JP2008288148A - 燃料電池システムの制御装置 - Google Patents

燃料電池システムの制御装置 Download PDF

Info

Publication number
JP2008288148A
JP2008288148A JP2007134250A JP2007134250A JP2008288148A JP 2008288148 A JP2008288148 A JP 2008288148A JP 2007134250 A JP2007134250 A JP 2007134250A JP 2007134250 A JP2007134250 A JP 2007134250A JP 2008288148 A JP2008288148 A JP 2008288148A
Authority
JP
Japan
Prior art keywords
fuel cell
cell stack
gas
fuel
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007134250A
Other languages
English (en)
Inventor
Sho Usami
祥 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007134250A priority Critical patent/JP2008288148A/ja
Priority to PCT/IB2008/001657 priority patent/WO2008142564A1/en
Publication of JP2008288148A publication Critical patent/JP2008288148A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04358Temperature; Ambient temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04402Pressure; Ambient pressure; Flow of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • H01M8/04529Humidity; Ambient humidity; Water content of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04731Temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04761Pressure; Flow of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • H01M8/0485Humidity; Water content of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】簡易な構成で、燃料電池の電解質膜の乾燥状態を適切に判断する燃料電池システムの制御装置を提供する。
【解決手段】燃料電池システムの制御装置(20)は、燃料ガスの燃料電池スタック内における圧力損失を測定する測定手段と、この測定手段により測定された燃料ガスの圧力損失の低下が検出された場合に燃料電池スタック内の電解質膜が乾燥していると判断する判断手段とを備える。
【選択図】図1

