JP2010042935A - ナノカーボン製造装置 - Google Patents
ナノカーボン製造装置 Download PDFInfo
- Publication number
- JP2010042935A JP2010042935A JP2008205920A JP2008205920A JP2010042935A JP 2010042935 A JP2010042935 A JP 2010042935A JP 2008205920 A JP2008205920 A JP 2008205920A JP 2008205920 A JP2008205920 A JP 2008205920A JP 2010042935 A JP2010042935 A JP 2010042935A
- Authority
- JP
- Japan
- Prior art keywords
- nanocarbon
- chamber
- plate
- pyrolysis
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
【課題】、純度及び安定性の高い高品質で有用性の高い繊維状のナノカーボンを低コストで効率よく量産することを課題とする。
【解決手段】中心部に貫通孔を有した仕切り板により仕切られた還元雰囲気の熱分解室19及びナノカーボン生成室20を有する回転ドラム1と、ナノカーボン生成室内に配置されたナノカーボン生成板3と、回転ドラムの外周部に配置された電気ヒータ4a,4bと、前記熱分解室にバイオマス原料又は廃棄物を供給する原料供給手段5と、ナノカーボン生成板に生成されたナノカーボンを掻き取る掻取り手段7とを具備し、熱分解室でバイオマス原料又は廃棄物を熱分解し、炭化水素を含んだ熱分解ガスをナノカーボン生成室へ送り、このナノカーボン生成室内でナノカーボン生成板と熱分解ガスを還元雰囲気で接触させてナノカーボン生成板にナノカーボンを生成して成長させることを特徴とするナノカーボン製造装置。
【選択図】 図1
【解決手段】中心部に貫通孔を有した仕切り板により仕切られた還元雰囲気の熱分解室19及びナノカーボン生成室20を有する回転ドラム1と、ナノカーボン生成室内に配置されたナノカーボン生成板3と、回転ドラムの外周部に配置された電気ヒータ4a,4bと、前記熱分解室にバイオマス原料又は廃棄物を供給する原料供給手段5と、ナノカーボン生成板に生成されたナノカーボンを掻き取る掻取り手段7とを具備し、熱分解室でバイオマス原料又は廃棄物を熱分解し、炭化水素を含んだ熱分解ガスをナノカーボン生成室へ送り、このナノカーボン生成室内でナノカーボン生成板と熱分解ガスを還元雰囲気で接触させてナノカーボン生成板にナノカーボンを生成して成長させることを特徴とするナノカーボン製造装置。
【選択図】 図1
Description
本発明は、有用性の高い繊維状のナノカーボン、例えばカーボンナノチューブ、カーボンファイバー、カーボンナノコイルを効率的に製造するナノカーボン製造装置に関する。
カーボンナノチューブの生成法としては、例えばアーク放電法、レーザー蒸着法、化学気相成長法(CVD法)が挙げられる。
アーク放電法は、正負のグラファイト電極間にアーク放電を起こすことでグラファイトが蒸発し、陰極先端に凝縮したカーボンの堆積物の中にカーボンナノチューブが生成される方法である(例えば、特許文献1参照)。レーザー蒸着法は、高温に過熱した不活性ガス中に金属触媒を混合したグラファイト試料を入れ、レーザー照射することによりカーボンナノチューブを生成する方法である(例えば、特許文献2参照)。
一般に、アーク放電法やレーザー蒸発法では結晶性の良いカーボンナノチューブが生成できるが、生成するカーボンナノチューブの量が少なく大量生成に難しいとされる。
アーク放電法は、正負のグラファイト電極間にアーク放電を起こすことでグラファイトが蒸発し、陰極先端に凝縮したカーボンの堆積物の中にカーボンナノチューブが生成される方法である(例えば、特許文献1参照)。レーザー蒸着法は、高温に過熱した不活性ガス中に金属触媒を混合したグラファイト試料を入れ、レーザー照射することによりカーボンナノチューブを生成する方法である(例えば、特許文献2参照)。
一般に、アーク放電法やレーザー蒸発法では結晶性の良いカーボンナノチューブが生成できるが、生成するカーボンナノチューブの量が少なく大量生成に難しいとされる。
