JP2010019630A - 顕微分光装置 - Google Patents
顕微分光装置 Download PDFInfo
- Publication number
- JP2010019630A JP2010019630A JP2008179197A JP2008179197A JP2010019630A JP 2010019630 A JP2010019630 A JP 2010019630A JP 2008179197 A JP2008179197 A JP 2008179197A JP 2008179197 A JP2008179197 A JP 2008179197A JP 2010019630 A JP2010019630 A JP 2010019630A
- Authority
- JP
- Japan
- Prior art keywords
- light
- sample
- polarized
- laser beam
- axially symmetric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 50
- 238000005259 measurement Methods 0.000 claims abstract description 11
- 230000010287 polarization Effects 0.000 claims description 58
- 238000001069 Raman spectroscopy Methods 0.000 claims description 7
- 238000000605 extraction Methods 0.000 claims description 7
- 239000004973 liquid crystal related substance Substances 0.000 abstract description 47
- 239000000126 substance Substances 0.000 abstract description 24
- 239000000523 sample Substances 0.000 description 61
- 238000000034 method Methods 0.000 description 15
- 230000004075 alteration Effects 0.000 description 12
- 238000005286 illumination Methods 0.000 description 8
- 230000003595 spectral effect Effects 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 4
- 238000001237 Raman spectrum Methods 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 235000012489 doughnuts Nutrition 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001634 microspectroscopy Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000004038 photonic crystal Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/44—Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/0224—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using polarising or depolarising elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/10—Arrangements of light sources specially adapted for spectrometry or colorimetry
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0052—Optical details of the image generation
- G02B21/0064—Optical details of the image generation multi-spectral or wavelength-selective arrangements, e.g. wavelength fan-out, chromatic profiling
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0052—Optical details of the image generation
- G02B21/0068—Optical details of the image generation arrangements using polarisation
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Optics & Photonics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Microscoopes, Condenser (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
【課題】物質内部の動態をより詳細に計測することができる顕微分光装置を提供する。
【解決手段】試料Sの一部もしくは全部を測定部分として分光測定を行う共焦点顕微分光装置100であって、光軸に対して対称な偏光分布を有する軸対称偏光レーザ光を生成する分布型液晶旋光子3と、分布型液晶旋光子3により生成された軸対称偏光レーザ光を試料Sに集光する対物レンズ8と、を備え、対物レンズ8は、試料Sからの反射光及び/又は散乱光を集光するように構成した。
【選択図】図1
【解決手段】試料Sの一部もしくは全部を測定部分として分光測定を行う共焦点顕微分光装置100であって、光軸に対して対称な偏光分布を有する軸対称偏光レーザ光を生成する分布型液晶旋光子3と、分布型液晶旋光子3により生成された軸対称偏光レーザ光を試料Sに集光する対物レンズ8と、を備え、対物レンズ8は、試料Sからの反射光及び/又は散乱光を集光するように構成した。
【選択図】図1
Description
本発明は、顕微分光装置に関し、特に、物質内部の動態を計測する顕微分光装置に関する。
強誘電体物質などは、内部に不均一なナノスケールの構造を有することにより、実用上有用な機能を有する。これら有用物質の物性は、格子振動や分子振動等の物質内部の動態(ダイナミクス)に起因すると考えられている。
物質内部の動態を計測するものとして、共焦点顕微分光装置が知られている。例えば、特許文献1に記載の共焦点顕微分光装置は、試料における測定箇所を順次移動させながら、反射光量、ラマン散乱光及び蛍光スペクトル等の測定データを蓄積する。そして、当該共焦点顕微分光装置は、当該測定データに基づく2次元又は3次元分布像を得る。これにより、当該共焦点顕微分光装置は、物質内部の動態を計測することができる。
また、最近、非特許文献1に、レーザ光に光軸に対して対称な偏光分布を与えることにより、集光時のスポット径を小さくする技術が報告されている。また、光軸に対して対称な偏光分布を有するレーザ光(以下、軸対称偏光レーザ光と称する。)は、焦点において横偏光成分と縦偏光成分とを有する。
特開2005−121479号公報
S. Quabis, R. Dorn, M. Eberler, O. Glockl and G. Leuchs, Focusing light to a tighter spot, Optics Communications, Elsevier Science B.V., 25 May 2000, Volume 179, Issues 1-6, Pages 1-7
