JP2010027344A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2010027344A
JP2010027344A JP2008186119A JP2008186119A JP2010027344A JP 2010027344 A JP2010027344 A JP 2010027344A JP 2008186119 A JP2008186119 A JP 2008186119A JP 2008186119 A JP2008186119 A JP 2008186119A JP 2010027344 A JP2010027344 A JP 2010027344A
Authority
JP
Japan
Prior art keywords
fuel cell
refrigerant
temperature
inlet
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008186119A
Other languages
English (en)
Other versions
JP5380932B2 (ja
Inventor
Keigo Suematsu
啓吾 末松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008186119A priority Critical patent/JP5380932B2/ja
Publication of JP2010027344A publication Critical patent/JP2010027344A/ja
Application granted granted Critical
Publication of JP5380932B2 publication Critical patent/JP5380932B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】この発明は、様々な運転環境の下でも、燃料電池内部の湿潤状態を良好に保つことができるように改良された燃料電池システムを提供することを目的とする。
【解決手段】単位セル12は、ガス流路入口16aと冷却液流路入口18aとが近接している。MEA14のガス流路入口16a部分が、乾燥しているか否か、または/および、乾燥するおそれがあるか否か、が検知される。MEA14のガス流路入口16a部分が乾燥しているまたは/および乾燥するおそれがある場合には、冷却液ポンプ32の回転数が低減され、単位セル12面内の温度差が拡大される。
【選択図】図1

Description

この発明は、燃料電池システムに関する。
従来、例えば、下記の特許文献1に開示されているように、電解質膜を用いた燃料電池システムにおいて、燃料電池面内の温度分布を適切に保つように改良された燃料電池システムが知られている。電解質膜やこれを用いて形成された膜電極接合体は、適度な湿潤状態にある場合に良好な電気特性を発揮する。すなわち、電解質膜の湿潤状態を適切に管理することは、燃料電池の発電を行う上で重要な項目の一つである。
電解質膜の湿潤状態は、燃料電池内部の温度に影響を受ける。燃料電池内部の温度が高い場合、電解質膜の表面から水分が放出され易くなる。言い換えれば、ガスによって水分が持ち去られ易くなる。よって、燃料電池内部の温度が高い場合、電解質膜が乾燥しやすい。反対に、燃料電池内部の温度が低すぎる場合には発電反応に伴う生成水が電解質膜上で凝縮し、却って発電を阻害するおそれがある。そこで、上記従来の技術では、これらの乾燥の弊害や凝縮の弊害を防止できるように、燃料電池面内の温度分布を所定範囲内に保つこととしている。
特開平8−111230号公報 特開2007−5209号公報 特開2002−343396号公報
現実的には、燃料電池システムは、様々な環境の下で運転されうる。特に、移動体に搭載される燃料電池システムには、移動体の外部環境の変化や燃料電池システムへの要求出力の変化など様々な運転環境の変化があるなかで、発電を行うことが求められる。このため、運転環境の変化にも柔軟に対応しつつ、電解質膜の湿潤状態を適切に管理できることが好ましい。そこで、本願発明者は、燃料電池内部における乾燥の傾向などを含めた鋭意研究の結果、燃料電池内部の湿潤状態を良好に保つことができる手法に想到した。
この発明は、上記のような課題を解決するためになされたもので、燃料電池内部の湿潤状態を良好に保つことができるように改良された燃料電池システムを提供することを目的とする。
第1の発明は、上記の目的を達成するため、燃料電池システムであって、
電解質膜と、該電解質膜の表面に接続され内部にカソードガスが流入するガス流路と、内部に該電解質膜の面内を冷却するための冷媒が流れる冷媒流路と、を備え、該ガス流路の入口と該冷媒流路の入口とが、該冷媒流路に流入する冷媒の温度変化に応じて該電解質膜の該ガス流路入口側部分の含水量が変化する程度に近くに設けられた燃料電池と、
前記冷媒流路の入口に、冷媒を流入させる冷媒供給機構と、