CVD法には、反応炉の中に入れた基板にカーボンナノチューブを生成させる基板法(例えば、特許文献1参照)と、触媒金属と炭素源を一緒に高温の炉に流動させカーボンナノチューブを生成する流動気相法(例えば、特許文献4参照)の二つの方法がある。
しかし、上記気相成長法は、バッジ処理であるので大量生産が難しい。また、流動気相法は、温度の均一性が低く結晶性の良いカーボンナノチューブを生成するのが難しいとされている。さらに、流動気相法の発展型として、高温の炉の中に、触媒兼用流動材で流動層を形成し、炭素原料を供給して繊維状のナノカーボンを生成する方法も提案されている。しかし、炉内の温度の均一性が低く結晶性の良いカーボンナノチューブを生成するのが難しいと考えられる。
しかして、純度及び安定性の高いカーボンナノチューブ、カーボンファイバー、カーボンナノコイル等の有用性の高い繊維状のナノカーボンを低コストで効率よく量産することができるようになれば、ナノカーボンの特性を生かしたナノテクノロジー製品を低コストで大量に供給することが可能になる。
特開2000−95509号公報
特開平10−273308号公報
特開2000−86217号公報
特開2003−342840号公報
本発明はこうした事情を考慮してなされたもので、純度及び安定性の高い高品質のカーボンナノチューブ、カーボンファイバー、カーボンナノコイル等の有用性の高い繊維状のナノカーボンを低コストで効率よく量産することができるナノカーボン製造装置を提供することを目的とする。
本発明に係るナノカーボン製造装置は、外部の空気を遮断したロータリーキルン方式のナノカーボン製造装置であって、中心部に貫通孔を有した仕切り板により仕切られた還元雰囲気の熱分解室及びナノカーボン生成室を有する回転ドラムと、前記ナノカーボン生成室内に配置されたナノカーボン生成板と、前記回転ドラムの外周部に配置された加熱源と、前記熱分解室にバイオマス原料又は廃棄物を供給する供給手段と、前記ナノカーボン生成板に生成されたナノカーボンを掻き取る掻取り手段とを具備し、前記熱分解室でバイオマス原料又は廃棄物を熱分解し、炭化水素を含んだ熱分解ガスをナノカーボン生成室へ送り、このナノカーボン生成室内でナノカーボン生成板と熱分解ガスを還元雰囲気で接触させてナノカーボン生成板にナノカーボンを生成して成長させることを特徴とする。
本発明によれば、純度及び安定性の高い高品質のカーボンナノチューブ、カーボンファイバー、カーボンナノコイル等の有用性の高い繊維状のナノカーボンを低コストで効率よく量産することができるナノカーボン生成炉が得られる。
以下、本発明のナノカーボン製造装置について更に詳しく説明する。
(1).本発明のナノカーボン製造装置は、上述したように、外部の空気を遮断したロータリーキルン方式のナノカーボン製造装置であって、熱分解室及びナノカーボン生成室を有する回転ドラムと、ナノカーボン生成板と、加熱源と、原料供給手段と、掻き取る掻取り手段とを具備し、熱分解室でバイオマス原料又は廃棄物を熱分解し、炭化水素を含んだ熱分解ガスのみをナノカーボン生成室へ送り、このナノカーボン生成室内でナノカーボン生成板と熱分解ガスを還元雰囲気で接触させてナノカーボン生成板にナノカーボンを生成して成長させる。
(1).本発明のナノカーボン製造装置は、上述したように、外部の空気を遮断したロータリーキルン方式のナノカーボン製造装置であって、熱分解室及びナノカーボン生成室を有する回転ドラムと、ナノカーボン生成板と、加熱源と、原料供給手段と、掻き取る掻取り手段とを具備し、熱分解室でバイオマス原料又は廃棄物を熱分解し、炭化水素を含んだ熱分解ガスのみをナノカーボン生成室へ送り、このナノカーボン生成室内でナノカーボン生成板と熱分解ガスを還元雰囲気で接触させてナノカーボン生成板にナノカーボンを生成して成長させる。
(2).上記(1)において、前記掻取り手段により一定時間間隔でナノカーボン生成板に生成されたナノカーボンを掻取り、回収することが好ましい。こうした構成により、炉の温度を下げて生成したナノカーボンを取り出すことが無くなり、炉の温度を生成温度に保ちながらナノカーボンを回収できる。つまり、連続処理が可能で生産量が大幅に増加する。
(3).上記(1)において、前記加熱源としての電気ヒータを熱分解室とナノカーボン生成室に夫々配置して、熱分解室とナノカーボン生成室を夫々独自に温度制御することが好ましい。熱分解室温度の最適温度とナノカーボン生成室の最適温度が夫々存在するが、こうした構成により夫々の最適温度に設定でき、炉内の温度を均一にできることから、結晶性のよいナノカーボンを生成できる。