しかしながら、従来の共焦点顕微分光装置は、直線偏光のレーザ光を入射光として用いる。直線偏光のレーザ光は、焦点において横偏光成分しか有さない。そのため、横偏光成分を探針として検出できる物質内部の格子振動などの動態しか計測できず、縦偏光成分を探針として検出できる成分を含む全ての格子振動などの動態を計測することは難しかった。そのため、様々な運動状態にあるあらゆる動態を容易に計測することができる共焦点顕微分光装置の開発が望まれている。
また、従来の共焦点顕微分光装置の2次元空間分解能の限界は、入射光の波長の2乗程度であった。さらに深さ方向の空間分解能を考慮すると、従来の共焦点顕微分光装置の3次元空間分解能は、数μm3程度であり、物質内部の動態をナノスケールで計測することができない。そのため、内部に不均一なナノスケールの構造を有する強誘電体物質などの有用物質の機能の発現機構は未だ解明されていない。したがって、ナノスケールで物質内部の動態を計測可能な共焦点顕微分光装置の開発も望まれている。
本発明は、物質内部の動態をより詳細に計測可能な顕微分光装置を提供することを目的とする。
本発明にかかる顕微分光装置は、試料の一部もしくは全体を測定部分として分光測定を行う顕微分光装置であって、光軸に対して対称な偏光分布を有する軸対称偏光レーザ光を生成する軸対称偏光生成手段と、前記軸対称偏光生成手段により生成された軸対称偏光レーザ光を前記試料に集光する集光手段と、を備え、前記集光手段は、前記試料からの反射光及び/又は散乱光を集光するものである。
本発明にかかる顕微分光装置においては、軸対称偏光レーザ光を試料に集光する。軸対称偏光レーザ光は、焦点において、横偏光成分だけでなく縦偏光成分も有する。そのため、物質内部の横偏光成分を探針として検出できる動態だけでなく、縦偏光成分を探針として検出できる動態を含むあらゆる動態をも計測することができる。従来、様々な運動状態にあるあらゆる動態を計測する場合には、複雑な光学系や煩雑な操作を必要とし、装置自体が大きくなってしまうなどの問題があった。しかし、本発明にかかる顕微分光装置においては、軸対称偏光レーザ光を試料に集光する集光手段により、試料からの反射光及び/又は散乱光として物質内部のあらゆる動態に起因する情報が取得される。そのため、簡易な光学系、もしくは容易な操作で、様々な運動状態にあるあらゆる動態を計測することができる。
また、軸対称偏光レーザ光のスポットサイズは、直線偏光レーザ光より小さい。そのため、軸対称偏光レーザ光を用いることにより、分解能を向上することができる。
また、軸対称偏光レーザ光のスポットサイズは、直線偏光レーザ光より小さい。そのため、軸対称偏光レーザ光を用いることにより、分解能を向上することができる。
また、前記試料における焦点と共役関係を有する焦点に設けられ、前記軸対称偏光レーザ光の光束径方向において、前記軸対称偏光レーザ光に含まれる所定の偏光成分が占める領域が透過可能に形成された選択手段を備えることが好ましい。
これにより、選択手段は、軸対称偏光レーザ光に含まれる横偏光成分及び縦偏光成分の何れか一方に由来する反射光及び/又は散乱光を選択的に透過することができる。そのため、横偏光成分に由来する動態及び縦偏光成分に由来する動態の何れか一方の動態のみを計測することができる。
これにより、選択手段は、軸対称偏光レーザ光に含まれる横偏光成分及び縦偏光成分の何れか一方に由来する反射光及び/又は散乱光を選択的に透過することができる。そのため、横偏光成分に由来する動態及び縦偏光成分に由来する動態の何れか一方の動態のみを計測することができる。
さらに、前記軸対称偏光生成手段は、光軸に対して放射方向に偏光する放射状偏光レーザ光を生成し、少なくともラマン分光法を用いて、前記集光手段により集光された反射光及び/又は散乱光のうち、縦偏光成分由来の反射光及び/又は散乱光のみを抽出する抽出手段を備えることがより好ましい。
放射状偏光レーザ光は、焦点において、横偏光成分と縦偏光成分とを有する。また、焦点における、縦偏光成分のスポットサイズは、横偏光成分のスポットサイズよりはるかに小さい。そして、一般に、横偏光成分を探針として検出できる成分は、縦偏光成分を探針として検出できる成分と異なる振動数を有する。そのため、抽出手段により縦偏光成分由来の反射光及び/又は散乱光のみを抽出することにより、分解能をさらに向上することができる。具体的には、縦偏光成分のスポットサイズは、波長の30%程度である。したがって、3次元空間分解能を約30倍向上させることができる。換言すれば、ナノスケールの分解能を達成することができる。
放射状偏光レーザ光は、焦点において、横偏光成分と縦偏光成分とを有する。また、焦点における、縦偏光成分のスポットサイズは、横偏光成分のスポットサイズよりはるかに小さい。そして、一般に、横偏光成分を探針として検出できる成分は、縦偏光成分を探針として検出できる成分と異なる振動数を有する。そのため、抽出手段により縦偏光成分由来の反射光及び/又は散乱光のみを抽出することにより、分解能をさらに向上することができる。具体的には、縦偏光成分のスポットサイズは、波長の30%程度である。したがって、3次元空間分解能を約30倍向上させることができる。換言すれば、ナノスケールの分解能を達成することができる。
また、前記試料に入射するレーザ光の強度分布を空間的に変調する強度変調手段を備えることがより好ましい。
レーザ光の強度分布において、開口数の高い部分のみを試料に入射させることにより、分解能をさらに向上させることができる。しかし、レーザ光の強度分布において、開口数の高い部分のみを用いて計測を行うと、その分、光量が減り、観測光の強度が減少する。本発明では、レーザ光の空間的強度分布を任意に変調することにより、観測光の強度を調節することができる。そのため、分解能の向上を図っても、レーザ光の強度分布の最適化制御によって観測光の強度の減少を低減することができる。
レーザ光の強度分布において、開口数の高い部分のみを試料に入射させることにより、分解能をさらに向上させることができる。しかし、レーザ光の強度分布において、開口数の高い部分のみを用いて計測を行うと、その分、光量が減り、観測光の強度が減少する。本発明では、レーザ光の空間的強度分布を任意に変調することにより、観測光の強度を調節することができる。そのため、分解能の向上を図っても、レーザ光の強度分布の最適化制御によって観測光の強度の減少を低減することができる。
また、前記試料の屈折率及び前記試料における焦点位置に基づいて、試料に入射するレーザ光の位相を空間的に変調する位相変調手段を備えることが好ましい。
物質内部の動態を計測する場合、深さ方向にスキャンを行う。深さ方向にスキャンを行うと、空気中と物質内部の屈折率の相違等により、収差が発生してしまう。また、深度(物質表面からの焦点位置までの距離)の増加とともに収差が増加してしまう。そこで、焦点位置に基づいて位相を空間的に変調することにより、深さ方向にスキャンを行うことによって発生する収差を低減することができる。
物質内部の動態を計測する場合、深さ方向にスキャンを行う。深さ方向にスキャンを行うと、空気中と物質内部の屈折率の相違等により、収差が発生してしまう。また、深度(物質表面からの焦点位置までの距離)の増加とともに収差が増加してしまう。そこで、焦点位置に基づいて位相を空間的に変調することにより、深さ方向にスキャンを行うことによって発生する収差を低減することができる。
本発明により、物質内部の動態をより詳細に計測することができる。
以下に、本発明を適用可能な実施形態を説明する。なお、本実施形態では、顕微分光装置として共焦点顕微分光装置を例に挙げて説明する。本発明は、以下の実施形態に限定されるものではない。
本発明の実施形態にかかる共焦点顕微分光装置100について、図1を参照しながら説明する。共焦点顕微分光装置100は、図1に示すように、レーザ光源1、第1のビームエキスパンダ2、分布型液晶旋光子3(軸対称偏光生成手段)、液晶空間光変調器4(位相変調手段)、第2のビームエキスパンダ5、第1のハーフミラー6、光学マスク7(強度変調手段)、対物レンズ8(集光手段)、波長板9、共焦点ピンホールユニット10(選択手段)、第2のハーフミラー11、精密共焦点調整系12、ミラー13、集光レンズ14、分光器15(抽出手段)、光検出器16(抽出手段)等を有している。そして、共焦点顕微分光装置100は、試料Sに対して3次元で走査を行って、試料Sの動態を表す3次元の画像データを得る。ここで、共焦点顕微分光装置100によって計測できる物質の動態としては、格子振動、分子振動、磁気励起、プラズモン、化学組成、ドメイン構造、局所温度、欠陥などが挙げられる。
