JP2012213809A - Method for manufacturing heat transfer plate - Google Patents

Method for manufacturing heat transfer plate Download PDF

Info

Publication number
JP2012213809A
JP2012213809A JP2012146738A JP2012146738A JP2012213809A JP 2012213809 A JP2012213809 A JP 2012213809A JP 2012146738 A JP2012146738 A JP 2012146738A JP 2012146738 A JP2012146738 A JP 2012146738A JP 2012213809 A JP2012213809 A JP 2012213809A
Authority
JP
Japan
Prior art keywords
plate
heat medium
lid
base member
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012146738A
Other languages
Japanese (ja)
Other versions
JP5464236B2 (en
Inventor
Isato Sato
勇人 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2012146738A priority Critical patent/JP5464236B2/en
Publication of JP2012213809A publication Critical patent/JP2012213809A/en
Application granted granted Critical
Publication of JP5464236B2 publication Critical patent/JP5464236B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing heat transfer plate capable of easily manufacturing a heat transfer plate having high flatness.SOLUTION: The method is characterized by including a heat medium tube insertion step of inserting a tube for heat medium 20 into a recessed groove 4 formed in the bottom surface of a lid groove 3 that opens on the front surface side of a base member 2, a lid groove closing step of inserting a lid plate 10 into the lid groove 3, and a joining step of relatively moving a rotary tool for joining F along an abutting part J2 of the sidewall of the lid groove 3 and the side surface of the lid plate 10 to perform friction stirring, wherein in the joining step, friction stirring is performed in the state where a cooling plate 60 is provided on the back side of the base member 2 and at the same time, into a gap part 22 formed around the tube for heat medium 20, a plastic flow material fluidized by friction heat is caused to flow.

Description

本発明は、例えば熱交換器や加熱機器あるいは冷却機器などに用いられる伝熱板の製造方法に関する。     The present invention relates to a method for manufacturing a heat transfer plate used in, for example, a heat exchanger, a heating device, a cooling device, or the like.

熱交換、加熱あるいは冷却すべき対象物に接触し又は近接して配置される伝熱板は、その本体であるベース部材に、例えば高温液や冷却水などの熱媒体を循環させる凹溝を備えている。かかる伝熱板の製造方法は、例えば、特許文献1に記載された方法が知られている。図26は、特許文献1に係る伝熱板の製造方法によって形成された伝熱板を示した断面図である。   A heat transfer plate arranged in contact with or close to an object to be heat exchanged, heated or cooled is provided with a concave groove that circulates a heat medium such as high-temperature liquid or cooling water in a base member that is a main body thereof. ing. As a method for manufacturing such a heat transfer plate, for example, a method described in Patent Document 1 is known. FIG. 26 is a cross-sectional view showing a heat transfer plate formed by the method of manufacturing a heat transfer plate according to Patent Document 1.

特許文献1に係る伝熱板100は、表面に開口する断面視矩形の蓋溝106と蓋溝106の底面に開口する凹溝108とを有するベース部材102と、凹溝108に挿入される熱媒体用管116と、蓋溝106に挿入される蓋板110と、を備えている。伝熱板100は、蓋溝106における両側壁と蓋板110の両側面とが突き合わされたそれぞれの突合部J,Jに沿って摩擦攪拌接合を行って一体成形されている。これにより、伝熱板100の突合部J,Jには、摩擦攪拌によって塑性化された塑性化領域W,Wがそれぞれ形成されている。   A heat transfer plate 100 according to Patent Document 1 includes a base member 102 having a lid groove 106 having a rectangular cross-sectional view opened on the surface and a groove 108 opened on the bottom surface of the cover groove 106, and heat inserted into the groove 108. A medium tube 116 and a lid plate 110 inserted into the lid groove 106 are provided. The heat transfer plate 100 is integrally formed by performing friction stir welding along the respective abutting portions J and J where the both side walls of the lid groove 106 and the both side surfaces of the lid plate 110 are abutted. Thus, plasticized regions W and W plasticized by friction stirring are formed in the abutting portions J and J of the heat transfer plate 100, respectively.

かかる伝熱板の製造方法によって形成された伝熱板100は図26に示すように、ベース部材102の表面から摩擦攪拌を行うため、熱収縮及び熱膨張によって伝熱板が反って撓んでしまうという問題があった。   As shown in FIG. 26, the heat transfer plate 100 formed by such a method of manufacturing a heat transfer plate performs frictional stirring from the surface of the base member 102, so that the heat transfer plate warps and bends due to thermal contraction and thermal expansion. There was a problem.

そこで、このような問題を解決するために、特許文献2には、摩擦攪拌接合を行う箇所に、冷却ノズルによって水を噴射するとともに、摩擦攪拌接合後の接合部をローラーで押圧する技術が開示されている。   Therefore, in order to solve such a problem, Patent Document 2 discloses a technique in which water is injected by a cooling nozzle to a place where friction stir welding is performed, and a joint portion after friction stir welding is pressed with a roller. Has been.

特開2004−314115号公報JP 2004-314115 A 特開2001−87871号公報JP 2001-87871 A

しかし、特許文献2に係る発明では、摩擦攪拌接合を行う箇所に水を噴射させるため、摩擦攪拌装置に水が浸入してしまい、駆動系統に悪影響が及ぶ可能性がある。また、接合箇所に水を噴射するため、回転ツールの回転により水が周囲に飛び散り、水の管理が煩雑になるという問題があった。   However, in the invention according to Patent Document 2, since water is sprayed to the place where friction stir welding is performed, water may enter the friction stirrer, which may adversely affect the drive system. In addition, since water is jetted to the joint portion, there is a problem that water is scattered around due to the rotation of the rotary tool, and water management becomes complicated.

このような観点から本発明は、平坦性の高い伝熱板を簡易に製造することができる伝熱板の製造方法を提供することを課題とする。   From such a viewpoint, an object of the present invention is to provide a method of manufacturing a heat transfer plate that can easily manufacture a heat transfer plate having high flatness.

このような課題を解決する本発明は、ベース部材の表面側に開口する蓋溝の底面に形成された凹溝に、熱媒体用管を挿入する熱媒体用管挿入工程と、前記蓋溝に蓋板を挿入する蓋溝閉塞工程と、前記蓋溝の側壁と前記蓋板の側面との突合部に沿って接合用回転ツールを相対移動させて摩擦攪拌を行う接合工程と、を含み、前記接合工程では、前記ベース部材の裏面側に冷却板を備えた状態で摩擦攪拌を行うとともに、前記熱媒体用管の周囲に形成された空隙部に、摩擦熱によって流動化された塑性流動材を流入させることを特徴とする。     The present invention that solves such a problem includes a heat medium tube insertion step of inserting a heat medium tube into a concave groove formed on the bottom surface of the cover groove that opens on the surface side of the base member, and the cover groove. A lid groove closing step of inserting the lid plate, and a joining step of performing frictional stirring by relatively moving the joining rotary tool along the abutment portion between the side wall of the lid groove and the side surface of the lid plate, In the joining step, the friction stir is performed with a cooling plate provided on the back side of the base member, and a plastic fluidized material fluidized by frictional heat is formed in the gap formed around the heat medium pipe. It is made to flow in.

かかる製造方法によれば、ベース部材を冷却板で冷却しながら摩擦攪拌接合を行うため、熱膨張及び熱収縮による伝熱板の反りや撓みを防止することができる。また、冷却板を用いることで、例えば水などの熱媒体の管理が容易なため、比較的容易に接合作業を行うことができる。また、また、熱媒体用管の周囲に塑性流動材を流入させることで、気密性及び水密性の高い伝熱板を製造することができる。   According to this manufacturing method, since the friction stir welding is performed while the base member is cooled by the cooling plate, it is possible to prevent the heat transfer plate from being warped or bent due to thermal expansion and thermal contraction. Further, by using a cooling plate, for example, management of a heat medium such as water is easy, so that the joining operation can be performed relatively easily. Moreover, a heat-transfer plate with high airtightness and watertightness can be manufactured by allowing the plastic fluidizing material to flow around the heat medium pipe.

また、本発明は、ベース部材の表面側に開口する凹溝に、熱媒体用管を挿入する熱媒体用管挿入工程と、前記凹溝に蓋板を挿入する蓋板挿入工程と、前記凹溝に沿って接合用回転ツールを相対移動させて摩擦攪拌を行う接合工程と、を含み、前記接合工程では、前記ベース部材の裏面側に冷却板を備えた状態で摩擦攪拌を行い、前記接合用回転ツールの押圧力によって前記蓋板が前記熱媒体用管の上部を押圧するとともに、前記蓋板の少なくとも上部と前記ベース部材とを摩擦攪拌することを特徴とする。   Further, the present invention provides a heat medium tube insertion step of inserting a heat medium tube into a concave groove opened on the surface side of the base member, a lid plate insertion step of inserting a lid plate into the concave groove, and the concave portion. A joining step of performing friction stir by relatively moving the rotating tool for joining along the groove, and in the joining step, friction stir is performed in a state where a cooling plate is provided on the back side of the base member, and the joining is performed. The cover plate presses the upper part of the heat medium pipe by the pressing force of the rotary tool for use, and at least the upper part of the cover plate and the base member are frictionally stirred.

かかる製造方法によれば、ベース部材を冷却板で冷却しながら摩擦攪拌接合を行うため、熱膨張及び熱収縮による伝熱板の反りや撓みを防止することができる。また、冷却板を用いることで、例えば水などの熱媒体の管理が容易なため、比較的容易に接合作業を行うことができる。また、熱媒体用管とベース部材とを密着させることができるため、熱媒体用管の周囲の空隙を小さくすることができ、水密性及び気密性を高めることができる。   According to this manufacturing method, since the friction stir welding is performed while the base member is cooled by the cooling plate, it is possible to prevent the heat transfer plate from being warped or bent due to thermal expansion and thermal contraction. Further, by using a cooling plate, for example, management of a heat medium such as water is easy, so that the joining operation can be performed relatively easily. In addition, since the heat medium pipe and the base member can be brought into close contact with each other, a gap around the heat medium pipe can be reduced, and water tightness and air tightness can be improved.

また、前記接合工程では、前記ベース部材の前記凹溝に挿入された前記熱媒体用管に熱媒体を流して前記ベース部材及び前記蓋板を冷却しながら摩擦攪拌を行うことが好ましい。かかる製造方法によれば、接合工程において、伝熱板に埋設される熱媒体用管に対しても熱媒体を流しながら摩擦攪拌を行うことで、伝熱板の冷却効率をより高めることができる。   Further, in the joining step, it is preferable to perform friction stir while cooling the base member and the cover plate by flowing a heat medium through the heat medium pipe inserted into the concave groove of the base member. According to this manufacturing method, in the joining step, the cooling efficiency of the heat transfer plate can be further improved by performing frictional stirring while flowing the heat medium also to the heat medium pipe embedded in the heat transfer plate. .

また、前記接合工程では、前記冷却板に形成された流路又は前記冷却板に埋設された熱媒体用管に熱媒体を流すことにより、この冷却板を冷却しながら摩擦攪拌を行うことが好ましい。また、前記冷却板に形成された前記流路の平面形状又は前記冷却板に埋設された前記熱媒体用管の平面形状は、前記凹溝の平面形状と略同等形状又は略相似形状に形成されていることが好ましい。   Further, in the joining step, it is preferable to perform friction stirring while cooling the cooling plate by flowing the heating medium through a flow path formed in the cooling plate or a heat medium pipe embedded in the cooling plate. . In addition, the planar shape of the flow path formed in the cooling plate or the planar shape of the heat medium pipe embedded in the cooling plate is formed to be substantially equivalent to or substantially similar to the planar shape of the concave groove. It is preferable.

かかる製造方法によれば、冷却板に形成された流路又は冷却板に埋設された熱媒体用管に熱媒体が流れるため、熱媒体の管理が容易になる。また、前記流路及び熱媒体用管の平面形状を、ベース部材の凹溝の平面形状と略同等形状又は略相似形状に形成することで、接合工程において、摩擦攪拌によって形成される塑性化領域に沿って熱媒体が流れるため、伝熱板の冷却効率を高めることができる。   According to this manufacturing method, since the heat medium flows through the flow path formed in the cooling plate or the heat medium pipe embedded in the cooling plate, the management of the heat medium becomes easy. Further, by forming the planar shape of the flow path and the heat medium pipe into a shape substantially equivalent to or substantially similar to the planar shape of the concave groove of the base member, a plasticized region formed by friction stirring in the joining step Therefore, the cooling efficiency of the heat transfer plate can be increased.

本発明に係る伝熱板の製造方法によれば、平坦性の高い伝熱板を簡易に製造することができる。   According to the heat transfer plate manufacturing method of the present invention, a heat transfer plate having high flatness can be easily manufactured.