Description

本発明は、燃料電池システムの制御装置に関し、特に、燃料電池スタック内の電解質膜のドライアップ検出技術に関する。
燃料電池の各セルは、電解質膜の両面をガス拡散電極(燃料ガス電極(アノード)及び酸化剤ガス電極(カソード))で挟み更にその両側をガス供給路の設けられたセパレータで挟むようにしてそれぞれ形成される。燃料電池は、このようなセルが複数積層された燃料電池スタック及びその他の部材がエンドプレートで挟み固定されることにより構成される。
各セルは、アノードに接合されるセパレータのガス供給路に供給される燃料ガスとカソードに接合されるセパレータのガス供給路に供給される酸化剤ガスとを電解質膜を介して反応させることによりそれぞれ発電を行う。具体的には、アノードに供給された燃料ガスに含まれる水素がアノードを構成する触媒層における酸化反応によりプロトン(水素イオ
ン)と電子とに分離され、プロトンが電解質膜を通ってカソードに移動し、電子が外部回
路を通ってカソードに移動することにより電流が生ずる。ここで、各セルの発電効率を維持するためには、プロトンの移動を確保するために電解質膜を湿潤状態に保つ必要がある。
しかしながら、発電時の電解質膜中では、プロトンの移動に伴いアノード側の水分がカソード側へ持ち去られる電気浸透現象が生ずる。更に、発電時には発熱も伴う。これらにより発電時は電解質膜が乾燥し易い状態となる。電解質膜が乾燥すると、電気抵抗が増大し、出力電流密度が低下することになる。
そこで、このようなセルから構成される燃料電池スタックでは、各セルのカソードの触媒層での化学反応により生成された水が利用されるような構造、外部加湿モジュールにより加湿された酸化剤ガスが各セルに供給される構成、発電により生じた熱を冷却するための冷却水が各セルに供給される構成等が設けられることにより、各セルの電解質膜が湿潤状態に保たれる。
ところで、このような燃料電池スタックの湿度制御を適切に行うためには、電解質膜の乾燥状態を適切に把握する必要がある。そこで、燃料電池スタックの換気出口近傍に湿度センサを設け、その湿度センサの検出値が最初のピークに達するまでの時間変化の傾きから電解質膜の乾燥状態を推定する手法が提案されている(下記特許文献1参照)。
その他、本願発明に係る先行技術文献として以下のような文献が開示されている。
下記特許文献2は、電解質膜付近での水分過多によりガス拡散が阻害され電池性能が低下する現象(フラッディング)を防ぐための手法を開示する。この手法では、燃料ガスの圧力損失が測定されフラッディングが起きていると判断された場合には、運転温度を上げる又はガスの加湿量を下げるように制御することでフラッディングが抑制される。
下記特許文献3は、セル電圧低下率から燃料電池の湿潤状態を判定し、乾燥状態と判断されると反応ガスの圧力と加湿用の純水の圧力との圧力差が減少するように制御する手法を開示する。
下記特許文献4は、測定されたアノードの圧力とセパレータ湿潤時の圧力とを比較することでセパレータの乾燥状態を推定し、乾燥状態に応じて純水の供給を制御する手法を開示する。
特開2006−93028号公報 特開2001−148253号公報 特開2006−32094号公報 特開2005−85537号公報
しかしながら、上述のような従来技術では、燃料電池スタックが高出力化され電流密度が高くなると、適切に電解質膜の乾燥状態を検出することができない。
電流密度が高くなるとカソードの単位面積当たりの生成水の量が増加する。生成水が多い場合には供給されるガスの湿度が低かったとしても電解質膜が湿潤状態に保たれる。従って、燃料電池スタックから送出されるガスの湿度だけでは、電解質膜の乾燥状態を適切に検出することができない。
セパレータに設けられたガス供給路が金属の多孔質体流路として形成される場合には、この問題点はより顕著となる。すなわち、多孔質体流路の含水量は通常の溝流路に較べてより多くなるため、電解質膜が乾燥状態にあったとしても流路に含まれる水分により燃料電池スタックから送出されるガスの湿度が高く検出されてしまうからである。
更に、湿度検出対象となるガスの状態に応じて、湿度(露点)センサには保温手段若しくは結露防止手段を設ける必要がある。このような手段がガスの湿度検出を妨げるため、当該センサではガスの湿度が下がるのに時間がかかり電解質膜の乾燥状態の検出が遅れてしまう。
一方で、燃料電池スタックの抵抗値又は電圧低下率により電解質膜の乾燥状態を検出する手法では、それらの値を検出する手段により燃料電池システムが複雑化してしまうという問題点がある。
本発明の目的は、簡易な構成で、燃料電池の電解質膜の乾燥状態を適切に判断する燃料電池システムの制御装置を提供することである。
本発明は、上述した課題を解決するために以下の手段を採用する。即ち、本発明に係る燃料電池システムの制御装置は、燃料ガスの燃料電池スタック内における圧力損失を測定する測定手段と、この測定手段により測定された燃料ガスの圧力損失の低下が検出された場合に燃料電池スタック内の電解質膜が乾燥していると判断する判断手段とを備える。
燃料電池スタック内のガス流路に含まれる又は付着する水分量が少なくなると、電解質膜が乾燥し始め(ドライアップが起こり始め)、セル抵抗が上がり始める。一方で、燃料電池スタック内のガス流路に含まれる又は付着する水分量が少なくなると、燃料電池スタック内のガス流路における燃料ガスへの抵抗が少なくなるため、燃料ガスの燃料電池スタック内の圧力損失が低下する。
これにより、本発明では、この燃料ガスの圧力損失の低下を検出することにより、電解質膜の乾燥状態を判断する。
従って、本発明によれば、電解質膜が乾燥し切ってしまう前に早期に電解質膜の乾燥状態を検出することができる。
更に、本発明によれば、燃料ガスの圧力損失の低下により電解質膜の乾燥状態が判断されるため、燃料電池スタックの電流密度が高い場合でセル内での単位面積当たりの生成水の量が多くなる場合であっても適切に電解質膜の乾燥状態を検出することができる。このような効果を奏するにあたり、本発明によれば上記測定手段と上記判断手段といった簡易な構成で実現することができる。