レーザ光源1は、レーザダイオード等の利得媒質を備えている。レーザ光源1は、例えば、直線偏光のレーザ光(以下、直線偏光レーザ光と称する。)を出射する。なお、レーザ光源1から出射されるレーザ光の偏光分布は、直線偏光に限られるものではない。例えば、レーザ光源1は、光軸に対して対称な偏光分布を有するレーザ光(以下、軸対称偏光レーザ光と称する。)を出射してもよい。この場合には、後述する分布型液晶旋光子3の構成を省略することができる。また、ラゲールガウスビームと呼ばれる軌道角運動量を有するビームを2本混合する方法を用いることにより、レーザ光源1から軸対称偏光レーザ光を出射させることができる。また、光学軸が一軸である複屈折結晶を用いる共振器を使用することにより、レーザ光源1から軸対称偏光レーザ光を出射させることができる。
第1のビームエキスパンダ2は、レーザ光源1から出射されたレーザ光の光路上に位置する。第1のビームエキスパンダ2は、レーザ光源1から出射されたレーザ光の光束径を拡大して光束形状を整形する。なお、第1のビームエキスパンダ2は省略することができる。
分布型液晶旋光子3は、第1のビームエキスパンダ2を透過したレーザ光の光路上に位置する。分布型液晶旋光子3は、第1のビームエキスパンダ2を透過したレーザ光の偏光分布を変換して、軸対称偏光レーザ光を生成する。本実施形態において、第1のビームエキスパンダ2を透過したレーザ光は直線偏光レーザ光であるため、分布型液晶旋光子3は、直線偏光レーザ光を軸対称偏光レーザ光に変換する。
軸対称偏光レーザ光には、図2(a)に示す同心円状偏光レーザ光と、図2(b)に示す放射状偏光レーザ光とがある。本実施形態では、分布型液晶旋光子3が直線偏光レーザ光を放射状偏光レーザ光に変換する場合を例に挙げて説明する。なお、分布型液晶旋光子3は、直線偏光レーザ光を同心円状偏光レーザ光に変換してもよい。
分布型液晶旋光子3は、液晶分子の配向分布が空間的にツイストしている液晶部材を有している。そして、直線偏光レーザ光が分布型液晶旋光子3に入射すると、図3に示すように、各液晶分子のツイスト状態に応じて、場所毎に異なる偏光をもつレーザ光に変換される。これにより、直線偏光レーザ光が放射状偏光レーザ光に変換される。
なお、円錐ブリュースタープリズム、c−cutNd:YVO4結晶、光ファイバ、フォトニック結晶ミラー、分割波長板などを用いることによっても、軸対称偏光レーザ光を発生させることができる。
なお、円錐ブリュースタープリズム、c−cutNd:YVO4結晶、光ファイバ、フォトニック結晶ミラー、分割波長板などを用いることによっても、軸対称偏光レーザ光を発生させることができる。
液晶空間光変調器4は、分布型液晶旋光子3を透過したレーザ光の光路上に位置する。液晶空間光変調器4は、液晶層と透明電極層とを備える液晶部材(図示省略)を有している。また、液晶空間光変調器4は、透明電極層に印加する電圧を調整する電圧制御装置4Aを備えている。透明電極層に印加する電圧を調整することにより、液晶層の液晶分子の配向方向を調節することができる。そして、液晶空間光変調器4は、各液晶分子の配向方向を調節することにより、当該液晶空間光変調器4に入射するレーザ光に位相差を与えることができる。なお、液晶空間光変調器4は、レーザ光の偏光には影響を与えない。
液晶空間光変調器4は、試料Sの屈折率及び試料Sにおける焦点位置に基づいて、試料Sに入射するレーザ光の位相を空間的に変調する。具体的には、液晶空間光変調器4は、試料Sの屈折率に基づく収差を低減する位相差を、当該液晶空間光変調器4に入射するレーザ光に与える。また、液晶空間光変調器4は、試料Sにおける焦点位置に基づいて、焦点位置の移動に基づく収差を低減するような位相差を、当該液晶空間光変調器4に入射するレーザ光に与える。
液晶空間光変調器4は、試料Sの屈折率及び試料Sにおける焦点位置に基づいて、試料Sに入射するレーザ光の位相を空間的に変調する。具体的には、液晶空間光変調器4は、試料Sの屈折率に基づく収差を低減する位相差を、当該液晶空間光変調器4に入射するレーザ光に与える。また、液晶空間光変調器4は、試料Sにおける焦点位置に基づいて、焦点位置の移動に基づく収差を低減するような位相差を、当該液晶空間光変調器4に入射するレーザ光に与える。
より具体的には、液晶空間光変調器4は、まず、試料Sの屈折率に基づいて、試料Sに入射するレーザ光の位相を空間的に変調する。次いで、試料Sにおける焦点位置が移動されると、液晶空間光変調器4は、試料Sにおける焦点位置に基づいて、試料Sに入射するレーザ光の位相を空間的に変調する。これにより、試料Sをスキャンすることにより発生する収差が低減される。
また、液晶空間光変調器4は、当該液晶空間光変調器4に入射したレーザ光の位相を変調するとともに、反射又は透過する。
また、液晶空間光変調器4は、当該液晶空間光変調器4に入射したレーザ光の位相を変調するとともに、反射又は透過する。
第2のビームエキスパンダ5は、液晶空間光変調器4を反射又は透過したレーザ光の光路上に位置する。第1のビームエキスパンダ2は、レーザ光源1を透過したレーザ光の光束径を縮小して光束形状を整形する。なお、第2のビームエキスパンダ5は省略することができる。
第1のハーフミラー6は、第2のビームエキスパンダ5を透過したレーザ光を反射する。
また、第1のハーフミラー6は、試料Sにより反射され、対物レンズ8に集光され、光学マスク7を透過し、対物レンズ8により集光された反射光及び散乱光を透過する。
また、第1のハーフミラー6は、試料Sにより反射され、対物レンズ8に集光され、光学マスク7を透過し、対物レンズ8により集光された反射光及び散乱光を透過する。
光学マスク7は、第1のハーフミラー6により反射されたレーザ光の光路上に位置する。光学マスク7は、試料Sに入射するレーザ光の強度分布を空間的に変調する。これにより、光学マスク7は、観測光の強度(観測光の明度)を調節する。
レーザ光の強度分布において、開口数の高い部分のみを試料Sに入射させることにより、分解能をさらに向上させることができる。しかし、レーザ光の強度分布において、開口数の高い部分のみを用いて計測を行うと、その分、光量が減り、観測光の強度が減少する。しかし、本実施形態では、光学マスク7により、レーザ光の強度分布を空間的に変調する。これにより、レーザ光の空間的強度分布を任意に変調することにより、観測光の強度を調節することができる。そのため、分解能の向上を図っても、レーザ光の強度分布の最適化制御によって観測光の強度の減少を低減することができる。
レーザ光の強度分布において、開口数の高い部分のみを試料Sに入射させることにより、分解能をさらに向上させることができる。しかし、レーザ光の強度分布において、開口数の高い部分のみを用いて計測を行うと、その分、光量が減り、観測光の強度が減少する。しかし、本実施形態では、光学マスク7により、レーザ光の強度分布を空間的に変調する。これにより、レーザ光の空間的強度分布を任意に変調することにより、観測光の強度を調節することができる。そのため、分解能の向上を図っても、レーザ光の強度分布の最適化制御によって観測光の強度の減少を低減することができる。
具体的には、対物レンズ8よりレーザ光源1側の光路にアパーチャーなどを配置することによって、焦点付近における強度分布を制御する。これは変形照明と呼ばれる方法で、具体的な強度分布はベクトル回折理論に基づいて計算することができる。変形照明方法としては、輪帯照明、二極照明、四極照明などの様々な形状の照明を用いる方法が提案されており、輪帯照明方法が多用されている。
また、対物レンズ8よりレーザ光源1側の光路に、空間的に透過率が異なる光学素子を配置することにより、光束の強度分布を最適化することができる。この手法は、アポタイゼーションと呼ばれている。
また、対物レンズ8よりレーザ光源1側の光路に、空間的に透過率が異なる光学素子を配置することにより、光束の強度分布を最適化することができる。この手法は、アポタイゼーションと呼ばれている。
対物レンズ8は、光学マスク7を透過したレーザ光を試料Sに集光する。また、対物レンズ8は、試料Sから反射された反射光及び/又は散乱光を集光する。対物レンズ8のNA(開口数)は高く、例えば、0.7である。高いNAを有する対物レンズ8を用いることにより、微細な構造に基づく反射光及び/又は散乱光を集光することができる。
波長板9は、第1のハーフミラー6を透過した反射光及び/又は散乱光の光路上に位置する。波長板9は、例えば、波長板9を透過する反射光及び/又は散乱光の縦偏光成分もしくは横偏光成分を選択的に透過、あるいは、遮蔽する。これにより、対物レンズ8により集光された反射光及び/又は散乱光の偏光解析を可能にする。