第一実施形態に係る伝熱板を示した図であって、(a)は斜視図、(b)は、(a)のI−I線断面図である。It is the figure which showed the heat exchanger plate which concerns on 1st embodiment, Comprising: (a) is a perspective view, (b) is the II sectional view taken on the line of (a). 第一実施形態に係る伝熱板を示した図であって、(a)は分解斜視図、(b)は分解断面図である。It is the figure which showed the heat exchanger plate which concerns on 1st embodiment, Comprising: (a) is an exploded perspective view, (b) is an exploded sectional view. 第一実施形態に係る伝熱板の製造方法を示した断面図であって、(a)は溝形成工程、(b)は熱媒体用管挿入工程、(c)は蓋溝閉塞工程を示す。It is sectional drawing which showed the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, Comprising: (a) is a groove | channel formation process, (b) is a pipe | tube insertion process for heat media, (c) shows a cover groove | channel obstruction | occlusion process. . 接合用回転ツールを示した側面図である。It is the side view which showed the rotation tool for joining. 第一実施形態に係る伝熱板の製造方法において、伝熱板及び冷却板を示した斜視図である。In the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, it is the perspective view which showed the heat exchanger plate and the cooling plate. 第一実施形態に係る伝熱板の製造方法において、接合工程を段階的に示した平面図である。It is the top view which showed the joining process in steps in the manufacturing method of the heat exchanger plate which concerns on 1st embodiment. 第一実施形態に係る伝熱板の製造方法において、接合工程を行った後を示した図であって、(a)は斜視図、(b)は地点c及び地点fを結ぶ線の断面図である。In the manufacturing method of the heat exchanger plate which concerns on 1st embodiment, it is the figure which showed after performing a joining process, Comprising: (a) is a perspective view, (b) is sectional drawing of the line which connects the point c and the point f It is. 第一実施形態に係るプレス矯正の準備段階を示した斜視図である。It is the perspective view which showed the preparatory stage of the press correction which concerns on 1st embodiment. 第一実施形態に係るプレス矯正を示した側面図であって、(a)はプレス前、(b)はプレス中を示した図である。It is the side view which showed the press correction which concerns on 1st embodiment, Comprising: (a) is before a press, (b) is the figure which showed during press. 第一実施形態に係るプレス矯正の押圧位置を示した平面図である。It is the top view which showed the press position of the press correction which concerns on 1st embodiment. 第一実施形態に係るロール矯正を示した図であって、(a)は斜視図、(b)はプレス前を示した側面図、(c)はプレス中を示した側面図である。It is the figure which showed the roll correction which concerns on 1st embodiment, Comprising: (a) is a perspective view, (b) is the side view which showed before the press, (c) is the side view which showed during the press. 第二実施形態に係る伝熱板の製造方法を示した断面図である。It is sectional drawing which showed the manufacturing method of the heat exchanger plate which concerns on 2nd embodiment. (a)は、第三実施形態に係る伝熱板及び冷却板を示した斜視図であり、(b)は、(a)のII−II線断面図である。(A) is the perspective view which showed the heat exchanger plate and cooling plate which concern on 3rd embodiment, (b) is the II-II sectional view taken on the line of (a). 第三実施形態に係る伝熱板の製造方法において、接合工程を示した断面図である。It is sectional drawing which showed the joining process in the manufacturing method of the heat exchanger plate which concerns on 3rd embodiment. 第四実施形態に係る伝熱板を示した斜視図である。It is the perspective view which showed the heat exchanger plate which concerns on 4th embodiment. 第四実施形態に係る伝熱板を示した分解斜視図である。It is the disassembled perspective view which showed the heat exchanger plate which concerns on 4th embodiment. 第四実施形態に係る伝熱板を示した分解断面図である。It is the exploded sectional view showing the heat exchanger plate concerning a 4th embodiment. 第四実施形態に係る伝熱板の製造方法において、(a)は接合工程を示した斜視図、(b)は、(a)のIII-III線断面図である。In the manufacturing method of the heat exchanger plate which concerns on 4th embodiment, (a) is the perspective view which showed the joining process, (b) is the III-III sectional view taken on the line of (a). 第四実施形態に係る伝熱板の製造方法において、接合工程を行った後を示した図であって、(a)は斜視図、(b)は地点c及び地点fを結ぶ線の断面図である。In the manufacturing method of the heat exchanger plate which concerns on 4th embodiment, it is the figure which showed after performing a joining process, Comprising: (a) is a perspective view, (b) is sectional drawing of the line which ties the point c and the point f It is. 第五実施形態に係る伝熱板の製造方法を示した断面図である。It is sectional drawing which showed the manufacturing method of the heat exchanger plate which concerns on 5th embodiment. (a)は、実施例に係る試験体を示した斜視図であり、(b)は、(a)のIV−IV線断面図であり、(c)は、実施例で用いる接合用回転ツールを示した側面図である。(A) is the perspective view which showed the test body based on an Example, (b) is the IV-IV sectional view taken on the line of (a), (c) is the rotation tool for joining used in the Example. It is the side view which showed. 試験1に係る接合工程を示した側面図である。6 is a side view showing a joining process according to Test 1. FIG. 試験1に係る試験体の接合工程後を示した側面図である。It is the side view which showed the joining process of the test body which concerns on Test 1. FIG. 試験2に係る接合工程を示した側面図である。10 is a side view showing a joining process according to Test 2. FIG. 試験2に係る試験体の接合工程後を示した側面図である。It is the side view which showed the joining process of the test body which concerns on the test 2. FIG. 特許文献1に係る伝熱板の製造方法によって形成された伝熱板を示した断面図である。It is sectional drawing which showed the heat exchanger plate formed by the manufacturing method of the heat exchanger plate concerning patent document 1. FIG.

[第一実施形態]
本発明の第一実施形態について、図面を参照して詳細に説明する。まず、本実施形態に係る製造方法によって製造された伝熱板1について説明する。本実施形態においては、伝熱板1をヒートプレートとして用いる場合を例にして説明する。
[First embodiment]
A first embodiment of the present invention will be described in detail with reference to the drawings. First, the heat transfer plate 1 manufactured by the manufacturing method according to the present embodiment will be described. In the present embodiment, a case where the heat transfer plate 1 is used as a heat plate will be described as an example.

伝熱板1は、図1の(a)及び(b)に示すように、平面視矩形の板厚のベース部材2と、ベース部材2の内部に埋設される熱媒体用管20と、ベース部材2に凹設された溝に配置された蓋板10と、を主に備えている。ベース部材2と蓋板10との突合部J1,J2は、それぞれ摩擦攪拌によって接合されている。かかる伝熱板1は、熱媒体用管20に挿通された図示しないマイクロヒーター等で加熱して使用される。   As shown in FIGS. 1A and 1B, the heat transfer plate 1 includes a base member 2 having a rectangular plate thickness in plan view, a heat medium pipe 20 embedded in the base member 2, and a base. And a lid plate 10 disposed in a groove provided in the member 2. The abutting portions J1 and J2 between the base member 2 and the cover plate 10 are joined by friction stirring. The heat transfer plate 1 is used after being heated by a micro heater (not shown) inserted through the heat medium pipe 20.

ベース部材2は、熱媒体用管20に流れる熱媒体の熱を外部に伝達させる役割、あるいは、外部の熱を熱媒体用管20に流れる熱媒体に伝達させる役割を果たすものである。ベース部材2は、図2の(a)及び(b)に示すように、平面視正方形を呈する直方体であって、本実施形態では、厚みが30mm〜120mmのものを用いる。ベース部材2は、例えば、アルミニウム、アルミニウム合金、銅、銅合金、チタン、チタン合金、マグネシウム、マグネシウム合金など摩擦攪拌可能な金属材料からなる。ベース部材2の表面Zaには、蓋溝3が凹設されており、蓋溝3の底面3cの中央には、蓋溝3よりも幅狭の凹溝4が凹設されている。   The base member 2 serves to transmit the heat of the heat medium flowing through the heat medium pipe 20 to the outside, or to play a role of transferring external heat to the heat medium flowing through the heat medium pipe 20. As shown in FIGS. 2A and 2B, the base member 2 is a rectangular parallelepiped having a square shape in plan view, and in this embodiment, the base member 2 having a thickness of 30 mm to 120 mm is used. The base member 2 is made of a metal material that can be frictionally stirred, such as aluminum, aluminum alloy, copper, copper alloy, titanium, titanium alloy, magnesium, and magnesium alloy. A lid groove 3 is recessed in the surface Za of the base member 2, and a recessed groove 4 narrower than the lid groove 3 is recessed in the center of the bottom surface 3 c of the lid groove 3.

蓋溝3は、図2の(a)及び(b)に示すように、蓋板10が配置される部分であって、平面視略馬蹄状に一定の幅及び深さで連続して形成されている。蓋溝3は、断面視矩形を呈し、蓋溝3の底面3cから垂直に立ち上がる側壁3a,3bを備えている。   As shown in FIGS. 2A and 2B, the lid groove 3 is a portion where the lid plate 10 is disposed, and is continuously formed in a substantially horseshoe shape in plan view with a certain width and depth. ing. The lid groove 3 has a rectangular shape in cross section, and includes side walls 3 a and 3 b that rise vertically from the bottom surface 3 c of the lid groove 3.

凹溝4は、熱媒体用管20が挿入される部分であって、蓋溝3の底面3cの中央部分に、蓋溝3の全長に亘って形成されている。凹溝4は、上方が開口した断面視U字状の溝であって、下端には断面視半円形状の底面5が形成されている。凹溝4の開口部分の幅A及び凹溝4の深さCは、熱媒体用管20の外径Bと略同等に形成されている。また、蓋溝3の幅E及び深さGは、蓋板10の幅及び厚みと略同等に形成されている。   The concave groove 4 is a portion into which the heat medium pipe 20 is inserted, and is formed in the central portion of the bottom surface 3 c of the lid groove 3 over the entire length of the lid groove 3. The concave groove 4 is a U-shaped groove that is open at the top, and has a bottom surface 5 that is semicircular in cross-section at the lower end. The width A of the opening portion of the concave groove 4 and the depth C of the concave groove 4 are formed substantially equal to the outer diameter B of the heat medium pipe 20. Further, the width E and the depth G of the lid groove 3 are formed substantially equal to the width and thickness of the lid plate 10.

熱媒体用管20は、図2の(a)及び(b)に示すように、断面視円形の中空部18を有する円筒管である。熱媒体用管20は、本実施形態では銅からなり、平面視略馬蹄状を呈する。熱媒体用管20の外径Bは、凹溝4の幅A及び凹溝4の深さCと略同等に形成されているため、熱媒体用管20及び蓋板10をベース部材2に配置すると、熱媒体用管20の下半部と凹溝4の底面5とが面接触するとともに、熱媒体用管20の上端が、蓋板10の下面12と接触する。   As shown in FIGS. 2A and 2B, the heat medium pipe 20 is a cylindrical pipe having a hollow portion 18 having a circular cross-sectional view. In the present embodiment, the heat medium pipe 20 is made of copper and has a substantially horseshoe shape in plan view. Since the outer diameter B of the heat medium pipe 20 is formed substantially equal to the width A of the groove 4 and the depth C of the groove 4, the heat medium pipe 20 and the cover plate 10 are arranged on the base member 2. Then, the lower half of the heat medium pipe 20 and the bottom surface 5 of the groove 4 come into surface contact, and the upper end of the heat medium pipe 20 comes into contact with the lower surface 12 of the lid plate 10.

熱媒体用管20には、本実施形態においては、マイクロヒーターを挿通するが、他にも例えば、冷却水、冷却ガス、高温液、あるいは高温ガスなどの熱媒体を循環させて、熱媒体の熱をベース部材2及び蓋板10に、あるいは、ベース部材2及び蓋板10の熱を熱媒体に伝達させてもよい。   In the present embodiment, a microheater is inserted into the heat medium pipe 20, but for example, a heat medium such as cooling water, cooling gas, high-temperature liquid, or high-temperature gas is circulated to circulate the heat medium. The heat may be transmitted to the base member 2 and the cover plate 10 or the heat of the base member 2 and the cover plate 10 to the heat medium.

なお、本実施形態においては、熱媒体用管20は、断面視円形としたが、断面視角形であってもよい。また、熱媒体用管20は、本実施形態においては、銅管を用いているが、他の材料の管を用いてもよい。また、熱媒体用管20は、必ずしも設ける必要は無く、凹溝4に直接熱媒体を流入させてもよい。   In the present embodiment, the heat medium pipe 20 is circular in cross section, but may be square in cross section. Moreover, although the copper pipe is used for the heat medium pipe 20 in this embodiment, a pipe made of another material may be used. Further, the heat medium pipe 20 is not necessarily provided, and the heat medium may flow directly into the groove 4.

蓋板10は、図2の(a)及び(b)に示すように、ベース部材2の蓋溝3の断面と略同じ矩形断面を形成する上面11、下面12、側面13a及び側面13bを有し、平面視略馬蹄状で形成されている。蓋板10は、本実施形態では、ベース部材2と同様の組成で形成されている。蓋板10の厚みは、蓋溝3の深さGと略同等に形成されている。また、蓋板10の幅は、蓋溝3の幅Eと略同等に形成されているため、蓋板10を蓋溝3に配置すると、蓋板10の側面13a,13bは、蓋溝3の側壁3a,3bとそれぞれ面接触するか又は微細な隙間をあけて対向する。   As shown in FIGS. 2A and 2B, the lid plate 10 has an upper surface 11, a lower surface 12, a side surface 13 a, and a side surface 13 b that form a rectangular section that is substantially the same as the section of the lid groove 3 of the base member 2. And it is formed in a substantially horseshoe shape in plan view. In this embodiment, the cover plate 10 is formed with the same composition as the base member 2. The thickness of the lid plate 10 is formed substantially equal to the depth G of the lid groove 3. Further, since the width of the lid plate 10 is formed substantially equal to the width E of the lid groove 3, when the lid plate 10 is arranged in the lid groove 3, the side surfaces 13 a and 13 b of the lid plate 10 are The side walls 3a and 3b are in surface contact with each other or face each other with a fine gap.

また、本実施形態においては、凹溝4と熱媒体用管20の下半部を面接触させ、かつ、熱媒体用管20の上端と蓋板10の下面12とを接触させたが、これに限定されるものではない。即ち、凹溝4の幅A及び深さCを、熱媒体用管20の外径Bよりも大きく形成してもよい。また、蓋溝3、凹溝4、蓋板10及び熱媒体用管20は、本実施形態では、平面視略馬蹄状を呈するように形成したがこれに限定されるものではなく、伝熱板1の用途に応じて適宜設計すればよい。   In this embodiment, the groove 4 and the lower half of the heat medium pipe 20 are brought into surface contact, and the upper end of the heat medium pipe 20 and the lower surface 12 of the cover plate 10 are brought into contact. It is not limited to. That is, the width A and the depth C of the groove 4 may be formed larger than the outer diameter B of the heat medium pipe 20. Further, in the present embodiment, the lid groove 3, the concave groove 4, the lid plate 10 and the heat medium pipe 20 are formed so as to exhibit a substantially horseshoe shape in a plan view, but the present invention is not limited thereto. What is necessary is just to design suitably according to the 1 use.