前記冷媒流路の入口に流れ込む冷媒の温度を、調節することができる入口温度調節機構と、
前記電解質膜の前記ガス流路入口部分が、乾燥しているか否か、または/および、乾燥するおそれがあるか否か、を検知する検知手段と、
前記電解質膜の前記ガス流路入口側部分が乾燥しているまたは/および乾燥するおそれがあると前記検知手段が検知したら、前記冷媒流路の入口に流れ込む冷媒の温度が低下するように前記入口温度調節機構を制御する制御手段と、
を備えることを特徴とする。
また、第2の発明は、第1の発明において、
前記ガス流路と前記冷媒流路とが、前記電解質膜の外形のうち1つの辺から他の辺に向かって該電解質膜上を並行に延びるように設けられていることを特徴とする。
また、第3の発明は、第1または第2の発明において、
前記冷媒供給機構が、前記冷媒流路の入口と出口とに接続して該冷媒流路とともに循環系を形成する管路と、該管路の途中に設けられたラジエータと、を含み、
前記入口温度調節機構が、前記ラジエータを経由して流れる冷媒の流量を調節する流量調節機構を含み、
前記制御手段が、前記電解質膜の前記ガス流路入口部分が乾燥しているまたは/および乾燥するおそれがあると検知したら、前記冷媒流路に流れ込む冷媒の流量を低減するように前記流量調節機構を制御することを特徴とする。
また、第4の発明は、第3の発明において、
前記燃料電池の前記冷媒流路出口側部分の温度を調節するように前記管路内の冷媒の温度を調節することができる出口温度調節機構と、
前記制御手段が前記冷媒流路に流れ込む冷媒の流量を低減するように前記流量調節機構を制御するときに、前記燃料電池の前記冷媒流路出口側部分の温度が維持されるように前記出口温度調節機構を制御する出口温度維持手段と、
を備えることを特徴とする。
また、第5の発明は、第1乃至4の発明のいずれか1つにおいて、
前記検知手段が、前記電解質膜における前記ガス流路入口側部分の発電状態に基づいて、前記電解質膜の前記ガス流路入口部分が、乾燥しているか否か、または/および、乾燥するおそれがあるか否か、を検知する発電状態検知手段を含むことを特徴とする。
また、第6の発明は、第1乃至5の発明のいずれか1つにおいて、
前記燃料電池システムの外部環境の情報である外部環境情報を取得する環境取得手段を備え、
前記検知手段が、前記環境取得手段が取得した外部環境情報が所定の運転環境に該当するか否かに基づいて、前記電解質膜の前記ガス流路入口部分が乾燥するおそれがあるか否かを検知する環境検知手段を含むことを特徴とする。
第1の発明によれば、電解質膜におけるガス流路入口側部分の乾燥が検知された後速やかに、或いは、乾燥を未然に防止するように、ガス流路入口側部分の温度を低下させることができる。電解質膜のガス流路入口側部分は、カソードガスによる水分の持ち去りの影響により、比較的乾燥しやすい部位である。温度が低いほど、ガス流路内を流れるカソードガスが電解質膜から持ち去る水の量(水の持ち去り量)が少なくなる。つまり、ガス流路入口側部分の温度を低下させることにより、電解質膜のガス流路入口側部分を加湿することができる。第1の発明によれば、検知手段の検知により、電解質膜のガス流路入口側部分を対象に、適切なタイミングで加湿作用を発生させることができる。その結果、様々な運転環境の下でも、燃料電池内部の湿潤状態を良好に保つことができる。
第2の発明によれば、ガス流路と冷媒流路とが並行に延びている。ガス流路の流れ方向に向かって、ガス流路内のガスの湿度は上昇していく。また、冷媒は、燃料電池内部を流れる過程で熱せられるので、下流側ほど温度が高くなる。第2の発明によれば、湿度が低いガス流路上流側では冷媒温度が低く、湿度が高いガス流路下流側では冷媒温度が高くなるような状態を、燃料電池内部につくりだすことができる。これにより、電解質膜面内の含水量の分布を、面内において均一な分布に、近づけることができる。
第3の発明によれば、電解質膜における冷媒流路入口側部分の温度と、電解質膜における冷媒流路出口側部分の温度との差を、大きくすることができる。これにより電解質膜における冷媒流路入口側部分の温度を低下させ、結果的に電解質膜におけるガス流路入口側部分を加湿することができる。仮に、電解質膜面内の全域にわたって画一的に温度を下げたとすると、電解質膜面内全域で湿度が上昇してしまう。その結果、フラッディング等の発生が懸念される。これに対し、第3の発明によれば、乾燥対策を施すべき部分すなわち電解質膜面内におけるガス流路入口側部分の湿度を、部分的に上昇させることができる。従って、第3の発明によれば、上述したフラッディング等の弊害を抑制しつつ、電解質膜におけるガス流路入口側部分の乾燥を、抑制することができる。
第4の発明によれば、電解質膜面内におけるガス流路出口側部分の含水量は現状に維持しつつ、電解質膜面内におけるガス流路入口側部分の含水量を増大することができる。
第5の発明によれば、燃料電池の内部の発電状態に基づいて、乾燥が認められるときに速やかに電解質膜を加湿することができる。
第6の発明によれば、燃料電池の外部環境に基づいて、乾燥が予想されるときに未然に電解質膜を加湿しておくことができる。
実施の形態1.