本発明において好ましくは、燃料電池スタックの運転温度を測定する温度測定手段を更に備え、上記判断手段が、上記温度測定手段により測定された燃料電池スタックの運転温度が所定の閾値温度より高い場合でかつ燃料ガスの圧力損失の低下が検出された場合に、燃料電池スタック内の電解質膜が乾燥していると判断するように構成する。
これによれば、電解質膜の乾燥状態を検出するにあたり、燃料ガスの圧力損失の低下と共に燃料電池スタックの運転温度が所定の閾値温度より高いか否かが考慮される。
従って、本発明によれば、燃料電池スタックの運転温度が高く電解質膜が乾燥し易い状況か否かの判断が加わることにより電解質膜の乾燥状態をより正確に判断することができる。
このような構成において更に好ましくは、上記温度測定手段が、燃料電池スタックから送出された冷却水の温度を燃料電池スタックの運転温度として測定するように構成する。
本発明において好ましくは、燃料電池スタックから送出される燃料ガスの経路上に設けられ燃料ガスの圧力を調整することにより、燃料電池スタックに供給される燃料ガスの流量が略一定となるように調整する圧力調整弁を更に備えるように構成する。
本発明によれば、上記圧力調整弁により燃料電池スタックに供給される燃料ガスの流量が略一定となるように調整されるため、燃料電池スタックに供給される燃料ガスの流量の変化に伴う燃料ガスの圧力損失の変化を防ぐことができる。よって、燃料電池スタック内の電解質膜の乾燥に伴う燃料ガスの圧力損失の変化を確実に検出することができる。
本発明は、本発明により制御される燃料電池スタックが多孔質体のガス流路を有する場合により効果的である。多孔質体流路を有する燃料電池スタックでは、セル内の水分がこの多孔質体流路に留まり易いためこの多孔質体流路に含まれる水分により電解質膜の乾燥が検出し難い。
しかしながら、上述のように多孔質体流路に含まれる水分に応じて変化する燃料ガスの圧力損失を電化質膜の乾燥状態の判断要素とする本発明によれば、このような多孔質体のガス流路を有する燃料電池スタックにおいてより確実に電解質膜の乾燥状態を判断することができる。
本発明において好ましくは、上記判断手段により燃料電池スタック内の電解質膜が乾燥していると判断された場合に燃料電池スタックの運転温度を下げるよう制御する制御手段を更に備えるように構成する。
これにより、早期に電解質膜の乾燥状態が判断されそれを解消するように燃料電池スタックに対して制御がなされるため、電解質膜の乾燥を未然に防ぐことができる。
本発明によれば、簡易な構成で、燃料電池の電解質膜の乾燥状態を適切に判断する燃料電池システムの制御装置を提供することができる。
[実施形態]
以下、図面を参照して、本発明の実施形態における燃料電池システムについて説明する。なお、以下に述べる実施形態の構成は例示であり、本発明は以下の実施形態の構成に限定されない。
〔システム構成〕
本発明の実施形態における燃料電池システムの構成について図1を用いて説明する。図1は、本発明の実施形態としての燃料電池システムの構成例を示す図である。本実施形態における燃料電池システムは、燃料電池スタック10、エアコンプレッサ11、加湿モジュール12、圧力調整弁15及び24、燃料ガス供給装置21、流量調整弁22、気液分離器26、燃料ガス循環ポンプ28、冷却器29、圧力センサ31及び33、温度センサ35、ECU(Electric Control Unit)20等を備える。
エアコンプレッサ11は、例えばエアフィルタ等を介して大気から取り込まれる空気を酸化剤ガスとして所定量分圧縮し、配管41へ送り出す。なお、本発明は、エアコンプレッサ11から送り出される酸化剤ガスは、このような圧縮空気に限定されるものではない。この配管41へ送り出された酸化剤ガスは、加湿モジュール12で加湿され、酸化剤ガス供給用の配管43を通り燃料電池スタック10へ供給される。
燃料ガス供給装置21は、燃料ガスとして例えば水素ガス又は水素混合ガスを供給する。燃料ガス供給装置21から供給される燃料ガスは、流量調整弁22により流量制御され、配管51へ送り出される。
流量調整弁22は、燃料ガス供給装置21から供給される燃料ガスを燃料電池スタック10の要求発電量等に応じて所定流量分送り出す。流量調整弁22を通過した燃料ガスは、燃料電池スタック10の燃料ガス入口に繋がる燃料ガス供給用の配管51を通り、燃料電池スタック10へ供給される。
燃料電池スタック10は、電解質膜の両面をガス拡散電極(燃料ガス電極(アノード)及び酸化剤ガス電極(カソード))で挟み更にその両側をガス供給路の設けられたセパレータで挟むようにしてそれぞれ形成されるセルが複数積層されることにより構成されている。燃料電池スタック10は、各セルにおいてこのように供給される燃料ガスと酸化剤ガスとを電解質膜を介してそれぞれ反応させることにより発電を行う。ここで発電に供されなかった燃料ガス(以降、アノードオフガスと表記する)はアノードオフガス出口から、発電に供されなかった酸化剤ガス(以降、カソードオフガスと表記する)はカソードオフガス出口からそれぞれ排出される。
圧力調整弁15は、燃料電池スタック10のカソードオフガス出口に繋がる配管44と加湿モジュール12へと繋がる配管46との間に配置され、配管44及び43内並びに燃料電池スタック10内に存在する酸化剤ガス及びカソードオフガスの気圧を調整する。圧力調整弁15を通過したカソードオフガスは、配管46へ送り出される。
加湿モジュール12は、エアコンプレッサ11から供給される酸化剤ガスを配管41から取り込み、圧力調整弁15を通過したカソードオフガスを配管46から取り込み、それらを混合させる。混合されたガスは、カソードオフガスに含まれる水分等により加湿され
た状態となり、燃料電池スタック10へ供給される。圧力調整弁15を通過したカソードオフガスの一部は、配管48により排気経路(図示せず)へ送り出される。
このように、エアコンプレッサ11から送り出される酸化剤ガスは、加湿モジュール12で加湿された後、燃料電池スタック10内の各セルのカソードへそれぞれ供給される。このような構成により、各セルの電解質膜がそれぞれ湿潤に保たれる。