次に、伝熱板1の製造方法について説明する。
本実施形態に係る伝熱板1の製造方法は、(1)溝形成工程、(2)熱媒体用管挿入工程、(3)蓋溝閉塞工程、(4)接合工程、(5)矯正工程、(6)焼鈍工程を含むものである。
Next, a method for manufacturing the heat transfer plate 1 will be described.
The manufacturing method of the heat transfer plate 1 according to the present embodiment includes (1) groove forming step, (2) heat medium tube inserting step, (3) lid groove closing step, (4) joining step, and (5) straightening step. (6) An annealing process is included.

(1)溝形成工程
溝形成工程では、図3の(a)に示すように、ベース部材2の表面Zaに、所定の幅及び深さで蓋溝3及び凹溝4を形成する。溝形成工程は、例えば、公知のエンドミル等を用いて、切削加工により行う。
(1) Groove Forming Step In the groove forming step, as shown in FIG. 3A, the cover groove 3 and the concave groove 4 are formed on the surface Za of the base member 2 with a predetermined width and depth. The groove forming step is performed by cutting using, for example, a known end mill.

(2)熱媒体用管挿入工程
熱媒体用管挿入工程では、図3の(b)に示すように、溝形成工程で形成された凹溝4に熱媒体用管20を挿入する。
(2) Heat medium tube insertion step In the heat medium tube insertion step, as shown in FIG. 3B, the heat medium tube 20 is inserted into the groove 4 formed in the groove formation step.

(3)蓋溝閉塞工程
蓋溝閉塞工程では、図3の(c)に示すように、蓋溝3に蓋板10を配置して、蓋溝3を閉塞する。ここで、蓋溝3と蓋板10との突き合わせ面において、蓋溝3と蓋板10の内縁とで突き合わされた部分を「突合部J1」とし、蓋溝3と蓋板10の外縁とで突き合わされた部分を「突合部J2」とする。
(3) Lid groove closing process In the lid groove closing process, as shown in FIG. 3C, the lid plate 10 is disposed in the lid groove 3 to close the lid groove 3. Here, in the abutting surface of the lid groove 3 and the lid plate 10, a portion abutted by the lid groove 3 and the inner edge of the lid plate 10 is referred to as “butting portion J <b> 1”, and the lid groove 3 and the outer edge of the lid plate 10 are The faced portion is referred to as “butting portion J2”.

(4)接合工程
接合工程では、図5に示すように、冷却板60の上面にベース部材2を配置した状態で、突合部J1,J2に沿って、接合用回転ツールFを用いて摩擦攪拌を行う。接合工程は、本実施形態では、突合部J1を摩擦攪拌する第一接合工程と、突合部J2を摩擦攪拌する第二接合工程とを含む。
(4) Joining process In the joining process, as shown in FIG. 5, friction stir using the rotating tool F for joining along the abutting portions J <b> 1 and J <b> 2 with the base member 2 disposed on the upper surface of the cooling plate 60. I do. In the present embodiment, the joining process includes a first joining process in which the abutting portion J1 is frictionally stirred and a second joining process in which the abutting portion J2 is frictionally stirred.

ここで、本実施形態における接合工程の際に用いる接合用回転ツールFについて詳細に説明する。
接合用回転ツールFは、図4に示すように、工具鋼などベース部材2よりも硬質の金属材料からなり、円柱状を呈するショルダ部F1と、このショルダ部F1の下端面F11に突設された攪拌ピン(プローブ)F2とを備えて構成されている。接合用回転ツールFの寸法・形状は、ベース部材2の材質や厚さ等に応じて設定すればよい。
Here, the joining rotary tool F used in the joining process in the present embodiment will be described in detail.
As shown in FIG. 4, the joining rotary tool F is made of a metal material harder than the base member 2 such as tool steel, and protrudes from a shoulder portion F1 having a columnar shape and a lower end surface F11 of the shoulder portion F1. And a stirring pin (probe) F2. What is necessary is just to set the dimension and shape of the rotation tool F for joining according to the material, thickness, etc. of the base member 2. FIG.

ショルダ部F1の下端面F11は、塑性流動化した金属を押えて周囲への飛散を防止する役割を担う部位であり、本実施形態では、凹面状に成形されている。攪拌ピンF2は、ショルダ部F1の下端面F11の中央から垂下しており、本実施形態では、先細りの円錐台状に成形されている。また、攪拌ピンF2の周面には、螺旋状に刻設された攪拌翼が形成されている。   The lower end surface F11 of the shoulder portion F1 is a portion that plays a role of pressing the plastic fluidized metal and preventing scattering to the surroundings, and is formed in a concave shape in this embodiment. The stirring pin F2 hangs down from the center of the lower end surface F11 of the shoulder portion F1, and is formed into a tapered truncated cone shape in this embodiment. In addition, a stirring blade engraved in a spiral shape is formed on the peripheral surface of the stirring pin F2.

ここで、図4に示すベース部材2の厚みtは、攪拌ピンF2の長さLの3倍以上であることが好ましい。また、ベース部材2の厚みtは、ショルダ部F1の外径Xの1.5倍以上であることが好ましい。かかる設定によれば、接合用回転ツールFの大きさに対して、ベース部材2の厚みを十分に確保することができるため、摩擦攪拌を行う際に発生する反りを低減することができる。 The thickness t of the base member 2 shown in FIG. 4, it is preferable for the length L A of the stirring pin F2 is three times or more. The thickness t of the base member 2 is preferably at least 1.5 times the outer diameter X 1 of the shoulder portion F1. According to this setting, since the thickness of the base member 2 can be sufficiently ensured with respect to the size of the joining rotary tool F, it is possible to reduce the warpage that occurs when performing frictional stirring.

次に、本実施形態で用いる冷却板60について説明する。冷却板60は、図5に示すように、例えばアルミニウム合金からなる平板61と、平板61の内部に形成された流路63と、流路63に埋設された熱媒体用管62とを有する。冷却板60は、摩擦攪拌の際に接合用回転ツールFの押圧力を受ける支持台として機能するとともに、例えば水や空気などの冷媒を熱媒体用管62に流すことにより対象物を冷却させる。   Next, the cooling plate 60 used in this embodiment will be described. As shown in FIG. 5, the cooling plate 60 includes, for example, a flat plate 61 made of an aluminum alloy, a flow path 63 formed inside the flat plate 61, and a heat medium pipe 62 embedded in the flow path 63. The cooling plate 60 functions as a support base that receives the pressing force of the welding rotary tool F during friction stirring, and cools the object by flowing a coolant such as water or air through the heat medium pipe 62.

なお、冷却板60の構造については、本実施形態の形態に限定されるものではなく、材質、形状等は適宜設定すればよい。また、熱媒体用管62を用いず、流路63に直接熱媒体を流して冷却させてもよい。   In addition, about the structure of the cooling plate 60, it is not limited to the form of this embodiment, What is necessary is just to set a material, a shape, etc. suitably. Alternatively, the heat medium pipe 62 may be used for cooling by directly flowing the heat medium through the flow path 63.

第一接合工程では、図5、図6の(a)及び(b)に示すように、冷却板60に熱媒体(水)を流した状態で、ベース部材2と蓋板10との突合部J1に沿って、摩擦攪拌を行う。
まず、冷却板60の上に、ベース部材2を載置して、ベース部材2を移動不能に固定する。そして、ベース部材2の表面Zaの任意の位置に開始位置SM1を設定し、接合用回転ツールFの攪拌ピンF2をベース部材2に押し込む(押圧する)。開始位置SM1は、本実施形態では、ベース部材2の外縁の近傍であり、かつ、突合部J1の近傍に設定する。接合用回転ツールFのショルダ部F1の一部がベース部材2の表面Zaに接触したら、突合部J1の始点s1に向かって接合用回転ツールFを相対移動させる。そして、図6の(a)に示すように、始点s1に達したら、接合用回転ツールFを離脱させずに、そのまま突合部J1に沿って移動させる。
In the first joining step, as shown in FIGS. 5 and 6A and 6B, the abutting portion between the base member 2 and the lid plate 10 in a state where a heat medium (water) is passed through the cooling plate 60. Friction stirring is performed along J1.
First, the base member 2 is placed on the cooling plate 60, and the base member 2 is fixed so as not to move. Then, the start position SM1 is set at an arbitrary position on the surface Za of the base member 2, and the stirring pin F2 of the welding rotary tool F is pushed (pressed) into the base member 2. In this embodiment, the start position S M1 is set in the vicinity of the outer edge of the base member 2 and in the vicinity of the abutting portion J1. When a part of the shoulder portion F1 of the joining rotary tool F comes into contact with the surface Za of the base member 2, the joining rotary tool F is relatively moved toward the start point s1 of the abutting portion J1. Then, as shown in FIG. 6A, when the starting point s1 is reached, the joining rotary tool F is moved as it is along the abutting portion J1 without being detached.

接合用回転ツールFが突合部J1の終点e1に達したら、接合用回転ツールFをそのまま開始位置SM1側に移動させて、任意の位置に設定した終了位置EM1で接合用回転ツールFを離脱させる。
なお、開始位置SM1、始点s1、終了位置EM1及び終点e1は、本実施形態の位置に限定するものではないが、ベース部材2の外縁の近傍であり、かつ、突合部J1の近傍であることが好ましい。
When the joining rotary tool F reaches the end point e1 of the abutting portion J1, the joining rotary tool F is moved to the start position S M1 as it is, and the joining rotary tool F is moved to the end position E M1 set at an arbitrary position. Let go.
The start position S M1 , the start point s 1, the end position E M1, and the end point e 1 are not limited to the positions of the present embodiment, but are in the vicinity of the outer edge of the base member 2 and in the vicinity of the abutting portion J 1. Preferably there is.

次に、第二接合工程では、図6の(b)及び(c)に示すように、ベース部材2と蓋板10との突合部J2に沿って、摩擦攪拌を行う。
まず、ベース部材2の表面Zaの任意の地点hに開始位置SM2を設定し、接合用回転ツールFの攪拌ピンF2をベース部材2に押し込む(押圧する)。接合用回転ツールFのショルダ部F1の一部がベース部材2の表面Zaに接触したら、突合部J2の始点s2に向かって接合用回転ツールFを相対移動させる。そして、始点s2に達したら、接合用回転ツールFを離脱させずに、そのまま突合部J2に沿って移動させる。
Next, in the second joining step, friction agitation is performed along the abutting portion J2 between the base member 2 and the cover plate 10 as shown in FIGS.
First, a start position SM2 is set at an arbitrary point h on the surface Za of the base member 2, and the stirring pin F2 of the welding rotary tool F is pushed (pressed) into the base member 2. When a part of the shoulder portion F1 of the joining rotary tool F comes into contact with the surface Za of the base member 2, the joining rotary tool F is relatively moved toward the start point s2 of the abutting portion J2. When the starting point s2 is reached, the joining rotary tool F is moved along the abutting portion J2 as it is without being detached.

接合用回転ツールFが突合部J2の終点e2に達したら、接合用回転ツールFをそのまま地点f側に移動させて、地点fに設定した終了位置EM2で接合用回転ツールFを離脱させる。
なお、開始位置SM2及び終了位置EM2は、本実施形態の位置に限定するものではないが、ベース部材2の外縁の隅部であることが好ましい。これにより、終了位置EM2に抜け穴が残存する場合は、隅部を切削加工して除去することができる。また、本実施形態では、冷却板60の熱媒体用管62に熱媒体を流して冷却させながら接合工程を行ったが、伝熱板1の熱媒体用管20に例えば水などの熱媒体を流して接合工程を行ってもよい。これにより、冷却効率をより高めることができる。
After joining rotation tool F reaches the end point e2 of the butting portion J2, a joining rotation tool F as it is moved to the point f side, disengaging the joining rotation tool F at the end position E M2 set in point f.
The start position S M2 and the end position E M2 are not limited to the positions of the present embodiment, but are preferably corners of the outer edge of the base member 2. Thus, if a loophole in the end position E M2 remaining can be removed by cutting the corner. In the present embodiment, the joining process is performed while flowing the heat medium through the heat medium pipe 62 of the cooling plate 60 and cooling it. However, for example, a heat medium such as water is applied to the heat medium pipe 20 of the heat transfer plate 1. The joining process may be performed by pouring. Thereby, cooling efficiency can be raised more.

図6の(c)に示すように、本接合工程によって、突合部J1及び突合部J2に沿って塑性化領域W1(W1a,W1b)が形成される。これにより、熱媒体用管20がベース部材2及び蓋板10によって密閉される。また、図1の(b)に示すように、本実施形態では、塑性化領域W1の深さが、蓋溝3の側壁3a,3b(図2の(b)参照)の深さと略同等に形成されているため、突合部J1及び突合部J2の深さ方向の全体を摩擦攪拌することができる。これにより、伝熱板1の気密性を高めることができる。なお、塑性化領域とは、接合用回転ツールFの摩擦熱によって加熱されて現に塑性化している状態と、接合用回転ツールFが通り過ぎて常温に戻った状態の両方を含むこととする。   As shown in FIG. 6C, the plasticizing region W1 (W1a, W1b) is formed along the abutting portion J1 and the abutting portion J2 by the main joining step. As a result, the heat medium pipe 20 is sealed by the base member 2 and the cover plate 10. Further, as shown in FIG. 1B, in this embodiment, the depth of the plasticized region W1 is substantially equal to the depth of the side walls 3a and 3b of the lid groove 3 (see FIG. 2B). Since it is formed, the entire abutting portion J1 and the abutting portion J2 in the depth direction can be frictionally stirred. Thereby, the airtightness of the heat exchanger plate 1 can be improved. The plasticizing region includes both the state heated by the frictional heat of the welding rotary tool F and actually plasticized, and the state where the welding rotary tool F passes and returns to room temperature.