[実施の形態1の構成]
図1は、本発明の実施の形態1にかかる燃料電池システムの構成図である。図1に示すように、実施の形態1の燃料電池システムは、燃料電池スタック10を備えている。燃料電池スタック10は、図2の単位セル12が多数積層されて形成される。燃料電池スタック10は、アノードに水素を含む燃料ガスの供給を受け、カソードにカソードガスの供給を受けることにより発電する。カソードガスは、空気或いは酸素などの酸化ガスである。実施の形態1では、カソードガスとして、空気を用いる。
実施の形態1では、燃料電池スタック10の冷却を行うための冷媒として、液体の冷媒すなわち冷却液を用いる。燃料電池スタック10の内部には、冷却液(実施の形態1では、Long Life Coolant:LLCである)を流通させるための冷却液流路が設けられている。冷却液流路の入口には管路20が接続され、冷却液流路の入口には管路22が接続されている。管路20と管路22は、ラジエータ30を介して連通している。管路20には、冷却液ポンプ32が備えられている。実施の形態1では、燃料電池スタック10、管路20、22およびラジエータ30によって形成された循環系内に、冷却液を流通させる。ラジエータ30は、冷却ファン31を備えている。なお、本発明にかかる燃料電池システムにおける燃料電池冷却用の冷媒は、冷却液すなわち液体の冷媒に限られない。気体の冷媒を用いた冷却、例えば空冷を行ってもよい。
実施の形態1の燃料電池システムは、バイパス管路40と、三方弁42を備えている。三方弁42を制御することにより、冷却液の一部を、バイパス管路40を介して、つまりラジエータ30を介さずに流すことができる。三方弁42は、バイパス管路40を流れる冷却液の流量を変更できるように、開度の調節が適宜に可能なものとする。
実施の形態1の燃料電池システムは、ECU(Electronic Control Unit)50を備えている。また、実施の形態1の燃料電池システムは、管路22に温度計52を備えている。また、実施の形態1では、ガス流路16のガス流れ方向に沿って単位セル12の電流分布を計測する電流分布センサ54が設けられている。
ECU50は、温度計52、電流分布センサ54および冷却液ポンプ32に接続している。これにより、ECU50は、温度計52、電流分布センサ54のそれぞれの出力信号を受けて、冷却液の温度や単位セル12の面内の電流分布を検知することがでる。また、ECU50は、冷却液ポンプ32の回転数を制御することができる。
図2は、燃料電池スタック10を構成する単位セル12を模式的に示す平面図である。単位セル12は、その内部に膜電極接合体(Membrane Electrode Assembly:MEA)14を有する。MEA14は、固体高分子電解質膜の両面に、アノード電極触媒層とカソード電極触媒層が設けられたものである。単位セル12は、アノード電極触媒層に水素を含む燃料ガスの供給を受け、カソード電極触媒層に酸素を含む酸化ガス(空気)の供給を受けることにより、電力を発生する。つまり、単位セル12は、燃料電池スタック10に含まれる1単位の燃料電池である。
図2は、単位セル12をカソード側から見た構成を模式的に図示したものである。単位セル12のカソード側には、ガス流路16が設けられている。図2ではガス流路16を模式的に矢印で示す。ガス流路16は、例えば、MEA14の紙面手前側に配置されるセパレータに形成した溝とすることができる。或いは、MEA14の紙面手前側に通気性の導電体からなる多孔質体層を設け、この多孔質体層内の連続した気孔をガス流路16とすることができる。このようなガス流路の構成、並びに、このようなガス流路を用いた単位セルの具体的構造は、既に公知であるため、詳しい説明は省略する。単位セル12の発電時には、このガス流路16に空気が流入する。
単位セル12のカソード側には、冷却液流路18が設けられている。図2では冷却液流路18を模式的に矢印で示す。冷却液流路18は、MEA14の紙面手前側に配置されるセパレータ内に形成されている。
図2に示すように、実施の形態1にかかる単位セル12では、MEA14の紙面左側に、ガス流路16の入口であるガス流路入口16aと冷却液流路18の入口である冷却液流路入口18aとが隣接して配置されている。更に、単位セル12では、MEA14の紙面右側に、ガス流路16の出口であるガス流路出口16bと冷却液流路18の出口である冷却液流路出口18bとが隣接して配置されている。このような構成により、MEA14の面内を、空気と冷却液とが同一方向(図2の紙面左→右)に並行に流れる。
単位セル12が図2の紙面を貫通する方向に多数積層されることにより、燃料電池スタック10が形成される。その際、個々の単位セル12のガス流路入口16a、ガス流路出口16b、冷却液流路入口18a、および冷却液流路出口18bが、それぞれ連通することにより、燃料電池スタック10内に各種マニホールドが形成される。前述した管路20は冷却液流路入口18aのマニホールドに、前述した管路22は冷却液流路出口18bのマニホールドに、それぞれ連通する。多数の単位セルの積層により燃料電池スタックおよび各種マニホールドを構成する技術は、既に公知であるため、詳しい説明は省略する。
[実施の形態1の動作]