(4).上記(1)において、回転ドラムのナノカーボン生成室の下流側に燃焼器を配置して、この燃焼器で生じる燃焼排ガスを前記加熱源として利用することが好ましい。こうした構成により、電気ヒータのような加熱源を特別設ける必要がないとともに、燃焼排ガスを有効利用することができる。
次に、本発明の実施形態を、図面を参照して説明する。なお、本実施形態は下記に述べることに限定されない。
(第1の実施形態)
図1及び図2(A),(B),(C)を参照する。ここで、図1は第1の実施形態に係るロータリーキルン方式のナノカーボン製造装置の全体を示す概略的な断面図である。図2(A),(B),(C)は夫々図1のA−A線,B−B線,C−C線に沿う断面図である。
(第1の実施形態)
図1及び図2(A),(B),(C)を参照する。ここで、図1は第1の実施形態に係るロータリーキルン方式のナノカーボン製造装置の全体を示す概略的な断面図である。図2(A),(B),(C)は夫々図1のA−A線,B−B線,C−C線に沿う断面図である。
ナノカーボン製造装置は、内部を還元雰囲気に保持しうる回転ドラム1と、ナノカーボン(例えば、カーボンナノチューブ)2が生成される金属製のナノカーボン生成板3と、加熱源としての電気ヒータ4a,4bと、バイオマス原料又は廃棄物を供給する原料供給手段5と、原料ホッパー6と、ナノカーボン生成板3に生成されたナノカーボンを掻き取る掻取り手段7と、燃焼器8とを備えている。
前記回転ドラム1は、入口側では入口側フード9に囲われ、出口側では出口側フード10に囲われている。各フード9,10は図示しない保温材により覆われている。また、回転ドラム1は、軸受11,12と、回転シール13,14,15a,15bで回転自在に支持され、外気と遮断されている。入口側フード9の下部には残渣回収缶16が取り付けられ、出口側フード10の下部にはナノカーボン回収缶17が取り付けられている。
前記回転ドラム1は、中心部に貫通孔18aを有した仕切板18により上流側に位置する熱分解室19と下流側に位置するナノカーボン生成室20とに仕切られている。前記ヒータ4a,4bには夫々温度計21a,21bが接続され、これらの温度計21a,21bはヒータ制御電源22に接続されている。電気ヒータ4a,4bは断熱材23により覆われている。
前記原料ホッパー6には、バイオマス原料(又は廃棄物,汚泥等)24が収容されている。前記原料供給手段5は、原料ホッパー6の下部に取り付けられ,外部から仕切板18近くの熱分解室19まで延出したスクリューケーシング25と、このスクリューケーシング25内に挿着されたスクリュー26と、このスクリュー26を駆動する外部の駆動モータ27により構成されている。ここで、原料ホッパー6の下部に位置するスクリューケーシング25は開口部が形成されており、この開口部からバイオマス原料等がスクリューケーシング25内に供給される。
前記掻取り手段7は、操作軸28と、この操作軸28に取り付けられた掻取り板29により構成されている。前記回転ドラム1は、駆動モータ30とチェーン31により回転するように構成されている。回転ドラム1の入口側には複数個の残渣排出口32が設けられ、回転ドラム1の出口側には複数個のナノカーボン排出口33が設けられている。前記燃焼器8は、回転ドラム1の下流側に配置されている。なお、図中の符番34は熱分解ガス、符番35は残渣を示す。
次に、上記構成のナノカーボン製造装置の作用について説明する。ここでは、例えば、熱分解室19を約500℃付近まで、且つナノカーボン生成室20を約700℃で温め、木質のバイオマスからナノカーボンを製造する例を示す。但し、実際には、扱うバイオマスの種類で最適な熱分解温度があり、また、ナノカーボン生成板3の種類(例えば、鉄板,ステンレス板,ニッケル板など)によってもナノカーボン生成室20の最適温度が存在する。第1の実施形態では、熱分解室19の温度を400〜800℃、ナノカーボン生成室20の温度を600〜1000℃まで設定可能となっている。
回転ドラム1は連続回転している。スクリュー部分より不活性ガスを若干注入して、回転ドラム1内を還元雰囲気として、所定の目標温度まで加熱する。目標温度に達成したら、原料24を原料供給手段5により回転ドラム1内の仕切板18の手前に投入する。投入された原料24は、熱分解室19において残渣35と熱分解ガス34に分解される。ここで、残渣35は回転ドラム1の入口側に移動して残渣排出口32より排出され、残渣回収缶16に回収される。一方、熱分解ガス34は、仕切板18の貫通孔18aを通り、ナノカーボン生成室20に温度が下がらないまま送られる。