共焦点ピンホールユニット10は、波長板9を透過した反射光及び/又は散乱光の光路上に位置する。共焦点ピンホールユニット10は、第1の共焦点レンズ10A、共焦点スリット10B、第2の共焦点レンズ10Cを有している。
第1の共焦点レンズ10Aは、波長板9を透過した反射光及び/又は散乱光を集光する。
共焦点スリット10Bは、第1の共焦点レンズ10Aにより集光された反射光及び/又は散乱光の集光点位置付近に配置される。換言すれば、共焦点スリット10Bは、試料Sにおける焦点と共役関係を有する焦点位置付近に配置される。また、共焦点スリット10Bは、軸対称偏光レーザ光の光束径方向において、軸対称偏光レーザ光に含まれる所定の偏光成分が占める領域が透過可能に形成されている。これにより、共焦点スリット10Bは、対物レンズ8により集光された反射光及び/又は散乱光のうち、所定の偏光成分由来の反射光及び/散乱光を選択的に透過する。具体的には、共焦点スリット10Bは、対物レンズ8により集光された反射光及び/又は散乱光のうち、横偏光成分又は縦偏光成分由来の反射光及び/又は散乱光のうち何れか一方を選択的に透過する。
そして、第2の共焦点レンズ10Cは、共焦点スリット10Bを透過した反射光及び/又は散乱光を集光し、平行光として出射する。
第1の共焦点レンズ10Aは、波長板9を透過した反射光及び/又は散乱光を集光する。
共焦点スリット10Bは、第1の共焦点レンズ10Aにより集光された反射光及び/又は散乱光の集光点位置付近に配置される。換言すれば、共焦点スリット10Bは、試料Sにおける焦点と共役関係を有する焦点位置付近に配置される。また、共焦点スリット10Bは、軸対称偏光レーザ光の光束径方向において、軸対称偏光レーザ光に含まれる所定の偏光成分が占める領域が透過可能に形成されている。これにより、共焦点スリット10Bは、対物レンズ8により集光された反射光及び/又は散乱光のうち、所定の偏光成分由来の反射光及び/散乱光を選択的に透過する。具体的には、共焦点スリット10Bは、対物レンズ8により集光された反射光及び/又は散乱光のうち、横偏光成分又は縦偏光成分由来の反射光及び/又は散乱光のうち何れか一方を選択的に透過する。
そして、第2の共焦点レンズ10Cは、共焦点スリット10Bを透過した反射光及び/又は散乱光を集光し、平行光として出射する。
図4(a)に、直線偏光レーザ光の焦点位置における偏光方向を示し、図4(b)に、放射状偏光レーザ光の焦点位置における偏光方向を示す。図4(a)に示すように、直線偏光レーザ光は、焦点位置において、横偏光成分を有する。これに対し、放射状偏光レーザ光は、図4(b)に示すように、焦点位置において、横偏光成分だけでなく縦偏光成分も有する。図示省略するが、同心円状偏光レーザ光も、焦点位置において、横偏光成分及び縦偏光成分を有する。
図5(a)に、放射状偏光レーザ光のスポットの強度分布を示し、図5(b)に、縦偏光成分のスポットの強度分布を示し、図5(c)に、横偏光成分のスポットの強度分布を示す。図5に示すように、縦偏光成分のスポットサイズは、横偏光成分のスポットサイズに比べてはるかに小さい。そのため、縦偏光成分のスポットサイズは、放射状偏光レーザ光のスポットサイズよりも小さい。また、縦偏光成分のスポットの強度は、中心部分ほど高くなっている。これに対し、横偏光成分のスポットの強度は、ドーナツ状に強度が高くなっている。また、当該ドーナツ状の穴部分の径は、縦偏光成分のスポットサイズとほぼ同じ大きさとなっている。
そこで、共焦点スリット10Bのピンホールの形状を、縦偏光成分のスポットサイズに光学系の転送倍率を乗じたものと略同一の径を有する円形とすることにより、共焦点スリット10Bは、縦偏光成分由来の反射光及び/又は散乱光を選択的に透過することができる。
また、共焦点スリット10Bのピンホールの形状を、縦偏光成分のスポットサイズより大きく横偏光成分のスポットサイズより小さい領域に光学系の転送倍率を乗じたものと略同一の領域であるドーナツ形状とすることにより、共焦点スリット10Bは、横偏光成分由来の反射光及び/又は散乱光を選択的に透過することができる。
本実施形態では、共焦点スリット10Bが縦偏光成分を選択的に透過する場合を例に挙げて説明する。
そこで、共焦点スリット10Bのピンホールの形状を、縦偏光成分のスポットサイズに光学系の転送倍率を乗じたものと略同一の径を有する円形とすることにより、共焦点スリット10Bは、縦偏光成分由来の反射光及び/又は散乱光を選択的に透過することができる。
また、共焦点スリット10Bのピンホールの形状を、縦偏光成分のスポットサイズより大きく横偏光成分のスポットサイズより小さい領域に光学系の転送倍率を乗じたものと略同一の領域であるドーナツ形状とすることにより、共焦点スリット10Bは、横偏光成分由来の反射光及び/又は散乱光を選択的に透過することができる。
本実施形態では、共焦点スリット10Bが縦偏光成分を選択的に透過する場合を例に挙げて説明する。
図6に、放射状偏光レーザ光によって励起されたスペクトルの観測例を示す。図6(a)に、共焦点スリット10Bを透過させない場合のスペクトルの観測例を示す。また、図6(b)に、共焦点スリット10Bを透過させた場合のスペクトルの観測例を示す。図6において、縦軸がスペクトル強度、横軸が振動数を表す。図6に示すように、一般に、横偏光成分を探針として検出できる振動成分は、縦偏光成分を探針として検出できる振動成分と異なる振動成分を有する。そして、共焦点スリット10Bを透過すると、横偏光成分はカットされるため、横偏光成分の強度は、はるかに小さくなる。換言すれば、共焦点スリット10Bにより、縦偏光成分が選択的に透過される。
第2のハーフミラー11は、共焦点ピンホールユニット10を透過した反射光及び/又は散乱光の光路上に位置する。第2のハーフミラー11は、共焦点ピンホールユニット10を透過した反射光及び/又は散乱光の一部を反射するとともに、反射しなかった反射光及び/又は散乱光を透過する。
精密共焦点調整系12は、第2のハーフミラー11により反射された反射光及び/又は散乱光の光路上に位置する。精密共焦点調整系12は、CCD等の受光素子(図示省略)、液晶パネル等の表示装置(図示省略)、及び、共焦点ピンホールユニット10の位置を調整する調整装置(図示省略)等を有する。そして、精密共焦点調整系12は、共焦点スリット10Bのピンホールの位置と、第1の共焦点レンズ10Aにより集光されたレーザ光のスポットの位置とを同時観察する。そして、精密共焦点調整系12は、ピンホールの位置とレーザ光のスポットの位置とがずれているか否かを判断し、ずれている場合に、ピンホールの位置を調整することにより、ピンホールの位置とレーザ光のスポットの位置とを一致させる。
図7を参照して、精密共焦点調整系12によるピンホールの位置の調整について説明する。図7は、ピンホールと焦点スポットとの位置関係を示す。図7において、斜線部分が共焦点スリット10Bを示し、斜線部分に挟まれた部分がピンホールを示す。図7(a)に示すように、ピンホールの位置とレーザ光のスポットの位置とが合っている場合、ピンホールの中心位置にレーザ光のスポットの強度が最も高い部分が位置する。一方、図7(b)に示すように、ピンホールの位置とレーザ光のスポットの位置とがずれている場合、ピンホールの中心位置にレーザ光のスポットの強度が最も高い部分が位置しない。したがって、精密共焦点調整系12は、ピンホールの中心位置にレーザ光のスポットの強度が最も高い部分が位置するか否かに基づいて、ピンホールの位置とレーザ光のスポットの位置とがずれているか否かを判断し、ピンホールの位置の調整を行う。
ミラー13は、第2のハーフミラー11を透過した反射光及び/又は散乱光の光路上に位置する。ミラー13は、第2のハーフミラー11を透過した反射光及び/又は散乱光を反射する。
集光レンズ14は、ミラー13により反射された反射光及び/又は散乱光の光路上に位置する。集光レンズ14は、ミラー13から反射された反射光及び/又は散乱光を分光器15に対して集光する。
分光器15は、集光レンズ14により集光された反射光及び/又は散乱光に対してラマン分光法を用いたスペクトル解析を行う。具体的には、分光器15は、反射光及び/又は散乱光をラマン分光法に基づいて分光することにより、縦軸に強度を示し、横軸に振動数を示すグラフ(ラマンスペクトル)を作成する。分光器15は、試料Sの走査範囲全体に対して、ラマンスペクトルを作成する。また、分光器15は、ラマン分光法に基づいて分光した反射光及び/又は散乱光を光検出器16に入射する。
光検出器16は、分光器15から入射された反射光及び/又は散乱光を検出して画像データに変換する。具体的には、光検出器16は、CCD(Charge Coupled Device;図示省略)を備え、受光した反射光及び/又は散乱光の強度を各振動数毎に計測する。このようにして、光検出器16は、受光した反射光及び/又は散乱光のラマンスペクトルをスペクトル画像で表す。そして、光検出器16は、試料Sの走査範囲全体に対して、スペクトル画像データを生成する。光検出器16により生成された全てのスペクトル画像データに基づいて、試料Sの動態を表す3次元の画像データを得る。
なお、光検出器16は、CCDの代わりに、フォトダイオード、光電子倍増管を備えていてもよい。
なお、光検出器16は、CCDの代わりに、フォトダイオード、光電子倍増管を備えていてもよい。
また、光検出器16は、スペクトル画像データを解析するコンピュータ(図示省略)などを備える。本実施形態では、共焦点ピンホールユニット10において、試料Sから反射及び/又は散乱された反射光及び/又は散乱光のうち、縦偏光成分由来の反射光及び/又は散乱光が選択的に透過されている。しかし、図6(b)に示すように、僅かながら、共焦点ピンホールユニット10において、横偏光成分由来の反射光及び/又は散乱光も透過されている。これは、実際には、横偏光成分のスポット径と、縦偏光成分のスポット径とは、一部重なってしまう。そのため、横偏光成分由来の反射光及び/散乱光と、縦偏光成分由来の反射光及び/又は散乱光とを、横偏光成分と縦偏光成分とのスポット径の違いのみによって完全に分離することは難しい。したがって、光検出器16に入射するレーザ光には、僅かに横偏光成分由来の反射光及び/又は散乱光も含まれている。
また、図6に示すように、横偏光成分由来の反射光及び/又は散乱光の振動数は、縦偏光成分由来の反射光及び/又は散乱光の振動数と異なる。そのため、スペクトル観測後に、光検出器16に備えられたコンピュータにより、振動数に基づいて、縦偏光成分由来のスペクトル成分に基づくデータを抽出することによって、縦偏光成分のみによる動態の計測を容易に行うことができる。
また、図6に示すように、横偏光成分由来の反射光及び/又は散乱光の振動数は、縦偏光成分由来の反射光及び/又は散乱光の振動数と異なる。そのため、スペクトル観測後に、光検出器16に備えられたコンピュータにより、振動数に基づいて、縦偏光成分由来のスペクトル成分に基づくデータを抽出することによって、縦偏光成分のみによる動態の計測を容易に行うことができる。
以上に説明した本実施形態にかかる共焦点顕微分光装置100は、光軸に対して対称な偏光分布を有する軸対称偏光レーザ光を生成する分布型液晶旋光子3と、分布型液晶旋光子3により生成された軸対称偏光レーザ光を試料Sに集光する対物レンズ8と、を備える。そして、対物レンズ8は、試料Sからの反射光及び/又は散乱光を集光する。
本実施形態にかかる共焦点顕微分光装置100においては、軸対称偏光レーザ光を試料Sに集光する。軸対称偏光レーザ光は、焦点において、横偏光成分だけでなく縦偏光成分も有する。そのため、物質内部の横偏光成分を探針として検出できる動態だけでなく、縦偏光成分を探針として検出できる動態を含むあらゆる動態をも計測することができる。従来、様々な運動状態にあるあらゆる動態を計測する場合には、複雑な光学系や煩雑な操作を必要とし、装置自体が大きくなってしまう等の問題があった。しかし、本実施形態にかかる共焦点顕微分光装置100においては、軸対称偏光レーザ光を試料Sに集光する対物レンズ8により、試料Sからの反射光及び/又は散乱光として物質内部のあらゆる動態に起因する情報が取得される。そのため、簡易な光学系、もしくは容易な操作で、様々な運動状態にあるあらゆる動態を計測することができる。
また、軸対称偏光レーザ光のスポットサイズは、直線偏光レーザ光より小さい。そのため、軸対称偏光レーザ光を用いることにより、分解能を向上することができる。
また、軸対称偏光レーザ光のスポットサイズは、直線偏光レーザ光より小さい。そのため、軸対称偏光レーザ光を用いることにより、分解能を向上することができる。
また、試料Sにおける焦点と共役関係を有する焦点に設けられ、軸対称偏光レーザ光の光束径方向において、軸対称偏光レーザ光に含まれる所定の偏光成分が占める領域が透過可能に形成された共焦点ピンホールユニット10を備える。
これにより、共焦点ピンホールユニット10は、軸対称偏光レーザ光に含まれる横偏光成分及び縦偏光成分の何れか一方に由来する反射光及び/又は散乱光を選択的に透過することができる。そのため、横偏光成分に由来する動態及び縦偏光成分に由来する動態の何れか一方の動態のみを計測することができる。
これにより、共焦点ピンホールユニット10は、軸対称偏光レーザ光に含まれる横偏光成分及び縦偏光成分の何れか一方に由来する反射光及び/又は散乱光を選択的に透過することができる。そのため、横偏光成分に由来する動態及び縦偏光成分に由来する動態の何れか一方の動態のみを計測することができる。
さらに、分布型液晶旋光子3は、光軸に対して放射方向に偏光する放射状偏光レーザ光を生成し、共焦点顕微分光装置100は、少なくともラマン分光法を用いて、対物レンズ8により集光された反射光及び/又は散乱光のうち、縦偏光成分由来の反射光及び/又は散乱光のみを抽出する分光器15及び光検出器16を備えている。
放射状偏光レーザ光は、焦点において、横偏光成分と縦偏光成分とを有する。また、焦点における、縦偏光成分のスポットサイズは、横偏光成分のスポットサイズよりはるかに小さい。そして、一般に、横偏光成分を探針として検出できる成分は、縦偏光成分を探針として検出できる成分と異なる振動数を有する。そのため、分光器15及び光検出器16により縦偏光成分由来の反射光及び/又は散乱光のみを抽出することにより、分解能をさらに向上することができる。具体的には、縦偏光成分のスポットサイズは、波長の30%程度である。したがって、3次元空間分解能を約30倍向上させることができる。換言すれば、ナノスケールの分解能を達成することができる。
放射状偏光レーザ光は、焦点において、横偏光成分と縦偏光成分とを有する。また、焦点における、縦偏光成分のスポットサイズは、横偏光成分のスポットサイズよりはるかに小さい。そして、一般に、横偏光成分を探針として検出できる成分は、縦偏光成分を探針として検出できる成分と異なる振動数を有する。そのため、分光器15及び光検出器16により縦偏光成分由来の反射光及び/又は散乱光のみを抽出することにより、分解能をさらに向上することができる。具体的には、縦偏光成分のスポットサイズは、波長の30%程度である。したがって、3次元空間分解能を約30倍向上させることができる。換言すれば、ナノスケールの分解能を達成することができる。
また、共焦点顕微分光装置100は、試料Sに入射するレーザ光の強度分布を空間的に変調する光学マスク7を備えている。
レーザ光の強度分布において、開口数の高い部分のみを試料Sに入射させることにより、分解能をさらに向上させることができる。しかし、レーザ光の強度分布において、開口数の高い部分のみを用いて計測を行うと、その分、光量が減り、観測光の強度が減少する。本実施形態にかかる共焦点顕微分光装置100では、レーザ光の空間的強度分布を任意に変調することにより、観測光の強度を調節することができる。そのため、分解能の向上を図っても、レーザ光の強度分布の最適化制御によって観測光の強度の減少を低減することができる。
レーザ光の強度分布において、開口数の高い部分のみを試料Sに入射させることにより、分解能をさらに向上させることができる。しかし、レーザ光の強度分布において、開口数の高い部分のみを用いて計測を行うと、その分、光量が減り、観測光の強度が減少する。本実施形態にかかる共焦点顕微分光装置100では、レーザ光の空間的強度分布を任意に変調することにより、観測光の強度を調節することができる。そのため、分解能の向上を図っても、レーザ光の強度分布の最適化制御によって観測光の強度の減少を低減することができる。
また、共焦点顕微分光装置100は、試料Sの屈折率及び試料Sにおける焦点位置に基づいて、試料Sに入射するレーザ光の位相を空間的に変調する液晶空間変調器4を備えている。