以下、図3乃至図6を用いて、実施の形態1の燃料電池システムの動作を説明する。ガス流路16に空気が流入すると、この空気によってMEA14の水分の一部が持ち去られる。これにより、MEA14が乾燥してしまうおそれがある。特に、図3に示すMEA14のガス流路入口16a近傍の部分Aは、比較的乾燥しやすい環境にある。MEAは、適度な湿潤状態にある場合に良好な電気特性を発揮する。すなわち、MEAの湿潤状態を適切に管理することは、燃料電池の発電を行う上で重要な項目の一つである。現実の燃料電池システムは、様々な環境の下で運転されうる。特に、移動体に搭載される燃料電池システムには、移動体の外部環境の変化や燃料電池システムへの要求出力の変化など様々な運転環境の変化があるなかで、発電を行うことが求められる。
そこで、実施の形態1では、下記の項目(i)の含水量増大制御を、下記の項目(ii)の制御タイミングで実行することにより、様々な運転環境の下でも燃料電池スタック10内部(つまり単位セル12内部)の湿潤状態を良好に保つこととした。
(i)実施の形態1の含水量増大制御
先ず、実施の形態1にかかる、MEA14の含水量を増大するための制御(換言すればMEA14の加湿のための制御)を述べる。以下、この制御を、単に「含水量制御」とも称す。図4は、実施の形態1の含水量制御の内容を説明するための図である。
単位セル12内の温度が低いと、MEA14に含まれる水分の蒸発スピードが低い。このため、空気によって持ち去られる水の量が少なくなり、MEA14の含水量が増大する。このように、MEA14の湿潤状態は、単位セル12内部の温度に影響を受ける。
そこで、実施の形態1では、MEA14の含水量を増大する必要が生じた場合には、先ず、冷却液ポンプ32の回転数が現在の回転数から低減される。その上で、温度計52により検出される冷却液の温度が同程度に維持されるように、冷却ファン31の出力増大、或いは、バイパス管路40内の冷却液流量の減少が行われる。冷却液ポンプ32の回転数が低減されると、冷却液の流量が減少する。その結果、燃料電池スタック10に流れ込む冷却液の温度と、燃料電池スタック10から流れ出る冷却液の温度との差が、拡大する。結果として、燃料電池スタック10に流れ込む冷却液の温度が低下する。
図4には、このような動作の前後における、単位セル12内の相対湿度の分布が図示されている。前述したように、実施の形態1では、ガス流路入口16aと冷却液流路入口18aとが近接している。よって、冷却液の温度低下によって単位セル12の冷却液流路入口18aの近傍の部分を冷やすことにより、図4に矢印で模式的に示すようにMEA14のガス流路入口16aの近傍の部分の含水量を増加することができる。
また、実施の形態1では、下記に述べる(a)〜(c)の効果も得られる。
(a)含水量分布の均一化
実施の形態1によれば、MEA14面内における含水量分布の均一化効果が得られる。前述したように、実施の形態1では、ガス流路16と冷却液流路18とが、MEA14面内を並行に延びている。ガス流路16内の空気の流れ方向に向かって、ガス流路16内の空気の湿度は上昇していく。また、冷却液は、単位セル12内部を流れる過程で熱せられるので、下流側ほど温度が高くなる。その結果、実施の形態1によれば、湿度が低いガス流路16上流側では冷却液温度が低く、湿度が高いガス流路16下流側では冷却液温度が高くなるような状態を、単位セル12内部につくりだすことができる。これにより、MEA14面内における含水量を均一化することができる。
(b)フラッディング抑制
また、特に、実施の形態1によれば、フラッディングを抑制しつつ、上記の含水量増大を行うことができる。前述の動作説明のように、実施の形態1によれば、MEA14における冷却液流路入口18a側部分の温度と、MEA14における冷却液流路出口18b側部分の温度との差(以下、「温度差ΔT」とも称す)を、大きくすることができる。これによりMEA14における冷却液流路入口18a側部分の温度を低下させ、結果的にMEA14におけるガス流路入口16a側部分を加湿することができる。
このような温度差ΔTの拡大による含水量増加手法は、次のような優れた利点を有している。仮に、冷却液温度の低下を例えば冷却ファン31の出力増大のみに頼って行ったとすると、温度差ΔTは変化しないまま単位セル12面内の温度が画一的に低下する。言い換えれば、単位セル12面内の温度勾配は維持されたまま、全体的に温度が低下する。MEA14面内の全域にわたって画一的に温度を下げたとすると、MEA14面内全域で湿度が上昇してしまう。そうすると、ガス流路16下流側が水分過多となり、フラッディング等の発生が懸念される。これに対し、実施の形態1によれば、乾燥対策を施すべき部分(図3の部分A)を部分的に加湿することができる。従って、実施の形態1によれば、フラッディング等の弊害を抑制しつつ、MEA14のガス流路入口16a側部分の乾燥を、抑制することができる。
(c)温度差ΔT拡大とガス流路/冷却液流路構造との組み合わせの効果