ここで、図7は、本実施形態の接合工程後を示した伝熱板1の斜視図である。伝熱板1は、接合工程によって塑性化領域W1が形成される。本実施形態では、冷却板60をベース部材2の裏側に配置させることで、熱膨張及び熱収縮による伝熱板の反りや撓みを小さくすることができるが、撓みを完全になくすことは困難である。即ち、塑性化領域W1は、熱収縮によって縮むため、伝熱板1の表面Za側において、ベース部材2の各隅部側から中心側に向かって圧縮応力が作用する。これにより、伝熱板1は表面Za側が凹となるように(裏面Zb側に凸となるように)、撓んでしまう可能性がある。特に、伝熱板1の表面Zaに示す地点a〜地点jのうち、伝熱板1の四隅に係る地点a,c,f,hにおいては、その反りの影響が顕著に現れる傾向がある。なお、地点jは、伝熱板1の中心地点を示し、地点b,d,e,gは、ベース部材2の各辺の中間地点を示す。また、伝熱板1の表面Zaに示す地点a〜地点jに対応する裏面Zbの各点を地点a’〜j’とする。また、伝熱板1の地点aから地点f方向を縦方向、地点aから地点c方向を横方向とする。   Here, FIG. 7 is a perspective view of the heat transfer plate 1 after the joining step of the present embodiment. The heat transfer plate 1 has a plasticized region W1 formed by a joining process. In the present embodiment, by arranging the cooling plate 60 on the back side of the base member 2, it is possible to reduce warpage and bending of the heat transfer plate due to thermal expansion and contraction, but it is difficult to completely eliminate the bending. is there. That is, since the plasticized region W1 shrinks due to thermal contraction, a compressive stress acts from the corner side of the base member 2 toward the center side on the surface Za side of the heat transfer plate 1. Thereby, the heat exchanger plate 1 may bend so that the surface Za side may be concave (so that it may be convex on the back surface Zb side). In particular, among the points a to j shown on the surface Za of the heat transfer plate 1, at the points a, c, f, and h related to the four corners of the heat transfer plate 1, the influence of the warp tends to be noticeable. The point j indicates the center point of the heat transfer plate 1, and the points b, d, e, and g indicate intermediate points on each side of the base member 2. Further, the points on the back surface Zb corresponding to the points a to j indicated on the front surface Za of the heat transfer plate 1 are defined as points a ′ to j ′. Further, the direction from the point a to the point f of the heat transfer plate 1 is the vertical direction, and the direction from the point a to the point c is the horizontal direction.

(5)矯正工程
矯正工程では、伝熱板1(ベース部材2)の裏面Zbから、ベース部材2の表面Za側に引張応力が発生するような曲げモーメントを作用させて、前記した接合工程により形成された伝熱板1の反りを矯正する。矯正工程では、以下に記すプレス矯正、衝打矯正及びロール矯正の三種類の方法からいずれか一以上の方法を選択して行えばよい。まず、プレス矯正について説明する。
(5) Straightening process In the straightening process, a bending moment that generates a tensile stress is applied from the back surface Zb of the heat transfer plate 1 (base member 2) to the surface Za side of the base member 2, and the above-described joining process is performed. The warp of the formed heat transfer plate 1 is corrected. In the correction process, one or more methods may be selected from the following three methods: press correction, impact correction, and roll correction. First, press correction will be described.

(5-1)プレス矯正
前記した接合工程が終了したら、摩擦攪拌で発生したバリを除去するとともに、図8に示すように、伝熱板1の裏面Zbが上方を向くように裏返し、裏面Zbの中心地点j’(図7の(b)参照)に板状の第一補助部材T1を配置する。さらに、伝熱板1の表面Za側の四隅に、板状の第二補助部材T2,T2及び第三補助部材T3,T3を配置する。即ち、第二補助部材T2、第三補助部材T3は、第一補助部材T1を挟んで両側に配置される。第一補助部材T1乃至第三補助部材T3は、プレス矯正を行う際の当て材又は台座となる部材であるとともに、伝熱板1が傷つかないようにするための部材である。第一補助部材T1乃至第三補助部材T3は、伝熱板1よりも軟質の材料であればよく、例えば、アルミニウム合金、硬質ゴム、プラスチック、木材を用いることができる。なお、第一補助部材T1乃至第三補助部材T3は、伝熱板1の力学特性や反りの曲率に応じて、反りとは反対側に撓ませて反りを矯正するのに十分な厚みで設定すればよい。
(5-1) Press Correction When the joining process described above is completed, burrs generated by friction stirring are removed, and as shown in FIG. 8, the heat transfer plate 1 is turned over so that the back surface Zb faces upward, and the back surface Zb The plate-like first auxiliary member T1 is disposed at the center point j ′ (see FIG. 7B). Furthermore, plate-like second auxiliary members T2, T2 and third auxiliary members T3, T3 are arranged at the four corners on the surface Za side of the heat transfer plate 1. That is, the second auxiliary member T2 and the third auxiliary member T3 are disposed on both sides with the first auxiliary member T1 interposed therebetween. The first auxiliary member T1 to the third auxiliary member T3 are members that serve as a contact material or a base when performing press correction, and are members that prevent the heat transfer plate 1 from being damaged. The first auxiliary member T1 to the third auxiliary member T3 may be any material that is softer than the heat transfer plate 1, and for example, aluminum alloy, hard rubber, plastic, and wood can be used. The first auxiliary member T1 to the third auxiliary member T3 are set with a thickness sufficient to correct the warp by bending to the opposite side of the warp according to the mechanical characteristics of the heat transfer plate 1 and the curvature of the warp. do it.

各補助部材を配置したら、図9の(a)及び(b)に示すように、公知のプレス装置Pを用いて、伝熱板1の裏面Zbから押圧する。即ち、第一補助部材T1にプレス装置PのポンチPaを押し当て、所定の押圧力で押圧する。プレス装置Pによって伝熱板1に圧力が加えられると、図9の(a)及び(b)に示すように、第一補助部材T1が伝熱板1を下側に押し、第二補助部材T2及び第三補助部材T3が伝熱板1の両端側を上側に押すため、伝熱板1には曲げモーメントが作用する。この曲げモーメントは伝熱板1の表面Za側に引張応力を発生させるため、伝熱板1が強制的に下側に凸に撓ませられる。   If each auxiliary member is arrange | positioned, as shown to (a) and (b) of FIG. 9, it will press from the back surface Zb of the heat exchanger plate 1 using the well-known press apparatus P. FIG. That is, the punch Pa of the press device P is pressed against the first auxiliary member T1 and pressed with a predetermined pressing force. When pressure is applied to the heat transfer plate 1 by the press device P, as shown in FIGS. 9A and 9B, the first auxiliary member T1 pushes the heat transfer plate 1 downward, and the second auxiliary member Since T2 and the third auxiliary member T3 push both end sides of the heat transfer plate 1 upward, a bending moment acts on the heat transfer plate 1. Since this bending moment generates a tensile stress on the surface Za side of the heat transfer plate 1, the heat transfer plate 1 is forcibly bent downwardly.

プレス装置の押圧力は、伝熱板1の厚みや材料によって適宜設定すればよいが、図9の(b)に示すように、伝熱板1の表面Za側が下に凸となって、表面Zaに引張応力が発生するような曲げモーメントを作用させることが好ましい。   The pressing force of the pressing device may be appropriately set depending on the thickness and material of the heat transfer plate 1, but as shown in FIG. 9B, the surface Za side of the heat transfer plate 1 is convex downward, and the surface It is preferable to apply a bending moment that causes tensile stress to Za.

また、本実施形態では、図10に示すように、中心地点j’だけでなく伝熱板1の裏面Zbの地点b’、地点d’、地点e’及び地点g’付近に対しても押圧を行う。即ち、伝熱板1の裏面Zbにかかる各辺の中間地点である地点b’、地点d’、地点e’及び地点g’を含んだ位置H2〜H5に第一補助部材T1を配置して、プレス装置Pによって押圧を行う。これにより、伝熱板1をバランスよく矯正でき、平坦性をより高めることができる。   Further, in the present embodiment, as shown in FIG. 10, not only the central point j ′ but also the points b ′, d ′, e ′ and g ′ of the back surface Zb of the heat transfer plate 1 are pressed. I do. That is, the first auxiliary member T1 is disposed at positions H2 to H5 including the point b ′, the point d ′, the point e ′, and the point g ′ that are intermediate points between the sides on the back surface Zb of the heat transfer plate 1. Then, pressing is performed by the press device P. Thereby, the heat exchanger plate 1 can be corrected with good balance, and flatness can be further improved.

なお、プレスする位置は、本実施形態では5箇所に設定したが、これに限定されるものではなく、接合工程によって生じる伝熱板1の反りに応じて適宜設定すればよい。   In addition, although the position to press was set to five places in this embodiment, it is not limited to this, What is necessary is just to set suitably according to the curvature of the heat exchanger plate 1 produced by a joining process.

(5-2)衝打矯正
次に、衝打矯正について説明する。衝打矯正については、プレス矯正と近似するため、
具体的な図示は省略する。衝打矯正とは、例えばハンマーなどの衝打具を用いて伝熱板を衝打して、伝熱板に発生した反りを矯正することをいう。衝打矯正は、プレス装置Pに替えてハンマーなどの衝打具で伝熱板1を衝打する点を除いては、プレス矯正と略同等である。
(5-2) Impact correction Next, impact correction will be explained. For impact correction, it approximates press correction.
Specific illustration is omitted. The hit correction means that the heat transfer plate is hit using a hitting tool such as a hammer to correct the warp generated on the heat transfer plate. The impact correction is substantially the same as the press correction except that the heat transfer plate 1 is impacted with an impact tool such as a hammer instead of the press device P.

衝打矯正では、プレス矯正と同様に補助部材を配置した後、図9及び図10を参照するように、伝熱板1の裏面Zbから例えばプラスチックハンマー等の衝打具で伝熱板1を衝打する。伝熱板1を衝打すると、伝熱板1の表面Za側に引張応力を発生させるため、伝熱板1が強制的に下側に凸に撓ませられる(図9の(b)参照)。これにより、伝熱板1の反りを矯正して平坦にすることができる。また、プレス矯正と同様に、必要に応じて伝熱板1の裏面Zbの位置H2〜H5を衝打することで、伝熱板1をバランスよく矯正することができる。   In the impact correction, after the auxiliary members are arranged in the same manner as in the press correction, the heat transfer plate 1 is moved from the rear surface Zb of the heat transfer plate 1 with an impact tool such as a plastic hammer as shown in FIGS. Hit it. When the heat transfer plate 1 is struck, a tensile stress is generated on the surface Za side of the heat transfer plate 1, so that the heat transfer plate 1 is forcibly bent downward (see FIG. 9B). . Thereby, the curvature of the heat exchanger plate 1 can be corrected and made flat. Further, similarly to the press correction, the heat transfer plate 1 can be corrected in a well-balanced manner by hitting the positions H2 to H5 of the back surface Zb of the heat transfer plate 1 as necessary.

衝打矯正は、プレス矯正と比べると、プレス装置等を準備する手間が省けるため、作業を容易に行うことができる。また、衝打矯正は、作業が容易であるため伝熱板1が小さい場合や薄い場合に有効である。なお、衝打矯正を終了した後は、衝打により発生したバリを除去することが好ましい。また、衝打具は、伝熱板1を衝打可能なものであれば、特に種類を問わないが、例えばプラスチックハンマーが好ましい。   The impact correction can be easily performed because it saves time and labor for preparing a press device or the like, compared with the press correction. Further, the impact correction is effective when the heat transfer plate 1 is small or thin because the work is easy. In addition, it is preferable to remove the burr generated by the hit after the hit correction. The hitting tool is not particularly limited as long as it can hit the heat transfer plate 1, but for example, a plastic hammer is preferable.

(5-3)ロール矯正
次に、ロール矯正について説明する。前記した接合工程が終了したら、摩擦攪拌で発生したバリを除去するとともに、伝熱板1の裏面Zbが上方を向くように裏返し、裏面Zbの中心地点j’を含んで縦方向と平行になるように長板形状の第一補助部材T1を配置する。さらに、伝熱板1の表面Za側の縁部において縦方向と平行になるように、長板形状の第二補助部材T2及び第三補助部材T3を配置する。即ち、第二補助部材T2、第三補助部材T3は、第一補助部材T1を挟んで両側に配置される。
(5-3) Roll correction Next, roll correction will be described. When the above-described joining process is completed, burrs generated by friction stirring are removed, and the back surface Zb of the heat transfer plate 1 is turned over so that it faces upward, and is parallel to the vertical direction including the center point j ′ of the back surface Zb. Thus, the long plate-shaped first auxiliary member T1 is arranged. Further, the long plate-shaped second auxiliary member T2 and the third auxiliary member T3 are arranged so as to be parallel to the vertical direction at the edge portion on the surface Za side of the heat transfer plate 1. That is, the second auxiliary member T2 and the third auxiliary member T3 are disposed on both sides with the first auxiliary member T1 interposed therebetween.