ナノカーボン生成室20では、炭化水素を含んだ熱分解ガスがナノカーボン生成板3に接触して、表面にナノカーボン2が生成して成長する。ナノカーボン2がある程度成長したら、掻取り板29を回転させて、ナノカーボン生成板3に成長したナノカーボン2を掻き落とす。掻き落とされたナノカーボン2は、ナノカーボン排出口33を経て回収缶17に回収される。熱分解ガスの残ガスは、まだエネルギーを持ったまま燃焼炉8に送られ、多少の補助燃料を加え、燃焼として大気に排気させる。
第1の実施形態によれば、残渣を予め熱分解室19で分離し、金属製のナノカーボン生成板3に直接熱分解ガスを接触させて生成する構成になっているため、触媒となる金属が少なく純度が極めて高いナノカーボンが得られる。また、本発明によれば、掻き落としてからナノカーボンが再生するのでナノカーボンを連続して生成することが可能であり、純度及び安定性の高い高機能のナノカーボンを低コストでかつ効率よく量産することができる。
なお、第1の実施形態では、原料としてバイオマスを用いた場合について述べたが、これに限らない。即ち、加熱源として電気ヒータを用い、熱分解室とナノカーボン生成室は独自に温度制御することが可能であるため、原料として廃棄物、汚泥などの熱分解ガスに炭化水素を含んでいれば、金属触媒の役目をするナノカーボン生成板との組み合わせで温度を最適に調整してナノカーボンを製造することができる。
(第2の実施形態)
本発明の第2の実施形態に係るロータリーキルン方式のナノカーボン製造装置について図3を参照して説明する。但し、図1及び図2と同部材は同符番を付して説明を省略する。 図中の符番41,42は、夫々ナノカーボン生成室20,熱分解室19の外側に位置してそれらを間接的に加熱する加熱室を示す。燃焼器8から排出される燃焼器排ガス43は、加熱室41,42に供給できるようになっており、これによりナノカーボン生成室20,熱分解室19が加熱される。一方の加熱室41の温度は温度計21bにより測定し、設定目標温度になるように外気取り入れ弁44を制御できるようになっている。他方の加熱室42の温度は温度計21aにより測定し、設定目標温度になるように外気取り入れ弁45を制御できるようになっている。燃焼器排ガス43は、加熱室41,42を通過した後、ブロワ46で吸気して排気するようになっている。なお、図3中の符番47,48,49は夫々外気取り入れ口を示す。
本発明の第2の実施形態に係るロータリーキルン方式のナノカーボン製造装置について図3を参照して説明する。但し、図1及び図2と同部材は同符番を付して説明を省略する。 図中の符番41,42は、夫々ナノカーボン生成室20,熱分解室19の外側に位置してそれらを間接的に加熱する加熱室を示す。燃焼器8から排出される燃焼器排ガス43は、加熱室41,42に供給できるようになっており、これによりナノカーボン生成室20,熱分解室19が加熱される。一方の加熱室41の温度は温度計21bにより測定し、設定目標温度になるように外気取り入れ弁44を制御できるようになっている。他方の加熱室42の温度は温度計21aにより測定し、設定目標温度になるように外気取り入れ弁45を制御できるようになっている。燃焼器排ガス43は、加熱室41,42を通過した後、ブロワ46で吸気して排気するようになっている。なお、図3中の符番47,48,49は夫々外気取り入れ口を示す。
次に、上記構成のナノカーボン製造装置の作用について説明する。ここでは、例えば、熱分解室19を約500℃付近まで、且つナノカーボン生成室20を約700℃で温め、木質のバイオマスからナノカーボンを製造する例を示す。但し、実際には、扱うバイオマスの種類で最適な熱分解温度があり、また、ナノカーボン生成板3の種類(例えば、鉄板,ステンレス板,ニッケル板など)によってもナノカーボン生成室20の最適温度が存在する。
回転ドラム1は連続回転している。スクリュー部分より不活性ガスを若干注入して、回転ドラム1内を還元雰囲気として、所定の目標温度まで加熱する。目標温度に達成したら、原料24を供給手段5により回転ドラム1内の仕切板18の手前に投入する。投入された原料24は、熱分解室19において残渣35と熱分解ガス34に分解される。ここで、残渣35は回転ドラム1の入口側に移動して残渣排出口32より排出され、残渣回収缶16に回収される。一方、熱分解ガス34は、仕切板18の貫通孔18aを通り、ナノカーボン生成室20に温度が下がらないまま送られる。