物質内部の動態を計測する場合、深さ方向にスキャンを行う。深さ方向にスキャンを行うと、空気中と物質内部の屈折率の相違により、収差が発生してしまう。また、焦点位置の深さ(物質表面からの焦点位置までの距離)が増加するとともに収差が増加してしまう。そこで、試料Sの屈折率だけでなく、焦点位置に基づいて位相を空間的に変調することにより、深さ方向にスキャンを行うことによって発生する収差を低減することができる。
物質内部の動態を計測する場合、深さ方向にスキャンを行う。深さ方向にスキャンを行うと、空気中と物質内部の屈折率の相違により、収差が発生してしまう。また、焦点位置の深さ(物質表面からの焦点位置までの距離)が増加するとともに収差が増加してしまう。そこで、試料Sの屈折率だけでなく、焦点位置に基づいて位相を空間的に変調することにより、深さ方向にスキャンを行うことによって発生する収差を低減することができる。
なお、本発明の範囲は、上記実施形態に限定されるものではない。例えば、軸対称偏光生成手段は、軸対称偏光レーザ光を出射するレーザ光源1により実現されてもよい。また、分光器15及び光検出器16の代わりに干渉分光計などの他の分光機器を設けることによっても抽出手段を実現することができる。
また、本発明における軸対称偏光レーザ光を使用することによる分解能向上技術は、従来の共焦点顕微分光装置における分解能向上技術と併用することができる。併用することにより、さらなる分解能の向上を実現できる。従来の共焦点顕微分光装置における分解能向上技術として、入射レーザ光の波長を短くすることにより回折限界を向上させる技術、照明方法を変形することによって開口数の高い成分を選択的に利用する技術、液浸・油浸・固体浸レンズを用いることによって開口数を向上する技術などが挙げられる。
また、空気中と物質内部の屈折率の相違によって発生する収差、及び、物質内部を深さ方向にスキャンすることよって発生する収差を低減する方法は、液晶空間変調器4を用いることに限られない。例えば、可変形鏡(deformable mirror)、複数の輪帯を有し、各輪帯毎にレンズ厚みが異なるレンズ、複数の輪帯を有し、輪帯毎に屈折率が異なるレンズ、液晶レンズ、その他の空間光位相変調器などを用いることによっても、収差を低減することができる。
3 分布型液晶旋光子(軸対称偏光生成手段)
4 液晶空間光変調器(位相変調手段)
7 光学マスク(強度変調手段)
8 対物レンズ(集光手段)
10 共焦点ピンホールユニット(選択手段)
15 分光器(抽出手段)
16 光検出器(抽出手段)
100 共焦点顕微分光装置(顕微分光装置)
S 試料
4 液晶空間光変調器(位相変調手段)
7 光学マスク(強度変調手段)
8 対物レンズ(集光手段)
10 共焦点ピンホールユニット(選択手段)
15 分光器(抽出手段)
16 光検出器(抽出手段)
100 共焦点顕微分光装置(顕微分光装置)
S 試料
Claims (5)
- 試料の一部もしくは全体を測定部分として分光測定を行う顕微分光装置であって、
光軸に対して対称な偏光分布を有する軸対称偏光レーザ光を生成する軸対称偏光生成手段と、
前記軸対称偏光生成手段により生成された軸対称偏光レーザ光を前記試料に集光する集光手段と、
を備え、
前記集光手段は、前記試料からの反射光及び/又は散乱光を集光する顕微分光装置。 - 前記試料における焦点と共役関係を有する焦点に設けられ、前記軸対称偏光レーザ光の光束径方向において、前記軸対称偏光レーザ光に含まれる所定の偏光成分が占める領域が透過可能に形成された選択手段を備える請求項1に記載の顕微分光装置。
- 前記軸対称偏光生成手段は、光軸に対して放射方向に偏光する放射状偏光レーザ光を生成し、
少なくともラマン分光法を用いて、前記集光手段により集光された反射光及び/又は散乱光のうち、縦偏光成分由来の反射光及び/又は散乱光のみを抽出する抽出手段を備える請求項1又は2に記載の顕微分光装置。 - 前記試料に入射するレーザ光の強度分布を空間的に変調する強度変調手段を備える請求項1乃至3の何れか一項に記載の顕微分光装置。
- 前記試料の屈折率及び前記試料における焦点位置に基づいて、試料に入射するレーザ光の位相を空間的に変調する位相変調手段を備える請求項1乃至4の何れか一項に記載の顕微分光装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008179197A JP2010019630A (ja) | 2008-07-09 | 2008-07-09 | 顕微分光装置 |
PCT/JP2009/003125 WO2010004720A1 (ja) | 2008-07-09 | 2009-07-06 | 顕微分光装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008179197A JP2010019630A (ja) | 2008-07-09 | 2008-07-09 | 顕微分光装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010019630A true JP2010019630A (ja) | 2010-01-28 |
Family
ID=41506848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008179197A Pending JP2010019630A (ja) | 2008-07-09 | 2008-07-09 | 顕微分光装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2010019630A (ja) |
WO (1) | WO2010004720A1 (ja) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011105618A1 (ja) * | 2010-02-26 | 2011-09-01 | 独立行政法人科学技術振興機構 | 顕微鏡装置、光ピックアップ装置及び光照射装置 |
JP2011226916A (ja) * | 2010-04-20 | 2011-11-10 | Olympus Corp | 測光装置 |
WO2012124634A1 (ja) | 2011-03-11 | 2012-09-20 | シチズンホールディングス株式会社 | 光変調素子及び光変調素子を備えた顕微鏡装置 |
JPWO2011105619A1 (ja) * | 2010-02-26 | 2013-06-20 | シチズンホールディングス株式会社 | 偏光変換素子 |
JP2015114266A (ja) * | 2013-12-13 | 2015-06-22 | 大塚電子株式会社 | 偏光解析装置 |
JP2017519971A (ja) * | 2014-04-22 | 2017-07-20 | ケーエルエー−テンカー コーポレイション | 共焦点ライン検査光学システム |
WO2017213098A1 (ja) * | 2016-06-06 | 2017-12-14 | 浜松ホトニクス株式会社 | 反射型空間光変調器、光観察装置及び光照射装置 |
WO2017213100A1 (ja) * | 2016-06-06 | 2017-12-14 | 浜松ホトニクス株式会社 | 反射型空間光変調器、光観察装置及び光照射装置 |
JP2018146410A (ja) * | 2017-03-06 | 2018-09-20 | 国立研究開発法人物質・材料研究機構 | 3次元ラマン分光方法 |
JP2019510202A (ja) * | 2016-01-13 | 2019-04-11 | ネックスジェン・パートナーズ・アイピー・リミテッド・ | 多重パラメータ分光法のためのシステム及び方法 |
WO2019111332A1 (ja) * | 2017-12-05 | 2019-06-13 | 浜松ホトニクス株式会社 | 光変調器、光観察装置及び光照射装置 |
WO2019111334A1 (ja) * | 2017-12-05 | 2019-06-13 | 浜松ホトニクス株式会社 | 反射型空間光変調器、光観察装置及び光照射装置 |
WO2019111333A1 (ja) * | 2017-12-05 | 2019-06-13 | 浜松ホトニクス株式会社 | 反射型空間光変調器、光観察装置及び光照射装置 |
US11002677B2 (en) | 2015-10-05 | 2021-05-11 | Nxgen Partners Ip, Llc | System and method for multi-parameter spectroscopy |
US11106062B2 (en) | 2016-06-06 | 2021-08-31 | Hamamatsu Photonics K.K. | Light modulator, optical observation device and optical irradiation device |
US11169310B2 (en) | 2016-06-06 | 2021-11-09 | Hamamatsu Photonics K.K. | Optical element and optical device |
WO2021261035A1 (ja) * | 2020-06-24 | 2021-12-30 | 株式会社島津製作所 | 顕微ラマン分光測定装置、及び顕微ラマン分光測定装置の調整方法 |
WO2022145391A1 (ja) * | 2020-12-28 | 2022-07-07 | 株式会社ニコン | 走査型共焦点顕微鏡および走査型共焦点顕微鏡の調整方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2962816B1 (fr) * | 2010-07-19 | 2012-08-24 | Horiba Jobin Yvon Sas | Convertisseur de polarisation a symetrie cylindrique bidirectionnel et procede de conversion de polarisation cartesien-cylindrique |
JP6203355B1 (ja) * | 2016-09-26 | 2017-09-27 | 日本分光株式会社 | 共焦点ラマン顕微鏡 |
CN106970055B (zh) * | 2017-04-28 | 2019-08-27 | 浙江大学 | 一种三维荧光差分超分辨显微方法及装置 |
CN109060761B (zh) * | 2018-07-03 | 2021-01-22 | 上海理工大学 | 具有三维高空间分辨率高速拉曼光谱扫描成像方法与装置 |
CN113884471B (zh) * | 2021-09-24 | 2023-10-03 | 中国科学院光电技术研究所 | 一种二维材料的晶向测试装置和方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005121479A (ja) * | 2003-10-16 | 2005-05-12 | Tokyo Instruments Inc | 共焦点顕微分光装置 |
JP4409331B2 (ja) * | 2004-03-30 | 2010-02-03 | 株式会社トプコン | 光画像計測装置 |
JP5214455B2 (ja) * | 2005-10-17 | 2013-06-19 | アリックス インク | 空間変調光学力顕微鏡検査を使用して細胞の変形能を検出するための装置および方法 |
-
2008
- 2008-07-09 JP JP2008179197A patent/JP2010019630A/ja active Pending
-
2009
- 2009-07-06 WO PCT/JP2009/003125 patent/WO2010004720A1/ja active Application Filing
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5661098B2 (ja) * | 2010-02-26 | 2015-01-28 | シチズンホールディングス株式会社 | 偏光変換素子 |
US9182581B2 (en) | 2010-02-26 | 2015-11-10 | Japan Science And Technology Agency | Microscope apparatus, optical pickup apparatus and light irradiation apparatus |
WO2011105618A1 (ja) * | 2010-02-26 | 2011-09-01 | 独立行政法人科学技術振興機構 | 顕微鏡装置、光ピックアップ装置及び光照射装置 |
CN102763020A (zh) * | 2010-02-26 | 2012-10-31 | 独立行政法人科学技术振兴机构 | 显微镜装置、光拾取装置以及光照射装置 |
JPWO2011105618A1 (ja) * | 2010-02-26 | 2013-06-20 | 独立行政法人科学技術振興機構 | 顕微鏡装置、光ピックアップ装置及び光照射装置 |
JPWO2011105619A1 (ja) * | 2010-02-26 | 2013-06-20 | シチズンホールディングス株式会社 | 偏光変換素子 |
US9257141B2 (en) | 2010-02-26 | 2016-02-09 | Citizen Holdings Co., Ltd. | Polarization conversion element |
JP5693559B2 (ja) * | 2010-02-26 | 2015-04-01 | 独立行政法人科学技術振興機構 | 顕微鏡装置、光ピックアップ装置及び光照射装置 |
JP2011226916A (ja) * | 2010-04-20 | 2011-11-10 | Olympus Corp | 測光装置 |
US9176333B2 (en) | 2011-03-11 | 2015-11-03 | Citizen Holdings Co., Ltd. | Light modulator element and microscope apparatus including light modulation element |
WO2012124634A1 (ja) | 2011-03-11 | 2012-09-20 | シチズンホールディングス株式会社 | 光変調素子及び光変調素子を備えた顕微鏡装置 |
JP2015114266A (ja) * | 2013-12-13 | 2015-06-22 | 大塚電子株式会社 | 偏光解析装置 |
JP2017519971A (ja) * | 2014-04-22 | 2017-07-20 | ケーエルエー−テンカー コーポレイション | 共焦点ライン検査光学システム |
US11002677B2 (en) | 2015-10-05 | 2021-05-11 | Nxgen Partners Ip, Llc | System and method for multi-parameter spectroscopy |
JP2019510202A (ja) * | 2016-01-13 | 2019-04-11 | ネックスジェン・パートナーズ・アイピー・リミテッド・ | 多重パラメータ分光法のためのシステム及び方法 |
US11156816B2 (en) | 2016-06-06 | 2021-10-26 | Hamamatsu Photonics K.K. | Reflective spatial light modulator having non-conducting adhesive material, optical observation device and optical irradiation device |
US10983371B2 (en) | 2016-06-06 | 2021-04-20 | Hamamatsu Photonics K.K. | Reflective spatial light modulator, optical observation device and optical irradiation device |
JPWO2017213098A1 (ja) * | 2016-06-06 | 2019-04-04 | 浜松ホトニクス株式会社 | 反射型空間光変調器、光観察装置及び光照射装置 |
US11169310B2 (en) | 2016-06-06 | 2021-11-09 | Hamamatsu Photonics K.K. | Optical element and optical device |
WO2017213098A1 (ja) * | 2016-06-06 | 2017-12-14 | 浜松ホトニクス株式会社 | 反射型空間光変調器、光観察装置及び光照射装置 |
US11106062B2 (en) | 2016-06-06 | 2021-08-31 | Hamamatsu Photonics K.K. | Light modulator, optical observation device and optical irradiation device |
JPWO2017213100A1 (ja) * | 2016-06-06 | 2019-04-04 | 浜松ホトニクス株式会社 | 反射型空間光変調器、光観察装置及び光照射装置 |
WO2017213100A1 (ja) * | 2016-06-06 | 2017-12-14 | 浜松ホトニクス株式会社 | 反射型空間光変調器、光観察装置及び光照射装置 |
JP2018146410A (ja) * | 2017-03-06 | 2018-09-20 | 国立研究開発法人物質・材料研究機構 | 3次元ラマン分光方法 |
CN111433663A (zh) * | 2017-12-05 | 2020-07-17 | 浜松光子学株式会社 | 光调制器、光观察装置以及光照射装置 |
US11391970B2 (en) | 2017-12-05 | 2022-07-19 | Hamamatsu Photonics K.K. | Reflective spatial light modulator, optical observation device, and light irradiation device |
JPWO2019111333A1 (ja) * | 2017-12-05 | 2020-12-03 | 浜松ホトニクス株式会社 | 反射型空間光変調器、光観察装置及び光照射装置 |
JPWO2019111332A1 (ja) * | 2017-12-05 | 2020-12-03 | 浜松ホトニクス株式会社 | 光変調器、光観察装置及び光照射装置 |
CN111433664A (zh) * | 2017-12-05 | 2020-07-17 | 浜松光子学株式会社 | 反射型空间光调制器、光观察装置及光照射装置 |
WO2019111333A1 (ja) * | 2017-12-05 | 2019-06-13 | 浜松ホトニクス株式会社 | 反射型空間光変調器、光観察装置及び光照射装置 |
WO2019111334A1 (ja) * | 2017-12-05 | 2019-06-13 | 浜松ホトニクス株式会社 | 反射型空間光変調器、光観察装置及び光照射装置 |
WO2019111332A1 (ja) * | 2017-12-05 | 2019-06-13 | 浜松ホトニクス株式会社 | 光変調器、光観察装置及び光照射装置 |
CN111433664B (zh) * | 2017-12-05 | 2023-10-24 | 浜松光子学株式会社 | 反射型空间光调制器、光观察装置及光照射装置 |
JP7229937B2 (ja) | 2017-12-05 | 2023-02-28 | 浜松ホトニクス株式会社 | 光変調器、光観察装置及び光照射装置 |
JP6998396B2 (ja) | 2017-12-05 | 2022-01-18 | 浜松ホトニクス株式会社 | 反射型空間光変調器、光観察装置及び光照射装置 |
JP6998395B2 (ja) | 2017-12-05 | 2022-01-18 | 浜松ホトニクス株式会社 | 反射型空間光変調器、光観察装置及び光照射装置 |
US11550172B2 (en) | 2017-12-05 | 2023-01-10 | Hamamatsu Photonics K.K. | Reflective spatial light modulator having a perovskite-type electro-optic crystal, optical observation device including same, and light irradiation device including same |
JPWO2019111334A1 (ja) * | 2017-12-05 | 2020-12-03 | 浜松ホトニクス株式会社 | 反射型空間光変調器、光観察装置及び光照射装置 |
JPWO2021261035A1 (ja) * | 2020-06-24 | 2021-12-30 | ||
WO2021261035A1 (ja) * | 2020-06-24 | 2021-12-30 | 株式会社島津製作所 | 顕微ラマン分光測定装置、及び顕微ラマン分光測定装置の調整方法 |
JP7392856B2 (ja) | 2020-06-24 | 2023-12-06 | 株式会社島津製作所 | 顕微ラマン分光測定装置、及び顕微ラマン分光測定装置の調整方法 |
WO2022145391A1 (ja) * | 2020-12-28 | 2022-07-07 | 株式会社ニコン | 走査型共焦点顕微鏡および走査型共焦点顕微鏡の調整方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2010004720A1 (ja) | 2010-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010004720A1 (ja) | 顕微分光装置 | |
CN102735617B (zh) | 一种超分辨显微方法和装置 | |
CN105973853B (zh) | 一种基于双模式竞争激发的超分辨显微方法和装置 | |
JP5484879B2 (ja) | 超解像顕微鏡 | |
US8487271B2 (en) | Optical microscope configured to simultaneously irradiate the erase light and the stimulation light | |
JP5771422B2 (ja) | 顕微鏡 | |
WO2017049752A1 (zh) | 一种基于一阶贝塞尔光束的sted超分辨显微镜及调节方法 | |
CN109632756B (zh) | 一种基于并行光斑扫描的实时荧光辐射微分超分辨显微方法与装置 | |
US9297980B2 (en) | Optical device for transmission-type scanning by moving scanning beam without moving observation sample | |
JP5697584B2 (ja) | 誘導ラマン散乱計測装置および誘導ラマン散乱計測方法 | |
CN102798622B (zh) | 一种基于强度差分的三维超分辨显微方法和装置 | |
JP6324709B2 (ja) | 光計測装置及び光計測方法 | |
JP5847821B2 (ja) | コヒーレント反ストークスラマン散乱(cars)分光法における非共鳴バックグラウンド低減のための方法および装置 | |
EP2720026B1 (en) | Raman microscope and raman spectrometric method | |
CN106770095A (zh) | 一种基于非线性光斑调制的超分辨显微成像方法和装置 | |
JP2008039882A (ja) | 光学顕微鏡及び観察方法 | |
JP2010015026A (ja) | 超解像顕微鏡およびこれに用いる空間変調光学素子 | |
Wang et al. | Dual‐color STED super‐resolution microscope using a single laser source | |
JPWO2019031584A1 (ja) | 計測装置及び照射装置 | |
CN102866137B (zh) | 一种二维超分辨显微方法和装置 | |
JP2006058477A (ja) | 超解像顕微鏡 | |
JP2005062155A (ja) | コヒーレントラマン散乱顕微鏡 | |
JP2006313273A (ja) | 顕微鏡 | |
JP2016530570A (ja) | 照明光の焦点の形状を変える部材を有する顕微鏡 | |
JP2010096913A (ja) | レーザ顕微鏡装置 |