圧力調整弁24は、燃料電池スタック10のアノードオフガス出口に繋がる配管52と気液分離器26へと繋がる配管53との間に配置される。後述するように、本実施形態における燃料電池システムでは、燃料電池スタック10内の各セルを通過する際の燃料ガスの圧力損失が検出される。圧力調整弁24は、燃料ガスの圧力損失を正確に検出するために、燃料電池スタック10のアノードオフガス出口のアノードオフガス圧力が一定となるように調整する。これは、アノードオフガスの圧力が変化すると燃料電池スタック10へ供給される燃料ガスの流量が変化し、この流量の変化に伴う燃料ガスの圧力損失の変化を防ぐためである。圧力調整弁24を通過したアノードオフガスは、配管53へ送り出される。
気液分離器26は、圧力調整弁24を通過し配管53を通るアノードオフガスから液層成分を除去する。気液分離器26は、例えば、機器内に取り込まれたアノードオフガスに含まれる水蒸気を壁面等で凝縮させることにより気液分離する。液層成分の除去されたアノードオフガスは、配管55を通り燃料ガス循環ポンプ28方向へ送り出される。
燃料ガス循環ポンプ28は、回転駆動用のモータ等を備え、配管55を通るアノードオフガスを燃料電池スタック10へ再供給するために、当該アノードオフガスを配管57へ送り出す。配管57を通るアノードオフガスは、燃料ガス供給装置21から供給される燃料ガスと配管51により混合され、燃料電池スタック10へ再供給される。
このように、本実施形態における燃料電池システムでは、燃料電池スタック10から発電に供されず送出されたアノードオフガスが再び燃料電池スタック10へ供給されるアノードオフガス循環経路が形成されている。しかしながら、本発明は、このようなアノードオフガス循環経路を持つ燃料電池システムに限定されるものではなく、当該燃料電池システムは、アノードオフガス循環経路を持たないよう構成されてもよい。
本実施形態における燃料電池システムでは、更に、配管51の燃料電池スタック10の燃料ガス入口近傍に圧力センサ31が設置され、配管52の燃料電池スタック10のアノードオフガス出口近傍に圧力センサ33が設置される。圧力センサ31は燃料電池スタック10へ供給される燃料ガスの圧力を検出し、圧力センサ33は燃料電池スタック10から送出されるアノードオフガスの圧力を検出する。圧力センサ31及び33により検出された燃料ガスの圧力及びアノードオフガスの圧力はECU20へ送られる。
なお、本発明は、燃料電池スタック10の各セルにそれぞれ供給される前の燃料ガスの圧力と各セルを通過したアノードオフガスの圧力との差を測定することができれば、圧力センサ31及び33の設置位置や圧力検出原理等を限定するものではない。従って、圧力センサ31及び33は、燃料電池スタック10内の各セルに燃料ガスを供給する供給路及び各セルを通過したアノードオフガスが流れる排出路に設けられるようにしてもよい。更に、1つの差圧センサを用いて当該圧力差(圧力損失)を測定するようにしてもよい。
更に、燃料電池スタック10には当該燃料電池を適温で動作させるために冷却水が供給される。燃料電池スタック10内では、この冷却水が例えばセル間に設けられる冷却板を通過する際にセルの発する熱を奪い、最終的に冷却水出口から出る。冷却水出口から出た
冷却水は、冷却水出口に繋がる配管61を通り、冷却器29に送られる。
冷却器29は、燃料電池スタック10の各セルから熱を奪うことで加熱された冷却水を配管61から取り込み、取り込まれた冷却水を冷却する。冷却器29は、内部に備えられる冷却ファン等から送られる送風により配管61から取り込まれた冷却水を冷却し、冷却された冷却水を配管62に送り出す。配管62へ送り出された冷却水は、燃料電池スタック10へ供給される。
このように、本実施形態における燃料電池システムは、燃料電池スタック10内の各セルの熱を奪い加熱された冷却水が冷却器29により冷却され、再度燃料電池スタック10へ供給されるという冷却水循環系を持つ。
本実施形態における燃料電池システムでは、燃料電池スタック10から送出された冷却水の温度を計測するために、配管61の燃料電池スタック10の出口付近に温度センサ35が配置される。温度センサ35は、燃料電池スタック10の各セルから熱を奪うことで加熱され燃料電池スタック10から出された冷却水の温度を検出する。検出された冷却水の温度はECU20へ送られる。
なお、本発明は、燃料電池スタック10の各セルの発する熱が反映された冷却水の温度を測定することができれば、この温度センサ35の設置位置や温度検出原理等を限定するものではない。従って、温度センサ35は、燃料電池スタック10内の各セルを通過した冷却水が流れる排出路に設けられるようにしてもよい。更に言えば、本発明は、燃料電池スタック10の運転温度を測定することができれば、冷却水の温度でなくてもよく、燃料電池スタック10内の温度や燃料電池スタック10自体の所定箇所の温度が測定されるようにしてもよい。
ECU20は、CPU(Central Processing Unit)、メモリ、入出力インタフェース等
により構成されており、CPUがメモリに格納された制御プログラムを実行することによって、燃料電池スタック10内の湿度制御を行う。ECU20は、本発明に係る制御装置に相当する。ECU20は、湿度制御を行うにあたり、圧力センサ31及び33により検出された燃料ガスの圧力及びアノードオフガスの圧力、温度センサ35により検出された冷却水の温度に基づいて、各セルの電解質膜の乾燥状態を把握する。このECU20による電解質膜の乾燥状態の判断手法については後述する。
ECU20は、判断されたセルの電解質膜の乾燥状態に応じて所定の湿度制御を行う。ECU20は、この湿度制御として、例えば燃料電池スタック10の運転温度を下げるような制御を実行する。なお、ECU20により実行される湿度制御は、加湿モジュール12による加湿量を制御するものであってもよいし、酸化剤ガスの供給量を制御するものであってもよいし、冷却水の供給量を制御するものであってもよい。本発明は、ECU20による湿度制御の内容を限定するものではない。
〔乾燥状態判断手法〕
以下、本発明の実施形態における燃料電池システムによる、電解質膜の乾燥状態判断手法について図2を用いて説明する。図2は、燃料電池スタック10内のセルの特性を示すグラフである。図2には、特性値として、電流密度、セル電圧、セル抵抗、冷却水温度、酸化剤ガスの圧力損失として空気圧損及び燃料ガスの圧力損失として水素圧損が運転経過時間と共にそれぞれ示されている。
図2によれば、線(1)で示される1500秒経過時点において、セル抵抗が低くセル電圧が高い状態が示されている。これは、セルの電解質膜が湿潤に保たれプロトンの移動
が正常に確保されている状態を示している。一方で、線(3)で示される3200秒を超えた時点においては、セル抵抗が極端に上昇しセル電圧が極端に下降し冷却水温度が高温の状態が示されている。これは、セルの電解質膜が乾燥しプロトンの移動が正常に確保されていない状態を示している。
ここで、線(2)で示される2500秒経過前付近に着目すると、セル抵抗が上昇し始めセル電圧が下降し始めており、更に冷却水温度も80度と高温となっていることが分かる。これは、この時点においてセルの電解質膜が乾燥し始めていることを示すものである。
本実施形態における燃料電池システムでは、この時点をセルの電解質膜の乾燥状態として検出することにより、電解質膜が乾燥し始める段階で前もって上述の湿度制御を予め実行する。
更に着目すべきは、この線(2)で示される付近の電解質膜が乾燥し始める時点において、水素圧損が低下し始めていることである。これにより、水素圧損が低下し始めた時点をセルの電解質膜の乾燥状態として検出すれば、セル抵抗が上昇し始めた時点及びセル電圧が下降し始めている時点を検出するのと同様の効果を得ることができる。
この手法は、燃料電池スタック10内の各セルのセパレータに設けられたガス供給路が金属の多孔質体流路として形成される場合により有効である。図3Aは、図3B及び図3Cは、それぞれ図2のグラフの線(1)、2及び3の時点における多孔質体流路の含水状態の概念を示す図である。
図3Aは、図2に示されるグラフの線(1)の時点における多孔質体流路の含水状態を示している。図3Aに示すように、図2の線(1)で示される時点では、多孔質体流路の中で、各セルの化学反応により生成された水などが表面張力、毛管吸引力等により図上方に吸い上げられ形成される水通路とそれ以外の箇所に燃料ガスが流れるよう形成されるガス通路とが形成される。更に図3Aに示される状態では、多孔質体流路の中で水通路の占める割合が高いことから多孔質体流路の含水量が多く、この水分がバッファ的に用いられることによりセルの電解質膜も湿潤に保たれる。
図3Bは、図2に示されるグラフの線(2)の時点における多孔質体流路の含水状態を示している。図3Bによれば、図3Aの状態よりも多孔質体流路の中での水通路の占める割合が低いことから、多孔質体流路の含水量が図3Aの状態よりも少ないことが示されている。
図3Cは、図2に示されるグラフの線(3)の時点における多孔質体流路の含水状態を示している。図3Cによれば、多孔質体流路の中での水通路の占める割合が極僅か若しくは水通路が形成されていない状態が示されている。
セパレータに設けられたガス供給路が多孔質体流路として形成されている場合には、一般的に溝流路と較べ当該多孔質体流路に水が含まれ易い。一方で、多孔質体流路の含水量が多い程、燃料ガスが流れ難くなり、多孔質体流路の含水量が少ない程、燃料ガスが流れ易くなる。すなわち、ガス供給路が多孔質体流路として形成されている場合には、多孔質体流路の含水量に応じた燃料ガスの圧力損失の変化がより顕著に現れる。多孔質体流路の含水量が多ければ、電解質膜も湿潤に保たれる可能性が高いため、ガス供給路が多孔質体流路として形成されている場合には、燃料ガスの圧力損失の低下を検出することにより確実に電解質膜が乾燥し始めたことを検出することができるようになる。
本実施形態における燃料電池システムのECU20は、圧力センサ31により検出された燃料ガスの圧力と圧力センサ33により検出されたアノードオフガスの圧力との差から燃料ガスの圧力損失を算出し、この圧力損失が低下し始める時点を検出する。ECU20は、燃料ガスの圧力損失が低下し始めたことを検出すると、それによりセルの電解質膜が乾燥し始めたと判断し、上述の所定の湿度制御の実行を開始する。
ECU20は、圧力損失が低下し始める時点を検出する際に、圧力センサ31及び33から逐次出力を得て、所定時間間隔(例えば10秒)で圧力センサ31から出力される圧力と圧力センサ33から出力される圧力との圧力損失を算出し、この算出された圧力損失値を保持する。続いて、ECU20は、保持された所定時間間隔の圧力損失値のうち所定数の圧力損失値(例えば現在の算出値から10個分の圧力損失値)を参照することにより圧力損失の継続低下を検出する。その他の方法として、圧力損失の算出が逐次実行されるようにし、その算出された複数の圧力損失値を所定の時間間隔でサンプリングした値を用いて圧力損失の継続低下を検出するようにしてもよい。なお、本発明は、ECU20による圧力損失の継続低下の検出方法を限定するものではなく、何らかの方法により検出されるようにすればよい。
ECU20は、このような圧力損失の継続低下のうちセルの電解質膜の乾燥に伴うもののみを確実に検出するために、更に、温度センサ35により検出された冷却水の温度を参照する。具体的には、ECU20は、冷却水の温度が所定の閾値温度(例えば80度)を超えており、かつ、上述のような圧力損失の継続低下を検出すると、セルの電解質膜が乾燥し始めていると判断する。燃料ガスの圧力損失が継続して低下していたとしても冷却水の温度が低いすなわちセルの発熱が少ない場合には電解質膜が乾燥し難いと判断できるからである。この閾値温度は、メモリ等に予め調整可能に保持されるようにしてもよい。
〔動作例〕
以下、本実施形態における燃料電池システムの動作例について図4を用いて説明する。図4は、本実施形態における燃料電池システムの湿度制御に伴う動作例を示すフローチャートである。