ナノカーボン生成室20では、炭化水素を含んだ熱分解ガスがナノカーボン生成板3に接触して、表面にナノカーボン2が生成して成長する。ナノカーボン2がある程度成長したら、掻取り板29を回転させて、ナノカーボン生成板3に成長したナノカーボン2を掻き落とす。掻き落とされたナノカーボン2は、ナノカーボン排出口33を経て回収缶17に回収される。
加熱源は、約900℃の高温燃焼ガスを利用し、燃焼器排ガス43を、ナノカーボン生成室20を間接加熱する加熱室41と熱分解室19を間接加熱する加熱室42に通し、ブロワ46で吸気して排気する。そこで、加熱室41の温度を温度計21bで測定し、設定目標温度となるように外気取り入れ弁44を制御する。また、加熱室42の温度を温度計21aで測定し、設定目標温度となるように外気取り入れ弁45を制御する。
第2の実施形態によれば、残渣を予め熱分解室19で分離し、金属製のナノカーボン生成板3に直接に熱分解ガスを接触させて生成するため、触媒となる金属が少なく純度が極めて高いナノカーボンが得られる。また、本発明によれば、掻き落としてからナノカーボンが再生するのでナノカーボンを連続して生成することが可能であり、純度及び安定性の高い高機能のナノカーボンを低コストでかつ効率よく量産することができる。
なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。
1…回転ドラム、2…ナノカーボン、3…ナノカーボン生成板、4a,4b…電気ヒータ(加熱源)、5…供給手段、7…掻取り手段、8…燃焼器、19…熱分解室、20…ナノカーボン生成室、21a,21b…温度計、22…ヒータ制御電源、23…断熱材、25…スクリューケーシング、26…スクリュー、27,30…駆動モータ、28…操作軸、29…掻取り板、32…残渣排出口、33…ナノカーボン排出口、41,42…加熱室、43…燃焼器排ガス、44,45…外気取り入れ弁、46…ブロワ、47,48,49…外気取り入れ口。
Claims (4)
- 外部の空気を遮断したロータリーキルン方式のナノカーボン製造装置であって、
中心部に貫通孔を有した仕切り板により仕切られた還元雰囲気の熱分解室及びナノカーボン生成室を有する回転ドラムと、前記ナノカーボン生成室内に配置されたナノカーボン生成板と、前記回転ドラムの外周部に配置された加熱源と、前記熱分解室にバイオマス原料又は廃棄物を供給する供給手段と、前記ナノカーボン生成板に生成されたナノカーボンを掻き取る掻取り手段とを具備し、
前記熱分解室でバイオマス原料又は廃棄物を熱分解し、炭化水素を含んだ熱分解ガスをナノカーボン生成室へ送り、このナノカーボン生成室内でナノカーボン生成板と熱分解ガスを還元雰囲気で接触させてナノカーボン生成板にナノカーボンを生成して成長させることを特徴とするナノカーボン製造装置。 - 前記掻取り手段により一定時間間隔でナノカーボン生成板に生成されたナノカーボンを掻取り、回収することを特徴とする請求項1記載のナノカーボン製造装置。
- 前記加熱源としての電気ヒータを熱分解室とナノカーボン生成室に夫々配置して、熱分解室とナノカーボン生成室を夫々独自に温度制御することを特徴とする請求項1もしくは2記載のナノカーボン製造装置。
- 回転ドラムのナノカーボン生成室の下流側に燃焼器を配置して、この燃焼器で生じる燃焼排ガスを前記加熱源として利用することを特徴とする請求項1もしくは2記載のナノカーボン製造装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008205920A JP4869300B2 (ja) | 2008-08-08 | 2008-08-08 | ナノカーボン製造装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008205920A JP4869300B2 (ja) | 2008-08-08 | 2008-08-08 | ナノカーボン製造装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010042935A true JP2010042935A (ja) | 2010-02-25 |
JP4869300B2 JP4869300B2 (ja) | 2012-02-08 |
Family
ID=42014652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008205920A Expired - Fee Related JP4869300B2 (ja) | 2008-08-08 | 2008-08-08 | ナノカーボン製造装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4869300B2 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014001140A (ja) * | 2013-09-30 | 2014-01-09 | Toshiba Corp | グラファイトナノカーボンファイバー及びその製造方法 |
DE102019003789A1 (de) | 2018-06-29 | 2020-01-02 | JIKAN TECHNO, Inc. | Graphen, Vorrichtung zur Herstellung von Graphen, und Verfahren zur Herstellung von Graphen |
JP2021038102A (ja) * | 2019-08-31 | 2021-03-11 | ジカンテクノ株式会社 | 炭素素材、グラフェン、炭素素材の製造装置及び炭素素材の製造方法 |
US11464083B2 (en) | 2018-08-23 | 2022-10-04 | JIKAN TECHNO, Inc. | Electric cable, conductor, heating element, method for producing conductor and heating element, and heating device using heating element |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004084965A (ja) * | 2002-08-22 | 2004-03-18 | Kobe Steel Ltd | 燃焼排ガス処理設備 |
JP2007161528A (ja) * | 2005-12-14 | 2007-06-28 | Toshiba Corp | 廃棄物熱分解処理システムおよび方法 |
JP2008094694A (ja) * | 2006-10-16 | 2008-04-24 | Toshiba Corp | ナノカーボン生成装置 |
-
2008
- 2008-08-08 JP JP2008205920A patent/JP4869300B2/ja not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004084965A (ja) * | 2002-08-22 | 2004-03-18 | Kobe Steel Ltd | 燃焼排ガス処理設備 |
JP2007161528A (ja) * | 2005-12-14 | 2007-06-28 | Toshiba Corp | 廃棄物熱分解処理システムおよび方法 |
JP2008094694A (ja) * | 2006-10-16 | 2008-04-24 | Toshiba Corp | ナノカーボン生成装置 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014001140A (ja) * | 2013-09-30 | 2014-01-09 | Toshiba Corp | グラファイトナノカーボンファイバー及びその製造方法 |
DE102019003789A1 (de) | 2018-06-29 | 2020-01-02 | JIKAN TECHNO, Inc. | Graphen, Vorrichtung zur Herstellung von Graphen, und Verfahren zur Herstellung von Graphen |
US11459239B2 (en) | 2018-06-29 | 2022-10-04 | JIKAN TECHNO, Inc. | Graphene, device for producing graphene, and method for producing graphene |