そして、第一補助部材T1の上側に、第一補助部材T1と直交するようにロールR1を配置し、第二補助部材T2,T3の下側に第二補助部材T2及び第三補助部材T3と直交するようにロールR2を配置する。つまり、伝熱板1は、図11の(b)に示すように、上側に凸の状態でロールR1,R2の間に配置され、第一補助部材T1乃至第三補助部材T3を介してロールR1,R2に狭持される。   And roll R1 is arrange | positioned so that it may orthogonally cross with 1st auxiliary member T1 above 1st auxiliary member T1, 2nd auxiliary member T2 and 3rd auxiliary member T3 below 2nd auxiliary member T2, T3, Roll R2 is arrange | positioned so that it may orthogonally cross. That is, as shown in FIG. 11B, the heat transfer plate 1 is disposed between the rolls R1 and R2 so as to protrude upward, and rolls via the first auxiliary member T1 to the third auxiliary member T3. It is held between R1 and R2.

第一補助部材T1乃至第三補助部材T3は、ロール矯正を行う際の当て材であるとともに、伝熱板1が傷つかないようにするための部材である。第一補助部材T1乃至第三補助部材T3は、伝熱板1よりも軟質の材料であればよく、例えば、アルミニウム合金、硬質ゴム、プラスチック、木材を用いることができる。   The first auxiliary member T <b> 1 to the third auxiliary member T <b> 3 are members for preventing the heat transfer plate 1 from being damaged as well as a contact material when performing roll correction. The first auxiliary member T1 to the third auxiliary member T3 may be any material that is softer than the heat transfer plate 1, and for example, aluminum alloy, hard rubber, plastic, and wood can be used.

ここで、ロールR1,R2が互いに近づいて伝熱板1に圧力を加えると、図11の(b)及び(c)に示すように、第一補助部材T1が伝熱板1を下側に押し、第二補助部材T2及び第三補助部材T3が伝熱板1の両端側を上側に押すため、伝熱板1には曲げモーメントが作用する。この曲げモーメントは伝熱板1の表面Za側に引張応力を発生させるため、伝熱板1が強制的に下側に凸に撓ませられる。   Here, when the rolls R1 and R2 approach each other and apply pressure to the heat transfer plate 1, the first auxiliary member T1 moves the heat transfer plate 1 downward as shown in FIGS. 11B and 11C. Since the second auxiliary member T2 and the third auxiliary member T3 push the both end sides of the heat transfer plate 1 upward, a bending moment acts on the heat transfer plate 1. Since this bending moment generates a tensile stress on the surface Za side of the heat transfer plate 1, the heat transfer plate 1 is forcibly bent downwardly.

また、図11の(a)に示すように、ロールR1が矢印α方向に回転するとともに、ロールR2が矢印β方向に回転すると、ロールR1,R2は伝熱板1に対して矢印γ方向(ロール送り方向)に相対的に移動する。また、ロールR1が矢印β方向に回転するとともにロールR2が矢印α方向に回転すると、ロールR1,R2は伝熱板1に対して矢印δ方向(ロール送り方向)に相対的に移動する。   11A, when the roll R1 rotates in the direction of the arrow α and the roll R2 rotates in the direction of the arrow β, the rolls R1 and R2 are in the direction of the arrow γ with respect to the heat transfer plate 1 ( Moves relatively in the roll feed direction). When the roll R1 rotates in the arrow β direction and the roll R2 rotates in the arrow α direction, the rolls R1 and R2 move relative to the heat transfer plate 1 in the arrow δ direction (roll feed direction).

したがって、伝熱板1に作用する曲げモーメントの位置が、その相対的な移動に伴って遷移していくため、伝熱板1の全体が強制的に下側に凸に撓まされる。そのため、この相対的な移動を繰り返して往復動させることによって、反りを矯正していくことが可能になる。なお、第一補助部材T1乃至第三補助部材T3は、伝熱板1の力学特性や反りの曲率に応じて、反りとは反対側に撓ませて反りを矯正するのに十分な厚みで設定すればよい。   Therefore, since the position of the bending moment acting on the heat transfer plate 1 changes with the relative movement, the entire heat transfer plate 1 is forcibly bent downward. Therefore, it is possible to correct the warp by repeatedly reciprocating this relative movement. The first auxiliary member T1 to the third auxiliary member T3 are set with a thickness sufficient to correct the warp by bending to the opposite side of the warp according to the mechanical characteristics of the heat transfer plate 1 and the curvature of the warp. do it.

また、伝熱板1の縦方向にロールR1,R2を回転させて矯正工程を行なった後、横方向にロールR1,R2を回転させてもよい。即ち、第一補助部材T1乃至第三補助部材T3を横方向と平行になるように配置するとともに、第一補助部材T1乃至第三補助部材T3に対して直交するようにロールR1,R2を配置する。そして、ロールR1,R2を横方向に往復動させる。これにより、伝熱板1をバランスよく矯正することができる。   Alternatively, the rolls R1 and R2 may be rotated in the vertical direction of the heat transfer plate 1 to perform the correction process, and then the rolls R1 and R2 may be rotated in the horizontal direction. That is, the first auxiliary member T1 to the third auxiliary member T3 are arranged so as to be parallel to the lateral direction, and the rolls R1, R2 are arranged so as to be orthogonal to the first auxiliary member T1 to the third auxiliary member T3. To do. And roll R1, R2 is reciprocated to a horizontal direction. Thereby, the heat exchanger plate 1 can be corrected with sufficient balance.

また、ここでは、伝熱板1の裏面Zbを上にして、歪矯正工程を行うものとして説明したが、裏返さずに表面Zaを上にして歪矯正工程を行うようにしてもよい。この場合、前記した各構成部品は、表裏対称に表れるため、説明を省略する。   In addition, here, the description has been made on the assumption that the back surface Zb of the heat transfer plate 1 is up and the distortion correction process is performed, but the distortion correction process may be performed with the surface Za up without turning over. In this case, since each component described above appears symmetrically, description thereof is omitted.

(6)焼鈍工程
焼鈍工程では、伝熱板1を焼鈍することにより、伝熱板1の内部応力を除去する。本実施形態では、伝熱板1を図示しない焼鈍炉に挿入して塑性化領域W1に残留する内部応力を除去する。これにより、伝熱板1の内部応力を除去することができ、伝熱板1の使用時の変形を防止することができる。なお、焼鈍方法については、特に限定されるものではなく、例えば、熱媒体用管20に、例えばマイクロヒーターを通電させて焼鈍を行ってもよい。
(6) Annealing Step In the annealing step, the internal stress of the heat transfer plate 1 is removed by annealing the heat transfer plate 1. In the present embodiment, the heat transfer plate 1 is inserted into an annealing furnace (not shown) to remove the internal stress remaining in the plasticizing region W1. Thereby, the internal stress of the heat exchanger plate 1 can be removed, and the deformation | transformation at the time of use of the heat exchanger plate 1 can be prevented. In addition, it does not specifically limit about the annealing method, For example, you may energize the pipe | tube 20 for heat media, for example by supplying with electricity a micro heater.

以上説明した第一実施形態に係る伝熱板の製造方法によれば、接合工程を行う際に、ベース部材2の裏側に冷却板60を配置させて冷却しながら摩擦攪拌を行うため、熱収縮による伝熱板の反りや撓みを防止することができる。また、冷却板60を用いることで、水などの熱媒体の管理が容易になるため、比較的容易に接合作業を行うことができる。また、冷却板60は、ベース部材2よりも一回り大きく形成しているため伝熱板1を安定して載置することができる。これにより、接合工程に係る摩擦攪拌接合を安定して行うことができる。また、熱媒体用管62を冷却板60の全体にバランスよく埋設することで、伝熱板1を均一に冷却することができる。   According to the method for manufacturing a heat transfer plate according to the first embodiment described above, when performing the joining process, the cooling plate 60 is disposed on the back side of the base member 2 and the friction stir is performed while cooling, so that heat shrinkage occurs. It is possible to prevent warping and bending of the heat transfer plate. Further, by using the cooling plate 60, management of a heat medium such as water is facilitated, so that the joining operation can be performed relatively easily. Moreover, since the cooling plate 60 is formed slightly larger than the base member 2, the heat transfer plate 1 can be placed stably. Thereby, the friction stir welding which concerns on a joining process can be performed stably. Further, the heat transfer plate 1 can be uniformly cooled by embedding the heat medium pipe 62 in the entire cooling plate 60 in a balanced manner.

また、接合工程による熱収縮によって伝熱板1が撓んでしまったとしても、前記した矯正工程を行って、伝熱板1の表面Za側に引張応力が発生するような曲げモーメントを作用させる。これにより、裏面Zb側に凸となる反りを矯正することができるため、伝熱板1の平坦性を高めることができる。また、伝熱板1よりも硬度の低い第一補助部材T1乃至第三補助部材T3を用いることで、伝熱板1を傷つけることなく矯正作業を行うことができる。   Further, even if the heat transfer plate 1 is bent due to heat shrinkage due to the joining process, the above-described correction process is performed to apply a bending moment that generates a tensile stress on the surface Za side of the heat transfer plate 1. Thereby, since the curvature which becomes convex on the back surface Zb side can be corrected, the flatness of the heat exchanger plate 1 can be improved. Further, by using the first auxiliary member T1 to the third auxiliary member T3 having a hardness lower than that of the heat transfer plate 1, the correction work can be performed without damaging the heat transfer plate 1.

[第二実施形態]
第二実施形態に係る伝熱板の製造方法は、図12に示すように、伝熱板21において、熱媒体用管20の周囲に形成される空隙部22に塑性流動材が流入されている点で第一実施形態と相違する。即ち、図1の(b)に示すように、第一実施形態においては、接合工程で摩擦攪拌を行ったとしても、熱媒体用管20の周囲に空隙が形成されてしまう。そこで、第二実施形態に示すように、熱媒体用管20の周囲に形成された空隙部22に塑性流動材を流入させて、当該空隙部22を埋めてもよい。なお、第一実施形態と共通する部分は説明を省略する。
[Second Embodiment]
In the heat transfer plate manufacturing method according to the second embodiment, as shown in FIG. 12, in the heat transfer plate 21, the plastic fluidized material is introduced into the gap portion 22 formed around the heat medium pipe 20. This is different from the first embodiment. That is, as shown in FIG. 1B, in the first embodiment, even if friction stirring is performed in the joining step, a gap is formed around the heat medium pipe 20. Therefore, as shown in the second embodiment, the gap 22 may be filled by flowing a plastic fluid into the gap 22 formed around the heat medium pipe 20. Note that description of parts common to the first embodiment is omitted.

即ち、伝熱板21に係る蓋溝3及び蓋板10は、第一実施形態よりも幅狭に形成されている。そして、接合工程では、ベース部材2の裏側に冷却板60を配置した状態で、接合用回転ツールFを熱媒体用管20に近接させるように摩擦攪拌を行い、金属部材を塑性流動化させた塑性流動材を空隙部22に流入させる。これにより、熱媒体用管20の周囲に形成される空隙部22が塑性流動材(金属部材)で埋まるため、伝熱板21の熱交換効率を高めることができる。   That is, the lid groove 3 and the lid plate 10 related to the heat transfer plate 21 are formed narrower than the first embodiment. In the joining step, frictional stirring is performed so that the joining rotary tool F is brought close to the heat medium pipe 20 in a state where the cooling plate 60 is disposed on the back side of the base member 2 to plastically fluidize the metal member. The plastic fluid material is caused to flow into the gap portion 22. Thereby, since the space | gap part 22 formed in the circumference | surroundings of the pipe | tube 20 for heat media is filled with a plastic fluid material (metal member), the heat exchange efficiency of the heat exchanger plate 21 can be improved.

また、このようにして形成された伝熱板21に対しても、前記したようにプレス矯正、衝打矯正又はロール矯正を行うことにより、伝熱板21に生じる反りを矯正することができる。なお、空隙部22に塑性流動材をどの程度流動させるかは、接合用回転ツールFの大きさや押込み量、蓋溝3及び蓋板10の形状に応じて適宜設定すればよい。   Moreover, the warp generated in the heat transfer plate 21 can be corrected by performing the press correction, the hitting correction, or the roll correction as described above on the heat transfer plate 21 thus formed. In addition, what is necessary is just to set suitably how much a plastic fluid material is made to flow into the space | gap part 22 according to the magnitude | size of the rotation tool F for joining, the pushing amount, and the shape of the cover groove | channel 3 and the cover board 10. FIG.

[第三実施形態]
第三実施形態に係る伝熱板の製造方法は、図13に示すように、蓋板33が平面視U字状を呈する点及び冷却板37の流路39も平面視U字状を呈する点で第一実施形態と相違する。
[Third embodiment]
As shown in FIG. 13, the manufacturing method of the heat transfer plate according to the third embodiment is such that the cover plate 33 has a U shape in plan view and the flow path 39 of the cooling plate 37 also has a U shape in plan view. This is different from the first embodiment.

図13の(a)は、第三実施形態に係る伝熱板及び冷却板を示した斜視図であり、(b)は、(a)のII−II線断面図である。伝熱板31は、図13の(a)及び(b)に示すように、ベース部材32と、ベース部材32の蓋溝34に挿入された蓋板33とを有する。   (A) of FIG. 13 is the perspective view which showed the heat exchanger plate and cooling plate which concern on 3rd embodiment, (b) is the II-II sectional view taken on the line of (a). As shown in FIGS. 13A and 13B, the heat transfer plate 31 includes a base member 32 and a lid plate 33 inserted into the lid groove 34 of the base member 32.

ベース部材32は、平板状を呈し、平面視U字状を呈するように断面視矩形の蓋溝34が凹設されている。さらに蓋溝34の中央には、蓋溝34に沿って平面視U字状を呈するように断面視矩形の凹溝35が形成されている。蓋板33は、蓋溝34の断面形状と同等の断面形状を呈し、平面視U字状を呈する。これにより、蓋溝34に蓋板33を挿入すると、凹溝35と蓋板33の下面とで断面視矩形の中空部36が形成される。ベース部材32及び蓋板33は、本実施形態では例えば銅で形成されている。   The base member 32 has a flat plate shape, and is provided with a lid groove 34 having a rectangular cross-sectional view so as to have a U-shape in plan view. Further, a concave groove 35 having a rectangular cross-sectional view is formed at the center of the lid groove 34 so as to exhibit a U shape in plan view along the lid groove 34. The cover plate 33 has a cross-sectional shape equivalent to the cross-sectional shape of the cover groove 34 and has a U-shape in plan view. Accordingly, when the lid plate 33 is inserted into the lid groove 34, a hollow portion 36 having a rectangular shape in cross section is formed by the concave groove 35 and the lower surface of the lid plate 33. In this embodiment, the base member 32 and the cover plate 33 are made of copper, for example.

冷却板37は、図13の(a)に示すように、平板38と、平板38に形成された流路39とを有する。流路39は、断面視円形であるとともに平面視U字状を呈する。凹溝35の平面形状と、流路39の平面形状とは略同等に形成されている。即ち、摩擦攪拌を行う突合部J1,J2に沿って流路39が形成されている。平板38は、アルミニウム合金製であって、伝熱板31よりも一回り大きく形成されている。   As shown in FIG. 13A, the cooling plate 37 includes a flat plate 38 and a channel 39 formed in the flat plate 38. The flow path 39 is circular in cross section and has a U shape in plan view. The planar shape of the concave groove 35 and the planar shape of the flow path 39 are formed substantially the same. That is, the flow path 39 is formed along the abutting portions J1 and J2 for performing frictional stirring. The flat plate 38 is made of an aluminum alloy and is formed to be slightly larger than the heat transfer plate 31.

次に、第三実施形態に伝熱板の製造方法について説明する。第三実施形態に係る伝熱板の製造方法は、(1)溝形成工程、(2)蓋溝閉塞工程、(3)接合工程、(4)矯正工程、(5)焼鈍工程を含むものである。   Next, the manufacturing method of a heat exchanger plate is demonstrated to 3rd embodiment. The manufacturing method of the heat exchanger plate according to the third embodiment includes (1) groove forming step, (2) lid groove closing step, (3) joining step, (4) straightening step, and (5) annealing step.

(1)溝形成工程
溝形成工程では、図13の(b)に示すように、ベース部材32の表面に、所定の幅及び深さで蓋溝34及び凹溝35を形成する。
(1) Groove Forming Step In the groove forming step, as shown in FIG. 13B, the lid groove 34 and the concave groove 35 are formed on the surface of the base member 32 with a predetermined width and depth.

(2)蓋溝閉塞工程
蓋溝閉塞工程では、蓋溝34に蓋板33を配置して蓋溝34を閉塞する。これにより、凹溝35と蓋板33の下面とに囲まれて中空部36が形成される。ここで、蓋溝34と蓋板33との突合せ部において、蓋溝34と蓋板33の内縁とで突き合わされた部分を突合部J1とし、蓋溝34と蓋板33の外縁とで突き合わされた部分を突合部J2とする。
(2) Lid groove closing step In the lid groove closing step, the lid plate 33 is disposed in the lid groove 34 to close the lid groove 34. Thereby, a hollow portion 36 is formed surrounded by the concave groove 35 and the lower surface of the lid plate 33. Here, in the abutting portion between the lid groove 34 and the lid plate 33, a portion abutted between the lid groove 34 and the inner edge of the lid plate 33 is referred to as an abutting portion J <b> 1. This portion is referred to as a butt portion J2.

(3)接合工程
接合工程では、図14に示すように、冷却板37をベース部材32の裏側に配置した状態で、突合部J1,J2に沿って接合用回転ツールFを用いて摩擦攪拌接合を行う。つまり、冷却板37の流路39が、凹溝35の下方に位置するように冷却板37を配置して、流路39に熱媒体(水)を流しながら摩擦攪拌を行う。接合工程によって、突合部J1,J2に沿って塑性化領域W1が形成される。
(3) Joining Step In the joining step, as shown in FIG. 14, friction stir welding is performed using the joining rotary tool F along the abutting portions J1 and J2 with the cooling plate 37 disposed on the back side of the base member 32. I do. That is, the cooling plate 37 is disposed so that the flow path 39 of the cooling plate 37 is positioned below the concave groove 35, and friction stirring is performed while flowing the heat medium (water) through the flow path 39. By the joining process, the plasticized region W1 is formed along the abutting portions J1 and J2.

なお、(4)矯正工程、(5)焼鈍工程においては、第一実施形態と略同等であるため、詳細な説明は省略する。   In addition, since (4) correction process and (5) annealing process are substantially equivalent to 1st embodiment, detailed description is abbreviate | omitted.

以上説明した第三実施形態に係る伝熱板31の製造方法によれば、冷却板37に形成された流路39の平面形状を、凹溝35の平面形状と略同等となるように形成した。即ち、摩擦攪拌接合のルートに沿って、冷却板37の流路39を形成したため、接合工程の際の冷却効率をより高めることができる。   According to the manufacturing method of the heat transfer plate 31 according to the third embodiment described above, the planar shape of the flow path 39 formed in the cooling plate 37 is formed to be substantially the same as the planar shape of the concave groove 35. . That is, since the flow path 39 of the cooling plate 37 is formed along the friction stir welding route, the cooling efficiency in the joining process can be further increased.

なお、本実施形態では、凹溝35の平面形状と流路39の平面形状とが略同一となるように形成したが、これに限定されるものではなく、両者の形状が平面視して略相似形状となるように形成してもよい。これにより、摩擦攪拌接合の接合ルートに沿って熱媒体(水)を流すことができるため、冷却効率を高めることができる。また、流路39に熱媒体用管を挿入して、当該熱媒体用管に熱媒体を流してもよい。また、流路39に熱媒体を流すとともに、伝熱板31の中空部36に熱媒体(水)を流しながら、接合工程を行ってもよい。これにより、伝熱板31の冷却効率をより一層高めることができる。   In the present embodiment, the planar shape of the concave groove 35 and the planar shape of the flow path 39 are formed so as to be substantially the same. However, the present invention is not limited to this, and both shapes are substantially in plan view. You may form so that it may become a similar shape. Thereby, since a heat medium (water) can be flowed along the joining route of friction stir welding, cooling efficiency can be improved. Alternatively, a heat medium pipe may be inserted into the flow path 39 so that the heat medium flows through the heat medium pipe. Further, the joining process may be performed while flowing the heat medium through the flow path 39 and flowing the heat medium (water) through the hollow portion 36 of the heat transfer plate 31. Thereby, the cooling efficiency of the heat exchanger plate 31 can be further improved.

[第四実施形態]
次に、本発明の第四実施形態について説明する。前記した第一実施形態においては、蓋板10の両側面に沿ってそれぞれ摩擦攪拌を行うことで、塑性化領域W1,W1のように、二条の塑性化領域が形成されるようにして伝熱板を形成したが、第四実施形態のように、蓋板の幅を小さく設定して、一条の塑性化領域のみが形成されるようにして伝熱板を形成してもよい。
[Fourth embodiment]
Next, a fourth embodiment of the present invention will be described. In the first embodiment described above, by conducting frictional stirring along both side surfaces of the cover plate 10, heat transfer is performed so that two plasticized regions are formed as in the plasticized regions W1 and W1. Although the plate is formed, as in the fourth embodiment, the heat transfer plate may be formed by setting the width of the cover plate to be small so that only one line of plasticized region is formed.

第四実施形態に係る伝熱板の製造方法は、図15に示すように、伝熱板41において、平面視正方形の板厚のベース部材2と、ベース部材2に凹設された溝に挿入された熱媒体用管20と、ベース部材2に凹設された溝に挿入された蓋板42と、を主に備えている。蓋板42の上面は、一条の摩擦攪拌によって接合されている。   As shown in FIG. 15, the heat transfer plate manufacturing method according to the fourth embodiment is inserted into a base member 2 having a square plate thickness in plan view and a groove recessed in the base member 2 in the heat transfer plate 41. The heat medium pipe 20 and the cover plate 42 inserted in the groove formed in the base member 2 are mainly provided. The upper surface of the cover plate 42 is joined by a single friction stir.

図16及び図17に示すように、ベース部材2の表面Zaには、ベース部材2の一方の側面Zcから対向する他方の側面Zdまで連続して形成された凹溝43が形成されている。凹溝43は、熱媒体用管20及び蓋板42が挿入される部分である。凹溝43は、断面視U字状、平面視蛇行状を呈するように形成されている。図17に示すように、凹溝43の側壁43a,43b間の幅A’は、熱媒体用管20の外径と略同等に形成されている。また、凹溝43の幅A’は、接合用回転ツールFのショルダ部F1の外径Xよりも小さく形成されている。凹溝43の深さは、深さC’で形成されている。 As shown in FIGS. 16 and 17, the surface Za of the base member 2 is formed with a concave groove 43 that is continuously formed from one side surface Zc of the base member 2 to the other side surface Zd facing the base member 2. The concave groove 43 is a portion into which the heat medium pipe 20 and the lid plate 42 are inserted. The concave groove 43 is formed so as to have a U-shape in a sectional view and a meandering shape in a plan view. As shown in FIG. 17, the width A ′ between the side walls 43 a and 43 b of the concave groove 43 is formed to be approximately equal to the outer diameter of the heat medium pipe 20. The width A of the groove 43 'is formed smaller than the outer diameter X 1 of the shoulder portion F1 of the joining rotation tool F. The depth of the concave groove 43 is formed with a depth C ′.

熱媒体用管20は、凹溝43に挿入される管であって、ベース部材2の一方の側面Zcから他方の側面Zdまで貫通して形成されている。熱媒体用管20は、平面視蛇行状を呈し、凹溝43の平面形状と略同等の形状を呈する。   The heat medium pipe 20 is a pipe inserted into the concave groove 43 and is formed so as to penetrate from one side surface Zc of the base member 2 to the other side surface Zd. The heat medium pipe 20 has a meandering shape in plan view, and has a shape substantially equivalent to the planar shape of the groove 43.

蓋板42は、図16及び図17に示すように、断面視矩形、平面視蛇行状を呈する部材であって凹溝43に挿入される部材である。蓋板42は、側面42a,42b及び上面42c、下面42dを備えている。蓋板42の高さと熱媒体用管20の外径との和は、凹溝43の深さC’と略同等に形成されている。また、蓋板42の幅は、凹溝43の幅A’と略同等に形成されている。したがって、熱媒体用管20及び蓋板42を凹溝43に挿入すると、蓋板42の上面42cとベース部材2の表面Zaとが面一になるとともに、蓋板42の側面42a,42bは、凹溝43の側壁43a,43bとそれぞれ面接触するか又は微細な隙間をあけて対向する。   As shown in FIGS. 16 and 17, the cover plate 42 is a member that has a rectangular cross-sectional view and a meandering shape in plan view, and is a member that is inserted into the concave groove 43. The lid plate 42 includes side surfaces 42a and 42b, an upper surface 42c, and a lower surface 42d. The sum of the height of the cover plate 42 and the outer diameter of the heat medium pipe 20 is formed substantially equal to the depth C ′ of the concave groove 43. Further, the width of the lid plate 42 is formed substantially equal to the width A ′ of the concave groove 43. Therefore, when the heat medium tube 20 and the lid plate 42 are inserted into the concave groove 43, the upper surface 42c of the lid plate 42 and the surface Za of the base member 2 are flush with each other, and the side surfaces 42a and 42b of the lid plate 42 are The side walls 43a and 43b of the concave groove 43 are in surface contact with each other or face each other with a fine gap.

次に、第四実施形態に係る製造方法について説明する。
第四実施形態に係る伝熱板の製造方法は、(1)溝形成工程、(2)熱媒体用管挿入工程、(3)蓋板挿入工程、(4)接合工程、(5)矯正工程、(6)焼鈍工程を含むものである。
Next, a manufacturing method according to the fourth embodiment will be described.
The manufacturing method of the heat transfer plate according to the fourth embodiment includes (1) groove forming step, (2) heat medium tube inserting step, (3) lid plate inserting step, (4) joining step, and (5) straightening step. (6) An annealing process is included.

(1)溝形成工程
溝形成工程では、図16及び図17に示すように、ベース部材2の表面Zaに所定の幅及び深さで凹溝43を形成する。溝形成工程は、例えば、公知のエンドミル等を用いて行う。
(1) Groove Forming Step In the groove forming step, as shown in FIGS. 16 and 17, the concave groove 43 is formed on the surface Za of the base member 2 with a predetermined width and depth. The groove forming step is performed using, for example, a known end mill.

(2)熱媒体用管挿入工程
熱媒体用管挿入工程では、図16及び図17に示すように、溝形成工程で形成された凹溝43に熱媒体用管20を挿入する。
(2) Heat medium tube insertion step In the heat medium tube insertion step, as shown in FIGS. 16 and 17, the heat medium tube 20 is inserted into the concave groove 43 formed in the groove formation step.

(3)蓋板挿入工程
蓋板挿入工程では、図16及び図17に示すように、凹溝43に蓋板42を挿入して凹溝43を閉塞する。ここで、凹溝43と蓋板42との突き合わせ面において、凹溝43の一方の側壁43aと、蓋板42の一方の側面42aとで突き合わされた部分を「突合部J3」とし、凹溝43の他方の側壁43bと、蓋板42の他方の側面42bとで突き合わされた部分を「突合部J4」とする。
(3) Lid Plate Inserting Step In the lid plate inserting step, as shown in FIGS. 16 and 17, the lid plate 42 is inserted into the concave groove 43 to close the concave groove 43. Here, in the abutting surface between the concave groove 43 and the cover plate 42, a portion where the one side wall 43 a of the concave groove 43 and the one side surface 42 a of the lid plate 42 are abutted is referred to as “abutting portion J <b> 3”. A portion that is abutted by the other side wall 43b of 43 and the other side surface 42b of the cover plate 42 is referred to as a “butting portion J4”.