特に、実施の形態1によれば、ガス流路16と冷却液流路18とをMEA14面内を並行に延びる構造にされ、なおかつ、温度差ΔTの拡大が行われる。この2点の組み合わせにより、次の効果が得られる。ガス流路16と冷却液流路18とが並行に延びる構造では、冷却液流れ方向の温度分布とガス流れ方向の温度分布とが同じ傾向を示す。従って、実施の形態1において温度差ΔTが拡大された場合には、MEA14における、ガス流路入口16a側部分の温度とガス流路出口16b側部分の温度との差も、同様に拡大する。これにより、MEA14におけるガス流路入口16a側部分を積極的に加湿し、かつ、電解質膜におけるガス流路出口16b側部分は加湿を控えることができる。ガス流路16の上流は、空気の流入によって比較的乾燥しやすい。また、ガス流路16の下流は、生成水の影響もあり比較的潤いやすい。実施の形態1によれば、このような単位セル12内部の乾湿の分布に合わせて、MEA14面内の含水量を均一化することができる。
特に、実施の形態1では、冷却液ポンプ32の回転数低減とともに、冷却ファン31の出力増大、或いは、バイパス管路40内の冷却液流量の減少が行われる。これにより、MEA14面内において、ガス流路出口16b側部分の温度は現状に維持しつつ、ガス流路入口16a側部分の温度を低下させることができる。その結果、MEA14において、ガス流路出口16b側部分の含水量は現状に維持しつつ、ガス流路入口16a側部分の含水量を増大することができる。
(ii)実施の形態1の制御タイミング
実施の形態1では、下記に述べる第1、2条件の成立の有無を検知することによって、上記の(i)の含水量増大制御を適切なタイミングで実行する。
第1条件は、電流値に関する条件である。図5は、電流分布センサ54により得られる単位セル12の電流分布を示す。MEA14内において水分不足箇所があると、その箇所の電気特性が低下する。MEA14のガス流路入口16a付近が乾燥すれば、図5に矢印で示すように、単位セル12のガス流路入口16a側の電流値が低下する。そこで、実施の形態1では、単位セル12のガス流路入口16a側の電流値が、予め定めた閾値を下回った場合に、(a)の含水量制御を実行する。これにより、乾燥が認められたとき、速やかに、MEA14の含水量を増大することができる。
第2条件は、実施の形態1の燃料電池システムを移動体に搭載した場合を想定したものである。図6は、実施の形態1の燃料電池システムを搭載した車両60の運転環境の変化を示す。車両60の走行中に運転環境が環境aから環境bに変化した場合、環境bの坂路走行においては負荷が増大する。負荷の増大に伴って燃料電池スタック10の発電量が増大すれば、燃料電池スタック10の温度も上昇する。温度上昇に伴ってガス流路16内における水分の持ち去り量が増大し、MEA14がより乾燥しやすくなる。また、燃料電池システムの外気温が高ければ、燃料電池スタック10の温度も高めになる。
そこで、実施の形態1では、車両60にナビゲーションシステム62および外気温センサ64を搭載し、車両60がまもなく登坂路にさしかかる場合であって、かつ、外気温が所定値を超えている場合に、含水量制御を実行させる。これにより、MEA14の乾燥を未然に防止するように、含水量制御を実行しておくことができる。
以上説明したように、実施の形態1の燃料電池システムによれば、乾燥が検知された後速やかに、或いは、乾燥を未然に防止するように、含水量制御を行うことができる。これにより、様々な運転環境の下でも、燃料電池スタック10内部の湿潤状態を良好に保つことができる。
特に、実施の形態1の燃料電池システムには、次のような優位性がある。従来の燃料電池システムでは、一般的に、MEA面内の含水量にムラがあったとしても燃料電池の発電状態が許容範囲であれば、他の条件に基づいてシステムの制御内容を決定することが多い。しかしながら、そのような決定基準では、例えば図6の環境bのような場合に、MEA面内の一部が早期に過乾燥してしまうおそれがある。このため、燃料電池システムの運転状態を良好に維持したまま、燃料電池システムの運転を長時間継続することが難しい。この点、実施の形態1では、MEA14の面内を均一に湿らせるような含水量制御が実行されるので、環境bのような場合でも長い時間運転を継続することができる。
[実施の形態1の具体的処理]
以下、図7を用いて、実施の形態1の燃料電池システムにおいて実行される具体的処理を説明する。図7は、実施の形態1においてECU50が実行するルーチンのフローチャートである。なお、図7のルーチンは、実施の形態1の燃料電池システムが車両60に搭載されている状態を想定して作成されたものである。
図7に示すルーチンでは、先ず、含水量制御が必要か否かが検知される(ステップS100)。このステップでは、前述の第1条件と、前述の第2条件のうち、少なくとも一方の条件が成立しているか否かが検知される。第1、2条件がいずれも成立していない場合には、今回のルーチンが終了する。
第1、2条件のうち少なくとも一方の条件が成立している場合には、冷却液ポンプ32の回転数が低減される(ステップS102)。
次いで、冷却液の出口温度を一定に保つように、冷却ファン31または/および三方弁42が制御される(ステップS103)。このステップでは、燃料電池スタック10から流れ出る冷却液の温度がステップS102実行前と同じ温度に維持されるように、温度計52の出力値に基づいて冷却ファン31または/および三方弁42が制御される。その後、今回のルーチンが終了する。