US11464083B2 (en) | 2018-08-23 | 2022-10-04 | JIKAN TECHNO, Inc. | Electric cable, conductor, heating element, method for producing conductor and heating element, and heating device using heating element |
JP2021038102A (ja) * | 2019-08-31 | 2021-03-11 | ジカンテクノ株式会社 | 炭素素材、グラフェン、炭素素材の製造装置及び炭素素材の製造方法 |
JP7312396B2 (ja) | 2019-08-31 | 2023-07-21 | ジカンテクノ株式会社 | 炭素素材の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP4869300B2 (ja) | 2012-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101558432B1 (ko) | 재생 탄소 섬유의 제조 장치 및 재생 탄소 섬유의 제조 방법 | |
JP4474409B2 (ja) | カーボンナノチューブの製造方法および製造装置 | |
JP4869300B2 (ja) | ナノカーボン製造装置 | |
JP2020055727A (ja) | グラフェン、グラフェンの製造装置及びグラフェンの製造方法 | |
CN115108546B (zh) | 一种有机固废高聚物连续制备碳材料联产氢的系统和方法 | |
JP2010013319A (ja) | ナノカーボン製造装置 | |
JP2007127330A (ja) | 炭化炉による熱併給発電方法及びシステム | |
WO2020022148A1 (ja) | 炭化還元システム、および金属担持多孔質材料の製造方法 | |
JP4357517B2 (ja) | ナノカーボン生成装置 | |
JP2009242180A (ja) | ナノカーボン製造装置 | |
JP2005067972A (ja) | 炭化賦活方法及び炭化賦活装置 | |
JP5117251B2 (ja) | ナノカーボン・炭化物連続製造装置 | |
JP5535103B2 (ja) | グラファイトナノカーボンファイバー及びその製造方法 | |
JP5049912B2 (ja) | ナノカーボン生成炉 | |
JP2007303737A (ja) | 熱分解炉装置 | |
JP5117252B2 (ja) | ナノカーボン・炭化物連続製造装置 | |
CN109879290B (zh) | 利用含硅生物质连续化制备一氧化硅的方法 | |
JP2004352538A (ja) | 活性炭化物の製造方法及び装置 | |
RU2314996C1 (ru) | Способ получения активированного угля и установка для его осуществления | |
JP4869325B2 (ja) | ナノカーボン製造装置 | |
JP2012172273A (ja) | グラファイトナノカーボンファイバー及びその製造方法 | |
JP2012041270A (ja) | ナノカーボン製造装置 | |
JP3721531B2 (ja) | 活性炭の製造方法及び装置 | |
US20230107846A1 (en) | Decomposition reactor for pyrolysis of hydrocarbon feedstock | |
JP2013189338A (ja) | ナノカーボン製造装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111014 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111025 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141125 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |