

表2は、本体の板厚が30mmであって、裏面側から摩擦攪拌を行った場合(矯正工程)の測定値を示した表である。「FSW前」は、摩擦攪拌を行う前において、中心地点j’(基準j’)と各地点(a’〜h’)との高低差を示している。
「FSW1」は、図22を参照するように、基準j’をゼロとして、小円(半径r1)の摩擦攪拌を行った後の、基準j’と各地点との高低差を示している。「裏面側変形量1」は、各地点における(FSW1−FSW前)の値を示している。「裏面側変形量1」の最下欄は、地点a〜地点hの平均値を示す。
「FSW2」は、基準j’をゼロとして、小円(半径r1)に加えてさらに、中円(半径r2)の摩擦攪拌を行った後の、基準j’と各地点との高低差を示している。「裏面側変形量2」は、各地点における(FSW2−FSW前)の値を示している。「裏面側変形量2」の最下欄は、地点a〜地点hの平均値を示す。
「FSW3」は、基準j’をゼロとして、小円(半径r1)、中円(半径r2)に加えてさらに、大円(半径r3)の摩擦攪拌を行った後の、基準j’と各地点との高低差を示している。「裏面側変形量3」は、各地点における(FSW3−FSW前)の値を示している。「裏面側変形量3」の最下欄は、地点a〜地点hの平均値を示す。
Table 2 is a table showing measured values when the plate thickness of the main body is 30 mm and frictional stirring is performed from the back side (correction process). “Before FSW” indicates the height difference between the central point j ′ (reference j ′) and each point (a ′ to h ′) before the friction stir.
As shown in FIG. 22, “FSW1” indicates a difference in height between the reference j ′ and each point after the frictional stirring of the small circle (radius r1) is performed with the reference j ′ set to zero. “Back side deformation amount 1” indicates a value (before FSW1−FSW) at each point. The bottom column of “back side deformation amount 1” indicates an average value of the points a to h.
“FSW2” indicates a difference in height between the reference j ′ and each point after performing frictional stirring of the middle circle (radius r2) in addition to the small circle (radius r1) with the reference j ′ set to zero. ing. “Back side deformation amount 2” indicates a value (before FSW2−FSW) at each point. The bottom column of “back side deformation amount 2” indicates an average value of the points a to h.
“FSW3” is based on the reference j ′ after the frictional stirring of the great circle (radius r3) in addition to the small circle (radius r1) and the middle circle (radius r2) with the reference j ′ set to zero. The height difference from the point is shown. "Back side deformation amount 3" indicates the value of (before FSW3-FSW) at each point. The bottom column of “back side deformation amount 3” indicates an average value of the points a to h.

Figure 2010240671
Figure 2010240671

表3は、本体の板厚が60mmであって、表面側から摩擦攪拌を行った場合の測定値を示した表である。表3の各項目は、表1の各項目と略同等の意味を示す。   Table 3 shows the measured values when the plate thickness of the main body is 60 mm and frictional stirring is performed from the surface side. Each item in Table 3 has substantially the same meaning as each item in Table 1.

Figure 2010240671
Figure 2010240671

表4は、本体の板厚が60mmであって、裏面側から摩擦攪拌を行った場合の測定値を示した表である。表4の各項目は、表2の各項目と略同等の意味を示す。   Table 4 is a table showing the measured values when the plate thickness of the main body is 60 mm and friction stirring is performed from the back side. Each item in Table 4 has substantially the same meaning as each item in Table 2.

Figure 2010240671
Figure 2010240671

表1の「表面側変形量」の平均値(1.61)と、表2の「裏面側変形量1」の平均値(2.04)とを比較すると、「裏面側変形量1」の値の方が大きい。同様に、「裏面側変形量2」の平均値(2.95)及び「裏面側変形量3」の平均値(3.53)も、「表面側変形量」の平均値(1.61)よりも大きな値となっている。つまり、本体の板厚が30mmの場合は、裏面側から小円の摩擦攪拌のみを行っただけでも、本体の反りが戻りすぎてしまう。したがって、本体30mmの場合は、表面側よりも低い加工度で本体10の平坦性を高めることができる。   Comparing the average value (1.61) of “front side deformation” in Table 1 and the average value (2.04) of “back side deformation 1” in Table 2, the value of “back side deformation 1” is more large. Similarly, the average value (2.95) of “back side deformation 2” and the average value (3.53) of “back side deformation 3” are larger than the average value (1.61) of “front side deformation”. ing. That is, when the plate thickness of the main body is 30 mm, the warping of the main body returns too much only by performing a small circle of friction stirring from the back side. Therefore, in the case of the main body of 30 mm, the flatness of the main body 10 can be improved with a processing degree lower than that on the surface side.

表3の「表面側変形量」の平均値(0.98)と、表4の「裏面側変形量2」の平均値(0.91)とを比較すると、両者の変形量が近似している。したがって、本体10の板厚が60mmの場合は、裏面側から小円及び中円の摩擦攪拌を行ったときに、本体10の平坦性が高いことが確認できた。つまり、板厚が60mmの場合は、表面側に比べて裏面側の加工度を低く設定すれば本体10の平坦性を高めることができる。   When the average value (0.98) of “front side deformation amount” in Table 3 is compared with the average value (0.91) of “back side deformation amount 2” in Table 4, the deformation amounts of both are approximated. Therefore, when the plate thickness of the main body 10 was 60 mm, it was confirmed that the flatness of the main body 10 was high when the frictional stirring of the small circle and the middle circle was performed from the back side. That is, when the plate thickness is 60 mm, the flatness of the main body 10 can be improved by setting the processing degree on the back surface side to be lower than that on the front surface side.

1 伝熱板
10 本体
10a 上面
12 第一凹部
12a 底面
12b 側壁
13 第二凹部
14 開口周縁
16 貫通孔
18 重ね合わせ部
30 蓋部材
30a 側面
30b 裏面
40 突合部
F 小型回転ツール
F1 ショルダ部
F2 攪拌ピン
G 大型回転ツール
G1 ショルダ部
G2 攪拌ピン
s1 開始位置
e1 終了位置
SM1 開始位置
EM1 終了位置
W1〜W5 塑性化領域


DESCRIPTION OF SYMBOLS 1 Heat-transfer plate 10 Main body 10a Upper surface 12 1st recessed part 12a Bottom surface 12b Side wall 13 2nd recessed part 14 Opening periphery 16 Through-hole 18 Overlapping part 30 Lid member 30a Side surface 30b Back surface 40 Abutting part F Small rotating tool F1 Shoulder part F2 Stirring pin G Large rotating tool G1 Shoulder part G2 Stirring pin s1 Start position e1 End position SM1 Start position EM1 End position W1-W5 Plasticization region


Claims (13)

表面に凹設された第一凹部と、この第一凹部の底面に凹設され熱発生体が発生する熱を外部に輸送する熱輸送流体が流れる第二凹部とを有する本体に、前記第二凹部を封止する蓋部材を摩擦攪拌接合によって固定して形成される伝熱板の製造方法であって、
前記本体の前記第一凹部の側壁と前記蓋部材の側面との突合部に沿って回転ツールを移動させて少なくとも前記突合部の一部に対して摩擦攪拌接合を行う蓋部材固定工程と、
前記第二凹部の開口周縁に沿って回転ツールを移動させて、前記第一凹部の底面と前記蓋部材の裏面との重ね合わせ部に対して摩擦攪拌接合を行う第二凹部密封工程と、
前記伝熱板の裏面に対して回転ツールを移動させて摩擦攪拌を行う矯正工程と、を含むことを特徴とする伝熱板の製造方法。
The main body having a first recess recessed in the surface and a second recess through which a heat transport fluid that transports heat generated by the heat generating body that is recessed in the bottom surface of the first recess flows. A method of manufacturing a heat transfer plate formed by fixing a lid member for sealing a recess by friction stir welding,
A lid member fixing step of performing friction stir welding on at least a part of the abutting portion by moving a rotary tool along the abutting portion between the side wall of the first recess of the main body and the side surface of the lid member;
A second recess sealing step in which a rotary tool is moved along the opening periphery of the second recess, and friction stir welding is performed on the overlapping portion of the bottom surface of the first recess and the back surface of the lid member;
A correction step of moving the rotating tool relative to the back surface of the heat transfer plate to perform frictional stirring, and a method of manufacturing the heat transfer plate.
前記伝熱板の裏面側に形成される塑性化領域の体積量を、前記伝熱板の表面側に形成された塑性化領域の体積量よりも小さく設定することを特徴とする請求項1に記載の伝熱板の製造方法。   The volume amount of the plasticizing region formed on the back surface side of the heat transfer plate is set to be smaller than the volume amount of the plasticizing region formed on the surface side of the heat transfer plate. The manufacturing method of the heat-transfer board of description. 前記矯正工程では、この矯正工程で形成される塑性化領域の平面形状を、前記伝熱板の中心に対して略点対称となるように設定することを特徴とする請求項1又は請求項2に記載の伝熱板の製造方法。   3. The correction step, wherein the planar shape of the plasticized region formed in the correction step is set so as to be substantially point-symmetric with respect to the center of the heat transfer plate. The manufacturing method of the heat exchanger plate as described in 2. 前記矯正工程では、この矯正工程で形成される塑性化領域の平面形状を、前記伝熱板の外縁の形状と略相似形状となるように設定することを特徴とする請求項1乃至請求項3のいずれか一項に記載の伝熱板の製造方法。   In the straightening step, the planar shape of the plasticized region formed in the straightening step is set so as to be substantially similar to the shape of the outer edge of the heat transfer plate. The manufacturing method of the heat exchanger plate as described in any one of these. 前記矯正工程では、この矯正工程で形成される塑性化領域の平面形状を、前記伝熱板の表面側に形成された塑性化領域の平面形状と略同等形状となるように設定することを特徴とする請求項1乃至請求項4のいずれか一項に記載の伝熱板の製造方法。   In the straightening step, the planar shape of the plasticized region formed in the straightening step is set to be substantially the same shape as the planar shape of the plasticized region formed on the surface side of the heat transfer plate. The manufacturing method of the heat exchanger plate as described in any one of Claim 1 thru | or 4. 前記矯正工程では、この矯正工程で形成される塑性化領域の全長を、前記伝熱板の表面側に形成された塑性化領域の全長と略同等となるように設定することを特徴とする請求項1乃至請求項5のいずれか一項に記載の伝熱板の製造方法。   In the straightening step, the total length of the plasticized region formed in the straightening step is set to be substantially equal to the full length of the plasticized region formed on the surface side of the heat transfer plate. The manufacturing method of the heat exchanger plate as described in any one of Claims 1 thru | or 5. 前記矯正工程では、この矯正工程で用いる前記回転ツールの移動軌跡の全長を、前記伝熱板の表面側に形成された塑性化領域の全長よりも短くなるように設定することを特徴とする請求項1乃至請求項4のいずれか一項に記載の伝熱板の製造方法。   In the straightening step, the total length of the trajectory of the rotary tool used in the straightening step is set to be shorter than the full length of the plasticized region formed on the surface side of the heat transfer plate. The manufacturing method of the heat exchanger plate as described in any one of Claims 1 thru | or 4. 前記矯正工程で用いる回転ツールのショルダ部の外径を、前記第二凹部密封工程で用いる回転ツールのショルダ部の外径よりも小さく設定することを特徴とする請求項1乃至請求項7のいずれか一項に記載の伝熱板の製造方法。   The outer diameter of the shoulder part of the rotary tool used in the straightening process is set smaller than the outer diameter of the shoulder part of the rotary tool used in the second recess sealing process. A method for producing a heat transfer plate according to claim 1. 前記矯正工程で用いる回転ツールの攪拌ピンの長さを、前記第二凹部密封工程で用いる前記回転ツールの攪拌ピンの長さよりも短く設定することを特徴とする請求項1乃至請求項8のいずれか一項に記載の伝熱板の製造方法。   The length of the stirring pin of the rotary tool used in the straightening step is set shorter than the length of the stirring pin of the rotary tool used in the second recess sealing step. A method for producing a heat transfer plate according to claim 1. 前記本体の厚みを、前記第二凹部密封工程で用いる回転ツールのショルダ部の外径の1.5倍以上に設定することを特徴とする請求項1乃至請求項9のいずれか一項に記載の伝熱板の製造方法。   10. The thickness of the main body is set to 1.5 times or more of an outer diameter of a shoulder portion of a rotary tool used in the second recess sealing step. 10. Manufacturing method of heat transfer plate. 前記本体の厚みを、前記第二凹部密封工程で用いる回転ツールの攪拌ピンの長さの3倍以上に設定することを特徴とする請求項1乃至請求項10のいずれか一項に記載の伝熱板の製造方法。   The thickness of the said main body is set to 3 times or more of the length of the stirring pin of the rotary tool used at the said 2nd recessed part sealing process, The transmission as described in any one of Claim 1 thru | or 10 characterized by the above-mentioned. Manufacturing method of hot plate. 前記本体が平面視多角形である場合、前記矯正工程では、前記伝熱板の隅部に対して回転ツールを用いて摩擦攪拌を行う隅部摩擦攪拌工程を含むことを特徴とする請求項1乃至請求項11のいずれか一項に記載の伝熱板の製造方法。   2. The corner friction stirring step of performing friction stir using a rotary tool on the corner of the heat transfer plate in the correction step when the main body is a polygon in plan view. The manufacturing method of the heat exchanger plate as described in any one of thru | or thru | or 11. 前記矯正工程後に、前記伝熱板の裏面側を面削加工する面削工程を含み、前記面削加工の深さは、前記矯正工程で用いる回転ツールの攪拌ピンの長さよりも大きいことを特徴とする請求項1乃至請求項12のいずれか一項に記載の伝熱板の製造方法。

After the straightening step, a chamfering step of chamfering the back side of the heat transfer plate is included, and the depth of the chamfering is larger than the length of the stirring pin of the rotary tool used in the straightening step. The manufacturing method of the heat exchanger plate as described in any one of Claim 1 thru | or 12.

JP2009089690A 2009-04-02 2009-04-02 Manufacturing method of heat transfer plate Expired - Fee Related JP5177059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009089690A JP5177059B2 (en) 2009-04-02 2009-04-02 Manufacturing method of heat transfer plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009089690A JP5177059B2 (en) 2009-04-02 2009-04-02 Manufacturing method of heat transfer plate

Publications (2)

Publication Number Publication Date
JP2010240671A true JP2010240671A (en) 2010-10-28
JP5177059B2 JP5177059B2 (en) 2013-04-03

Family

ID=43094332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009089690A Expired - Fee Related JP5177059B2 (en) 2009-04-02 2009-04-02 Manufacturing method of heat transfer plate

Country Status (1)

Country Link
JP (1) JP5177059B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110308059A1 (en) * 2009-02-23 2011-12-22 Nippon Light Metal Company, Ltd. Manufacturing method of liquid-cooled jacket
JP2014100714A (en) * 2012-11-16 2014-06-05 Toyota Industries Corp Closed container and method of manufacturing the same
JP2014168805A (en) * 2013-03-04 2014-09-18 Honda Motor Co Ltd Different material jointed body and joining method of the same
WO2020059198A1 (en) * 2018-09-18 2020-03-26 日本軽金属株式会社 Method for producing liquid-cooling jacket

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11197856A (en) * 1998-01-14 1999-07-27 Nippon Light Metal Co Ltd Annular friction-stir-welding method and hermetically sealed container to be obtained by the method
JPH11197855A (en) * 1998-01-12 1999-07-27 Nippon Light Metal Co Ltd Annular welding method and hermetically sealed container and viscous damper to be obtained by the method
JP2001321966A (en) * 2000-03-06 2001-11-20 Hitachi Ltd Friction stir welding method
JP2002257490A (en) * 2001-03-02 2002-09-11 Nippon Light Metal Co Ltd Heat plate and manufacturing method thereof
JP2004314115A (en) * 2003-04-15 2004-11-11 Nippon Light Metal Co Ltd Heat transfer element, and method for manufacturing the same
WO2005059198A1 (en) * 2003-12-18 2005-06-30 Mitsui Mining & Smelting Co.,Ltd. Aluminum base target and process for producing the same
JP2005324251A (en) * 2004-04-16 2005-11-24 Showa Denko Kk Friction stir welding method, friction stir welding method for tubular member, and method for manufacturing hollow body
JP2006150454A (en) * 2000-12-22 2006-06-15 Hitachi Cable Ltd Cooling plate, manufacturing method thereof, sputtering target and manufacturing method thereof
JP2006187809A (en) * 2006-01-19 2006-07-20 Hitachi Ltd Method for manufacturing heat-sink plate, and heat-sink structure
JP2006324647A (en) * 2005-04-21 2006-11-30 Nippon Light Metal Co Ltd Liquid-cooled jacket
JP2007301567A (en) * 2006-05-08 2007-11-22 Osaka Industrial Promotion Organization Method of manufacturing cooling plate, and cooling plate
JP2009166079A (en) * 2008-01-15 2009-07-30 Nippon Light Metal Co Ltd Manufacturing method of liquid-cooled jacket, and friction stir welding method
JP2010179349A (en) * 2009-02-09 2010-08-19 Nippon Light Metal Co Ltd Method for manufacturing liquid-cooled jacket, and friction stir welding method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11197855A (en) * 1998-01-12 1999-07-27 Nippon Light Metal Co Ltd Annular welding method and hermetically sealed container and viscous damper to be obtained by the method
JPH11197856A (en) * 1998-01-14 1999-07-27 Nippon Light Metal Co Ltd Annular friction-stir-welding method and hermetically sealed container to be obtained by the method
JP2001321966A (en) * 2000-03-06 2001-11-20 Hitachi Ltd Friction stir welding method
JP2006150454A (en) * 2000-12-22 2006-06-15 Hitachi Cable Ltd Cooling plate, manufacturing method thereof, sputtering target and manufacturing method thereof
JP2002257490A (en) * 2001-03-02 2002-09-11 Nippon Light Metal Co Ltd Heat plate and manufacturing method thereof
JP2004314115A (en) * 2003-04-15 2004-11-11 Nippon Light Metal Co Ltd Heat transfer element, and method for manufacturing the same
WO2005059198A1 (en) * 2003-12-18 2005-06-30 Mitsui Mining & Smelting Co.,Ltd. Aluminum base target and process for producing the same
JP2005324251A (en) * 2004-04-16 2005-11-24 Showa Denko Kk Friction stir welding method, friction stir welding method for tubular member, and method for manufacturing hollow body
JP2006324647A (en) * 2005-04-21 2006-11-30 Nippon Light Metal Co Ltd Liquid-cooled jacket
JP2006187809A (en) * 2006-01-19 2006-07-20 Hitachi Ltd Method for manufacturing heat-sink plate, and heat-sink structure
JP2007301567A (en) * 2006-05-08 2007-11-22 Osaka Industrial Promotion Organization Method of manufacturing cooling plate, and cooling plate
JP2009166079A (en) * 2008-01-15 2009-07-30 Nippon Light Metal Co Ltd Manufacturing method of liquid-cooled jacket, and friction stir welding method
JP2010179349A (en) * 2009-02-09 2010-08-19 Nippon Light Metal Co Ltd Method for manufacturing liquid-cooled jacket, and friction stir welding method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110308059A1 (en) * 2009-02-23 2011-12-22 Nippon Light Metal Company, Ltd. Manufacturing method of liquid-cooled jacket
US8627567B2 (en) * 2009-02-23 2014-01-14 Nippon Light Metal Company, Ltd. Manufacturing method of liquid-cooled jacket
US9233439B2 (en) 2009-02-23 2016-01-12 Nippon Light Metal Company, Ltd. Manufacturing method of liquid-cooled jacket
JP2014100714A (en) * 2012-11-16 2014-06-05 Toyota Industries Corp Closed container and method of manufacturing the same
JP2014168805A (en) * 2013-03-04 2014-09-18 Honda Motor Co Ltd Different material jointed body and joining method of the same
WO2020059198A1 (en) * 2018-09-18 2020-03-26 日本軽金属株式会社 Method for producing liquid-cooling jacket
JPWO2020059198A1 (en) * 2018-09-18 2021-05-20 日本軽金属株式会社 How to manufacture a liquid-cooled jacket
JP7020562B2 (en) 2018-09-18 2022-02-16 日本軽金属株式会社 How to manufacture a liquid-cooled jacket

Also Published As

Publication number Publication date
JP5177059B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
WO2019193779A1 (en) Method for manufacturing liquid-cooled jacket
JP5957719B2 (en) Friction stir welding method
KR101194097B1 (en) Method of manufacturing heat transfer plate
WO2019150620A1 (en) Method for manufacturing liquid cooling jacket
JP2010201447A (en) Method for manufacturing heat transfer plate
WO2015107716A1 (en) Method of manufacturing liquid-cooled jacket
JP2019037987A (en) Manufacturing method of liquid-cooled jacket
JP2015131321A (en) Manufacturing method of liquid-cooled jacket
WO2019064849A1 (en) Method for producing liquid-cooled jacket
JP5177059B2 (en) Manufacturing method of heat transfer plate
WO2009081731A1 (en) Joining method
JP2010274320A (en) Welding method
JP2010284704A (en) Joining method and method of manufacturing structure having lid
JP2019037986A (en) Manufacturing method of liquid-cooled jacket
JP6885285B2 (en) How to manufacture a liquid-cooled jacket
WO2009157519A1 (en) Heat exchange plate manufacturing method and heat exchange plate
JP2019098377A (en) Method for manufacturing liquid-cooled jacket
JP2010240718A (en) Method for manufacturing heat transfer plate
JP5267381B2 (en) Manufacturing method of heat transfer plate
JP5233557B2 (en) Joining method
JP5347774B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP2010264467A (en) Method for manufacturing heat exchange plate
JP2009195940A (en) Manufacturing method of heat transfer plate
JP2016055317A (en) Manufacturing method of heat exchanger plate
JP2019155415A (en) Manufacturing method for liquid-cooled jacket

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121224

LAPS Cancellation because of no payment of annual fees