尚、上述した実施の形態1では、単位セル12が、前記第1の発明における「燃料電池」に、MEA14の電解質膜が、前記第1の発明における「電解質膜」に、ガス流路16が、前記第1の発明における「ガス流路」に、冷却液流路18が、前記第1の発明における「冷媒流路」に、それぞれ相当している。また、実施の形態1では、管路20、22、ラジエータ30が、前記第1の発明における「冷媒供給機構」に、冷却液ポンプ32、冷却ファン31、バイパス管路40および三方弁42が、前記第1の発明における「入口温度調節機構」に、それぞれ相当している。また、実施の形態1では、図7のルーチンのステップS100が実行されることにより、前記第1の発明における「検知手段」が、図7のルーチンのステップS102が実行されることにより、前記第1の発明における「制御手段」が、それぞれ実現されている。
また、上述した実施の形態1では、冷却ファン31、バイパス管路40および三方弁42が、前記第4の発明における「出口温度調節機構」に相当し、図7のルーチンのステップS103が実行されることにより、前記第4の発明における「出口温度維持手段」が実現されている。
また、上述した実施の形態1では、電流分布センサ54が、前記第5の発明における「発電状態検知手段」に相当している。また、上述した実施の形態1では、ナビゲーションシステム62および外気温センサ64が、前記第6の発明における「環境取得手段」に相当している。
[実施の形態1の変形例]
(第1変形例)
実施の形態1では、冷却液ポンプ32の回転数低減により、冷却液流路18に流れ込む冷却液の温度を低下させた。しかしながら、本発明はこれに限られるものではない。冷却液ポンプ32の回転数は変化させず、冷却ファン31または/および三方弁42によって冷却液流路18に流れ込む冷却液の温度を低下させてもよい。
(第2変形例)
実施の形態1の単位セル12では、ガス流路16と冷却液流路18とがMEA14面内を並行に延びるように、それぞれの流路の入口と出口が近くに設けられている。しかしながら、本発明はこれに限られるものではない。ガス流路入口16aと冷却液流路入口18aのみを近くに配置してもよい。
(第3変形例)
実施の形態1では、第1、2条件のうち少なくとも一方の条件が成立しているか否かを検知することにより、含水量制御の実行時期を決定した。しかしながら、本発明はこれに限られるものではない。ステップS100において、第1条件のみ、または、第2条件のみの検知を行っても良い。
また、第1条件の検知は、次のように変形してもよい。実施の形態1では、電流分布センサ54を利用して、単位セル12面内の電流分布を計測した。しかしながら、本発明はこれに限られるものではない。単位セル12のガス流路入口16a付近に、例えば特開2007−5209号公報にも開示されているような、部分電流センサを取り付けても良い。この部分電流センサによりガス流路入口16a付近における電流を局所的に計測し、閾値との比較判定を行っても良い。
また、第2条件の検知は、次のように変形してもよい。現在の運転環境が、燃料電池スタック10の温度上昇が予想される所定の運転環境に該当するか否かを検知してもよい。例えば高負荷運転領域では、燃料電池スタック10の温度が高くなる。したがって、高負荷での運転が予想される環境を予め特定しておき、車両60の外部環境が、特定した高負荷予想環境に該当するか否かを検知してもよい。
なお、実施の形態1では、冷却液流路18に流れ込む冷却液の温度を低下させるための処理(すなわちステップS102)と、冷却液流路18から流れ出る冷却液の温度を維持するための処理(すなわちステップS103)の、両方の処理が実行される。しかしながら、本発明はこれに限られるものではない。ステップS102の処理のみを実行しても良い。
本発明の実施の形態1にかかる燃料電池システムの構成図である。 実施の形態1の単位セルの構成を模式的に示す平面図である。 実施の形態1における、MEAの乾燥状態を説明するための図である。 実施の形態1の含水量制御の内容を説明するための図である。 実施の形態1において電流分布センサ54により得られる単位セル12の電流分布を示す図である。 実施の形態1の燃料電池システムを搭載した車両60の運転環境の変化を示す図である。 実施の形態1においてECU50が実行するルーチンのフローチャートである。
符号の説明
10 燃料電池スタック
12 単位セル
14 膜電極接合体(Membrane Electrode Assembly:MEA)
16 ガス流路
16a ガス流路入口
16b ガス流路出口
18 冷却液流路
18a 冷却液流路入口
18b 冷却液流路出口
20、22 管路
30 ラジエータ
31 冷却ファン
32 冷却液ポンプ
40 バイパス管路
42 三方弁
52 温度計
54 電流分布センサ
60 車両
62 ナビゲーションシステム
64 外気温センサ

Claims (6)

  1. 電解質膜と、該電解質膜の表面に接続され内部にカソードガスが流入するガス流路と、内部に該電解質膜の面内を冷却するための冷媒が流れる冷媒流路と、を備え、該ガス流路の入口と該冷媒流路の入口とが、該冷媒流路に流入する冷媒の温度変化に応じて該電解質膜の該ガス流路入口側部分の含水量が変化する程度に近くに設けられた燃料電池と、
    前記冷媒流路の入口に、冷媒を流入させる冷媒供給機構と、