本実施形態における燃料電池システムは、ECU20による湿度制御が実行される際には以下のように動作している。すなわち、燃料ガス供給装置21から供給される燃料ガスが流量調整弁22により流量調整され、配管51を通り、燃料電池スタック10内へ送り込まれる。
圧力センサ31は、この燃料電池スタック10内へ送り込まれる燃料ガスの圧力を検出し、検出結果をECU20へ送る。
一方、燃料電池スタック10内の各セルでは、このように供給された燃料ガスと、加湿モジュール12により加湿された状態で配管43から燃料電池スタック10内へ送り込まれる酸化剤ガスとが、電解質膜を介してそれぞれ反応し発電が行われている。そこで発電に供されなかった燃料ガスは、アノードオフガスとして燃料電池スタック10から排出される。
圧力センサ33は、燃料電池スタック10から排出されたアノードオフガスの圧力を検出し、検出結果をECU20へ送る。
各セルでは発電に伴い発熱が起こる。この発熱によりセルが高温となりセルの電解質膜が乾燥するのを防ぐために、燃料電池スタック10内には冷却器29により冷却された冷却水が送り込まれている。冷却水は、燃料電池スタック10内の各セルにより発せられた
熱を奪い、燃料電池スタック10から排出されている。
温度センサ35は、この燃料電池スタック10内から送出された冷却水の温度を検出し、検出結果をECU20へ送る。
ECU20は、圧力センサ31及び33からの出力信号、並びに温度センサ35からの出力信号を取得する。ECU20は、圧力センサ31及び33からの出力信号としての燃料ガスの圧力とアノードオフガスの圧力とに基づいて燃料ガスの圧力損失を算出する(S401)。算出された圧力損失値はメモリ等に保持される。
ECU20は、算出された最新の圧力損失値と保持されている所定数の圧力損失値とを参照することにより、燃料ガスの圧力損失が継続して低下しているか否かを判断する(S402)。ECU20は、燃料ガスの圧力損失が継続して低下していると判断すると(S402;YES)、その時点での温度センサ35からの出力信号としての冷却水の温度が所定の閾値温度を超えているか否かを更に判断する(S403)。
ECU20は、燃料ガスの圧力損失が継続して低下していると判断し(S402;YES)、更にその時点での冷却水の温度が所定の閾値温度を超えていると判断すると(S403;YES)、燃料電池スタック10内の各セルの電解質膜のいずれかが乾燥状態となっていると判断する(S404)。ECU20は、電解質膜のいずれかが乾燥状態となっていると判断すると、所定の湿度制御を実行する(S406)。例えば、ECU20は、燃料電池スタック10の運転温度が下がるように制御する。
一方、ECU20は、燃料ガスの圧力損失が継続して低下していないと判断する(S402;NO)、或いは冷却水の温度が所定の閾値温度を超えていないと判断すると(S403;NO)、燃料電池スタック10内の各セルの電解質膜のいずれも未だ乾燥状態となっていないと判断する(S405)。
ECU20は、このような動作を繰返し実行する。
〈実施形態の作用及び効果〉
以下、上述した本実施形態としての燃料電池システムの作用及び効果について述べる。
本実施形態としての燃料電池システムでは、燃料電池スタック10の燃料ガス入口付近に設置された圧力センサ31により燃料電池スタック10へ供給される前の燃料ガスの圧力が検出され、燃料電池スタック10のアノードオフガス出口付近に設置された圧力センサ33により燃料電池スタック10から送出されたアノードオフガスの圧力が検出される。これら圧力センサ31及び33により検出された燃料ガス及びアノードオフガスの圧力に基づいて、燃料電池スタック10を通過する際の燃料ガスの圧力損失が算出される。
本実施形態としての燃料電池システムは、算出された燃料電池スタック10を通過する際の燃料ガスの圧力損失が継続して低下していることを検出することにより、燃料電池スタック10内の各セルの電解質膜のうち乾燥し始めた電解質膜が存在するものと判断する。
これにより、燃料電池スタック10内の各セルの電解質膜が完全に乾燥する前に燃料電池スタック10への湿度制御を実行することが可能となり、各セルの電解質膜の乾燥を未然に防ぐことができる。燃料電池スタック10内の各セルのセパレータに設けられたガス供給路が多孔質体流路として形成されている場合には、多孔質体流路に含有される水分に応じて燃料ガスの圧力損失の変化が明確となるため、このような効果はより顕著となる。
また、本実施形態としての燃料電池システムでは、この燃料ガスの圧力損失を算出するにあたり、圧力調整弁24により、燃料電池スタック10を通過する前後の燃料ガス及びアノードオフガスの圧力が一定となるように調整される。
これにより、燃料電池スタック10を通過する際の燃料ガスの圧力損失のみを検出することができる。
また、本実施形態としての燃料電池システムでは、温度センサ35により、各セルを冷却するために燃料電池スタック10へ供給される冷却水の燃料電池スタック10から送出された際の温度が検出される。この検出された冷却水の温度が所定の閾値温度を越えている場合に、燃料ガスの圧力損失が継続して低下している原因が電解質膜の乾燥状態に関連するものと判断される。
これにより、燃料電池スタック10内の各セルの電解質膜のうち乾燥し始めた電解質膜が存在するか否かが適切に検出することができる。
本発明の実施形態としての燃料電池システムの構成例を示す図である。 燃料電池スタック10内のセルの特性を示すグラフである。 図2のグラフの線(1)の時点における多孔質体流路の含水状態の概念を示す図である。 図2のグラフの線(2)の時点における多孔質体流路の含水状態の概念を示す図である。 図2のグラフの線(3)の時点における多孔質体流路の含水状態の概念を示す図である。 本実施形態における燃料電池システムの湿度制御に伴う動作例を示すフローチャートである。
符号の説明
10 燃料電池スタック
12 加湿モジュール
15、24 圧力調整弁
20 ECU(Electric Control Unit)
21 燃料ガス供給装置
22 流量調整弁
26 気液分離器
28 燃料ガス循環ポンプ
29 冷却器
31、33 圧力センサ
35 温度センサ

Claims (6)

  1. 燃料ガスの燃料電池スタック内における圧力損失を測定する測定手段と、
    前記測定手段により測定された燃料ガスの圧力損失の低下が検出された場合に前記燃料電池スタック内の電解質膜が乾燥していると判断する判断手段と、
    を備えることを特徴とする燃料電池システムの制御装置。
  2. 前記燃料電池スタックの運転温度を測定する温度測定手段を更に備え、
    前記判断手段は、前記温度測定手段により測定された燃料電池スタックの運転温度が所定の閾値温度より高く、前記燃料ガスの圧力損失の低下が検出された場合に、前記電解質膜が乾燥していると判断する、
    ことを特徴とする請求項1に記載の燃料電池システムの制御装置。
  3. 前記温度測定手段は、前記燃料電池スタックから送出された冷却水の温度を運転温度として測定することを特徴とする請求項1又は2に記載の燃料電池システムの制御装置。
  4. 前記燃料電池スタックから送出される燃料ガスの経路上に設けられ燃料ガスの圧力を調整することにより前記燃料電池スタックに供給される燃料ガスの流量が略一定となるように調整する圧力調整弁を更に備えることを特徴とする請求項1から3のいずれかに記載の燃料電池システムの制御装置。
  5. 前記燃料電池スタックは多孔質体のガス流路を有することを特徴とする請求項1から4のいずれかに記載の燃料電池システムの制御装置。
  6. 前記判断手段により前記電解質膜が乾燥していると判断されると、前記燃料電池スタックの運転温度を下げるよう制御する制御手段を更に備えることを特徴とする請求項1から5のいずれかに記載の燃料電池システムの制御装置。
JP2007134250A 2007-05-21 2007-05-21 燃料電池システムの制御装置 Withdrawn JP2008288148A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007134250A JP2008288148A (ja) 2007-05-21 2007-05-21 燃料電池システムの制御装置
PCT/IB2008/001657 WO2008142564A1 (en) 2007-05-21 2008-05-20 Control device and control method for fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007134250A JP2008288148A (ja) 2007-05-21 2007-05-21 燃料電池システムの制御装置

Publications (1)

Publication Number Publication Date
JP2008288148A true JP2008288148A (ja) 2008-11-27

Family

ID=39810194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007134250A Withdrawn JP2008288148A (ja) 2007-05-21 2007-05-21 燃料電池システムの制御装置

Country Status (2)

Country Link
JP (1) JP2008288148A (ja)
WO (1) WO2008142564A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169197A (ja) * 2011-02-16 2012-09-06 Toyota Motor Corp 燃料電池システム、燃料電池の運転方法及び電解質の乾燥度合い推定方法
JP2012178286A (ja) * 2011-02-28 2012-09-13 Toyota Motor Corp 燃料電池システム、燃料電池の運転方法及び電解質の乾燥度合い推定方法
JP2016126827A (ja) * 2014-12-26 2016-07-11 トヨタ自動車株式会社 燃料電池システムおよび燃料電池の運転制御方法
US9425473B2 (en) 2009-07-09 2016-08-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method of operating fuel cell system
JP6134832B1 (ja) * 2016-03-30 2017-05-24 東京瓦斯株式会社 燃料電池システム
JP2017098148A (ja) * 2015-11-26 2017-06-01 株式会社豊田自動織機 燃料電池システム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073380A1 (ja) * 2008-12-26 2010-07-01 トヨタ自動車株式会社 燃料電池の水分量推定装置及び燃料電池システム
EP2742555B1 (en) * 2011-08-11 2017-11-15 Audi AG Control system for a sealed coolant flow field fuel cell power plant having a water reservoir
WO2013167134A1 (en) * 2012-05-07 2013-11-14 Aalborg Universitet A method of operating a fuel cell
DE102016004855A1 (de) 2015-12-24 2017-06-29 Daimler Ag Verfahren zur Bestimmung eines Befeuchtungszustands einer Membran einer Brennstoffzelle und Brennstoffzellensystem
DE102021202053A1 (de) 2021-03-03 2022-09-08 Vitesco Technologies GmbH Diagnose zum Feuchtezustand eines PEM Brennstoffzellen-Stacks

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7781118B2 (en) * 2004-02-09 2010-08-24 Gm Global Technology Operations, Inc. Fuel cell flooding detection
DE602005024180D1 (de) * 2004-12-28 2010-11-25 Panasonic Corp Erzeugungssystem für brennstoffzellen des polymer-elektrolyttyps

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9425473B2 (en) 2009-07-09 2016-08-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method of operating fuel cell system
JP6017785B2 (ja) * 2009-07-09 2016-11-02 トヨタ自動車株式会社 燃料電池システム及び燃料電池システムの運転方法
JP2012169197A (ja) * 2011-02-16 2012-09-06 Toyota Motor Corp 燃料電池システム、燃料電池の運転方法及び電解質の乾燥度合い推定方法
JP2012178286A (ja) * 2011-02-28 2012-09-13 Toyota Motor Corp 燃料電池システム、燃料電池の運転方法及び電解質の乾燥度合い推定方法
JP2016126827A (ja) * 2014-12-26 2016-07-11 トヨタ自動車株式会社 燃料電池システムおよび燃料電池の運転制御方法
JP2017098148A (ja) * 2015-11-26 2017-06-01 株式会社豊田自動織機 燃料電池システム
JP6134832B1 (ja) * 2016-03-30 2017-05-24 東京瓦斯株式会社 燃料電池システム
JP2017183033A (ja) * 2016-03-30 2017-10-05 東京瓦斯株式会社 燃料電池システム

Also Published As

Publication number Publication date
WO2008142564A1 (en) 2008-11-27

Similar Documents

Publication Publication Date Title
JP2008288148A (ja) 燃料電池システムの制御装置
JP4300346B2 (ja) 燃料電池システム
US8580447B2 (en) Fuel cell system and control method for the same
JP2008041625A (ja) 燃料電池システム
JP2006210004A (ja) 燃料電池システム
JP2009181794A (ja) 燃料電池システム
JP2006351506A (ja) 燃料電池システム
US10333161B2 (en) Low-temperature startup method for fuel cell system
JP2013258111A (ja) 燃料電池システム
JP5151274B2 (ja) 燃料電池システムの制御装置
WO2010073386A1 (ja) 燃料電池システム
JP2007242449A (ja) 燃料電池システム
JP2007035567A (ja) 燃料電池システム
JP5109284B2 (ja) 燃料電池システム
JP2008021448A (ja) 燃料電池システムおよび燃料電池の制御方法
JP2006339103A (ja) 燃料電池システム
JP2008218242A (ja) 燃料電池システム
JP5011670B2 (ja) 燃料電池の電圧調整装置
JP2004349067A (ja) 燃料電池システム
JP3991047B2 (ja) 燃料電池用加湿装置
JP4675605B2 (ja) 燃料電池の酸化剤供給装置
JP4831981B2 (ja) 燃料電池システム
JP5279005B2 (ja) 燃料電池システム
JP5217123B2 (ja) 燃料電池システム
JP4332185B2 (ja) 燃料電池用加湿装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100803