(4)接合工程
接合工程では、図18に示すように、ベース部材2の裏側に冷却板60を配置した状態で、蓋板42(凹溝43)に沿って接合用回転ツールFを用いて摩擦攪拌を行う。接合工程は、本実施形態ではタブ材を配置するタブ材配置工程と、摩擦攪拌を行う接合工程とを含む。なお、冷却板60は、第一実施形態と同等のものを用いる。
(4) Joining Step In the joining step, as shown in FIG. 18, with the cooling plate 60 disposed on the back side of the base member 2, the joining rotary tool F is used along the lid plate 42 (concave groove 43). Friction stirring is performed. In the present embodiment, the joining process includes a tab material arranging process for arranging the tab material, and a joining process for performing frictional stirring. The cooling plate 60 is the same as that in the first embodiment.

タブ材配置工程では、図18の(a)に示すように、ベース部材2の一方の側面Zc及び他方の側面Zdに一対のタブ材48,49をそれぞれ配置する。タブ材48,49とベース部材2とは溶接によって仮接合する。   In the tab material arranging step, as shown in FIG. 18A, a pair of tab materials 48 and 49 are arranged on one side surface Zc and the other side surface Zd of the base member 2, respectively. The tab members 48 and 49 and the base member 2 are temporarily joined by welding.

接合工程では、図18の(a)及び(b)に示すように、冷却板60の熱媒体用管62に熱媒体(水)を流した状態で、蓋板42(凹溝43)に沿って摩擦攪拌を行う。即ち、タブ材48に設定した開始位置SM4に接合用回転ツールFを押し込んで、ショルダ部F1がベース部材2に接触したら、蓋板42に沿って接合用回転ツールFを相対移動させ、タブ材49に設定した終了位置EM4まで連続して摩擦攪拌を行う。 In the joining step, as shown in FIGS. 18A and 18B, the heat medium (water) flows through the heat medium pipe 62 of the cooling plate 60 along the cover plate 42 (concave groove 43). And friction stir. That is, when the joining rotary tool F is pushed into the start position SM4 set on the tab member 48 and the shoulder portion F1 contacts the base member 2, the joining rotary tool F is relatively moved along the cover plate 42, and the tab Friction stirring is continuously performed up to the end position E M4 set for the material 49.

図18の(b)に示すように、接合用回転ツールFのショルダ部F1の外径Xは、凹溝43の幅A’よりも大きく設定しているため、蓋板42の幅方向の中心に沿って接合用回転ツールFを移動させると、突合部J3,J4が塑性化される。このように、本実施形態によれば、一のルートを設定するだけで、突合部J3,J4を摩擦攪拌することができるため、第一実施形態に比べて作業手間を大幅に省略することができる。また、摩擦攪拌を行う際に、接合用回転ツールFが蓋板42を押し込むため、熱媒体用管20も押圧されて凹溝43と熱媒体用管20とを密接させることができる。これにより、熱媒体用管20の周囲に形成される空隙部22を低減することができるため、伝熱板41の熱交換効率を高めることができる。なお、接合工程が終了したら、ベース部材2からタブ材を切除する。 As shown in (b) of FIG. 18, the outer diameter X 1 of the shoulder portion F1 of the joining rotation tool F is, since the set larger than the width A 'of the groove 43, the width direction of the cover plate 42 When the joining rotary tool F is moved along the center, the abutting portions J3 and J4 are plasticized. As described above, according to the present embodiment, it is possible to friction stir the abutting portions J3 and J4 only by setting one route, so that it is possible to greatly reduce the work labor compared to the first embodiment. it can. Further, when the friction stir is performed, the joining rotary tool F pushes the cover plate 42, so that the heat medium pipe 20 is also pressed, and the concave groove 43 and the heat medium pipe 20 can be brought into close contact with each other. Thereby, since the space | gap part 22 formed in the circumference | surroundings of the pipe | tube 20 for heat media can be reduced, the heat exchange efficiency of the heat exchanger plate 41 can be improved. When the joining process is completed, the tab material is cut out from the base member 2.

ここで図19は、本実施形態の本接合工程後を示した伝熱板41を示した斜視図である。本実施形態では、冷却板60をベース部材2の裏側に配置させることで、熱膨張及び熱収縮による伝熱板の反りや撓みを小さくすることができるが、撓みを完全になくすことは困難である。即ち、接合工程によって形成された塑性化領域W3は、熱収縮によって縮むため、伝熱板41が表面Za側に凹状となるように反って撓んでしまう可能性がある。特に、伝熱板41の表面Zaに示す地点a〜地点jのうち、伝熱板41の四隅に係る地点a,c,f,hに関しては、その反りが顕著に見られる傾向がある。なお、地点jは、伝熱板41の中心地点を示す。   FIG. 19 is a perspective view showing the heat transfer plate 41 after the main joining process of the present embodiment. In the present embodiment, by arranging the cooling plate 60 on the back side of the base member 2, it is possible to reduce warpage and bending of the heat transfer plate due to thermal expansion and contraction, but it is difficult to completely eliminate the bending. is there. That is, since the plasticized region W3 formed by the joining process contracts due to thermal contraction, the heat transfer plate 41 may be warped and bent so as to be concave on the surface Za side. In particular, among the points a to j shown on the surface Za of the heat transfer plate 41, the points a, c, f, and h at the four corners of the heat transfer plate 41 tend to be noticeably warped. Note that the point j indicates the center point of the heat transfer plate 41.

(5)矯正工程
矯正工程は、前記した接合工程で発生した反りを解消するために行う工程である。矯正工程は、第一実施形態で示したプレス矯正、衝打矯正又はロール矯正のいずれかを行えばよいため、説明を省略する。
(5) Straightening process The straightening process is a process performed in order to eliminate the warp generated in the joining process described above. The correction process may be performed by any one of the press correction, the hitting correction, and the roll correction shown in the first embodiment, and thus description thereof is omitted.

(6)焼鈍工程
焼鈍工程では、伝熱板41を焼鈍することにより、伝熱板41の内部応力を除去する。本実施形態では、伝熱板41を焼鈍炉に挿入して焼鈍を行う。これにより、伝熱板41の内部応力を除去することができ、伝熱板41の使用時の変形を防止することができる。
(6) Annealing Step In the annealing step, the internal stress of the heat transfer plate 41 is removed by annealing the heat transfer plate 41. In the present embodiment, the heat transfer plate 41 is inserted into an annealing furnace for annealing. Thereby, the internal stress of the heat-transfer plate 41 can be removed, and the deformation | transformation at the time of use of the heat-transfer plate 41 can be prevented.

以上説明した第四実施形態に係る伝熱板41によれば、接合工程を行う際に、ベース部材2の裏側に冷却板60を配置させて冷却しながら摩擦攪拌を行うため、熱収縮による伝熱板の反りや撓みを防止することができる。また、冷却板を用いることで、水などの熱媒体の管理が容易になるため、比較的容易に接合作業を行うことができる。   According to the heat transfer plate 41 according to the fourth embodiment described above, the cooling plate 60 is disposed on the back side of the base member 2 and the friction stir is performed while cooling when performing the joining process. Warpage and bending of the hot plate can be prevented. Moreover, since the management of the heat medium such as water is facilitated by using the cooling plate, the joining operation can be performed relatively easily.

また、矯正工程を行うことにより、伝熱板41の平坦性を高めることができる。また、本実施形態においては凹溝43を幅狭に形成することにより、一条の摩擦攪拌のみで接合工程を行うことができるため、作業手間を省くことができる。   Moreover, the flatness of the heat-transfer plate 41 can be improved by performing a correction process. Moreover, in this embodiment, since the joining groove | channel can be performed only by one line of friction stirring by forming the concave groove 43 narrowly, an operation | work effort can be saved.

なお、本実施形態においては、伝熱板41の熱媒体用管20に熱媒体(水)を流しながら接合工程を行ってもよい。これにより、冷却効率を高めることができる。また、冷却板60の熱媒体用管62(流路63)の平面形状を、摩擦攪拌接合のルートに沿うように蛇行状に形成してもよい。これにより、伝熱板41の冷却効率をより高めることができる。   In the present embodiment, the joining step may be performed while flowing the heat medium (water) through the heat medium pipe 20 of the heat transfer plate 41. Thereby, cooling efficiency can be improved. Further, the planar shape of the heat medium pipe 62 (flow path 63) of the cooling plate 60 may be formed in a meandering manner along the route of friction stir welding. Thereby, the cooling efficiency of the heat exchanger plate 41 can be improved more.

[第五実施形態]
第五実施形態は、第四実施形態の変形例である。第五実施形態に係る伝熱板の製造方法は、図20に示すように、熱媒体用管を有さない点で第四実施形態と相違する。即ち、第四実施形態において、熱媒体用管を用いずに、凹溝43に直接熱媒体を流動させてもよい。
[Fifth embodiment]
The fifth embodiment is a modification of the fourth embodiment. As shown in FIG. 20, the method for manufacturing a heat transfer plate according to the fifth embodiment is different from the fourth embodiment in that it does not have a heat medium pipe. That is, in the fourth embodiment, the heat medium may be caused to flow directly into the concave groove 43 without using the heat medium pipe.

凹溝43の下部は、円弧上に切り欠かれているため、凹溝43に蓋板42を挿入すると、蓋板42が隙間44をあけて凹溝43に係止される。そして、第四実施形態と同様に、冷却板60をベース部材2の裏側に配置して接合工程を行い、ベース部材2と蓋板42の上部とを摩擦攪拌により一体化させてもよい。蓋板42の上部には、塑性化領域W4が形成される。
このようにして形成された伝熱板51に対しても前記した接合工程及び矯正工程を行うことで伝熱板51の平坦性を高めることができる。
Since the lower portion of the concave groove 43 is cut out on an arc, when the lid plate 42 is inserted into the concave groove 43, the lid plate 42 is engaged with the concave groove 43 with a gap 44. And like 4th embodiment, the cooling plate 60 may be arrange | positioned on the back side of the base member 2, a joining process may be performed, and the base member 2 and the upper part of the cover plate 42 may be integrated by friction stirring. A plasticized region W <b> 4 is formed in the upper part of the lid plate 42.
The flatness of the heat transfer plate 51 can be improved by performing the above-described joining step and correction step on the heat transfer plate 51 formed in this way.

以上、本発明の実施形態について説明したが、本発明の趣旨を逸脱しない範囲において適宜変形が可能である。例えば、本実施形態では、熱媒体用管を平面視略馬蹄状、平面視U字状又は平面視蛇行状に配設したが、これに限定されるものではなく他の形態であってもよい。   Although the embodiments of the present invention have been described above, modifications can be made as appropriate without departing from the spirit of the present invention. For example, in the present embodiment, the heat medium pipes are arranged in a substantially horseshoe shape in plan view, a U shape in plan view, or a meandering shape in plan view, but the present invention is not limited to this and may take other forms. .

次に、本発明の実施例について説明する。実施例においては、同一の構成からなる二つの試験体(第三実施形態に示すバッキングプレート)に対して接合工程を行う際に、一方は鋼板の上に試験体を載せて接合工程を行い、他方は冷却板の上に試験体を載せて接合工程を行い、両者の反り(撓み)について測定した。なお、鋼板の上で接合工程を行う試験を試験1とし、冷却板の上で接合工程を行う試験を試験2とする。   Next, examples of the present invention will be described. In Examples, when performing the joining process on two test bodies having the same configuration (backing plate shown in the third embodiment), one performs the joining process by placing the test body on the steel plate, On the other hand, a test body was placed on the cooling plate to perform a joining process, and the warpage (deflection) of both was measured. In addition, the test which performs a joining process on a steel plate is set to Test 1, and the test which performs a joining process on a cooling plate is set to Test 2.

図21に示すように、試験体201は、ベース部材202と、ベース部材202に凹設された蓋溝204に挿入される蓋板203とからなる。ベース部材202及び蓋板203は、無酸素銅(C1020)を用いる。ベース部材202の長さは3000mm、幅は200mm、高さは20mmで形成されている。また、蓋板203の幅は30mm、厚みは5mmで形成されている。   As shown in FIG. 21, the test body 201 includes a base member 202 and a lid plate 203 that is inserted into a lid groove 204 that is recessed in the base member 202. The base member 202 and the cover plate 203 use oxygen-free copper (C1020). The base member 202 has a length of 3000 mm, a width of 200 mm, and a height of 20 mm. The lid plate 203 has a width of 30 mm and a thickness of 5 mm.

図21の(b)に示すように、ベース部材202に凹設された蓋溝204の底面の中央には、断面視矩形の凹溝205が凹設されている。凹溝205と蓋板203の下面とで中空部が形成される。蓋溝204の幅は30mm、深さは5mmで形成されている。また、凹溝の幅は20mm、深さは9mmで形成されている。接合工程では、一対の突合部J1,J2に沿って接合用回転ツールFを移動させて、摩擦攪拌接合を行う。当該接合工程によって、突合部J1,J2には塑性化領域W,Wが形成される。   As shown in FIG. 21B, a concave groove 205 having a rectangular cross-sectional view is formed in the center of the bottom surface of the cover groove 204 provided in the base member 202. A hollow portion is formed by the recessed groove 205 and the lower surface of the lid plate 203. The lid groove 204 has a width of 30 mm and a depth of 5 mm. The groove has a width of 20 mm and a depth of 9 mm. In the joining step, friction stir welding is performed by moving the joining rotary tool F along the pair of abutting portions J1 and J2. By the joining process, plasticized regions W and W are formed in the abutting portions J1 and J2.

図21の(c)に示すように、接合用回転ツールFは、特殊鋼からなりショルダ部F1と、ショルダ部F1の下端面F11から垂下した攪拌ピンF2とからなる。ショルダ部F1の外径Xは20mm、攪拌ピンF2の長さLは4mm、攪拌ピンF2の基端側の径Xは8mm、先端側の径Xは6mmで形成されている。接合工程では、当該接合用回転ツールFを、回転速度1000rpm、進行速度300mm/minで移動させる。 As shown in FIG. 21 (c), the joining rotary tool F is made of special steel and includes a shoulder portion F1 and a stirring pin F2 suspended from the lower end surface F11 of the shoulder portion F1. Outer diameter X 1 of the shoulder portion F1 is 20 mm, the length L A of the stirring pin F2 4 mm, the diameter X 2 on the base end side of the stirring pin F2 is 8 mm, the diameter X 3 of the tip side is formed at 6 mm. In the joining step, the joining rotary tool F is moved at a rotational speed of 1000 rpm and a traveling speed of 300 mm / min.

なお、図24に示すように、試験2で用いる冷却板37は、前記した第三実施形態に係る冷却板と略同等の形状ものを用いる。冷却板37は、アルミニウム合金(A5052)製である。冷却板37は、試験体201に形成される中空部の平面形状と、冷却板37の流路39の平面形状とが略同等の形状になるように形成されている。冷却板37の長さは3020mm、幅は220mm、高さは55mmで形成されている。また、冷却板37の内部に形成された流路39は、断面視円形であって直径が10mmで形成されている。また、流路39の中心が、冷却板37の下面から15mmに位置するように形成されている。実施例では、流路39に水を流入する。   In addition, as shown in FIG. 24, the cooling plate 37 used in Test 2 has a shape substantially the same as the cooling plate according to the third embodiment described above. The cooling plate 37 is made of an aluminum alloy (A5052). The cooling plate 37 is formed such that the planar shape of the hollow portion formed in the test body 201 and the planar shape of the flow path 39 of the cooling plate 37 are substantially equivalent. The cooling plate 37 has a length of 3020 mm, a width of 220 mm, and a height of 55 mm. The flow path 39 formed inside the cooling plate 37 has a circular shape in cross section and a diameter of 10 mm. The center of the flow path 39 is formed so as to be located 15 mm from the lower surface of the cooling plate 37. In the embodiment, water flows into the flow path 39.

<試験1>
試験1では、試験体201を、図22に示すように、鋼板Uの上に載置して、突合部J1,J2(図21の(b)参照)の全体に亘って摩擦攪拌接合を行った。そして、図23に示すように、鋼板Uからベース部材202の裏面までの高さU1は15mmであった。
<Test 1>
In Test 1, the test body 201 is placed on the steel plate U as shown in FIG. 22, and friction stir welding is performed over the entire abutting portions J1 and J2 (see FIG. 21B). It was. And as shown in FIG. 23, height U1 from the steel plate U to the back surface of the base member 202 was 15 mm.

<試験2>
試験2では、試験体201を、図24に示すように、冷却板37の上に載置して、突合部J1,J2(図21の(b)参照)の全体に亘って摩擦攪拌接合を行った。そして、図25に示すように、水平面からベース部材202の裏面までの高さU2は2mmであった。
<Test 2>
In Test 2, the test body 201 is placed on the cooling plate 37 as shown in FIG. 24, and friction stir welding is performed over the entire abutting portions J1 and J2 (see FIG. 21B). went. And as shown in FIG. 25, height U2 from a horizontal surface to the back surface of the base member 202 was 2 mm.

以上、試験1及び試験2を比較すると、冷却板37の上に試験体201を配置して接合工程を行ったほうが、接合された試験体の反りが非常に小さいことが分かった。   As described above, when the test 1 and the test 2 are compared, it is found that the warpage of the joined test body is much smaller when the test body 201 is arranged on the cooling plate 37 and the joining process is performed.

1 伝熱板
2 ベース部材
3 蓋溝
4 凹溝
10 蓋板
20 熱媒体用管
22 空隙部
60 冷却板
62 (冷却板の)熱媒体用管
63 流路
F 接合用回転ツール
J 突合部
W 塑性化領域
Za 表面
Zb 裏面
DESCRIPTION OF SYMBOLS 1 Heat-transfer plate 2 Base member 3 Lid groove 4 Recessed groove 10 Lid plate 20 Heat medium pipe 22 Cavity part 60 Cooling plate 62 Heat medium pipe (of cooling plate) 63 Flow path F Joining rotary tool J Butt part W Plasticity Area Za surface Zb back surface

Claims (7)

ベース部材の表面側に開口する蓋溝の底面に形成された凹溝に、熱媒体用管を挿入する
熱媒体用管挿入工程と、
前記蓋溝に蓋板を挿入する蓋溝閉塞工程と、
前記蓋溝の側壁と前記蓋板の側面との突合部に沿って接合用回転ツールを相対移動させて摩擦攪拌を行う接合工程と、を含み、
前記接合工程では、前記ベース部材の裏面側に冷却板を備えた状態で摩擦攪拌を行うと
ともに、前記熱媒体用管の周囲に形成された空隙部に、摩擦熱によって流動化された塑性流動材を流入させることを特徴とする伝熱板の製造方法。
A heat medium tube insertion step of inserting a heat medium tube into a concave groove formed in the bottom surface of the lid groove opened on the surface side of the base member;
A lid groove closing step of inserting a lid plate into the lid groove;
A joining step of performing frictional stirring by relatively moving the joining rotary tool along the abutting portion between the side wall of the lid groove and the side surface of the lid plate,
In the joining step, the plastic fluidizing material fluidized by frictional heat in the gap formed around the heat medium pipe while performing frictional stirring with a cooling plate provided on the back side of the base member The manufacturing method of the heat exchanger plate characterized by making it flow in.
ベース部材の表面側に開口する凹溝に、熱媒体用管を挿入する熱媒体用管挿入工程と、
前記凹溝に蓋板を挿入する蓋板挿入工程と、
前記凹溝に沿って接合用回転ツールを相対移動させて摩擦攪拌を行う接合工程と、を含み、
前記接合工程では、前記ベース部材の裏面側に冷却板を備えた状態で摩擦攪拌を行い、前記接合用回転ツールの押圧力によって前記蓋板が前記熱媒体用管の上部を押圧するとともに、前記蓋板の少なくとも上部と前記ベース部材とを摩擦攪拌することを特徴とする伝熱板の製造方法。
A heat medium pipe insertion step of inserting the heat medium pipe into the concave groove opened on the surface side of the base member;
A lid plate insertion step of inserting a lid plate into the concave groove;
A joining step of performing frictional stirring by relatively moving the joining rotary tool along the concave groove,
In the joining step, friction stirring is performed in a state where a cooling plate is provided on the back surface side of the base member, and the lid plate presses the upper part of the heat medium pipe by the pressing force of the joining rotary tool, A method of manufacturing a heat transfer plate, characterized by frictionally stirring at least an upper portion of a cover plate and the base member.
前記接合工程では、前記ベース部材の前記凹溝に挿入された前記熱媒体用管に熱媒体を
流して前記ベース部材及び前記蓋板を冷却しながら摩擦攪拌を行うことを特徴とする請求
項1又は請求項2に記載の伝熱板の製造方法。
2. In the joining step, friction stir is performed while cooling the base member and the lid plate by flowing a heat medium through the heat medium pipe inserted into the concave groove of the base member. Or the manufacturing method of the heat exchanger plate of Claim 2.
前記接合工程では、前記冷却板に形成された流路に熱媒体を流すことにより、この冷却
板を冷却しながら摩擦攪拌を行うことを特徴とする請求項1乃至請求項3のいずれか一項
に記載の伝熱板の製造方法。
4. The friction agitation is performed while cooling the cooling plate by flowing a heat medium through a flow path formed in the cooling plate in the joining step. 5. The manufacturing method of the heat exchanger plate as described in 2.
前記冷却板に形成された前記流路の平面形状は、前記凹溝の平面形状と略同等形状又は
略相似形状に形成されていることを特徴とする請求項4に記載の伝熱板の製造方法。
The planar shape of the flow path formed in the cooling plate is substantially the same as or substantially similar to the planar shape of the concave groove, and the heat transfer plate according to claim 4, Method.
前記接合工程では、前記冷却板に埋設された熱媒体用管に熱媒体を流すことにより、こ
の冷却板を冷却しながら摩擦攪拌を行うことを特徴とする請求項1乃至請求項3のいずれ
か一項に記載の伝熱板の製造方法。
4. In the joining step, friction stir is performed while cooling the cooling plate by flowing a heating medium through a heat medium pipe embedded in the cooling plate. The manufacturing method of the heat exchanger plate as described in one term.
前記冷却板に埋設された前記熱媒体用管の平面形状は、前記凹溝の平面形状と略同等形
状又は略相似形状に形成されていることを特徴とする請求項6に記載の伝熱板の製造方法。
7. The heat transfer plate according to claim 6, wherein a planar shape of the heat medium pipe embedded in the cooling plate is formed to be substantially equivalent to or substantially similar to the planar shape of the concave groove. Manufacturing method.
JP2012146738A 2012-06-29 2012-06-29 Manufacturing method of heat transfer plate Active JP5464236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012146738A JP5464236B2 (en) 2012-06-29 2012-06-29 Manufacturing method of heat transfer plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012146738A JP5464236B2 (en) 2012-06-29 2012-06-29 Manufacturing method of heat transfer plate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008279813A Division JP5401921B2 (en) 2008-10-30 2008-10-30 Manufacturing method of heat transfer plate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013195157A Division JP5590206B2 (en) 2013-09-20 2013-09-20 Manufacturing method of heat transfer plate

Publications (2)

Publication Number Publication Date
JP2012213809A true JP2012213809A (en) 2012-11-08
JP5464236B2 JP5464236B2 (en) 2014-04-09

Family

ID=47267138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012146738A Active JP5464236B2 (en) 2012-06-29 2012-06-29 Manufacturing method of heat transfer plate

Country Status (1)

Country Link
JP (1) JP5464236B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001087871A (en) * 1999-09-20 2001-04-03 Nippon Light Metal Co Ltd Manufacture of panel joined structure
JP2001205459A (en) * 2000-01-25 2001-07-31 Kobe Steel Ltd Friction stir joining equipment and friction stir joining method
JP2002248584A (en) * 2000-12-22 2002-09-03 Hitachi Ltd Cooling plate and manufacturing method therefor, and sputtering target and manufacturing method therefor
JP2003285170A (en) * 2002-03-27 2003-10-07 Hitachi Ltd Method for connecting metal glass
JP2004314115A (en) * 2003-04-15 2004-11-11 Nippon Light Metal Co Ltd Heat transfer element, and method for manufacturing the same
JP2006114230A (en) * 2004-10-12 2006-04-27 Sukegawa Electric Co Ltd Heating element having embedded heater, and its manufacturing method
JP2006150454A (en) * 2000-12-22 2006-06-15 Hitachi Cable Ltd Cooling plate, manufacturing method thereof, sputtering target and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001087871A (en) * 1999-09-20 2001-04-03 Nippon Light Metal Co Ltd Manufacture of panel joined structure
JP2001205459A (en) * 2000-01-25 2001-07-31 Kobe Steel Ltd Friction stir joining equipment and friction stir joining method
JP2002248584A (en) * 2000-12-22 2002-09-03 Hitachi Ltd Cooling plate and manufacturing method therefor, and sputtering target and manufacturing method therefor
JP2006150454A (en) * 2000-12-22 2006-06-15 Hitachi Cable Ltd Cooling plate, manufacturing method thereof, sputtering target and manufacturing method thereof
JP2003285170A (en) * 2002-03-27 2003-10-07 Hitachi Ltd Method for connecting metal glass
JP2004314115A (en) * 2003-04-15 2004-11-11 Nippon Light Metal Co Ltd Heat transfer element, and method for manufacturing the same
JP2006114230A (en) * 2004-10-12 2006-04-27 Sukegawa Electric Co Ltd Heating element having embedded heater, and its manufacturing method

Also Published As

Publication number Publication date
JP5464236B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
CN101952079B (en) Method of manufacturing heat transfer plate
JP5590206B2 (en) Manufacturing method of heat transfer plate
JP5262508B2 (en) Manufacturing method of heat transfer plate
JP5401921B2 (en) Manufacturing method of heat transfer plate
US20100101768A1 (en) Heat transfer plate and method of manufacturing the same
JP5177017B2 (en) Manufacturing method of heat transfer plate
WO2019064848A1 (en) Method for producing liquid-cooled jacket
WO2019064849A1 (en) Method for producing liquid-cooled jacket
JP2010125495A (en) Joining method
TW201518018A (en) Method for manufacturing heat transfer plate and joining method
JP5071144B2 (en) Manufacturing method of heat transfer plate
JP5267381B2 (en) Manufacturing method of heat transfer plate
JP5464236B2 (en) Manufacturing method of heat transfer plate
JP5573940B2 (en) Manufacturing method of heat transfer plate
JP5772920B2 (en) Manufacturing method of heat transfer plate
JP5573939B2 (en) Manufacturing method of heat transfer plate
JP5459386B2 (en) Manufacturing method of heat transfer plate
JP2010264467A (en) Method for manufacturing heat exchange plate
JP2015196180A (en) Manufacturing method for heat transfer plate and friction agitation joint method
JP2017213604A (en) Heat exchanger plate manufacturing method, and heat exchanger plate
JP2016043368A (en) Manufacturing method of heat transfer plate
JP2015178126A (en) joining method
JP5347774B2 (en) Heat transfer plate manufacturing method and heat transfer plate
JP2019076949A (en) Method for manufacturing liquid-cooled jacket
JP6248730B2 (en) Manufacturing method of heat transfer plate and manufacturing method of composite plate having no flow path inside

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140106

R150 Certificate of patent or registration of utility model

Ref document number: 5464236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350