    前記冷媒流路の入口に流れ込む冷媒の温度を、調節することができる入口温度調節機構と、
    前記電解質膜の前記ガス流路入口部分が、乾燥しているか否か、または/および、乾燥するおそれがあるか否か、を検知する検知手段と、
    前記電解質膜の前記ガス流路入口側部分が乾燥しているまたは/および乾燥するおそれがあると前記検知手段が検知したら、前記冷媒流路の入口に流れ込む冷媒の温度が低下するように前記入口温度調節機構を制御する制御手段と、
    を備えることを特徴とする燃料電池システム。
  2. 前記ガス流路と前記冷媒流路とが、前記電解質膜の外形のうち1つの辺から他の辺に向かって該電解質膜上を並行に延びるように設けられていることを特徴とする請求項1に記載の燃料電池システム。
  3. 前記冷媒供給機構が、前記冷媒流路の入口と出口とに接続して該冷媒流路とともに循環系を形成する管路と、該管路の途中に設けられたラジエータと、を含み、
    前記入口温度調節機構が、前記ラジエータを経由して流れる冷媒の流量を調節する流量調節機構を含み、
    前記制御手段が、前記電解質膜の前記ガス流路入口部分が乾燥しているまたは/および乾燥するおそれがあると検知したら、前記冷媒流路に流れ込む冷媒の流量を低減するように前記流量調節機構を制御することを特徴とする請求項1または2に記載の燃料電池システム。
  4. 請求項3に記載の燃料電池システムであって、
    前記燃料電池の前記冷媒流路出口側部分の温度を調節するように前記管路内の冷媒の温度を調節することができる出口温度調節機構と、
    前記制御手段が前記冷媒流路に流れ込む冷媒の流量を低減するように前記流量調節機構を制御するときに、前記燃料電池の前記冷媒流路出口側部分の温度が維持されるように前記出口温度調節機構を制御する出口温度維持手段と、
    を備えることを特徴とする燃料電池システム。
  5. 前記検知手段が、前記電解質膜における前記ガス流路入口側部分の発電状態に基づいて、前記電解質膜の前記ガス流路入口部分が、乾燥しているか否か、または/および、乾燥するおそれがあるか否か、を検知する発電状態検知手段を含むことを特徴とする請求項1乃至4のいずれか1項に記載の燃料電池システム。
  6. 請求項1乃至5のいずれか1項に記載の燃料電池システムであって、
    前記燃料電池システムの外部環境の情報である外部環境情報を取得する環境取得手段を備え、
    前記検知手段が、前記環境取得手段が取得した外部環境情報が所定の運転環境に該当するか否かに基づいて、前記電解質膜の前記ガス流路入口部分が乾燥するおそれがあるか否かを検知する環境検知手段を含むことを特徴とする燃料電池システム。
JP2008186119A 2008-07-17 2008-07-17 燃料電池システム Expired - Fee Related JP5380932B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008186119A JP5380932B2 (ja) 2008-07-17 2008-07-17 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008186119A JP5380932B2 (ja) 2008-07-17 2008-07-17 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2010027344A true JP2010027344A (ja) 2010-02-04
JP5380932B2 JP5380932B2 (ja) 2014-01-08

Family

ID=41732985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008186119A Expired - Fee Related JP5380932B2 (ja) 2008-07-17 2008-07-17 燃料電池システム

Country Status (1)

Country Link
JP (1) JP5380932B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011144978A3 (en) * 2010-05-20 2012-01-26 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2016062785A (ja) * 2014-09-18 2016-04-25 トヨタ自動車株式会社 燃料電池システム
JP2020161491A (ja) * 2020-06-12 2020-10-01 トヨタ自動車株式会社 燃料電池システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017105A (ja) * 2001-07-04 2003-01-17 Honda Motor Co Ltd 燃料電池の冷却装置
JP2003223909A (ja) * 2001-11-22 2003-08-08 Honda Motor Co Ltd 燃料電池システム
JP2006210334A (ja) * 2004-12-28 2006-08-10 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池発電システム
JP2007234452A (ja) * 2006-03-02 2007-09-13 Nissan Motor Co Ltd 燃料電池システム
JP2008066120A (ja) * 2006-09-07 2008-03-21 Nissan Motor Co Ltd 燃料電池システム
JP2008130471A (ja) * 2006-11-24 2008-06-05 Toyota Motor Corp 燃料電池運転システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017105A (ja) * 2001-07-04 2003-01-17 Honda Motor Co Ltd 燃料電池の冷却装置
JP2003223909A (ja) * 2001-11-22 2003-08-08 Honda Motor Co Ltd 燃料電池システム
JP2006210334A (ja) * 2004-12-28 2006-08-10 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池発電システム
JP2007234452A (ja) * 2006-03-02 2007-09-13 Nissan Motor Co Ltd 燃料電池システム
JP2008066120A (ja) * 2006-09-07 2008-03-21 Nissan Motor Co Ltd 燃料電池システム
JP2008130471A (ja) * 2006-11-24 2008-06-05 Toyota Motor Corp 燃料電池運転システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011144978A3 (en) * 2010-05-20 2012-01-26 Toyota Jidosha Kabushiki Kaisha Fuel cell system
CN102906922A (zh) * 2010-05-20 2013-01-30 丰田自动车株式会社 燃料电池系统
US8617757B2 (en) 2010-05-20 2013-12-31 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2016062785A (ja) * 2014-09-18 2016-04-25 トヨタ自動車株式会社 燃料電池システム
JP2020161491A (ja) * 2020-06-12 2020-10-01 トヨタ自動車株式会社 燃料電池システム

Also Published As

Publication number Publication date
JP5380932B2 (ja) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5585412B2 (ja) 燃料電池システム
JP5156797B2 (ja) 燃料電池システム
JP2013258111A (ja) 燃料電池システム
JP2006210004A (ja) 燃料電池システム
JPWO2006126746A1 (ja) 燃料電池システムおよび燃料電池の運転方法
JP2008288148A (ja) 燃料電池システムの制御装置
JP5940891B2 (ja) 燃料電池システムの換気方法
JP5812118B2 (ja) 燃料電池システム
JP2008027674A (ja) 燃料電池用加湿装置
JP5380932B2 (ja) 燃料電池システム
KR101350183B1 (ko) 연료전지용 상대습도 및 응축수 추정기를 이용한 응축수 드레인 제어 방법
JPH07320755A (ja) 燃料電池
JP5665684B2 (ja) 燃料電池システム
JP2008066120A (ja) 燃料電池システム
JP2003223909A (ja) 燃料電池システム
JP2008021448A (ja) 燃料電池システムおよび燃料電池の制御方法
JP5109284B2 (ja) 燃料電池システム
JP2006339103A (ja) 燃料電池システム
JP6136185B2 (ja) 燃料電池システム
JP5512387B2 (ja) 燃料電池の運転方法
JP2009245826A (ja) 燃料電池スタック及び燃料電池システム
JP2008097891A (ja) 燃料電池システム
JP2006260882A (ja) 燃料電池システム
JP2003297403A (ja) 水素検出装置
JP4675605B2 (ja) 燃料電池の酸化剤供給装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R151 Written notification of patent or utility model registration

Ref document number: 5380932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees