WO2011105618A1 - 顕微鏡装置、光ピックアップ装置及び光照射装置 - Google Patents

顕微鏡装置、光ピックアップ装置及び光照射装置 Download PDF

Info

Publication number
WO2011105618A1
WO2011105618A1 PCT/JP2011/054819 JP2011054819W WO2011105618A1 WO 2011105618 A1 WO2011105618 A1 WO 2011105618A1 JP 2011054819 W JP2011054819 W JP 2011054819W WO 2011105618 A1 WO2011105618 A1 WO 2011105618A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polarized light
light
crystal layer
linearly polarized
Prior art date
Application number
PCT/JP2011/054819
Other languages
English (en)
French (fr)
Inventor
俊一 佐藤
祐市 小澤
弘之 横山
知己 根本
輝正 日比
信幸 橋本
誠 栗原
Original Assignee
独立行政法人科学技術振興機構
シチズンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人科学技術振興機構, シチズンホールディングス株式会社 filed Critical 独立行政法人科学技術振興機構
Priority to CN201180010616.1A priority Critical patent/CN102763020B/zh
Priority to JP2012501912A priority patent/JP5693559B2/ja
Priority to US13/581,248 priority patent/US9182581B2/en
Priority to EP11747570.7A priority patent/EP2541299B1/en
Publication of WO2011105618A1 publication Critical patent/WO2011105618A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0092Polarisation microscopes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0136Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/04Function characteristic wavelength independent
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/07Polarisation dependent
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/50Phase-only modulation

Definitions

  • the present invention relates to a microscope apparatus, an optical pickup apparatus, and a light irradiation apparatus using a polarization conversion element that converts linearly polarized light into radial polarized light.
  • a microscope apparatus that uses a laser as an illumination light source and observes the sample by irradiating the sample with laser light output from the illumination light source has been used.
  • the diameter of the beam spot irradiated from the illumination light source and focused on the sample is smaller.
  • the minimum diameter of a beam spot is defined by the diffraction limit, and the minimum diameter is proportional to the wavelength. Therefore, the shorter the wavelength of light emitted from the light source, the smaller the beam spot diameter.
  • light sources that emit light with short wavelengths such as lasers that emit purple or ultraviolet light
  • light sources that emit longer wavelengths such as green or red light
  • the transmittance of the optical material decreases as the wavelength becomes shorter. Therefore, the types of optical materials having a high transmittance for purple or ultraviolet light are limited.
  • Radial polarized light is polarized light in which the polarization plane of linearly polarized light is distributed radially around the optical axis.
  • the light collected on the focal plane becomes z-polarized light (that is, polarized light whose light propagation direction and electric field direction are the same), and the diffraction limit of X or Y polarized light. It has been reported that it is possible to condense light to a spot diameter smaller than the beam spot diameter due to.
  • polarization conversion in which a plurality of half-wave plates are arranged in a plane orthogonal to the optical axis direction and bonded so that the optical axis directions of the half-wave plates are different.
  • An element is used.
  • polarization conversion element that converts linearly polarized light into radial polarized light using a photonic crystal.
  • a polarization conversion element using a half-wave plate or a photonic crystal cannot convert incident light into radial polarization when the wavelength of light incident on the polarization conversion element is different from the design wavelength.
  • the present invention provides a microscope apparatus, an optical pickup apparatus, and a light irradiation apparatus that have a resolution higher than the resolution defined by the diffraction limit regardless of the illumination light having any wavelength included in the predetermined wavelength range.
  • the purpose is to do.
  • a microscope apparatus has a light source that outputs linearly polarized light having a first wavelength and a liquid crystal layer containing liquid crystal molecules, and converts linearly polarized light into radial polarized light by transmitting the liquid crystal layer through the linearly polarized light.
  • a polarization conversion element an objective lens for condensing radial polarized light on the object surface, a condensing lens for condensing light from the object surface, and the intensity of the received light received by the light collected by the condensing lens
  • a controller that applies a voltage corresponding to the first wavelength to the liquid crystal layer of the polarization conversion element.
  • the polarization conversion element is disposed on the light source side of the objective lens, and is disposed along the optical axis.
  • the phase inversion element for inverting the phase of a part of incident light
  • the polarization plane rotation element for converting linearly polarized light into radial polarized light.
  • the polarization plane rotation element includes the above-described liquid crystal layer and two transparent electrodes arranged to face each other with the liquid crystal layer interposed therebetween, and the liquid crystal layer is a first intersection of the polarization plane rotation element and the optical axis.
  • Each of the plurality of regions has different orientation directions, and each of the plurality of regions of the liquid crystal layer has two second regions.
  • the polarization plane of the component transmitted through the region of the linearly polarized light is changed according to the alignment direction of the liquid crystal molecules contained in the region. Rotate to be parallel to the radial direction around the first intersection. Thereby, the polarization plane rotating element converts linearly polarized light into radial polarized light.
  • the phase inverting element has a first annular zone portion and a second annular zone portion that are alternately arranged along a radial direction around the second intersection of the phase inverting element and the optical axis,
  • the phase of linearly polarized light or radial polarized light incident on the first annular zone is inverted with respect to the phase of linearly polarized light or radial polarized light incident on the second annular zone.
  • the alignment direction of the liquid crystal molecules contained in each of the plurality of regions is such that the angle formed with the polarization plane of the linearly polarized light incident on the polarization plane rotating element is between the first intersection and a predetermined straight line passing through the region and the polarization plane.
  • the polarization plane rotation element causes a plurality of regions of the incident linearly polarized light in a plurality of regions by applying a voltage according to the first wavelength between the two transparent electrodes. It is preferable that the polarization planes of the components that have passed through each of them are rotated by twice the angle formed by the polarization plane of the linearly polarized light and the orientation direction to be parallel to a predetermined line.
  • the predetermined line in each of the plurality of regions is preferably a line that passes through the first intersection and bisects the region.
  • one of the two regions that are parallel to the plane of polarization of the linearly polarized light incident on the polarization plane rotation element and intersects the plane passing through the optical axis is defined as the first region
  • the orientation directions in the plurality of regions are set so that However, n is any integer from 1 to N.
  • the phase inversion element includes a second liquid crystal layer containing liquid crystal molecules, and two second transparent electrodes disposed so as to face each other with the second liquid crystal layer interposed therebetween.
  • One of the transparent electrodes is a plurality of annular electrodes corresponding to the first annular zone portion, and corresponds to the first wavelength between the annular electrode and the other of the two second transparent electrodes. It is preferable that the phase inversion element inverts the phase of linearly polarized light or radial polarized light incident on the first annular zone portion by applying a voltage.
  • the phase inverting element is disposed on the incident side of the polarization plane rotating element, and the liquid crystal molecules included in the second liquid crystal layer are along a direction parallel to the polarization plane of the linearly polarized light incident on the phase inverting element. It is preferably oriented.
  • the phase inversion element is disposed on the exit side of the polarization plane rotation element, and the liquid crystal molecules contained in the second liquid crystal layer are aligned radially around the second intersection.
  • the microscope apparatus outputs linearly polarized light having a second wavelength different from the first wavelength, and the linearly polarized light having the second wavelength is condensed on the object plane through the polarization conversion element and the objective lens. It is preferable to further have a second light source arranged. In this case, the controller turns on one of the first light source and the second light source, and sets the voltage corresponding to the wavelength of the linearly polarized light output from the light source being turned on to the two first transparent light sources. It is preferable to apply between the electrodes and between the two second transparent electrodes.
  • an optical pickup device includes a light source that outputs linearly polarized light having a predetermined wavelength, a liquid crystal layer that includes liquid crystal molecules, a polarization conversion element that converts linearly polarized light that has passed through the liquid crystal layer into radial polarized light, and a radial An objective lens that focuses the polarized light on the object surface, an imaging lens that forms an image of the light reflected by the object surface, and a signal that receives the light imaged by the imaging lens and that depends on the intensity of the received light , A driving circuit that applies a voltage corresponding to a predetermined wavelength to the liquid crystal layer of the polarization conversion element, and a voltage that the driving circuit outputs so that a signal corresponding to the intensity of the received light is maximized And a controller for adjusting.
  • the polarization conversion element is disposed on the pupil plane on the light source side of the objective lens, and is disposed along the optical axis.
  • the phase inversion element that inverts the phase of a part of incident light, and the polarization that converts linearly polarized light into radial polarized light.
  • a surface rotation element a surface rotation element.
  • the polarization plane rotation element includes the liquid crystal layer and two first transparent electrodes arranged so as to face each other with the liquid crystal layer interposed therebetween.
  • the liquid crystal layer includes a polarization plane rotation element and an optical axis. It has a plurality of regions arranged along the circumferential direction centering on the first intersection, and the alignment directions of the liquid crystal molecules contained in each of the plurality of regions are different from each other.
  • a voltage corresponding to a predetermined wavelength is applied between the two first transparent electrodes, so that the polarization plane of the component transmitted through the region of the linearly polarized light is changed.
  • the liquid crystal molecules are rotated so as to be parallel to the radial direction centered on the first intersection.
  • the polarization plane rotating element converts linearly polarized light into radial polarized light.
  • the phase inverting element includes first and second annular portions that are alternately arranged along a radial direction centered on a second intersection between the phase inverting element and the optical axis,
  • the phase of the linearly polarized light or radial polarized light incident on the first annular zone is inverted with respect to the phase of the linearly polarized light or radial polarized light incident on the second annular zone.
  • a light irradiation device includes a light source that outputs linearly polarized light having a predetermined wavelength, a liquid crystal layer that includes liquid crystal molecules, a polarization conversion element that converts linearly polarized light that has passed through the liquid crystal layer into radial polarized light, and a radial An objective lens that focuses the polarized light on the object surface; and a drive circuit that applies a voltage corresponding to the wavelength of the linearly polarized light output from the light source to the liquid crystal layer.
  • the polarization conversion element is disposed on the pupil plane on the light source side of the objective lens, and is disposed along the optical axis.
  • the phase inversion element that inverts the phase of a part of incident light, and the polarization that converts linearly polarized light into radial polarized light.
  • the polarization plane rotation element includes the liquid crystal layer and two first transparent electrodes arranged so as to face each other with the liquid crystal layer interposed therebetween.
  • the liquid crystal layer includes a polarization plane rotation element and an optical axis. It has a plurality of regions arranged along the circumferential direction centering on the first intersection, and the alignment directions of the liquid crystal molecules contained in each of the plurality of regions are different from each other.
  • a voltage corresponding to a predetermined wavelength is applied between the two first transparent electrodes, so that the polarization plane of the component transmitted through the region of the linearly polarized light is changed.
  • the liquid crystal molecules are rotated so as to be parallel to the radial direction centered on the first intersection.
  • the polarization plane rotating element converts linearly polarized light into radial polarized light.
  • the phase inverting element includes first and second annular portions that are alternately arranged along a radial direction centered on a second intersection between the phase inverting element and the optical axis,
  • the phase of the linearly polarized light or radial polarized light incident on the first annular zone is inverted with respect to the phase of the linearly polarized light or radial polarized light incident on the second annular zone.
  • the microscope apparatus, optical pickup apparatus, and light irradiation apparatus can use illumination light having any wavelength included in a predetermined wavelength range by adjusting a voltage applied to the liquid crystal included in the polarization conversion element. There is an effect that the resolution is higher than the resolution defined by the diffraction limit.
  • FIG. 1 is a schematic configuration diagram of a microscope apparatus according to one embodiment of the present invention.
  • FIG. 2 is a schematic front view of a polarization conversion element used in a microscope apparatus according to one embodiment of the present invention.
  • 3A is a schematic side cross-sectional view of the polarization conversion element when a voltage is not applied, along the line indicated by the arrow XX ′ in FIG. 2, and
  • FIG. It is a schematic sectional side view of the polarization conversion element when the voltage is applied in the line represented by the arrow of XX ′.
  • FIG. 4 is a schematic front view of the transparent electrode of the phase inversion element.
  • FIG. 5 is a diagram showing the alignment direction of the liquid crystal in each region of the liquid crystal layer of the polarization plane rotating element and the polarization direction of the linearly polarized light component transmitted through each region.
  • FIG. 6 is a diagram showing an outline of the radial polarized light emitted from the polarization conversion element.
  • FIG. 7 is a diagram showing the alignment direction of the liquid crystal in each region and the polarization direction of the linearly polarized light component transmitted through each region when the liquid crystal layer of the polarization plane rotating element has six regions with different alignment directions. is there.
  • FIG. 8 is a diagram showing an example of the voltage applied to the liquid crystal layer between the transparent electrodes of the polarization plane rotating element and the optical path length difference between ordinary light and extraordinary light generated by the liquid crystal layer.
  • FIG. 9A and FIG. 9B are schematic front views of the transparent electrode on the incident side provided in the phase inversion element, respectively, according to a modification.
  • FIG. 10A is a schematic rear view of the polarization conversion element according to the second embodiment
  • FIG. 10B is a second embodiment taken along the line YY ′ in FIG. 10A. It is a schematic side surface sectional drawing of the polarization conversion element which concerns on a form.
  • FIG. 11A is a schematic front view showing the structure of the transparent electrode on one side of the phase inverting element according to the modification
  • FIG. 11B is the transparent electrode on the other side of the phase inverting element according to the modification.
  • FIG. 12 is a schematic configuration diagram of an optical pickup device which is an example of a light irradiation device using a polarization conversion element according to another embodiment.
  • This microscope apparatus includes a polarization conversion element that is arranged on the entrance pupil plane of the objective lens and converts linearly polarized light that is illumination light into radial polarized light. Thereby, this microscope apparatus collects the light from the illumination light source so as to have a spot diameter smaller than the spot diameter defined by the diffraction limit by generating a z-polarization effect in the focal plane of the objective lens. .
  • the polarization conversion element has a liquid crystal layer for controlling the polarization plane of the illumination light, and this microscope apparatus can be used in any given wavelength range by adjusting a voltage applied to the liquid crystal layer. Even when illumination light that is linearly polarized light with a wavelength is used, the illumination light can be converted to radial polarization.
  • FIG. 1 is a schematic configuration diagram of a microscope apparatus according to one embodiment of the present invention.
  • the microscope apparatus 100 includes a light source 101, a collimating lens 102, a beam splitter 103, a polarization conversion element 104, an objective lens 105, a condensing lens 106, a mask plate 107, and light reception.
  • An element 108, a movable stage 109, an actuator 110, and a controller 111 are included.
  • the light receiving element 108, the mask plate 107, the condenser lens 106, the beam splitter 103, and the objective lens 105 are arranged in a line along the optical axis OA defined by the condenser lens 106 and the objective lens 105.
  • a light source 101, a collimator lens 102, and a polarization conversion element 104 are arranged in a line along a direction orthogonal to the optical axis OA.
  • Illumination light that is linearly polarized light emitted from the light source 101 passes through the collimating lens 102 and then passes through the polarization conversion element 104.
  • the illumination light is converted into radial polarized light by passing through the polarization conversion element 104.
  • the radially polarized illumination light is reflected by the beam splitter 103 and focused on the object surface to be observed set on or inside the surface of the sample 120 placed on the movable stage 109 by the objective lens 105. tie.
  • the light reflected or scattered by the object surface or fluorescently emitted passes through the objective lens 105 again and then travels straight through the beam splitter 103.
  • the microscope apparatus 1 may have various compensation optical systems such as a spherical aberration compensation optical system on the optical path.
  • the light source 101 outputs illumination light that is linearly polarized light.
  • the light source 101 includes, for example, a semiconductor laser.
  • the light source 101 may include a gas laser such as an argon ion laser or a solid-state laser such as a YAG laser.
  • an analyzer may be disposed between the light source 101 and the collimating lens 102 to make the illumination light linearly polarized light.
  • the light source 101 may include a plurality of light emitting elements that output light having different wavelengths that are included in a predetermined wavelength range, for example, a range of 351 nm to 750 nm. In this case, the light source 101 causes one of the light emitting elements to output illumination light in accordance with a control signal from the controller 111.
  • the collimating lens 102 is disposed between the light source 101 and the beam splitter 103 so that the light source 101 is located at the front focal point of the collimating lens 102.
  • the collimating lens 102 converts the illumination light output from the light source 101 into parallel light.
  • the illumination light that has become parallel light enters the polarization conversion element 104.
  • the polarization conversion element 104 is preferably disposed on the front pupil surface of the objective lens 105.
  • the polarization conversion element 104 is disposed between the collimating lens 102 and the beam splitter 103 so that light from the object plane does not pass through the polarization conversion element 104.
  • the polarization conversion element 104 has a liquid crystal layer, and converts the illumination light having linear polarization into radial polarization by changing the polarization direction of the illumination light transmitted through the liquid crystal layer.
  • the polarization conversion element 104 may be disposed between the beam splitter 103 and the objective lens 105 so that light from the object plane also passes through the polarization conversion element 104. Details of the polarization conversion element 104 will be described later.
  • the beam splitter 103 is disposed between the objective lens 105 and the condenser lens 106.
  • the beam splitter 103 reflects the illumination light incident from the collimator lens 102 toward the objective lens 105.
  • the beam splitter 103 advances the light incident along the optical axis OA.
  • the objective lens 105 focuses the radially polarized light emitted from the polarization conversion element 104 and reflected by the beam splitter 103 on the object plane.
  • the spot diameter of light in the vicinity of the focal point can be made smaller than the spot diameter defined by the diffraction limit.
  • the spot diameter according to the present embodiment is about 1.5 to about 1.7 times the spot diameter defined by the diffraction limit.
  • the depth of focus of the collected light can be increased.
  • the objective lens 105 is provided with an actuator 110 for adjusting the focal position.
  • the actuator 110 moves the objective lens 105 along the direction of the arrow Z in the drawing, that is, the direction parallel to the optical axis OA, so that the focal position of the illumination light moves in the direction of the optical axis OA.
  • the actuator 110 is connected to the controller 111 and moves the objective lens 105 in accordance with a control signal from the controller 111.
  • the light reflected or scattered on the object surface passes through the objective lens 105 again and becomes parallel light. Then, the light passes through the beam splitter 103 and enters the condenser lens 106. The light incident on the condenser lens 106 is received by the light receiving element 108.
  • the mask plate 107 is disposed near the focal point of the condenser lens 106 between the condenser lens 106 and the light receiving element 108.
  • a pinhole 107a is formed in the mask plate 107 along the optical axis OA.
  • the light receiving element 108 includes, for example, a plurality of semiconductor light receiving elements such as a CCD or a C-MOS arranged in an array. Each semiconductor light receiving element outputs an electrical signal corresponding to the intensity of the received light.
  • the light receiving element 108 averages the electric signals output from the respective semiconductor light receiving elements, and transmits the electric signal corresponding to the average value to the controller 111 as a light intensity signal indicating the intensity of the received light.
  • the light receiving element 108 may have a photomultiplier tube.
  • the light receiving element 108 receives an electric signal corresponding to the intensity of multiple light received by the photomultiplier tube, and transmits the electric signal to the controller 111 as a light intensity signal indicating the intensity of the received light.
  • the movable stage 109 is a stage on which the sample 120 is placed.
  • the movable stage 109 can be a so-called XY stage, for example, and can move in two directions orthogonal to each other in a plane orthogonal to the optical axis OA.
  • one direction in which the movable stage 109 can be moved is an X axis
  • a direction orthogonal to the X axis is a Y axis.
  • the movable stage 109 is communicably connected to the controller 111.
  • the movable stage 109 has an actuator (not shown) and moves by a predetermined distance in the X-axis direction or the Y-axis direction in accordance with a control signal received from the controller 111.
  • the controller 111 has, for example, a processor, a memory, and an interface circuit for connecting the controller 111 to each part of the microscope apparatus 100.
  • the controller 111 controls the light source 101, the polarization conversion element 104, the movable stage 109, and the actuator 110.
  • the controller 111 supplies predetermined light to the light source 101 to cause the light source 101 to output illumination light.
  • the controller 111 controls, for example, output of illumination light to any one of the plurality of light emitting elements in accordance with a user operation via a user interface (not shown). A signal is transmitted to the light source 101.
  • the controller 111 transmits a control signal for moving the objective lens 105 by a predetermined distance along the optical axis OA to the actuator 110.
  • the actuator 110 receives the control signal from the controller 111, the actuator 110 moves the objective lens 105 by a distance instructed by the control signal.
  • the controller 111 generates an image of the object plane set on the surface or inside of the sample 120 from the light intensity signal received from the light receiving element 108. Therefore, the controller 111 moves the movable stage 109 in a plane orthogonal to the optical axis OA by transmitting a control signal for moving the movable stage 109 to a predetermined position to the movable stage 109. Then, the controller 111 moves the movable stage 109 so that each of the plurality of measurement points set at equal intervals in a two-dimensional manner on the object plane moves from the light receiving element 108 to each of the light receiving elements 108. A light intensity signal at the measurement point is received.
  • the controller 111 can obtain a two-dimensional image on the object plane of the sample 120, for example, by generating an image using the light intensity signal at each measurement point as the value of one pixel. Further, according to the modification, instead of moving the sample 120 on a movable stage such as an XY stage for image acquisition, the microscope apparatus changes the direction of the laser beam emitted from the light source 101 using a galvanometer mirror or the like. The sample may be scanned with the beam.
  • the controller 111 has a drive circuit (not shown), and the polarization conversion element 104 converts linearly polarized light having a predetermined wavelength into radial polarization by adjusting the voltage applied to the polarization conversion element 104 via the drive circuit.
  • the polarization conversion element 104 is controlled so that it can be done.
  • the controller 111 controls the drive circuit so that an applied voltage corresponding to the wavelength of light output from the light source 101 is applied to each liquid crystal layer of the polarization conversion element 104.
  • the controller 111 applies a voltage applied to the liquid crystal layer included in the polarization conversion element 104 in accordance with the light emitting elements that emit light. Adjust.
  • the drive voltage applied from the drive circuit to the liquid crystal layer included in the polarization conversion element 104 may be, for example, an AC voltage that has been subjected to pulse height modulation (PHM) or pulse width modulation (PWM).
  • PPM pulse height modulation
  • PWM pulse width modulation
  • the controller 111 may adjust the voltage applied to the liquid crystal layer of the polarization conversion element 104 based on the image of the sample 120 on the object plane. For example, the controller 111 changes the voltage applied to the liquid crystal layer of the polarization conversion element 104 and moves the movable stage 109 in two dimensions while acquiring the light intensity signal from the light receiving element 108 to obtain the applied voltage. A plurality of images of the sample 120 on the corresponding object plane are generated. Then, the controller 111 stores the voltage value and the image in association with each other in a built-in memory. Then, the controller 111 determines a voltage value at which the image is the clearest, and applies the voltage to the liquid crystal layer of the polarization conversion element 104 via the drive circuit.
  • the controller 111 In order to determine the clearest image, the controller 111, for example, frequency-converts each obtained image to create a frequency image. Then, the controller 111 identifies each frequency image having the highest high frequency component by analyzing each frequency image, and determines that the image corresponding to the identified frequency image is the clearest image.
  • FIG. 2 is a schematic front view of the polarization conversion element 104.
  • 3A and 3B are schematic side sectional views of the polarization conversion element 104 taken along the lines indicated by arrows X and X ′ shown in FIG. 2, respectively.
  • 3A illustrates a state of liquid crystal molecules included in the polarization conversion element 104 when no voltage is applied to the polarization conversion element 104
  • FIG. 3B illustrates a voltage applied to the polarization conversion element 104.
  • this polarization conversion element 104 includes a phase inverting element 2 and a polarization plane rotating element 3 disposed adjacent to the phase inverting element 2 along the optical axis OA.
  • the illumination light incident on the polarization conversion element 104 is linearly polarized light and is incident from the phase inversion element 2 side.
  • the linearly polarized light is converted into radial polarized light by passing through the phase inverting element 2 and the polarization plane rotating element 3, and is emitted from the polarization plane rotating element 3.
  • the polarization plane of the illumination light incident on the polarization conversion element 104 is perpendicular to the plane on which FIG. 2 is represented and is on the vertical plane, as indicated by the arrow A in FIG. And
  • the phase inverting element 2 inverts the phase of at least one annular zone centering on the optical axis OA with respect to the phase of the other portion of the incident linearly polarized light.
  • the phase inverting element 2 includes a liquid crystal layer 20 and transparent substrates 21 and 22 disposed substantially parallel to both sides of the liquid crystal layer 20 along the optical axis OA.
  • the liquid crystal molecules 27 included in the liquid crystal layer 20 are sealed between the transparent substrates 21 and 22 and the seal member 28.
  • the phase inverting element 2 includes a transparent electrode 23 disposed between the transparent substrate 21 and the liquid crystal layer 20, and a transparent electrode 24 disposed between the liquid crystal layer 20 and the transparent substrate 22.
  • the transparent substrates 21 and 22 are formed of a material that is transparent to light having a wavelength included in a predetermined wavelength range, such as glass or resin.
  • the transparent electrodes 23 and 24 are formed of, for example, a material called indium oxide added with tin oxide.
  • An alignment film 25 is disposed between the transparent electrode 23 and the liquid crystal layer 20.
  • An alignment film 26 is disposed between the transparent electrode 24 and the liquid crystal layer 20. These alignment films 25 and 26 align the liquid crystal molecules 27 in a predetermined direction. When the liquid crystal molecules 27 are aligned by a method that does not use an alignment film, such as photo-alignment, the alignment films 25 and 26 may be omitted.
  • a lens frame 29 is arranged on the outer periphery of each substrate, each transparent electrode, and each alignment film, and this lens frame 29 holds each substrate.
  • the liquid crystal molecules 27 sealed in the liquid crystal layer 20 are, for example, homogeneously aligned and aligned in a direction substantially parallel to the polarization plane of incident linearly polarized light. That is, the liquid crystal molecules are aligned so that the major axis direction of the liquid crystal molecules 27 is substantially parallel to the arrow A shown in FIG.
  • FIG. 4 is a schematic front view of the transparent electrode 23 provided in the phase inverting element 2 disposed on the incident side.
  • the transparent electrode 24 is formed so as to cover the entire liquid crystal layer 20.
  • the transparent electrode 24 may have the same shape as that of the transparent electrode 23 shown in FIG. 4, or the transparent electrode 24 has the electrode shape shown in FIG. May be formed so as to cover the entire liquid crystal layer 20.
  • the transparent electrode 23 has at least one concentric ring-shaped electrode centered on the intersection c 0 of the optical axis OA and the phase inversion element 2.
  • the transparent electrode 23 has four annular electrodes 23a to 23d.
  • the liquid crystal layer 20 has a first annular zone sandwiched between any of the annular electrodes 23a to 23d and the transparent electrode 24, and a second annular zone where the transparent electrode 24 exists only on one side.
  • the outer periphery of the ring-shaped electrode 23d corresponds to the outer periphery of the region 2a shown in FIG.
  • the controller 111 when a voltage is applied by the controller 111 between the annular electrodes 23a to 23d and the transparent electrode 24 disposed opposite to the liquid crystal layer 20, the controller 111 The liquid crystal molecules are tilted so that the major axis direction of the liquid crystal molecules contained in the first annular zone portion 20a approaches the direction parallel to the optical axis OA from the direction orthogonal to the optical axis OA.
  • the major axis of the liquid crystal molecules contained in the second ring-shaped portion 20b not sandwiched between the transparent electrodes remains in the direction perpendicular to the optical axis OA.
  • the long axis direction parallel to the polarization component of the liquid crystal molecules i.e., the extraordinary ray
  • refractive index n e for the polarized component parallel to the minor axis direction of liquid crystal molecules (i.e., ordinary ray) than the refractive index n o for high.
  • the major axis direction of the liquid crystal molecules included in the first annular zone portion 20a and the direction in which the voltage is applied that is, the optical axis OA. If the angle formed by the direction is ⁇ , the light transmitted through the liquid crystal layer 20 forms an angle ⁇ with respect to the major axis direction of the liquid crystal molecules 27.
  • the phase inversion element 2 can modulate the phase of light transmitted through the liquid crystal layer 20 by adjusting the voltage applied between the transparent electrode 23 and the transparent electrode 24 by the controller 111. Therefore, when a predetermined voltage corresponding to the wavelength of the incident light is applied between the transparent electrode 23 and the transparent electrode 24, the phase inversion element 2 changes the phase of the light passing through the first annular zone portion 20a. The phase of the light passing through the second annular portion 20b can be shifted by ⁇ .
  • the polarization plane rotation element 3 converts the linearly polarized light incident after passing through the phase inversion element 2 into radial polarization having a radial linear polarization distribution around the intersection c 1 between the optical axis OA and the polarization plane rotation element 3. Convert.
  • the polarization plane rotating element 3 includes a liquid crystal layer 30 and transparent substrates 31 and 32 disposed substantially parallel to both sides of the liquid crystal layer 30 along the optical axis OA. Note that one of the transparent substrate 31 and the transparent substrate 22 of the phase inversion element 2 may be omitted. In this case, for example, the liquid crystal layer 20 is formed on one surface of the transparent substrate 22, and the liquid crystal layer 30 is formed on the other surface of the transparent substrate 22.
  • the polarization plane rotating element 3 includes a transparent electrode 33 disposed between the transparent substrate 31 and the liquid crystal layer 30, and a transparent electrode 34 disposed between the liquid crystal layer 30 and the transparent substrate 32.
  • the liquid crystal molecules 37 contained in the liquid crystal layer 30 are sealed between the transparent substrates 31 and 32 and the seal member 38.
  • the transparent substrates 31 and 32 are formed of a material that is transparent to light having a wavelength included in a predetermined wavelength range, such as glass or resin.
  • the transparent electrodes 33 and 34 are made of, for example, ITO.
  • an alignment film 35 is disposed between the transparent electrode 33 and the liquid crystal layer 30.
  • An alignment film 36 is disposed between the transparent electrode 34 and the liquid crystal layer 30. These alignment films 35 and 36 align the liquid crystal molecules 37 in a predetermined direction.
  • the alignment films 35 and 36 may be omitted.
  • a lens frame 39 is disposed on the outer periphery of each substrate, each transparent electrode, and each alignment film, and this lens frame 39 holds each substrate.
  • the lens frame 29 and the lens frame 39 may be integrally formed.
  • the liquid crystal molecules 37 sealed in the liquid crystal layer 30 are, for example, homogeneously aligned.
  • the liquid crystal molecules 37 included in each sector region are aligned so that the plane of polarization of incident linearly polarized light is rotated so that the plane of polarization is substantially parallel to the radial direction centered on the optical axis OA.
  • FIG. 5 is a schematic front view of the liquid crystal layer 30 showing the alignment direction of the liquid crystal in each sector region of the liquid crystal layer 30 and the polarization direction of linearly polarized light transmitted through each sector region.
  • the liquid crystal layer 30 has eight sector regions 30a to 30h that are arranged clockwise and have different alignment directions, and the central angles of the sector regions 30a to 30h are set to be equal.
  • arrows 40a to 40h represent the alignment directions of the liquid crystal molecules contained in the respective sector regions 30a to 30h.
  • the arrows 50a to 50h represent the polarization planes of linearly polarized light emitted from the sector regions 30a to 30h, respectively.
  • the two arrows whose tips point in opposite directions indicate that the phases of the linearly polarized light represented by these arrows are shifted from each other by ⁇ .
  • a straight line that bisects the sector area through the intersection c 1 is called a center line of the sector area.
  • the orientation direction of each of the sector regions 30a to 30h is determined, for example, so that the polarization plane of the linearly polarized component after passing through each sector region is parallel to the center line of the transmitted sector region. Therefore, through the intersection c 1 between the optical axis OA and the liquid crystal layer 30, a fan-shaped region 30a that intersect the plane parallel to the polarization plane A of the incident linearly polarized light as the first area, clockwise or counterclockwise from the sector region 30a
  • the angle ⁇ formed by the orientation direction of the sector region and the polarization plane A of the polarization component passing through the sector region 30a is set according to the following equation.
  • the orientation direction of the liquid crystal molecules is set substantially parallel to the incident polarization plane A of the linearly polarized light so that the linearly polarized light is transmitted without rotating.
  • the polarization direction of the polarization component passing through the orientation direction of each of the sector regions 30b to 30h and the sector region 30a.
  • the angles formed by A are each fan-shaped so that the clockwise direction is 22.5 °, 45 °, 67.5 °, 90 °, 112.5 °, 135 °, and 157.5 °, respectively.
  • the orientation direction of the regions 30b to 30h is set.
  • the orientation direction of each of the sector regions 30b to 30h and the polarization plane A of the polarization component passing through the sector region 30a are formed.
  • the angles are -157.5 °, -135 °, -112.5 °, -90 °, -67.5 °, -45 °, and -22.5 ° with the clockwise direction being positive, respectively.
  • the orientation direction of each of the sector regions 30b to 30h is set.
  • the transparent electrodes 33 and 34 are disposed so as to face each other across the liquid crystal layer 30.
  • a predetermined voltage is applied between the transparent electrodes 33 and 34 by the controller 111 so that the fan-shaped regions 30a to 30h of the liquid crystal layer 30 function as a half-wave plate for wavelengths included in the predetermined wavelength region.
  • the liquid crystal molecules are inclined in a direction parallel to the direction in which the voltage is applied according to the voltage. If the angle formed by the major axis direction of the liquid crystal molecules and the direction in which the voltage is applied is ⁇ , the light transmitted through the liquid crystal layer 30 forms an angle ⁇ with respect to the major axis direction.
  • n o is the refractive index for polarized light component perpendicular to the long axis direction of liquid crystal molecules
  • n e is the refractive index for parallel polarization component in the longitudinal direction of the liquid crystal molecules.
  • each of the sector regions 30a to 30h functions as a half-wave plate for the wavelength of the linearly polarized light output from the light source 101.
  • each of the sector regions 30a to 30h functions as a half-wave plate
  • the polarization plane is transmitted through the sector shape. Rotate to make an angle - ⁇ with respect to the orientation direction of the region. That is, the polarization plane rotates by an angle 2 ⁇ with the orientation direction as the center.
  • the orientation direction of the liquid crystal molecules in each of the sector regions 30a to 30h is such that the angle of the linearly polarized light incident on the sector region 30a with respect to the polarization plane A is the center line of each sector region and the sector of the liquid crystal layer 30. It is set to be 1 ⁇ 2 of the angle with the polarization plane A of linearly polarized light incident on the region 30a.
  • the light beam emitted from the polarization plane rotating element 3 has a radial linearly polarized component centered on the optical axis OA.
  • FIG. 6 is a diagram showing an outline of the radial polarized light 61 emitted from the polarization conversion element 104.
  • each arrow 61a to 61h represents a linearly polarized light component.
  • the two arrows whose tips point in opposite directions indicate that the phases of the linearly polarized light represented by the arrows are shifted from each other by ⁇ .
  • the ring-shaped regions 62a to 62d each represent a polarization component that has passed through the first ring zone portion of the phase inverting element 2.
  • the ring-shaped regions 62e to 62g respectively represent polarized light components that have passed through the second ring zone portion of the phase inversion element 2.
  • the radial polarized light 61 has eight types of linearly polarized light components 61a to 61h having a polarization plane radially with respect to the optical axis OA.
  • the linearly polarized light components 61a to 61h are sandwiched between the transparent electrodes and the components 62a to 62d transmitted through the first annular zone sandwiched between the transparent electrodes 23 and 24 of the phase inverting element 2 along the radiation direction.
  • the polarization plane of the polarized light component transmitted through the respective sector regions 30a ⁇ 30h may be radially distributed around the intersection c 1, its plane of polarization, be non-parallel to the center line of the transmitted Sector Region Good.
  • Alignment direction of each sector region 30a ⁇ 30h may be set so that the polarization plane of the polarized light transmitted through the respective sector regions 30a ⁇ 30h is parallel to the predetermined straight line passing through the fan-shaped area and the intersection c 1.
  • the angle formed by the orientation direction of each of the sector regions 30a to 30h and the polarization plane A of linearly polarized light incident on the sector region 30a is a value obtained by adding a predetermined offset value to the value obtained by the above equation (1).
  • the orientation direction of each of the sector regions 30a to 30h may be set so that
  • the predetermined offset value is an angle obtained by adding twice the offset value to the angle formed by the center line of each of the sector regions 30a to 30h and the polarization plane A (that is, the polarization plane of the polarization component transmitted through the sector region).
  • an angle formed by the polarization plane of linearly polarized light incident on the sector area 30a) is set to ⁇ 5 °, for example, so that the boundary between the adjacent sector areas and the polarization plane A does not exceed the angle.
  • the number of regions having different alignment directions that the liquid crystal layer 30 of the polarization plane rotating element 3 has is not limited to eight.
  • the number of regions having different alignment directions of the liquid crystal layer 30 may be any number necessary for obtaining the effect of radial polarization.
  • the liquid crystal layer 30 may have 4, 5, 6, or 16 regions having different alignment directions.
  • FIG. 7 is a schematic front view showing the alignment direction of the liquid crystal in each sector region and the polarization direction of the linearly polarized light transmitted through each region when the liquid crystal layer 30 includes six sector regions 30i to 30n.
  • the transparent electrodes 33 and 34 are arranged so as to face each other across the liquid crystal layer 30.
  • the arrows 40i to 40n indicate the alignment directions of the liquid crystal molecules included in the respective sector regions 30i to 30n.
  • the arrows 50i to 50n represent the polarization planes of linearly polarized light emitted from the sector regions 30i to 30n, respectively.
  • the two arrows with the tips pointing in opposite directions indicate that the phases of the linearly polarized light represented by these arrows are shifted from each other by ⁇ .
  • the sector area 30i is set as the first area.
  • the orientation direction of the nth sector region in the clockwise direction is set so that, for example, an angle formed by the orientation direction and the polarization plane A is an angle calculated according to the above equation (1).
  • angles formed by the orientation directions of the sector regions 30i to 30n and the polarization plane A of the polarization component passing through the sector region 30a are 0 °, 30 °, 60 °, 90 °, respectively, with the clockwise direction being positive. 120 ° and 150 °.
  • the wavelength of incident light is placed between the transparent electrodes 33 and 34 sandwiching the sector regions 30i to 30n so that the liquid crystal layer 30 functions as a half-wave plate with respect to the linearly polarized light transmitted through the sector regions 30i to 30n.
  • a voltage corresponding to is applied.
  • the controller 111 can drive the liquid crystal layer 20 and the liquid crystal layer 30 using appropriate driving voltages.
  • FIG. 8 is a diagram illustrating an example of a voltage applied to the liquid crystal layer 30 between the transparent electrodes 33 and 34 and an optical path length difference between an ordinary ray and an extraordinary ray generated by the liquid crystal layer 30.
  • the horizontal axis represents the voltage applied to the liquid crystal layer 30, and the vertical axis represents the optical path length difference.
  • a graph 801 represents the relationship between the applied voltage and the optical path length difference for light having a wavelength of 450 nm.
  • a graph 802 represents the relationship between applied voltage and optical path length difference for light having a wavelength of 550 nm.
  • a graph 803 represents the relationship between the applied voltage and the optical path length difference for light having a wavelength of 780 nm.
  • a voltage that causes an optical path length difference obtained by adding 225 nm to an integral multiple of 450 nm is applied between the transparent electrodes 33 and 34. Just do it. Therefore, referring to the graph 801, a voltage of about 1.4 Vrms corresponding to an optical path length difference of 1125 nm may be applied between the transparent electrodes 33 and 34.
  • a voltage is generated between the transparent electrodes 33 and 34 that causes an optical path length difference obtained by adding 275 nm to an integral multiple of 550 nm. It may be applied. Therefore, referring to the graph 802, a voltage of about 1 Vrms corresponding to an optical path length difference of 1375 nm may be applied between the transparent electrodes 33 and.
  • a voltage is generated between the transparent electrodes 33 and 34 that causes an optical path length difference obtained by adding 390 nm to an integral multiple of 780 nm. It may be applied. Therefore, referring to the graph 803, a voltage of about 1.1 Vrms corresponding to the optical path length difference of 1170 nm may be applied between the transparent electrodes 33 and.
  • the microscope apparatus since the microscope apparatus according to one embodiment of the present invention focuses the radial polarized light on the sample, the spot diameter in the vicinity of the focal point is defined by the diffraction limit due to the z polarization effect. Can be smaller than the diameter. Therefore, this microscope apparatus can have a resolution higher than the resolution defined by the diffraction limit in the direction parallel to the surface of the sample. In addition, since this microscope apparatus can increase the depth of focus in the vicinity of the sample, it is easy to focus on a desired position in the depth direction of the sample.
  • the polarization conversion element incorporated in the microscope apparatus can invert the phase of a part of each linearly polarized light that forms the radial polarized light with respect to the phase of the other part in a ring shape, the radial polarized light is collected. By emitting light, the z-polarization effect can be efficiently generated.
  • the polarization conversion element incorporated in the microscope apparatus controls the polarization plane of the incident light by the liquid crystal layer, the light source can be set in any wavelength range by adjusting the voltage applied to the liquid crystal layer by the controller. Even when illumination light that is linearly polarized light having a wavelength is output, the polarization conversion element can convert the illumination light into radial polarization. Therefore, this microscope apparatus can have a resolution higher than the resolution defined by the diffraction limit, regardless of the illumination light having any wavelength within the predetermined wavelength range.
  • the present invention is not limited to the above embodiment.
  • the liquid crystal molecules 27 included in the second annular zone may be aligned in a direction parallel to the optical axis OA.
  • the liquid crystal layer 20 and the liquid crystal layer 30 have the same thickness, the optical characteristics and electrical characteristics of the liquid crystal molecules contained in the liquid crystal layer 20, and the optical characteristics and electrical characteristics of the liquid crystal molecules contained in the liquid crystal layer 30. Can be the same.
  • the voltage at which the predetermined region of the liquid crystal layers 20 and 30 becomes a half-wave plate is the same for a predetermined wavelength, so that the controller 111 has the same waveform and amplitude.
  • the liquid crystal layer 20 and the liquid crystal layer 30 can be driven by using the driving voltage.
  • the major axis direction of the liquid crystal molecules 27 is in the first annular zone, and the liquid crystal molecules are in the second annular zone.
  • the liquid crystal molecules 27 may be aligned so that the minor axis direction of 27 is parallel to the plane of polarization of linearly polarized light incident on the phase inverting element 2.
  • an optical path length difference due to the transparent electrode is not generated between the light transmitted through the first annular zone of the phase inverting element 2 and the light transmitted through the second annular zone.
  • the transparent electrode may be formed on both sides of the liquid crystal layer 20 also for the second annular zone portion.
  • FIG. 9 (A) and 9 (B) are schematic front views of the transparent electrode 23 provided on the incident side of the phase inversion element 2 according to this modification.
  • the transparent electrode 24 is formed on the entire surface of the substrate so as to cover the entire liquid crystal layer 20 as in the above embodiment.
  • the transparent electrode 24 may also have the same shape as that of the transparent electrode 23 shown in FIG. 9A or 9B, or the transparent electrode 24 may have the shape shown in FIG.
  • the transparent electrode 23 may be formed so as to cover the entire liquid crystal layer 20 having the electrode shape shown in FIG.
  • the transparent electrode 23 is centered on the intersection c 0 of the optical axis OA and the phase-inversion element 2 has a circular electrode 23a, and a concentric least one of the annular electrode.
  • the transparent electrode 23 has five annular electrodes 23b to 23f around a circular electrode 23a. Further, it is preferable that the gap between the electrodes is small. Note that the outer periphery of the annular electrode 23f corresponds to the outer periphery of the region 2a shown in FIG.
  • each ring electrode In the example shown in FIG. 9A, wiring is drawn from each ring electrode so that each ring electrode can be controlled independently, and the wiring is connected to the drive circuit.
  • the even-numbered ring-shaped electrodes and the odd-numbered ring-shaped electrodes are electrically connected to each other by the same wiring in order from the circular electrode 23a.
  • the wiring connected to the ring-shaped electrode and the wiring connected to the odd-numbered ring-shaped electrode are respectively connected to the drive circuit.
  • the even-numbered annular electrodes can be driven with the same potential.
  • each of the odd-numbered annular electrodes can be driven with the same potential.
  • FIG. 9A wiring is drawn from each ring electrode so that each ring electrode can be controlled independently, and the wiring is connected to the drive circuit.
  • the even-numbered ring-shaped electrodes and the odd-numbered ring-shaped electrodes are electrically connected to each other by the same wiring in order from the circular electrode 23a.
  • one of the odd-numbered ring-shaped electrode groups and the even-numbered ring-shaped electrode groups may not be electrically controlled.
  • the phase of light can be reversed by the liquid crystal layer sandwiched between the other electrode group and the transparent electrode 24.
  • the ring-shaped electrode is also thick, the phase of the light that has passed through the ring-shaped electrode is shifted from the phase of the light that does not pass through the ring-shaped electrode. Therefore, as shown in FIG. 9A and FIG. 9B, not only the ring-shaped electrodes used for voltage control but also the ring-shaped electrodes that do not require voltage control are arranged, so that the phase inversion element 2 is arranged. In the case where no voltage is applied to the liquid crystal layer 20, almost the entire light beam transmitted through the phase inversion element 2 can be in phase.
  • the potential of the even-numbered or odd-numbered ring-shaped electrode group that does not need to be electrically controlled is the same reference potential as the transparent electrode 24 provided on the transparent substrate on the side facing the ring-shaped electrode group, Alternatively, it is preferable to set the threshold potential, which is the maximum potential at which the liquid crystal molecules in the liquid crystal layer 20 do not operate.
  • the threshold potential is generally about 1 V to 2 V in terms of effective voltage.
  • FIG. 10A is a schematic rear view of the polarization conversion element 104 ′ in which the position of the phase inversion element and the position of the polarization plane rotation element are interchanged.
  • FIG. 10B is a schematic side sectional view of the polarization conversion element 104 ′ taken along the lines indicated by the arrows Y and Y ′ shown in FIG. 10 (A) and 10 (B), the polarization conversion element 104 according to the first embodiment shown in FIGS. 2 and 3 corresponds to each component of the polarization conversion element 104 ′.
  • the same reference numerals as those of the components are attached.
  • the polarization conversion element 104 ′ is disposed adjacent to the polarization plane rotation element 3 along the optical axis OA and adjacent to the polarization plane rotation element 3 and is radially distributed around the optical axis OA included in the radial polarization. And a phase inverting element 2 ′ for inverting the phase of a part of the linearly polarized light component.
  • the configuration of the polarization plane rotating element 3 is the same as the configuration of the polarization plane rotating element 3 according to the above embodiment.
  • the light incident on the polarization conversion element 104 ′ is linearly polarized light and is incident from the polarization plane rotating element 3 side.
  • the linearly polarized light is converted into radial polarized light by the polarization plane rotating element 3 and then incident on the phase inverting element 2 ′.
  • the phase inverting element 2 ′ inverts the phase of a part of each linearly polarized light component included in the incident radial polarized light.
  • the phase inversion element 2 ′ includes the liquid crystal layer 20 and the transparent substrate 21 disposed on both sides of the liquid crystal layer 20 along the optical axis OA. , 22.
  • the liquid crystal molecules 27 included in the liquid crystal layer 20 are sealed between the transparent substrates 21 and 22 and the seal member 28.
  • the phase inverting element 2 ′ has a transparent electrode 23 disposed between the transparent substrate 21 and the liquid crystal layer 20, and a transparent electrode 24 disposed between the liquid crystal layer 20 and the transparent substrate 22.
  • an alignment film 25 is disposed between the transparent electrode 23 and the liquid crystal layer 20.
  • An alignment film 26 is disposed between the transparent electrode 24 and the liquid crystal layer 20. These alignment films 25 and 26 align the liquid crystal molecules 27 in a predetermined direction.
  • a lens frame 29 is arranged on the outer periphery of each substrate, each transparent electrode, and each alignment film, and this lens frame 29 holds each substrate.
  • FIG. 10A shows the alignment direction of the liquid crystal molecules sealed in the liquid crystal layer 20.
  • the liquid crystal molecules sealed in the liquid crystal layer 20 are, for example, homogeneously aligned.
  • Arrows 21a to 21h indicate the alignment directions of the liquid crystal molecules contained in each sector region.
  • the liquid crystal molecules sealed in each of the fan-shaped regions 20a ⁇ 20h, the long axis direction is aligned so that the radiation direction around the intersection c 0. Therefore, the polarization plane of the light emitted from the polarization plane rotating element 3 does not rotate even if it passes through each of the sector regions 20a to 20h.
  • the sector regions 20a to 20h are set so that the positions projected in the direction of the optical axis OA are equal to the sector regions 30a to 30h of the liquid crystal layer 30 of the polarization plane rotating element 3 shown in FIG. Is preferred.
  • the fan-shaped area 30a linearly polarized light having a radial polarization component with respect to the intersection c 1 is transmitted through the fan-shaped region 20a.
  • the linearly polarized light that has passed through the sector regions 30b to 30h passes through the sector regions 20b to 20h, respectively.
  • the transparent electrode 23 has at least one ring-like electrodes are arranged concentrically around the intersection c 0.
  • the transparent electrode 23 has the same structure as the transparent electrode shown in FIG. 4, FIG. 9 (A) or FIG. 9 (B).
  • the transparent electrode 24 is disposed so as to cover the entire liquid crystal layer 20.
  • the phase of the light transmitted through the first annular zone portion 20a sandwiched between the transparent electrodes is transparent so that the phase of the light transmitted through the second annular zone portion 20b not sandwiched between the transparent electrodes is shifted by ⁇ .
  • a predetermined voltage is applied between the electrodes 23 and 24.
  • this polarization conversion element can also convert the incident linearly polarized light into radial polarized light having a polarization plane distribution and a phase distribution as shown in FIG.
  • the liquid crystal molecules of the phase inversion element 2 ′ are aligned radially around the intersection of the optical axis and the phase inversion element 2 ′. It is not necessary to match the orientation direction of the liquid crystal molecules of the polarization plane and the phase inversion element 2 ′. Further, even if the polarization plane of the incident linearly polarized light and the center line of the sector area (for example, the area 30a in FIG. 5) serving as the reference of the polarization plane rotating element 3 are shifted, the polarization plane rotating element 3 is incident on the straight line. Polarized light can be converted to radial polarized light. Therefore, this polarization conversion element can simplify alignment adjustment when incorporated into an optical system.
  • the radial longitudinal direction of the liquid crystal molecules 27 around the intersection c 0 in the first annular portion as directed, and, as in the second annular portion oriented circumferentially long axis direction of the liquid crystal molecules 27 around the intersection c 0, may be oriented liquid crystal molecules 27.
  • the controller 111 uses the liquid crystal layers of the polarization conversion element 104 or 104 ′ to increase the resolution in the depth direction of the sample 120, that is, the direction along the optical axis OA.
  • the drive voltage applied to 20 and 30 may be a voltage that does not convert linearly polarized light incident on the polarization conversion element 104 or 104 ′ into radial polarized light.
  • the controller 111 increases the resolution in the depth direction of the sample 120, the difference between the optical path length for the ordinary ray and the optical path length for the extraordinary ray in each region of the liquid crystal layer 20 is the wavelength of the light output from the light source 101.
  • the drive voltage applied to the liquid crystal layer 20 is adjusted so as to be an integral multiple of. Further, the controller 111 determines that the difference between the optical path length of the light transmitted through the first annular zone portion of the liquid crystal layer 30 and the optical path length of the light transmitted through the second annular zone portion is the wavelength of the light output from the light source 101.
  • the drive voltage applied to the liquid crystal layer 30 is adjusted so as to be an integral multiple of. In this case, the resolution in the direction parallel to the surface of the sample 120, that is, the direction orthogonal to the optical axis OA is the resolution defined by the diffraction limit.
  • the controller 111 when the resolution in the direction parallel to the surface of the sample 120, that is, in the direction orthogonal to the optical axis OA is higher than the resolution defined by the diffraction limit, the controller 111, as described above, A driving voltage is applied to each of the liquid crystal layers 20 and 30 of the polarization conversion element 104 or 104 ′ so that the linearly polarized light incident on 104 or 104 ′ can be converted into radial polarized light.
  • the range in which the spot diameter of the light collected on the object surface of the sample 120 is small is longer in the depth direction than when linearly polarized light is collected on the object surface of the sample 120. Therefore, the resolution in the depth direction when the radially polarized light is collected on the object plane of the sample 120 is lower than the resolution in the depth direction when the linearly polarized light is collected on the object plane of the sample 120.
  • the microscope apparatus adjusts the driving voltage applied to each liquid crystal layer of the polarization conversion element, thereby condensing the radial polarized light on the sample to obtain the resolution in the direction parallel to the surface of the sample. Or non-radially polarized light can be focused on the sample to improve depth resolution. Furthermore, since this microscope apparatus only changes the driving voltage for each liquid crystal layer in order to switch the light to be condensed on the sample as described above, the rotation amount of the polarization plane such as a photonic crystal cannot be adjusted. Unlike a case where a polarization conversion element made using an element is used, it is not necessary to mechanically move part or all of the microscope apparatus. Therefore, this microscope apparatus can prevent the focal position from shifting when the light is switched.
  • the optical system included in the microscope apparatus may not be a confocal optical system.
  • the mask plate is omitted from the microscope apparatus according to the above embodiment, and the light receiving element is disposed on the focal plane of the condenser lens.
  • the microscope apparatus may have an observation optical system separately from the illumination optical system.
  • the illumination optical system is disposed on one surface side of the sample, and includes a light source, a collimator lens, a polarization conversion element, and an objective lens.
  • the illumination light that is linearly polarized light output from the light source is converted into parallel light by the collimator lens, and then converted into radial polarized light through the polarization conversion element.
  • the illumination light converted into the radial polarization is condensed by the objective lens on the surface of the sample arranged in the vicinity of the focal point of the objective lens or on the object plane set inside.
  • the polarization conversion element is disposed on the entrance pupil plane of the objective lens.
  • the illumination optical system can generate a z-polarization effect in the vicinity of the focal plane of the objective lens, so that the illumination light has a spot diameter smaller than the spot diameter defined by the diffraction limit on the object plane. It is focused on.
  • the observation optical system is disposed on the other surface side of the sample and includes an objective lens and a condenser lens. The observation optical system collects the image of the sample illuminated by the illumination optical system on the light receiving element.
  • the objective lens incorporated in the microscope apparatus may be replaceable.
  • the pupil diameter may vary depending on the objective lens. Therefore, in order to obtain the same super-resolution effect even if an objective lens having a different pupil diameter is used, the phase inversion element of the polarization conversion element is a light beam transmitted through the phase inversion element regardless of the pupil diameter of the objective lens. It is preferable to form a predetermined number of concentric ring-shaped portions centered on the optical axis and invert the phases between adjacent ring-shaped portions.
  • the predetermined number is an integer of 2 or more, for example, an integer of 3 or more and 8 or less. Note that the polarization plane rotation element according to the above embodiment can be applied to various objective lenses having different pupil diameters as they are.
  • FIG. 11A is a schematic front view showing the structure of the transparent electrode 23 ′ on the light incident side of the phase inversion element according to a modification that solves such a problem
  • FIG. 11B shows the modification.
  • It is a schematic back view which shows the structure of transparent electrode 24 'at the light emission side of a phase inversion element.
  • the sealing member in the liquid crystal layer of the phase inverting element An inner boundary 281 is shown.
  • the structure of the phase inverting element other than the transparent electrode can be the same as the structure of the phase inverting element according to any of the above embodiments. Therefore, only the transparent electrode will be described here.
  • the transparent electrode 23 ' is centered on the intersection c 0 of the optical axis OA and the phase-inversion element having a concentric seven annular electrodes 231a ⁇ 231 g.
  • the radius r 1 centered on the intersection point c 0 i.e., the distance from the intersection c 0 to the outer edge of the annular electrode 231g of the outermost periphery of the transparent electrode 23 '
  • the radius r 1 is set to be approximately equal to the radius of the light beam that passes through the phase inversion element when, for example, an objective lens having a relatively large pupil diameter is used.
  • the transparent electrode 24 ' is also centered on the intersection point c 0, it has a concentric seven annular electrodes 241a ⁇ 241 g.
  • the radius r 2 is set to be approximately equal to the radius of the light beam that passes through the phase inversion element when an objective lens having a relatively small pupil diameter is used, for example. That is, the radius r 2 is set to a value smaller than the radius r 1 .
  • two adjacent annular electrodes are arranged with an interval narrower than the width of the annular electrodes and are insulated from each other.
  • all the annular electrodes of the transparent electrode 24 ' are energized so as to be equipotential, while for the transparent electrode 23', every other annular electrode is provided. Is energized.
  • the annular electrodes 231a, 231c, 231e, and 231g are energized, and the annular electrodes 231b, 231d, and 231f are not energized.
  • the phase of the light beam transmitted through the liquid crystal layer sandwiched between the electrodes can be changed to the transparent electrode 23 ′.
  • the phase is shifted by ⁇ with respect to the phase of the light beam transmitted through the liquid crystal layer sandwiched between the non-energized annular electrode and the transparent electrode 24 ′.
  • all the annular electrodes included in the transparent electrode 23 ' are energized so as to be equipotential, while the transparent electrode 24' Energized every other book.
  • the annular electrodes 241a, 241c, 241e, and 241g are energized, and the annular electrodes 241b, 241d, and 241f are not energized.
  • the phase of the light beam transmitted through the liquid crystal layer sandwiched between the electrodes can be changed to the transparent electrode 24 ′.
  • the phase is shifted by ⁇ with respect to the phase of the light beam transmitted through the liquid crystal layer sandwiched between the non-energized annular electrode and the transparent electrode 23 ′.
  • the number of annular electrodes included in the transparent electrode 23 ′ is equal to the number of annular electrodes included in the transparent electrode 24 ′, and the radii of both transparent electrodes are different. Therefore, the phase inversion element according to this modification is centered on the optical axis in which the phase is inverted between adjacent portions in the light beam, regardless of which of the two objective lenses having different pupil diameters is used. The same number of concentric ring-shaped portions can be formed.
  • each transparent electrode may be different from each other.
  • the transparent electrode 24 ′ may further include one or more annular electrodes outside the annular electrode 241 g so that the radius of the transparent electrode 23 ′ is equal to the radius of the transparent electrode 24 ′.
  • the transparent electrode provided on one of the liquid crystal layers of the phase inversion element covers the entire liquid crystal layer like the transparent electrode 24 shown in FIG.
  • the transparent electrode provided on the other side of the liquid crystal layer is a plurality of concentric rings provided so as to cover almost the entire liquid crystal layer as in the transparent electrode 23 ′ shown in FIG. You may have a band electrode.
  • the width of each annular electrode is narrower than the width of the annular electrode of the transparent electrode 23 ′, for example, approximately 1/10 to approximately 1/2 of the width of the annular electrode of the transparent electrode 23 ′. It is preferable to set to.
  • a plurality of adjacent annular electrodes are combined into one set, and a pair of annular electrodes that are energized alternately and a group of annular electrodes that are not energized are arranged along the radial direction centered at the intersection with the optical axis. Is done. Thereby, in the light beam, an annular portion having a phase reversed between adjacent portions is formed. Then, by appropriately selecting a set of annular electrodes energized according to the pupil diameter of the objective lens, a predetermined number of annular portions are formed regardless of the pupil diameter.
  • FIG. 12 is a schematic configuration diagram of an optical pickup device having a polarization conversion element.
  • the optical pickup device 200 includes a light source 201, a collimator lens 202, a beam splitter 203, an objective lens 204, an imaging lens 205, a light receiving element 206, a polarization conversion element 207, A controller 208 and an actuator 209 are included.
  • the light source 201, the collimating lens 202, the polarization conversion element 207, the beam splitter 203, and the objective lens 204 are arranged in a line along the optical axis OA.
  • the collimator lens 202, the polarization conversion element 207, the beam splitter 203, and the objective lens 204 focus the light emitted from the light source 201 on the recording medium 210.
  • the imaging lens 205 and the light receiving element 206 are arranged on the side surface of the beam splitter 203 in a direction orthogonal to the optical axis OA.
  • the light reflected or scattered by the recording medium 210 passes through the objective lens 204, is reflected by the beam splitter 203, and forms an image on the light receiving element 206 by the imaging lens 205.
  • the optical pickup apparatus 200 may have various compensation optical systems such as a spherical aberration compensation optical system on the optical path.
  • the light source 201 includes, for example, a semiconductor laser and outputs linearly polarized light.
  • the collimating lens 202 is disposed so that the light source 201 is positioned at the front focal point thereof, and the linearly polarized light output from the light source 201 is converted into parallel light.
  • the polarization conversion element 207 is a polarization conversion element according to any of the above-described embodiments or modifications thereof, and is disposed on the front pupil plane of the objective lens 204. In the present embodiment, the polarization conversion element 207 is disposed between the collimating lens 202 and the beam splitter 203.
  • the polarization conversion element 207 converts the linearly polarized light that has been transmitted through the collimator lens 202 and then incident on the polarization conversion element 207 into radial polarization.
  • the polarization conversion element 207 is, for example, a region in which the polarization plane of linearly polarized light is not rotated among the regions of the liquid crystal layer included in the polarization plane rotating element that converts linearly polarized light into radial polarized light (for example, the sector region 30a illustrated in FIG. 5).
  • the orientation direction of the liquid crystal molecules contained in the liquid crystal molecules substantially coincides with the polarization plane of the linearly polarized light incident on the polarization conversion element 207, and the angle between the orientation direction of the liquid crystal molecules in the other region and the polarization plane of the linearly polarized light incident thereon.
  • it is preferably arranged so as to be 1 ⁇ 2 of the angle of rotating the polarization plane.
  • the objective lens 204 focuses the radially polarized light emitted from the polarization conversion element 207 on the recording medium 210.
  • the light collected by the objective lens 204 is z-polarized light. Therefore, the spot diameter of light in the vicinity of the focal point can be made smaller than the spot diameter defined by the diffraction limit.
  • the spot diameter according to the present embodiment is about 1.5 to about 1.7 times the spot diameter defined by the diffraction limit.
  • the optical pickup device 200 can increase the depth of focus of the collected light.
  • a tracking actuator 209 is attached to the objective lens 204.
  • the actuator 209 moves the objective lens 204 in the direction of the arrow Z in the figure, so that the light beam collected by the objective lens 204 follows the track of the recording medium 210 accurately.
  • the actuator 209 is connected to the controller 208 and moves the objective lens 204 in accordance with a control signal from the controller 208.
  • the light reflected or scattered by the recording medium 210 is amplitude-modulated by information (pits) recorded on the track surface of the recording medium 210.
  • This light again passes through the objective lens 204 and becomes parallel light. Then, the light is reflected by the beam splitter 203 and enters the imaging lens 205.
  • the imaging lens 205 forms an image of the incident light on the light receiving element 206.
  • the light receiving element 206 includes, for example, a plurality of semiconductor light receiving elements such as CCDs or C-MOSs arranged in an array. Each semiconductor light receiving element outputs an electrical signal corresponding to the intensity of the received light.
  • the light receiving element 206 averages the electric signals output from the respective semiconductor light receiving elements, and transmits the electric signal corresponding to the average value to the controller 208 as a light intensity signal indicating the intensity of the received light.
  • the controller 208 reads the record information from the light intensity signal received from the light receiving element 206.
  • the controller 208 also controls the polarization conversion element 207 and the actuator 209.
  • the controller 208 is connected to a drive circuit included in the polarization conversion element 207.
  • the controller 208 is connected to the light receiving element 206 and receives a light intensity signal from the light receiving element 206. Then, the controller 208 adjusts the voltage applied to each liquid crystal layer of the polarization conversion element 207 so that the polarization conversion element 207 can convert the linearly polarized light output from the light source 201 into radial polarization.
  • the controller 208 obtains the light intensity signal while adjusting the voltage applied to each liquid crystal layer of the polarization conversion element 207 by changing the voltage adjustment signal output to the drive circuit of the polarization conversion element 207. Then, the voltage value and the light intensity signal value are associated with each other and stored in a built-in memory. Then, the controller 208 determines a voltage value that maximizes the light intensity signal from the light intensity signal and voltage value stored in the memory, and transmits a voltage adjustment signal corresponding to the voltage to the drive circuit of the polarization conversion element 207. To do.
  • the drive circuit of the polarization conversion element 207 applies a drive voltage corresponding to the voltage adjustment signal received from the controller 208 to each liquid crystal layer.
  • the optical pickup device using the polarization conversion element focuses the radial polarization on the recording medium, the spot diameter in the vicinity of the focus is defined by the diffraction limit due to the z polarization effect. Can be smaller. Therefore, this optical pickup device can have a resolution higher than the resolution defined by the diffraction limit. Therefore, this optical pickup device can read information recorded on a recording medium having a recording density higher than the recording density determined by the resolution defined by the diffraction limit. In addition, since this optical pickup device can increase the depth of focus in the vicinity of the recording medium, it is possible to suppress the occurrence of a reading error due to a change in the distance between the recording medium and the optical pickup device.
  • the pickup device may include a plurality of light sources that output light having different wavelengths.
  • the optical pickup device 200 includes a second light source (not shown) separately from the light source 201 and a second beam splitter (not shown) that directs the light output from each light source to the polarization conversion element 207. Furthermore, you may have.
  • a second beam splitter is disposed between the collimating lens 202 and the beam splitter 203 so as to be focused on the recording medium 210 via the conversion element 207 and the objective lens 204, and the second beam splitter side.
  • a second light source is arranged.
  • the controller 208 outputs either of the light source or the second light source, and transmits a voltage adjustment signal corresponding to the light source that is outputting light to the drive circuit of the polarization conversion element 207 as described in FIG.
  • the optical pickup device can focus the light output from any of the plurality of light sources on the recording medium 210 so as to have a spot diameter smaller than the spot diameter defined by the diffraction limit.
  • the polarization conversion element 207 may be disposed between the beam splitter 203 and the objective lens 204 so as to transmit light reflected or scattered by the recording medium 210.
  • the light irradiation device using the polarization conversion element may be a light processing device that processes an object using light such as a laser knife or a laser processing machine.
  • the polarization conversion element is disposed between the light source that outputs linearly polarized light and the objective lens that condenses light, particularly on the pupil plane on the light source side of the objective lens, as in the optical pickup device described above.
  • the condensed light becomes z-polarized light in the vicinity of the focal point of the objective lens. Therefore, the optical processing apparatus using the polarization conversion element can make the minimum processable size smaller than the diffraction limit.
  • the light irradiation device using the polarization conversion element may be a device that measures the shape using light, such as an interferometer.
  • the polarization conversion element is disposed between the light source that outputs linearly polarized light and the objective lens that collects light, particularly on the pupil plane on the light source side of the objective lens.
  • Microscope apparatus 101 Light source 102 Collimating lens 103 Beam splitter 104,104 'Polarization conversion element 105 Objective lens 106 Condensing lens 107 Mask plate 108 Light receiving element 109 Movable stage 110 Actuator 111 Controller 2, 2' Phase inversion element 3 Polarization surface rotation element 20, 30 Liquid crystal layer 20a to 20h, 30a to 30n Fan-shaped region 21, 22, 31, 32 Transparent substrate 23, 24, 33, 34, 23 ', 24' Transparent electrode 25, 26, 35, 36 Alignment film 27, 37 Liquid crystal molecules 28, 38 Sealing material 29, 39 Mirror frame 200 Optical pickup device 201 Light source 202 Collimating lens 203 Beam splitter 204 Objective lens 205 Imaging lens 206 Light receiving element 207 Polarization converting element 208 Over La 209 actuator 210 recording medium

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Microscoopes, Condenser (AREA)
  • Optical Head (AREA)

Abstract

顕微鏡装置は、第1の波長を持つ直線偏光を出力する光源と、液晶層を有し、直線偏光にその液晶層を透過させることにより、直線偏光をラジアル偏光に変換する偏光変換素子と、ラジアル偏光を物体面に集光する対物レンズと、物体面で反射された光を集光する集光レンズと、集光レンズにより集光された光を受光し、光の強度に応じた信号を出力する受光素子と、偏光変換素子が有する液晶層に、第1の波長に応じた電圧を印加するコントローラとを有する。偏光変換素子は、対物レンズの光源側の瞳面に配置される。

Description

顕微鏡装置、光ピックアップ装置及び光照射装置
 本発明は、直線偏光をラジアル偏光に変換する偏光変換素子を用いた顕微鏡装置、光ピックアップ装置及び光照射装置に関する。
 従来より、照明光源としてレーザを用い、照明光源から出力されたレーザ光をサンプルに照射することにより、そのサンプルを観測する顕微鏡装置が利用されている。このような顕微鏡装置では、より解像度を高くするために、照明光源から照射され、サンプルに集光されるビームスポットの径が小さいほど望ましい。一般に、ビームスポットの最小径は、回折限界によって規定され、その最小径は波長に比例する。そのため、光源から照射される光の波長が短いほど、ビームスポットの径も小さくできる。
 しかし、波長が短い光を発する光源、例えば、紫色または紫外光を発するレーザは、それよりも長い波長、例えば、緑色または赤色光を発する光源よりも一般に高価である。また、一般に、紫色から紫外にわたる波長範囲では、波長が短くなるにつれて光学材料の透過率も低下する。そのため、紫色または紫外光に対して高い透過率を持つ光学材料の種類は限られてくる。
 そこで、ラジアル偏光が注目されている。ラジアル偏光は、光軸を中心として、直線偏光の偏光面が放射状に分布する偏光である。ラジアル偏光を集光レンズにより焦点を結ばせることにより、焦点面に集光された光がz偏光(すなわち、光の伝播方向と電界方向が同じとなる偏光)となり、XまたはY偏光の回折限界によるビームスポット径よりも小さいスポット径に光を集光させることが可能であることが報告されている。また、ラジアル偏光を用いることにより、光軸に沿ってビーム径が狭い範囲が長くなり、これにより焦点深度も深くなることも報告されている(例えば、特開2008−39882号公報、Chin−Cherng Sun、Chin−Ku Liu、“Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation”、OPTICS LETTERS、Optical Society of America、2003年、第28巻、第2号、p.99−101及びHAIFENG WANG等、“Creation of a needle of longitudinally polarized light in vacuum using binary optics”、Nature photonics、2008年、第2巻、p.501−505を参照)。
 このようなラジアル偏光を生成するために、例えば、光軸方向に対して直交する面において複数の半波長板が並び、かつ各半波長板の光学軸の方向が異なるように貼り合わせた偏光変換素子が用いられる。また、フォトニック結晶を用いて、直線偏光をラジアル偏光に変換する偏光変換素子も提案されている。
 しかし、半波長板及びフォトニック結晶では、入射する光の波長が変化すれば、常光線と異常光線との間に生じる位相差も変化する。そのため、半波長板またはフォトニック結晶を用いた偏光変換素子は、その偏光変換素子に入射する光線の波長が設計波長と異なると、入射光線をラジアル偏光に変換することができなくなる。
 そこで、本発明は、所定の波長域に含まれる何れの波長を持つ照明光を用いても、回折限界により規定される分解能よりも高い分解能を有する顕微鏡装置、光ピックアップ装置及び光照射装置を提供することを目的とする。
 本発明の一つの側面によれば、顕微鏡装置が提供される。この顕微鏡装置は、第1の波長を持つ直線偏光を出力する光源と、液晶分子が含まれる液晶層を有し、直線偏光にその液晶層を透過させることにより、直線偏光をラジアル偏光に変換する偏光変換素子と、ラジアル偏光を物体面に集光する対物レンズと、物体面からの光を集光する集光レンズと、集光レンズにより集光された光を受光し、受光した光の強度に応じた信号を出力する受光素子と、偏光変換素子が有する液晶層に第1の波長に応じた電圧を印加するコントローラとを有する。
 偏光変換素子は、対物レンズの光源側に配置され、光軸に沿って配置された、入射光の一部の位相を反転する位相反転素子と、直線偏光をラジアル偏光に変換する偏光面回転素子を有する。偏光面回転素子は、上記の液晶層と、その液晶層を挟んで対向するように配置された二つの透明電極とを有し、液晶層は偏光面回転素子と光軸との第1の交点を中心とする円周方向に沿って配置された複数の領域を有し、複数の領域のそれぞれに含まれる液晶分子の配向方向は互いに異なり、液晶層の複数の領域のそれぞれは、二つの第1の透明電極間に第1の波長に応じた電圧が印加されることにより、直線偏光のうちのその領域を透過した成分の偏光面を、その領域に含まれる液晶分子の配向方向に応じて第1の交点を中心とする放射方向に平行となるように回転させる。これにより、偏光面回転素子は直線偏光をラジアル偏光に変換する。
 また位相反転素子は、その位相反転素子と光軸との第2の交点を中心とした放射方向に沿って交互に配置された第1の輪帯部分及び第2の輪帯部分を有し、第1の輪帯部分に入射した直線偏光またはラジアル偏光の位相を、第2の輪帯部分に入射した直線偏光またはラジアル偏光の位相に対して反転させる。
 複数の領域のそれぞれに含まれる液晶分子の配向方向は、偏光面回転素子に入射した直線偏光の偏光面となす角度が、第1の交点及びその領域を通る所定の直線と偏光面との間の角度の1/2となる方向であり、二つの透明電極間に第1の波長に応じた電圧が印加されることにより、偏光面回転素子は、入射した直線偏光のうち、複数の領域のそれぞれを透過した成分の偏光面を、その直線偏光の偏光面と配向方向のなす角の2倍の角度回転させて所定の線と平行にすることが好ましい。
 また、複数の領域のそれぞれにおける所定の線は、第1の交点を通り、かつその領域を2等分する線であることが好ましい。
 さらに、複数の領域のうち、偏光面回転素子に入射する直線偏光の偏光面に平行でかつ光軸を通る面と交差する二つの領域の何れか一方を第1の領域とし、複数の領域の総数をNとしたときに第1の領域に対して時計回りまたは反時計回りの順にn番目の領域における配向方向と、第1の領域に入射する直線偏光の偏光面とがなす角度θが、
 θ=360°×(n−1)/(2N)
となるように、複数の領域における配向方向が設定されることが好ましい。ただしnは、1からNまでの何れかの整数である。
 また、位相反転素子は、液晶分子が含まれる第2の液晶層と、第2の液晶層を挟んで対向するように配置された二つの第2の透明電極とを有し、二つの第2の透明電極のうちの一方は、第1の輪帯部分に対応した複数の輪帯電極であり、輪帯電極と二つの第2の透明電極の他方との間に第1の波長に応じた電圧を印加することにより、位相反転素子は、第1の輪帯部分に入射する直線偏光またはラジアル偏光の位相を反転させることが好ましい。
 この場合において、位相反転素子は、偏光面回転素子の入射側に配置され、第2の液晶層に含まれる液晶分子は、位相反転素子に入射する直線偏光の偏光面と平行な方向に沿って配向されることが好ましい。
 あるいは、位相反転素子は、偏光面回転素子の出射側に配置され、第2の液晶層に含まれる液晶分子は、第2の交点を中心とした放射状に配向されることが好ましい。
 また顕微鏡装置は、第1の波長と異なる第2の波長を持つ直線偏光を出力し、第2の波長を持つ直線偏光が偏光変換素子及び対物レンズを通って物体面に集光されるように配置された第2の光源をさらに有することが好ましい。この場合において、コントローラは、第1の光源及び第2の光源のうちの何れか一方を点灯させるとともに、点灯中の光源から出力される直線偏光の波長に応じた電圧を二つの第1の透明電極間及び二つの第2の透明電極間に印加することが好ましい。
 本発明の他の側面によれば、光ピックアップ装置が提供される。この光ピックアップ装置は、所定の波長を持つ直線偏光を出力する光源と、液晶分子が含まれる液晶層を有し、その液晶層を透過した直線偏光をラジアル偏光に変換する偏光変換素子と、ラジアル偏光を物体面に集光する対物レンズと、物体面で反射された光を結像する結像レンズと、結像レンズにより結像された光を受光し、受光した光の強度に応じた信号を出力する受光素子と、偏光変換素子が有する液晶層に所定の波長に応じた電圧を印加する駆動回路と、受光した光の強度に応じた信号が最大となるように駆動回路が出力する電圧を調節するコントローラとを有する。
 偏光変換素子は、対物レンズの光源側の瞳面に配置され、光軸に沿って配置された、入射光の一部の位相を反転する位相反転素子と、直線偏光をラジアル偏光に変換する偏光面回転素子とを有する。偏光面回転素子は、上記の液晶層と、その液晶層を挟んで対向するように配置された二つの第1の透明電極とを有し、液晶層は、偏光面回転素子と光軸との第1の交点を中心とする円周方向に沿って配置された複数の領域を有し、複数の領域のそれぞれに含まれる液晶分子の配向方向は互いに異なる。液晶層の複数の領域のそれぞれは、二つの第1の透明電極間に所定の波長に応じた電圧が印加されることにより、直線偏光のうちのその領域を透過した成分の偏光面を、その領域に含まれる液晶分子の配向方向に応じて第1の交点を中心とする放射方向に平行となるように回転させる。これにより、偏光面回転素子は直線偏光をラジアル偏光に変換する。
 また位相反転素子は、位相反転素子と光軸との第2の交点を中心とした放射方向に沿って交互に配置された第1の輪帯部分及び第2の輪帯部分を有し、第1の輪帯部分に入射した直線偏光またはラジアル偏光の位相を、第2の輪帯部分に入射した直線偏光またはラジアル偏光の位相に対して反転させる。
 本発明のさらに他の側面によれば、光照射装置が提供される。この光照射装置は、所定の波長を持つ直線偏光を出力する光源と、液晶分子が含まれる液晶層を有し、その液晶層を透過した直線偏光をラジアル偏光に変換する偏光変換素子と、ラジアル偏光を物体面に集光する対物レンズと、光源から出力される直線偏光の波長に応じた電圧を液晶層に印加する駆動回路とを有する。
 偏光変換素子は、対物レンズの光源側の瞳面に配置され、光軸に沿って配置された、入射光の一部の位相を反転する位相反転素子と、直線偏光をラジアル偏光に変換する偏光面回転素子とを有する。偏光面回転素子は、上記の液晶層と、その液晶層を挟んで対向するように配置された二つの第1の透明電極とを有し、液晶層は、偏光面回転素子と光軸との第1の交点を中心とする円周方向に沿って配置された複数の領域を有し、複数の領域のそれぞれに含まれる液晶分子の配向方向は互いに異なる。液晶層の複数の領域のそれぞれは、二つの第1の透明電極間に所定の波長に応じた電圧が印加されることにより、直線偏光のうちのその領域を透過した成分の偏光面を、その領域に含まれる液晶分子の配向方向に応じて第1の交点を中心とする放射方向に平行となるように回転させる。これにより、偏光面回転素子は直線偏光をラジアル偏光に変換する。
 また位相反転素子は、位相反転素子と光軸との第2の交点を中心とした放射方向に沿って交互に配置された第1の輪帯部分及び第2の輪帯部分を有し、第1の輪帯部分に入射した直線偏光またはラジアル偏光の位相を、第2の輪帯部分に入射した直線偏光またはラジアル偏光の位相に対して反転させる。
 本発明に係る顕微鏡装置、光ピックアップ装置及び光照射装置は、偏光変換素子が有する液晶に印加する電圧を調節することにより、所定の波長域に含まれる何れの波長を持つ照明光を用いても、回折限界により規定される分解能よりも高い分解能を有するという効果を奏する。
 図1は、本発明の一つの実施形態に係る顕微鏡装置の概略構成図である。
 図2は、本発明の一つの実施形態に係る顕微鏡装置で用いられる偏光変換素子の概略正面図である。
 図3(A)は、図2のXX′の矢印で表された線における、電圧が印加されていないときの偏光変換素子の概略側面断面図であり、図3(B)は、図2のXX′の矢印で表された線における、電圧が印加されたときの偏光変換素子の概略側面断面図である。
 図4は、位相反転素子の透明電極の概略正面図である。
 図5は、偏光面回転素子の液晶層の各領域における液晶の配向方向と、各領域を透過した直線偏光成分の偏光方向を示す図である。
 図6は、偏光変換素子から出射したラジアル偏光の概略を示す図である。
 図7は、偏光面回転素子の液晶層が互いに配向方向の異なる6個の領域を有する場合における、各領域における液晶の配向方向と、各領域を透過した直線偏光成分の偏光方向を示す図である。
 図8は、偏光面回転素子が有する透明電極間の液晶層に印加される電圧とその液晶層により生じる常光線と異常光線の光路長差の一例を示す図である。
 図9(A)及び図9(B)は、それぞれ、変形例による、位相反転素子に設けられた入射側の透明電極の概略正面図である。
 図10(A)は第2の実施形態に係る偏光変換素子の概略背面図であり、図10(B)は図10(A)のYY′の矢印で表された線における、第2の実施形態に係る偏光変換素子の概略側面断面図である。
 図11(A)は、変形例による位相反転素子の一方の側の透明電極の構造を示す概略正面図であり、図11(B)は、変形例による位相反転素子の他方の側の透明電極の構造を示す概略背面図である。
 図12は、他の実施形態による、偏光変換素子を利用した光照射装置の一例である光ピックアップ装置の概略構成図である。
 以下、図を参照しつつ、一つの実施形態による、顕微鏡装置について説明する。この顕微鏡装置は、対物レンズの入射瞳面に配置された、照明光である直線偏光をラジアル偏光に変換する偏光変換素子を有する。これにより、この顕微鏡装置は、対物レンズの焦点面においてz偏光効果を生じさせることで、回折限界によって規定されるスポット径よりも小さいスポット径を持つように、照明光源からの光を集光する。また偏光変換素子が、照明光の偏光面を制御するための液晶層を有し、その液晶層に印加される電圧を調節することで、この顕微鏡装置は、所定の波長域に含まれる任意の波長の直線偏光である照明光を用いても、照明光をラジアル偏光にすることを可能とする。
 図1は、本発明の一つの実施形態に係る顕微鏡装置の概略構成図である。図1に示されるように、顕微鏡装置100は、光源101と、コリメートレンズ102と、ビームスプリッタ103と、偏光変換素子104と、対物レンズ105と、集光レンズ106と、マスク板107と、受光素子108と、可動ステージ109と、アクチュエータ110と、コントローラ111とを有する。
 受光素子108、マスク板107、集光レンズ106、ビームスプリッタ103及び対物レンズ105は、集光レンズ106と対物レンズ105によって規定される光軸OAに沿って一列に配置される。またビームスプリッタ103の側面には、光軸OAと直交する方向に沿って光源101とコリメートレンズ102と偏光変換素子104とが一列に配置される。
 光源101から放射された直線偏光である照明光は、コリメートレンズ102を通った後、偏光変換素子104を透過する。そしてその照明光は、偏光変換素子104を透過することによってラジアル偏光に変換される。その後、ラジアル偏光となった照明光は、ビームスプリッタ103により反射され、対物レンズ105によって可動ステージ109上に配置されたサンプル120の表面または内部に設定された、観察対象となる物体面に焦点を結ぶ。物体面で反射または散乱され、若しくは蛍光発光した光は、再び対物レンズ105を通った後、ビームスプリッタ103を直進する。その後、物体面で反射または散乱され、若しくは蛍光発光した光は、集光レンズ106によって受光素子108上に集光される。そしてコリメートレンズ102、対物レンズ105及び集光レンズ106は、共焦点光学系を構成し、光源101からの光が物体面において焦点を結ぶ場合に、その焦点からの光が受光素子106においても集光される。
 なお、理解を容易にするために図示していないが、顕微鏡装置1は、光路上に、球面収差用補償光学系など、各種の補償光学系を有していてもよい。
 光源101は、直線偏光である照明光を出力する。そのために、光源101は、例えば、半導体レーザを有する。あるいは、光源101は、アルゴンイオンレーザといったガスレーザ、またはYAGレーザといった固体レーザを有していてもよい。光源101から出力される照明光が直線偏光でない場合、光源101とコリメートレンズ102の間に、照明光を直線偏光にするために検光子が配置されてもよい。
 さらに、光源101は、所定の波長域、例えば、351nm~750nmの範囲に含まれる、互いに異なる波長の光を出力する複数の発光素子を有していてもよい。この場合、光源101は、コントローラ111からの制御信号に従って、何れか一つの発光素子に照明光を出力させる。
 コリメートレンズ102は、光源101とビームスプリッタ103の間において、コリメートレンズ102の前側焦点に光源101が位置するように配置される。そしてコリメートレンズ102は、光源101から出力された照明光を平行光にする。平行光となった照明光は、偏光変換素子104へ入射する。
 偏光変換素子104は、対物レンズ105の前側瞳面に配置されることが好ましい。特に、本実施形態では、偏光変換素子104は、物体面からの光が偏光変換素子104を透過しないように、コリメートレンズ102とビームスプリッタ103の間に配置される。そして偏光変換素子104は、液晶層を有し、その液晶層を透過した照明光の偏光方向を変化させることにより、直線偏光を持つ照明光をラジアル偏光に変換する。なお、偏光変換素子104は、物体面からの光も偏光変換素子104を透過するように、ビームスプリッタ103と対物レンズ105の間に配置されてもよい。
 なお、偏光変換素子104の詳細については後述する。
 ビームスプリッタ103は、対物レンズ105と集光レンズ106の間に配置される。そしてビームスプリッタ103は、コリメートレンズ102から入射した照明光を対物レンズ105へ向けて反射する。一方、ビームスプリッタ103は、光軸OAに沿って入射した光を直進させる。
 対物レンズ105は、偏光変換素子104から出射し、ビームスプリッタ103にて反射されたラジアル偏光に、物体面上に焦点を結ばせる。この場合、焦点近傍では、対物レンズ105により集光された光はz偏光となる。そのため、焦点近傍における光のスポット径は、回折限界により規定されるスポット径よりも小さくすることができる。例えば、本実施形態によるスポット径は、回折限界により規定されるスポット径の約1.5~約1.7分の1となる。また、集光された光の焦点深度も大きくすることができる。
 さらに、対物レンズ105には、焦点位置を調節するためのアクチュエータ110が取付けられている。アクチュエータ110が、図中の矢印Zの方向、すなわち光軸OAに平行な方向に沿って対物レンズ105を移動させることによって、照明光の焦点位置が光軸OA方向に移動する。またアクチュエータ110は、コントローラ111と接続され、コントローラ111からの制御信号に応じて対物レンズ105を移動させる。
 物体面において反射または散乱された光は、再度対物レンズ105を透過して平行光となる。そしてその光は、ビームスプリッタ103を透過し、集光レンズ106に入射する。そして集光レンズ106に入射した光は、受光素子108によって受光される。
 マスク板107は、集光レンズ106と受光素子108の間で、集光レンズ106の焦点近傍に配置される。そしてマスク板107には、光軸OAに沿ってピンホール107aが形成されている。これにより、対物レンズ105の焦点位置近傍から反射または散乱され、若しくは蛍光発光した光は、平行光として集光レンズ106に入射し、集光レンズ106によってピンホール107aの近傍で焦点を結ぶので、ピンホール107aを通って受光素子108に達することができる。一方、対物レンズ105の焦点位置から外れた位置からの光は、マスク板107によって遮られ、受光素子108に達しない。そのため、顕微鏡装置100は、コントラストの高いサンプル120の像を得ることができる。
 受光素子108は、例えば、アレイ状に配列された複数のCCDまたはC−MOSなどの半導体受光素子を有する。そして各半導体受光素子は、受光した光の強度に応じた電気信号を出力する。そして受光素子108は、各半導体受光素子が出力した電気信号を平均し、その平均値に相当する電気信号を、受光した光の強度を表す光強度信号としてコントローラ111へ伝達する。あるいは、受光素子108は、光電子増倍管を有していてもよい。そして受光素子108は、光電子増倍管が受光し多光の強度に応じた電気信号を生成し、その電気信号を受光した光の強度を表す光強度信号としてコントローラ111へ伝達する。
 可動ステージ109は、サンプル120を載置するためのステージである。また可動ステージ109は、例えば、いわゆるXYステージとすることができ、光軸OAに対して直交する面内において、互いに直交する2方向に移動可能となっている。なお、以下では、便宜上、可動ステージ109が移動可能な一方の方向をX軸、X軸と直交する方向をY軸とする。そして可動ステージ109は、コントローラ111と通信可能に接続されている。そして可動ステージ109は、図示しないアクチュエータを有し、コントローラ111から受信した制御信号に従って、X軸方向またはY軸方向に所定距離だけ移動する。
 コントローラ111は、例えば、プロセッサと、メモリと、コントローラ111を顕微鏡装置100の各部と接続するためのインターフェース回路とを有する。そしてコントローラ111は、光源101、偏光変換素子104、可動ステージ109及びアクチュエータ110を制御する。そしてコントローラ111は、光源101に対して所定の電力を供給することにより、光源101に照明光を出力させる。また光源101が複数の発光素子を有する場合、コントローラ111は、例えば、図示しないユーザインターフェースを介したユーザの操作に従って、複数の発光素子のうちの何れか一つの発光素子に照明光を出力させる制御信号を光源101へ送信する。
 またコントローラ111は、対物レンズ105を光軸OAに沿って所定距離だけ移動させる制御信号をアクチュエータ110へ送信する。アクチュエータ110は、コントローラ111からその制御信号を受信すると、対物レンズ105をその制御信号によって指示された距離だけ移動させる。
 コントローラ111は、受光素子108から受信した光強度信号からサンプル120の表面または内部に設定された物体面の画像を生成する。そのために、コントローラ111は、可動ステージ109を所定位置へ移動させる制御信号を、可動ステージ109へ送信することにより、可動ステージ109を光軸OAに直交する面内で移動させる。
 そしてコントローラ111は、物体面上に2次元状に等間隔で設定された複数の測定点のそれぞれが、照明光のスポットに位置するように、可動ステージ109を移動させつつ、受光素子108から各測定点での光強度信号を受信する。そしてコントローラ111は、例えば、各測定点の光強度信号を一つの画素の値として画像を生成することにより、サンプル120の物体面における2次元画像を得ることができる。
 また変形例によれば、画像取得のためにサンプル120をXYステージのような可動ステージで動かす代わりに、顕微鏡装置は、ガルバノミラー等を用いて光源101から発したレーザビームの向きを変えることにより、そのビームでサンプルを走査してもよい。
 さらにコントローラ111は、図示しない駆動回路を有し、その駆動回路を介して偏光変換素子104に印加する電圧を調節することにより、偏光変換素子104が所定の波長を持つ直線偏光をラジアル偏光に変換できるように、偏光変換素子104を制御する。
 そのために、コントローラ111は、光源101から出力される光の波長に応じた印加電圧が偏光変換素子104の各液晶層に印加されるように、駆動回路を制御する。
 特に、光源101が、互いに波長の異なる光を出力する複数の発光素子を有している場合、コントローラ111は、発光させる発光素子に応じて、偏光変換素子104が有する液晶層に印加される電圧を調節する。
 なお、駆動回路から偏光変換素子104が有する液晶層に対して印加される駆動電圧は、例えば、パルス高さ変調(PHM)またはパルス幅変調(PWM)された交流電圧であってもよい。
 また、光源101から出力される光の波長が、例えば、発光素子の温度に応じて変動することもある。そこでコントローラ111は、サンプル120の物体面における画像に基づいて、偏光変換素子104が有する液晶層に印加する電圧を調節してもよい。例えば、コントローラ111は、偏光変換素子104の液晶層に印加する電圧を変えて、可動ステージ109を2次元に移動させつつ、受光素子108からの光強度信号を取得することにより、印加した電圧に応じた物体面におけるサンプル120の画像を複数生成する。そしてコントローラ111は、電圧値と画像を対応付けて内蔵するメモリに記憶する。そして、コントローラ111は、画像が最も鮮明となる電圧値を決定し、その電圧を駆動回路を介して偏光変換素子104の液晶層に印加する。
 なお、最も鮮明な画像を決定するために、コントローラ111は、例えば、得られた各画像を周波数変換してそれぞれ周波数画像を作成する。そしてコントローラ111は、各周波数画像を解析することにより、高周波数成分が最も高くなる周波数画像を特定し、特定された周波数画像に対応する画像を最も鮮明な画像と判定する。
 以下、偏光変換素子104について説明する。
 図2は、偏光変換素子104の概略正面図である。また図3(A)及び図3(B)は、それぞれ、図2に示された矢印X、X′で示された線における偏光変換素子104の概略側面断面図である。このうち、図3(A)は、偏光変換素子104に電圧が印加されていないときの偏光変換素子104に含まれる液晶分子の状態を表し、図3(B)は、偏光変換素子104に電圧が印加されたときの偏光変換素子104に含まれる液晶分子の状態を表す。
 図2及び図3(A)に示すように、この偏光変換素子104は、位相反転素子2と、光軸OAに沿って位相反転素子2に隣接して配置された偏光面回転素子3とを有する。
 なお、偏光変換素子104に入射する照明光は、直線偏光であり、位相反転素子2側から入射する。そしてその直線偏光は、位相反転素子2及び偏光面回転素子3を透過することによってラジアル偏光に変換され、偏光面回転素子3から出射する。
 また、説明の便宜上、偏光変換素子104に入射する照明光の偏光面は、図2の矢印Aに示されるように、図2が表された面に直交し、かつ縦方向の面にあるものとする。
 位相反転素子2は、入射した直線偏光のうち、光軸OAを中心とする少なくとも一つの輪帯状の部分の位相を他の部分の位相に対して反転させる。そのために、位相反転素子2は、液晶層20と、光軸OAに沿って液晶層20の両側に略平行に配置された透明基板21、22を有する。そして液晶層20に含まれる液晶分子27は、透明基板21及び22と、シール部材28との間に封入されている。また位相反転素子2は、透明基板21と液晶層20の間に配置された透明電極23と、液晶層20と透明基板22の間に配置された透明電極24とを有する。なお、透明基板21、22は、例えば、ガラスまたは樹脂など、所定の波長域に含まれる波長を持つ光に対して透明な材料により形成される。また透明電極23、24は、例えば、ITOと呼ばれる、酸化インジウムに酸化スズを添加した材料により形成される。透明電極23と液晶層20の間に配向膜25が配置される。また透明電極24と液晶層20の間に配向膜26が配置される。これら配向膜25、26は、液晶分子27を所定の方向に配向させる。なお、液晶分子27が、光配向など、配向膜を用いない方法によって配向される場合、配向膜25、26は省略されてもよい。
 さらに、各基板、各透明電極及び各配向膜の外周には鏡枠29が配置され、この鏡枠29が、各基板を保持している。
 図3(A)に示されるように、液晶層20に封入された液晶分子27は、例えば、ホモジニアス配向となり、かつ、入射する直線偏光の偏光面と略平行な方向に配向されている。すなわち、液晶分子27の長軸方向が、図2に示された矢印Aと略平行に、液晶分子が配向される。
 図4は、入射側に配置される位相反転素子2に設けられた透明電極23の概略正面図である。一方、透明電極24は、液晶層20全体を覆うように形成される。なお、透明電極24も、図4に示された透明電極23の形状と同様の形状を有してもよく、あるいは、透明電極24が図4に示された電極形状を有し、透明電極23が液晶層20全体を覆うように形成されてもよい。
 透明電極23は、光軸OAと位相反転素子2の交点cを中心とする、同心円状の少なくとも一つの輪帯状の電極を有する。本実施形態では、透明電極23は、4個の輪帯状電極23a~23dを有する。これにより、液晶層20には、輪帯状電極23a~23dの何れかと透明電極24に挟まれた第1の輪帯状部分と、一方の側にのみ透明電極24が存在する第2の輪帯状部分とが、同心円状に交互に形成される。なお、輪帯状電極23dの外周が、図2に示された領域2aの外周に対応する。
 図3(B)に示されるように、これら輪帯状電極23a~23dと、液晶層20を挟んで対向して配置された透明電極24との間に、コントローラ111によって電圧が印加されると、それら第1の輪帯状部分20aに含まれる液晶分子の長軸方向が、光軸OAに直交する方向から光軸OAに平行な方向に近づくように液晶分子が傾く。一方、透明電極間に挟まれていない第2の輪帯状部分20bに含まれる液晶分子は、その長軸が光軸OAに直交する方向を向いたままとなる。
 一般に、液晶分子の長軸方向に平行な偏光成分(すなわち、異常光線)に対する屈折率nは、液晶分子の短軸方向に平行な偏光成分(すなわち、常光線)に対する屈折率nよりも高い。ここで、透明電極23と24との間に電圧が印加されたときの、第1の輪帯状部分20aに含まれる液晶分子の長軸方向と、電圧が印加された方向、すなわち光軸OAの方向とがなす角をψとすれば、液晶層20を透過する光は、液晶分子27の長軸方向に対して角ψをなす。このとき、液晶分子27が配向された方向と平行な偏光成分に対する液晶分子の屈折率をnψとすると、n≦nψ≦nとなる。そのため、液晶層20に含まれる液晶分子27がホモジニアス配向されており、液晶層20の厚さがdであると、液晶層20のうち、輪帯状電極23a~23dと透明電極24間に挟まれた第1の輪帯部分20aを通る偏光成分と、第2の輪帯部分20bを通る偏光成分との間に、光路長差Δnd(=nψd−nd)が生じる。そしてそれら二つの偏光成分間に生じる位相差Δは、2πΔnd/λとなる。なお、λは、液晶層20に入射する光線の波長である。
 このように、コントローラ111が透明電極23と透明電極24との間に印加する電圧を調節することにより、位相反転素子2は、液晶層20を透過する光の位相を変調することができる。従って、透明電極23と透明電極24との間に入射光の波長に応じた所定の電圧が印加されると、位相反転素子2は、第1の輪帯部分20aを通る光の位相を、第2の輪帯部分20bを通る光の位相に対してπだけずらすことができる。
 偏光面回転素子3は、位相反転素子2を透過した後に入射した直線偏光を、光軸OAと偏光面回転素子3との交点cを中心とした、放射状の直線偏光分布を持つラジアル偏光に変換する。そのために、偏光面回転素子3は、液晶層30と、光軸OAに沿って液晶層30の両側に略平行に配置された透明基板31、32を有する。なお、透明基板31と位相反転素子2の透明基板22のうちの何れか一方が省略されてもよい。この場合、例えば、透明基板22の一方の面に液晶層20が形成され、透明基板22の他方の面に液晶層30が形成される。
 また偏光面回転素子3は、透明基板31と液晶層30の間に配置された透明電極33と、液晶層30と透明基板32の間に配置された透明電極34とを有する。そして液晶層30に含まれる液晶分子37は、透明基板31及び32と、シール部材38との間に封入されている。なお、透明基板31、32は、例えば、ガラスまたは樹脂など、所定の波長域に含まれる波長を持つ光に対して透明な材料により形成される。また透明電極33、34は、例えば、ITOにより形成される。さらに、透明電極33と液晶層30の間に配向膜35が配置される。また透明電極34と液晶層30の間に配向膜36が配置される。これら配向膜35、36は、液晶分子37を所定の方向に配向させる。なお、液晶分子37が、光配向など、配向膜を用いない方法によって配向される場合、配向膜35、36は省略されてもよい。
 さらに、各基板、各透明電極及び各配向膜の外周には鏡枠39が配置され、この鏡枠39が、各基板を保持している。なお、鏡枠29と鏡枠39とは、一体的に形成されてもよい。
 液晶層30に封入された液晶分子37は、例えば、ホモジニアス配向される。また液晶層30は、交点cを中心として、光軸OAに直交する面内で円周方向に沿って配置された複数の扇形領域を含む。そして各扇形領域に含まれる液晶分子37は、入射する直線偏光の偏光面が、光軸OAを中心とした放射方向に略平行となるようにその偏光面を回転させるように配向される。
 図5は、液晶層30の各扇形領域における液晶の配向方向と、各扇形領域を透過した直線偏光の偏光方向を示す液晶層30の概略正面図である。
 本実施形態では、液晶層30は、時計回りに配置され、互いに配向方向が異なる8個の扇形領域30a~30hを有し、各扇形領域30a~30hの中心角は等しくなるように設定される。また図5において、矢印40a~40hは、それぞれ、各扇形領域30a~30hに含まれる液晶分子の配向方向を表す。また、矢印50a~50hは、それぞれ、各扇形領域30a~30hから出射する直線偏光の偏光面を表す。なお、矢印50a~50hのうち、矢印の先端が反対方向を向いている二つの矢印は、それら矢印で表される直線偏光の位相が互いにπだけずれていることを表す。
 なお、交点cを通って扇形領域を2等分する直線を、その扇形領域の中心線と呼ぶ。
 各扇形領域30a~30hの配向方向は、例えば、各扇形領域を透過した後の直線偏光成分の偏光面が、その透過した扇形領域の中心線と平行となるように決定される。そこで、光軸OAと液晶層30との交点cを通り、入射する直線偏光の偏光面Aに平行な面と交差する扇形領域30aを1番目の領域とし、扇形領域30aから時計回りまたは反時計回りに第n番目の扇形領域について、その扇形領域の配向方向と、扇形領域30aを通る偏光成分の偏光面Aとがなす角θは次式に従って設定される。
 θ=360°×(n−1)/(2N)  (n=1,2,...,N)    (1)
ただし、Nは扇形領域の総数であり、本実施形態ではN=8である。
 例えば、n=1である扇形領域30aでは、θ=0となる。すなわち、扇形領域30aでは、入射する直線偏光の偏光面が回転することなく直線偏光が透過するように、液晶分子の配向方向は、入射する直線偏光の偏光面Aと略平行に設定される。
 また、第n番目の扇形領域を、扇形領域30aを1番目の領域として時計回りにn番目の領域としたとき、各扇形領域30b~30hの配向方向と扇形領域30aを通る偏光成分の偏光面Aとがなす角は、それぞれ、時計回りを正として、22.5°、45°、67.5°、90°、112.5°、135°、157.5°となるように、各扇形領域30b~30hの配向方向は設定される。
 あるいは、第n番目の扇形領域を、扇形領域30aから反時計回りにn番目の領域としたとき、各扇形領域30b~30hの配向方向と扇形領域30aを通る偏光成分の偏光面Aとがなす角は、それぞれ、時計回りを正として、−157.5°、−135°、−112.5°、−90°、−67.5°、−45°、−22.5°となるように、各扇形領域30b~30hの配向方向は設定される。
 透明電極33、34は、液晶層30全体を挟んで対向するように配置される。そして透明電極33と34との間に、所定の波長域に含まれる波長に対して液晶層30の扇形領域30a~30hが半波長板として機能するように、コントローラ111によって所定の電圧が印加される。
 ここで、透明電極33と34との間に電圧が印加されると、液晶分子がその電圧に応じて電圧が印加された方向に対して平行になる方向に傾く。液晶分子の長軸方向と、電圧が印加された方向とがなす角をψとすれば、液晶層30を透過する光は、長軸方向に対して角ψをなす。このとき、上記のように、液晶分子が配向された方向と平行な偏光成分に対する液晶分子の屈折率をnψとすると、n≦nψ≦nとなる。ただし、nは液晶分子の長軸方向に直交する偏光成分に対する屈折率であり、nは液晶分子の長軸方向に平行な偏光成分に対する屈折率である。
 そのため、液晶層30に含まれる液晶分子がホモジニアス配向されており、液晶層30の厚さがdであると、液晶分子の配向方向に平行な偏光成分と液晶分子の配向方向に直交する偏光成分との間に、光路長差Δnd(=nψd−nd)が生じる。したがって、透明電極33と34との間に印加する電圧を調節することにより、液晶分子の配向方向に平行な偏光成分と、液晶分子の配向方向に直交する偏光成分との光路長差を調節できる。そのため、コントローラ111が透明電極33と34との間に印加する電圧を調節することにより、光源101から出力される直線偏光が持つ波長に対して、扇形領域30a~30hがそれぞれ半波長板として機能する。
 各扇形領域30a~30hが半波長板として機能する場合、液晶分子37の配向方向に対して角度θをなす偏光面を有する直線偏光がそれら扇形領域を透過すると、その偏光面は、透過した扇形領域の配向方向に対して角度−θをなすように回転する。すなわち、偏光面は、配向方向を中心として、角度2θだけ回転する。
 図5に示した例では、各扇形領域30a~30hにおける液晶分子の配向方向は、扇形領域30aに入射する直線偏光の偏光面Aに対する角度が、各扇形領域の中心線と液晶層30の扇形領域30aに入射する直線偏光の偏光面Aとの角度の1/2となるように設定されている。そのため、交点cから入射直線偏光の偏光面Aに沿って上方を向く方向を基準とし、時計回り方向を正とすると、各扇形領域30a~30hを透過した直線偏光成分の偏光面の角度は、それぞれ、0°、45°、90°、135°、180°、225°、270°、315°となる。このように、偏光面回転素子3から出射する光線は、光軸OAを中心として放射状の直線偏光成分を持つ。
 図6は、偏光変換素子104から出射するラジアル偏光61の概略を示す図である。図6において、各矢印61a~61hは、それぞれ、直線偏光成分を表す。また、各矢印のうち、矢印の先端が反対方向を向いている二つの矢印は、それら矢印で表される直線偏光の位相が互いにπだけずれていることを表す。さらに、輪帯状の領域62a~62dは、それぞれ、位相反転素子2の第1の輪帯部分を透過した偏光成分を表す。また輪帯状の領域62e~62gは、それぞれ、位相反転素子2の第2の輪帯部分を透過した偏光成分を表す。
 図6に示されるように、このラジアル偏光61は、光軸OAに対して放射状に偏光面を持つ8種類の直線偏光成分61a~61hを有する。そして各直線偏光成分61a~61hは、放射方向に沿って、位相反転素子2の透明電極23、24間に挟まれた第1の輪帯部分を透過した成分62a~62dと、透明電極に挟まれていない第2の輪帯部分を透過した成分62e~62gに対応して7つに区分され、隣接する区分間で位相がπずれる。
 なお、各扇形領域30a~30hを透過した偏光成分の偏光面は、交点cを中心とした放射状に分布すればよく、その偏光面は、透過した扇形領域の中心線と平行でなくてもよい。各扇形領域30a~30hの配向方向は、各扇形領域30a~30hを透過した偏光の偏光面が当該扇形領域及び交点cを通る所定の直線と平行となるように設定されればよい。例えば、各扇形領域30a~30hの配向方向と、扇形領域30aに入射した直線偏光の偏光面Aとのなす角が、上記の(1)式で求められる値に所定のオフセット値を加えた値となるように、各扇形領域30a~30hの配向方向が設定されてもよい。この場合、所定のオフセット値は、各扇形領域30a~30hの中心線と偏光面Aとのなす角にそのオフセット値の2倍を加算した角度(すなわち、扇形領域を透過した偏光成分の偏光面と扇形領域30aに入射する直線偏光の偏光面とがなす角)が、隣接する扇形領域との境界が偏光面Aとなす角度を超えないように、例えば、±5°に設定される。
 また、偏光面回転素子3の液晶層30が有する、配向方向の異なる領域の数は、8個に限られない。液晶層30が有する配向方向が異なる領域の数は、ラジアル偏光による効果が得られるために必要な数であればよい。例えば、液晶層30は、4、5、6あるいは16個の互いに配向方向が異なる領域を有していてもよい。
 図7は、液晶層30が6個の扇形領域30i~30nを含むときの各扇型領域における液晶の配向方向と、各領域を透過した直線偏光の偏光方向を示す概略正面図である。なお、この変形例においても、透明電極33、34は、液晶層30全体を挟んで対向するように配置される。
 この変形例において、矢印40i~40nは、それぞれ、各扇形領域30i~30nに含まれる液晶分子の配向方向を表す。また、矢印50i~50nは、それぞれ、各扇形領域30i~30nから出射する直線偏光の偏光面を表す。なお、矢印50i~50nのうち、矢印の先端が反対方向を向いている二つの矢印は、それら矢印で表される直線偏光の位相が互いにπだけずれていることを表す。
 各扇形領域30i~30nのうち、光軸OAと液晶層30の交点cの上方に位置する扇形領域30iでは、入射する直線偏光の偏光面Aと、扇形領域30iの中心線とが一致する。そのため、扇形領域30iを1番目の領域とする。このとき、時計回り方向にn番目の扇形領域の配向方向は、例えば、その配向方向と偏光面Aとがなす角が上記の(1)式に従って算出される角度となるように設定される。
 この場合、各扇形領域30i~30nの配向方向と扇形領域30aを通る偏光成分の偏光面Aとがなす角は、それぞれ、時計回りを正として、0°、30°、60°、90°、120°、150°となる。
 この場合も、各扇形領域30i~30nを透過した直線偏光に対して液晶層30が半波長板として機能するように、扇形領域30i~30nを挟む透明電極33、34間には入射光の波長に応じた電圧が印加される。
 これにより、交点cから入射直線偏光の偏光面に沿って上方を向く方向を基準とし、時計回り方向を正とすると、各扇形領域30i~30nを透過した直線偏光成分の偏光面の角度は、それぞれ、0°、60°、120°、180°、240°、300°となる。このように、偏光面回転素子3から出射する光線は、光軸OAを中心として放射状の直線偏光成分を持つ。
 上記のように、位相反転素子2が入射光の一部の位相を反転させるために、一部の液晶分子27の長軸方向を光軸OA方向に傾ける角度と、偏光面回転素子3が、直線偏光をラジアル偏光に変換するために、透明電極33と34間に印加された電圧によって、液晶分子37の長軸方向を光軸OA方向に傾ける角度が等しくなるよう設定する。よって、コントローラ111は、各々適切な駆動電圧を用いて、液晶層20及び液晶層30を駆動することができる。
 図8は、透明電極33、34間の液晶層30に印加される電圧と液晶層30により生じる常光線と異常光線の光路長差の一例を示す図である。
 図8において、横軸は液晶層30に印加される電圧を表し、縦軸は光路長差を表す。グラフ801は、波長450nmを持つ光について、印加電圧と光路長差の関係を表す。グラフ802は、波長550nmを持つ光について、印加電圧と光路長差の関係を表す。グラフ803は、波長780nmを持つ光について、印加電圧と光路長差の関係を表す。
 例えば、波長450nmを持つ光に対して液晶層30を半波長板として機能させるために、透明電極33、34間には、450nmの整数倍に225nmを加えた光路長差が生じる電圧が印加されればよい。そこでグラフ801を参照すると、透明電極33、34間に、光路長差1125nmに相当する約1.4Vrmsの電圧が印加されればよい。
 また、例えば、波長550nmを持つ光に対して液晶層30を半波長板として機能させるために、透明電極33、34間には、550nmの整数倍に275nmを加えた光路長差が生じる電圧が印加されればよい。そこでグラフ802を参照すると、透明電極33、34間に、光路長差1375nmに相当する約1Vrmsの電圧が印加されればよい。
 さらに、例えば、波長780nmを持つ光に対して液晶層30を半波長板として機能させるために、透明電極33、34間には、780nmの整数倍に390nmを加えた光路長差が生じる電圧が印加されればよい。そこでグラフ803を参照すると、透明電極33、34間に、光路長差1170nmに相当する約1.1Vrmsの電圧が印加されればよい。
 以上説明してきたように、本発明の一つの実施形態に係る顕微鏡装置は、ラジアル偏光をサンプル上に焦点を結ばせるので、z偏光効果によりその焦点近傍におけるスポット径を回折限界により規定されるスポット径よりも小さくできる。そのため、この顕微鏡装置は、サンプルの表面に平行な方向について、回折限界により規定される分解能よりも高い分解能を有することができる。また、この顕微鏡装置は、サンプル近傍における焦点深度を大きくすることができるので、サンプルの深さ方向について所望の位置に焦点を合わせることが容易である。
 さらに顕微鏡装置に組み込まれた偏光変換素子が、輪帯状に、ラジアル偏光を形成する各直線偏光の一部の位相を他の部分の位相に対して反転させることができるので、そのラジアル偏光を集光することにより、効率的にz偏光効果を生じさせることができる。
 さらに、顕微鏡装置に組み込まれた偏光変換素子は、液晶層によって入射した光の偏光面を制御するので、コントローラが液晶層に印加する電圧を調節することにより、光源が所定の波長域内の何れの波長を持つ直線偏光である照明光を出力する場合でも、偏光変換素子は照明光をラジアル偏光にできる。そのため、この顕微鏡装置は、所定の波長域内の何れの波長を持つ照明光を用いても、回折限界により規定される分解能よりも高い分解能を持つことができる。
 なお、本発明は上記の実施形態に限られない。例えば、位相反転素子2の液晶層20について、第2の輪帯部分に含まれる液晶分子27を、光軸OAに平行な方向に配向させてもよい。この場合において、液晶層20と液晶層30の厚さが同一であり、液晶層20に含まれる液晶分子の光学特性及び電気特性と、液晶層30に含まれる液晶分子の光学特性及び電気特性とが同一とすることができる。このように液晶分子27が配向された場合、所定の波長に対して液晶層20、30の所定の領域が半波長板となる電圧は同一となるので、コントローラ111は、同一の波形及び振幅を持つ駆動電圧を用いて、液晶層20及び液晶層30を駆動することができる。
 また、液晶層20に印加する電圧を液晶層30に印加する電圧と同一とする場合には、第1の輪帯部分では液晶分子27の長軸方向が、第2の輪帯状部分では液晶分子27の短軸方向が、位相反転素子2に入射する直線偏光の偏光面と平行となるように、液晶分子27を配向してもよい。
 また他の変形例によれば、位相反転素子2の第1の輪帯状部分を透過する光と第2の輪帯状部分を透過する光の間に、透明電極による光路長差が生じないように、第2の輪帯状部分についても、液晶層20の両側に透明電極が形成されてもよい。
 図9(A)及び図9(B)は、それぞれ、この変形例による、位相反転素子2の入射側に設けられた透明電極23の概略正面図である。なお、透明電極24は、上記の実施形態と同様に、液晶層20全体を覆うように基板全面に形成される。なお、透明電極24も、図9(A)または図9(B)に示された透明電極23の形状と同様の形状を有してもよく、あるいは、透明電極24が図9(A)または図9(B)に示された電極形状を有し、透明電極23が液晶層20全体を覆うように形成されてもよい。
 透明電極23は、光軸OAと位相反転素子2の交点cを中心とする、円状の電極23aと、同心円状の少なくとも一つの輪帯状の電極とを有する。この変形例では、透明電極23は、円状の電極23aの周囲に、5個の輪帯状電極23b~23fを有する。また、各電極間の隙間は小さい方が好ましい。なお、輪帯状電極23fの外周が、図2に示された領域2aの外周に対応する。
 図9(A)に示した例では、各輪帯電極は独立に制御可能なように、各輪帯電極から配線がそれぞれ引き出されており、その配線が駆動回路と接続されている。また図9(B)に示した例では、円状の電極23aから順に偶数番目の輪帯状電極同士、及び奇数番目の輪帯状電極同士がそれぞれ同一の配線で電気的に接続され、偶数番目の輪帯状電極と接続された配線及び奇数番目の輪帯状電極と接続された配線がそれぞれ駆動回路と接続される。これにより、偶数番目の各輪帯状電極は同一の電位で駆動可能となっている。同様に、奇数番目の各輪帯状電極も同一の電位で駆動可能となっている。また図9(B)では、奇数番目の輪帯状電極群と偶数番目の輪帯状電極群のうち、一方の電極群は電気的に制御されなくてもよい。この場合、他方の電極群と透明電極24との間に電圧を印加することで、その他方の電極群と透明電極24との間に挟まれた液晶層により、光の位相を反転可能である。なお、輪帯状電極も厚さがあるので、輪帯状電極を通った光の位相は、輪帯状電極を透過しない光の位相に対してずれる。そこで、図9(A)及び図9(B)に示されるように、電圧制御に利用される輪帯状電極だけでなく、電圧制御が不要な輪帯状電極も配置することで、位相反転素子2は、液晶層20に電圧が印加されない場合に位相反転素子2を透過する光束のほぼ全体を同位相にすることができる。
 さらに、電気的に制御する必要がない偶数番目、あるいは奇数番目の輪帯状電極群の電位を、その輪帯状電極群と対向する側の透明基板に設けられた透明電極24と同一の基準電位、あるいは液晶層20内の液晶分子が動作しない電位の最大値である閾値電位に設定することが好ましい。閾値電位は、一般には実効電圧で約1V~2Vである。このように電気的に制御する必要がない輪帯状電極群の電位を設定することで、位相反転素子2は、液晶層20の電位を一定に制御できるので、静電気等のノイズにより液晶層20の液晶が誤動作することを防止できる。また電気的に制御する必要がない輪帯状電極群の電位を閾値電位とすることで、液晶層20の熱揺らぎも抑制できる。
 さらに、偏光変換素子104について、位相反転素子の位置と、偏光面回転素子の位置を入れ換えてもよい。
 図10(A)は、位相反転素子の位置と偏光面回転素子の位置を入れ替えた、偏光変換素子104’の概略背面図である。図10(B)は、図10(A)に示された矢印Y、Y′で示された線における偏光変換素子104’の概略側面断面図である。図10(A)及び図10(B)において、この偏光変換素子104’の各構成要素に対して、図2及び図3に示された第1の実施形態に係る偏光変換素子104の対応する構成要素と同様の参照番号を付した。
 この偏光変換素子104’は、偏光面回転素子3と、光軸OAに沿って偏光面回転素子3に隣接して配置され、ラジアル偏光に含まれる、光軸OAを中心として放射状に分布した各直線偏光成分の一部の位相を反転する位相反転素子2’とを有する。
 このうち、偏光面回転素子3の構成は、上記の実施形態による偏光面回転素子3の構成と同様である。偏光変換素子104’に入射する光は、直線偏光であり、偏光面回転素子3側から入射する。そしてその直線偏光は、偏光面回転素子3により、ラジアル偏光に変換された後、位相反転素子2’へ入射する。位相反転素子2’は、入射したラジアル偏光に含まれる各直線偏光成分の一部の位相を反転する。
 ここで、図10(A)及び図10(B)に示されるように、位相反転素子2’は、液晶層20と、光軸OAに沿って液晶層20の両側に配置された透明基板21、22を有する。そして液晶層20に含まれる液晶分子27は、透明基板21及び22と、シール部材28との間に封入されている。また位相反転素子2’は、透明基板21と液晶層20の間に配置された透明電極23と、液晶層20と透明基板22の間に配置された透明電極24とを有する。さらに、透明電極23と液晶層20の間に配向膜25が配置される。また透明電極24と液晶層20の間に配向膜26が配置される。これら配向膜25、26は、液晶分子27を所定の方向に配向させる。
 さらに、各基板、各透明電極及び各配向膜の外周には鏡枠29が配置され、この鏡枠29が、各基板を保持している。
 図10(A)に、液晶層20に封入された液晶分子の配向方向を示す。液晶層20に封入された液晶分子は、例えば、ホモジニアス配向される。また、液晶層20は、光軸OAと液晶層20との交点cを中心として、円周方向に配置される複数の扇形領域20a~20hを有する。
 矢印は21a~21hは、各扇形領域に含まれる液晶分子の配向方向を示す。矢印21a~21hに示されるように、各扇形領域20a~20hに封入された液晶分子は、その長軸方向が、交点cを中心とした放射方向を向くように配向される。そのため、偏光面回転素子3から出射した光の偏光面は、各扇形領域20a~20hを透過しても回転しない。
 各扇形領域20a~20hは、それぞれ、図5に示される、偏光面回転素子3の液晶層30の各扇形領域30a~30hと光軸OA方向に投影した位置が等しくなるように設定されることが好ましい。この場合、扇形領域30aを透過し、交点cに対して放射状の偏光成分を持つ直線偏光は、扇形領域20aを透過する。同様に、扇形領域30b~30hを透過した直線偏光は、それぞれ、扇形領域20b~20hを透過する。
 また、透明電極23は、交点cを中心とした同心円状に配置された少なくとも1本の輪帯状の電極を有する。例えば、透明電極23は、図4、図9(A)または図9(B)に示された透明電極と同様の構造を有する。一方、透明電極24は、液晶層20全体を覆うように配置される。そして透明電極に挟まれた第1の輪帯部分20aを透過する光の位相が、透明電極に挟まれていない第2の輪帯部分20bを透過する光の位相とπだけずれるように、透明電極23、24間に所定の電圧が印加される。
 これにより、位相反転素子2’を透過したラジアル偏光において、そのラジアル偏光に含まれる各直線偏光成分のうち、第1の輪帯部分を透過した成分の位相が第2の輪帯部分を透過した成分の位相に対して反転する。したがって、この偏光変換素子も、入射した直線偏光を、図6に示されるような偏光面の分布と位相分布を持つラジアル偏光に変換できる。
 また、偏光変換素子104’では、位相反転素子2’の液晶分子が、光軸と位相反転素子2’の交点を中心とした放射状に配向されているので、偏光変換素子に入射する直線偏光の偏光面と位相反転素子2’の液晶分子の配向方向を合わせる必要がない。また、入射する直線偏光の偏光面と、偏光面回転素子3の基準となる扇形領域(例えば、図5における領域30a)の中心線とがずれていても、偏光面回転素子3は入射する直線偏光をラジアル偏光に変換できる。そのため、この偏光変換素子は、光学系への組み込みの際のアライメント調節を簡単化できる。
 なお、液晶層20に印加する電圧を液晶層30に印加する電圧と同一とする場合には、第1の輪帯部分では液晶分子27の長軸方向が交点cを中心とした放射方向を向くように、かつ、第2の輪帯状部分では液晶分子27の長軸方向が交点cを中心とする円周方向を向くように、液晶分子27を配向してもよい。
 また、上記の実施形態による顕微鏡装置において、コントローラ111は、サンプル120の深さ方向、すなわち、光軸OAに沿った方向の解像度を高くするために、偏光変換素子104または104’の各液晶層20及び30に印加する駆動電圧を、偏光変換素子104または104’が入射する直線偏光をラジアル偏光に変換しない電圧としてもよい。例えば、コントローラ111は、サンプル120の深さ方向の解像度を高くする場合、液晶層20の各領域において常光線に対する光路長と異常光線に対する光路長の差が、光源101から出力される光の波長の整数倍となるように、液晶層20に印加する駆動電圧を調節する。また、コントローラ111は、液晶層30の第1の輪帯部分を透過する光の光路長と第2の輪帯部分を透過する光の光路長との差が光源101から出力される光の波長の整数倍となるように、液晶層30に印加する駆動電圧を調節する。この場合、サンプル120の表面に平行な方向、すなわち、光軸OAに直交する方向の解像度は、回折限界により規定される解像度となる。
 一方、サンプル120の表面に平行な方向、すなわち、光軸OAに直交する方向の解像度を回折限界により規定される解像度よりも高くする場合には、上記のように、コントローラ111は、偏光変換素子104または104’が入射した直線偏光をラジアル偏光に変換できるように偏光変換素子104または104’の各液晶層20及び30に駆動電圧を印加する。ただしこの場合には、直線偏光がサンプル120の物体面に集光されるときよりも、サンプル120の物体面に集光される光のスポット径が小さい範囲が深さ方向に長くなる。そのため、ラジアル偏光がサンプル120の物体面に集光されるときの深さ方向の解像度は、直線偏光がサンプル120の物体面に集光されるときの深さ方向の解像度よりも低下する。
 このように、上記の実施形態による顕微鏡装置は、偏光変換素子の各液晶層に印加する駆動電圧を調節することで、ラジアル偏光をサンプルへ集光させてサンプルの表面に平行な方向の解像度を向上させるか、あるいは非ラジアル偏光をサンプルへ集光させて深さ方向の解像度を向上させることができる。
 さらに、この顕微鏡装置は、上記のようなサンプルへ集光させる光を切り替えるために、各液晶層に対する駆動電圧を変更するだけなので、例えば、フォトニック結晶のような偏光面の回転量を調節できない素子を用いて作成された偏光変換素子が用いられる場合と異なり、機械的に顕微鏡装置の一部または全てを移動させる必要がない。そのため、この顕微鏡装置は、その光の切り替えの際に焦点位置がずれることを防止できる。
 また、顕微鏡装置が有する光学系は共焦点光学系でなくてもよい。この場合、上記の実施形態による顕微鏡装置からマスク板が省略され、受光素子が集光レンズの焦点面に配置される。
 あるいは、他の実施形態によれば、顕微鏡装置は、照明光学系と別個に観測光学系を有していてもよい。この場合には、例えば、照明光学系はサンプルの一方の面側に配置され、光源と、コリメートレンズと、偏光変換素子と、対物レンズとを有する。そして上記の実施形態と同様に、光源から出力された、直線偏光である照明光は、コリメートレンズによって平行光とされた後、偏光変換素子を通ってラジアル偏光に変換される。そしてラジアル偏光となった照明光が対物レンズによって対物レンズの焦点近傍に配置されたサンプルの表面または内部に設定された物体面上に集光される。なお、この場合も、偏光変換素子は、対物レンズの入射瞳面に配置される。これにより、照明光学系は、対物レンズの焦点面近傍においてz偏光効果を生じさせることができるので、照明光は、物体面上に回折限界により規定されるスポット径よりも小さなスポット径を持つように集光される。
 一方、観測光学系は、サンプルの他方の面側に配置され、対物レンズと集光レンズとを有する。そして観測光学系は、照明光学系によって照明されたサンプルの像を受光素子に集光する。
 さらに、顕微鏡装置に組み込まれる対物レンズは交換可能なものであってもよい。この場合、対物レンズによって瞳径が異なることがある。そこで、異なる瞳径の対物レンズが用いられても同様の超解像効果が得られるように、偏光変換素子の位相反転素子は、対物レンズの瞳径によらず、位相反転素子を透過した光束に光軸を中心とする同心円状の所定数の輪帯状部分を形成させ、隣接する輪帯状部分同士で位相を反転させることが好ましい。なお、所定数は2以上の整数であり、例えば3以上8以下の整数である。
 なお、上記の実施形態による偏光面回転素子は、その構造上、瞳径の異なる様々な対物レンズにもそのまま適用可能である。
 図11(A)は、このような課題を解決する変形例による位相反転素子の光の入射側の透明電極23’の構造を示す概略正面図であり、図11(B)は、変形例による位相反転素子の光の出射側の透明電極24’の構造を示す概略背面図である。なお、図11(A)及び図11(B)において、透明電極23’のサイズと透明電極24’のサイズが異なることを理解し易くするために、位相反転素子の液晶層内のシール部材の内側境界281が示される。透明電極以外の位相反転素子の構造は、上記の実施形態の何れかによる位相反転素子の構造と同様とすることができる。そのため、ここでは、透明電極についてのみ説明する。
 この変形例では、透明電極23’は、光軸OAと位相反転素子の交点cを中心とする、同心円状の7本の輪帯状の電極231a~231gを有する。そして各輪帯電極により、交点cを中心とする半径r(すなわち、交点cから透明電極23’の最外周の輪帯電極231gの外縁までの距離)の円形領域のほぼ全体が覆われている。この半径rは、例えば、相対的に大きな瞳径を持つ対物レンズが使用された場合に位相反転素子を透過する光束の半径と略等しくなるように設定される。
 同様に、透明電極24’も、交点cを中心とする、同心円状の7本の輪帯状の電極241a~241gを有する。また各輪帯電極により、交点cを中心とする半径r(すなわち、交点cから透明電極24’の最外周の輪帯電極241gの外縁までの距離)の円形領域のほぼ全体が覆われている。この半径rは、例えば、相対的に小さな瞳径を持つ対物レンズが使用された場合に位相反転素子を透過する光束の半径と略等しくなるように設定される。すなわち、半径rは、半径rよりも小さな値に設定される。
 なお、透明電極23’、24’の何れについても、隣接する二つの輪帯電極同士は、それら輪帯電極の幅よりも狭い間隔を空けて配置され、互いに絶縁されている。
 瞳径が相対的に大きい対物レンズが使用される場合、透明電極24’が有する全ての輪帯電極に等電位となるよう通電され、一方、透明電極23’については、輪帯電極1本おきに通電される。例えば、輪帯電極231a、231c、231e及び231gに通電され、輪帯電極231b、231d及び231fには通電されない。透明電極23’のうちの通電された輪帯電極と透明電極24’間の電圧を適切に調節することにより、その電極間に挟まれた液晶層を透過する光線の位相は、透明電極23’中の通電されていない輪帯電極と透明電極24’との間に挟まれた液晶層を透過する光線の位相に対してπだけずれる。
 また、瞳径が相対的に小さい対物レンズが使用される場合、透明電極23’が有する全ての輪帯電極に等電位となるよう通電され、一方、透明電極24’については、輪帯電極1本おきに通電される。例えば、輪帯電極241a、241c、241e及び241gに通電され、輪帯電極241b、241d及び241fには通電されない。透明電極24’のうちの通電された輪帯電極と透明電極23’間の電圧を適切に調節することにより、その電極間に挟まれた液晶層を透過する光線の位相は、透明電極24’中の通電されていない輪帯電極と透明電極23’との間に挟まれた液晶層を透過する光線の位相に対してπだけずれる。
 ここで、透明電極23’が有する輪帯電極の数と透明電極24’が有する輪帯電極の数は等しく、両透明電極の半径は異なる。そのため、この変形例による位相反転素子は、瞳径の異なる二つの対物レンズの何れが使用される場合にも、光束中に、隣接する部分同士で位相が反転している、光軸を中心とする同心円状の輪帯状部分を同数だけ形成させることができる。
 なお、各透明電極が有する輪帯電極の数は、互いに異なっていてもよい。例えば、透明電極24’は、透明電極23’の半径と透明電極24’の半径が等しくなるように、輪帯電極241gの外側にさらに1本以上の輪帯電極を有してもよい。
 位相反転素子のさらに他の変形例によれば、位相反転素子の液晶層の一方に設けられる透明電極は、図3(A)に示された透明電極24のように、液晶層全体を覆うように配置され、液晶層の他方に設けられる透明電極は、図11(A)に示された透明電極23’のように、液晶層のほぼ全体を覆うように設けられた同心円状の複数の輪帯電極を有してもよい。ただしこの変形例では、各輪帯電極の幅は、透明電極23’の輪帯電極の幅よりも狭く、例えば、透明電極23’の輪帯電極の幅の略1/10~略1/2に設定されることが好ましい。この場合、隣接する複数の輪帯電極を一つの組として、光軸との交点を中心とした放射方向に沿って、交互に通電する輪帯電極の組と通電しない輪帯電極の組が配置される。これにより、光束中に、隣接する部分同士で位相が反転している輪帯状部分が形成される。そして対物レンズの瞳径に応じて通電される輪帯電極の組を適切に選択することで、その瞳径によらず、所定数の輪帯状部分が形成される。
 なお、上述した偏光変換素子は、顕微鏡に限らず、様々な光照射装置に組み込んで利用することができる。例えば、偏光変換素子は、光照射装置の一例である光ピックアップ装置に組み込むことができる。
 図12は、偏光変換素子を有する光ピックアップ装置の概略構成図である。図12に示されるように、光ピックアップ装置200は、光源201と、コリメートレンズ202と、ビームスプリッタ203と、対物レンズ204と、結像レンズ205と、受光素子206と、偏光変換素子207と、コントローラ208と、アクチュエータ209とを有する。
 光源201、コリメートレンズ202、偏光変換素子207、ビームスプリッタ203及び対物レンズ204は、光軸OAに沿って一列に配置される。そしてコリメートレンズ202、偏光変換素子207、ビームスプリッタ203及び対物レンズ204は、光源201から放射された光を記録媒体210上に焦点を結ばせる。一方、結像レンズ205及び受光素子206は、ビームスプリッタ203の側面において光軸OAと直交する方向に配置される。そして、記録媒体210により反射または散乱された光は、対物レンズ204を通った後、ビームスプリッタ203により反射され、結像レンズ205によって受光素子206上に結像される。なお、理解を容易にするために図示していないが、光ピックアップ装置200は、光路上に、球面収差用補償光学系など、各種の補償光学系を有していてもよい。
 光源201は、例えば半導体レーザを有し、直線偏光を出力する。
 コリメートレンズ202は、その前側焦点に光源201が位置するように配置され、光源201から出力された直線偏光を平行光にする。
 偏光変換素子207は、上記の実施形態またはその変形例の何れかによる偏光変換素子であり、対物レンズ204の前側瞳面に配置される。本実施形態では、偏光変換素子207は、コリメートレンズ202とビームスプリッタ203の間に配置される。そして偏光変換素子207は、コリメートレンズ202を透過した後に偏光変換素子207に入射した直線偏光をラジアル偏光に変換する。偏光変換素子207は、例えば、直線偏光をラジアル偏光に変換する偏光面回転素子が有する液晶層の各領域のうち、直線偏光の偏光面を回転させない領域(例えば、図5に示した扇形領域30a)に含まれる液晶分子の配向方向が、偏光変換素子207に入射する直線偏光の偏光面と略一致し、他の領域の液晶分子の配向方向と入射する直線偏光の偏光面との間の角が、偏光面を回転させる角度の1/2となるように配置されることが好ましい。
 対物レンズ204は、偏光変換素子207から出射したラジアル偏光に、記録媒体210上に焦点を結ばせる。この場合、焦点近傍では、対物レンズ204により集光された光はz偏光となる。そのため、焦点近傍における光のスポット径は、回折限界により規定されるスポット径よりも小さくすることができる。例えば、本実施形態によるスポット径は、回折限界により規定されるスポット径の約1.5~約1.7分の1となる。また、この光ピックアップ装置200は、集光された光の焦点深度も大きくすることができる。
 さらに、対物レンズ204には、トラッキング用のアクチュエータ209が取付けられている。アクチュエータ209が、図中の矢印Zの方向に対物レンズ204を移動させることによって、対物レンズ204によって集光される光ビームが、記録媒体210のトラックに正確に追従する。またアクチュエータ209は、コントローラ208と接続され、コントローラ208からの制御信号に応じて対物レンズ204を移動させる。
 記録媒体210により反射または散乱された光は、記録媒体210のトラック面上に記録されている情報(ピット)によって振幅変調されている。この光は、再度対物レンズ204を透過して平行光となる。そしてその光は、ビームスプリッタ203により反射され、結像レンズ205に入射する。そして結像レンズ205は、入射した光を受光素子206上に結像する。
 受光素子206は、例えば、アレイ状に配列された複数のCCDまたはC−MOSなどの半導体受光素子を有する。そして各半導体受光素子は、受光した光の強度に応じた電気信号を出力する。そして受光素子206は、各半導体受光素子が出力した電気信号を平均し、その平均値に相当する電気信号を、受光した光の強度を表す光強度信号としてコントローラ208へ伝達する。
 コントローラ208は、受光素子206から受信した光強度信号から記録情報を読み出す。またコントローラ208は、偏光変換素子207及びアクチュエータ209を制御する。そのために、コントローラ208は、偏光変換素子207が有する駆動回路と接続される。またコントローラ208は、受光素子206と接続され、受光素子206から光強度信号を受信する。そしてコントローラ208は、偏光変換素子207が光源201から出力された直線偏光をラジアル偏光に変換できるように、偏光変換素子207の各液晶層に印加する電圧を調節する。具体的には、コントローラ208は、偏光変換素子207が有する駆動回路へ出力する電圧調整信号を変えることにより、偏光変換素子207の各液晶層に印加する電圧を調節しながら、光強度信号を取得し、電圧値と光強度信号値を対応付けて内蔵するメモリに記憶する。そして、コントローラ208は、メモリに記憶した光強度信号及び電圧値から、光強度信号が最大値となる電圧値を決定し、その電圧に応じた電圧調整信号を偏光変換素子207の駆動回路へ送信する。そして偏光変換素子207の駆動回路は、コントローラ208から受信した電圧調整信号に応じた駆動電圧を、各液晶層に印加する。
 以上説明してきたように、偏光変換素子を用いた光ピックアップ装置は、ラジアル偏光に記録媒体上に焦点を結ばせるので、z偏光効果によりその焦点近傍におけるスポット径を回折限界により規定されるスポット径よりも小さくできる。そのため、この光ピックアップ装置は、回折限界により規定される分解能よりも高い分解能を有することができる。したがって、この光ピックアップ装置は、回折限界により規定される分解能で決められた記録密度よりも高い記録密度を持つ記録媒体に記録された情報を読み取ることができる。また、この光ピックアップ装置は、記録媒体近傍における焦点深度を大きくすることができるので、記録媒体と光ピックアップ装置間の距離変動による読取エラーの発生を抑制することができる。
 ピックアップ装置は、互いに波長が異なる光を出力する複数の光源を有してもよい。例えば、光ピックアップ装置200は、光源201とは別個に第2の光源(図示せず)と、各光源から出力された光を偏光変換素子207へ向ける第2のビームスプリッタ(図示せず)をさらに有していてもよい。この場合、光源201から出力された光が記録媒体210に集光されるだけでなく、第2の光源から出力された光も、第2のビームスプリッタによって反射された後、ビームスプリッタ203、偏光変換素子207及び対物レンズ204を介して記録媒体210に集光されるように、例えば、コリメートレンズ202とビームスプリッタ203の間に第2のビームスプリッタが配置され、その第2のビームスプリッタの側方に、第2の光源が配置される。
 コントローラ208は、光源または第2の光源の何れか一方に出力させるとともに、図8で説明したように、光を出力中の光源に応じた電圧調整信号を偏光変換素子207の駆動回路へ送信することにより、偏光変換素子207がその光源からの光をラジアル偏光に変換することを可能にする。これにより、光ピックアップ装置は、複数の光源の何れから出力された光も、回折限界により規定されるスポット径よりも小さいスポット径を持つように記録媒体210上に集光できる。
 また、偏光変換素子207は、記録媒体210で反射または散乱された光も透過するように、ビームスプリッタ203と対物レンズ204との間に配置されてもよい。
 なお、偏光変換素子を用いた光照射装置は、レーザメス、レーザ加工機といった光を用いて対象物を加工する光加工装置であってもよい。この場合、偏光変換素子は、上記の光ピックアップ装置と同様に、直線偏光を出力する光源と、光を集光する対物レンズの間、特に、対物レンズの光源側の瞳面に配置される。これにより、対物レンズの焦点近傍において、集光された光はz偏光となる。そのため、偏光変換素子を用いた光加工装置は、加工可能な最小サイズを回折限界よりも小さくすることができる。
 さらに、偏光変換素子を用いた光照射装置は、干渉計といった、光を用いての形状を測定する装置であってもよい。この場合も、偏光変換素子は、直線偏光を出力する光源と、光を集光する対物レンズの間、特に、対物レンズの光源側の瞳面に配置される。
 以上のように、当業者は、本発明の範囲内で、実施される形態に合わせて様々な変更を行うことができる。
 100  顕微鏡装置
 101  光源
 102  コリメートレンズ
 103  ビームスプリッタ
 104、104’  偏光変換素子
 105  対物レンズ
 106  集光レンズ
 107  マスク板
 108  受光素子
 109  可動ステージ
 110  アクチュエータ
 111  コントローラ
 2、2’  位相反転素子
 3  偏光面回転素子
 20、30  液晶層
 20a~20h、30a~30n  扇形領域
 21、22、31、32  透明基板
 23、24、33、34、23’、24’  透明電極
 25、26、35、36  配向膜
 27、37  液晶分子
 28、38  シール材
 29、39  鏡枠
 200  光ピックアップ装置
 201  光源
 202  コリメートレンズ
 203  ビームスプリッタ
 204  対物レンズ
 205  結像レンズ
 206  受光素子
 207  偏光変換素子
 208  コントローラ
 209  アクチュエータ
 210  記録媒体

Claims (10)

  1.  第1の波長を持つ直線偏光を出力する第1の光源と、
     液晶分子が含まれる液晶層を有し、前記直線偏光に当該液晶層を透過させることにより、前記直線偏光をラジアル偏光に変換する偏光変換素子と、
     前記ラジアル偏光を物体面に集光する対物レンズと、
     前記物体面からの光を集光する集光レンズと、
     前記集光レンズにより集光された光を受光し、当該光の強度に応じた信号を出力する受光素子と、
     前記偏光変換素子が有する前記液晶層に前記第1の波長に応じた電圧を印加するコントローラと、
    を有し、
     前記偏光変換素子は、前記対物レンズの前記光源側に配置され、光軸に沿って配置された、入射光の一部の位相を反転する位相反転素子と、前記直線偏光をラジアル偏光に変換する偏光面回転素子とを有し、
     前記偏光面回転素子は、前記液晶層と、該液晶層を挟んで対向するように配置された二つの第1の透明電極とを有し、
     前記液晶層は、前記偏光面回転素子と前記光軸との第1の交点を中心とする円周方向に沿って配置された複数の領域を有し、前記複数の領域のそれぞれに含まれる前記液晶分子の配向方向は互いに異なり、
     前記液晶層の前記複数の領域のそれぞれは、前記二つの第1の透明電極間に前記第1の波長に応じた電圧が印加されることにより、前記直線偏光のうちの当該領域を透過した成分の偏光面を、当該領域に含まれる前記液晶分子の配向方向に応じて前記第1の交点を中心とする放射方向に平行となるように回転させ、
     前記位相反転素子は、該位相反転素子と前記光軸との第2の交点を中心とした放射方向に沿って交互に配置された第1の輪帯部分及び第2の輪帯部分を有し、前記第1の輪帯部分に入射した前記直線偏光または前記ラジアル偏光の位相を、前記第2の輪帯部分に入射した前記直線偏光または前記ラジアル偏光の位相に対して反転させる、
    ことを特徴とする顕微鏡装置。
  2.  前記複数の領域のそれぞれに含まれる前記液晶分子の配向方向は、前記偏光面回転素子に入射した直線偏光の偏光面となす角度が、前記第1の交点及び当該領域を通る所定の直線と前記偏光面との間の角度の1/2となる方向であり、
     前記二つの透明電極間に前記第1の波長に応じた電圧が印加されることにより、前記偏光面回転素子は、前記直線偏光のうち、前記複数の領域のそれぞれを透過した成分の偏光面を、前記直線偏光の偏光面と前記配向方向のなす角の2倍の角度回転させて前記所定の線と平行にする、請求項1に記載の顕微鏡装置。
  3.  前記複数の領域のそれぞれにおける前記所定の線は、前記第1の交点を通り、かつ当該領域を2等分する線である、請求項2に記載の顕微鏡装置。
  4.  前記複数の領域のうち、前記直線偏光の偏光面に平行でかつ前記光軸を通る面と交差する二つの領域の何れか一方を第1の領域とし、前記複数の領域の総数をNとしたときに該第1の領域に対して時計回りまたは反時計回りの順にn番目の領域における前記配向方向と、前記第1の領域に入射する前記直線偏光の偏光面とがなす角度θが、
     θ=360°×(n−1)/(2N)
    となるように、前記複数の領域のそれぞれにおける前記配向方向が設定され、ここでnは1からNの何れかの整数である、請求項1に記載の顕微鏡装置。
  5.  前記位相反転素子は、
     液晶分子が含まれる第2の液晶層と、
     該第2の液晶層を挟んで対向するように配置された二つの第2の透明電極とを有し、
     前記二つの第2の透明電極のうちの一方は、前記第1の輪帯部分に対応した複数の輪帯電極であり、該輪帯電極と前記二つの第2の透明電極の他方との間に前記第1の波長に応じた電圧を印加することにより、前記第1の輪帯部分に入射する前記直線偏光または前記ラジアル偏光の位相を反転させる、請求項1~4の何れか一項に記載の顕微鏡装置。
  6.  前記位相反転素子は、前記偏光面回転素子の入射側に配置され、
     前記第2の液晶層に含まれる液晶分子は、前記位相反転素子に入射する直線偏光の偏光面と平行な方向に沿って配向される、請求項5に記載の顕微鏡装置。
  7.  前記位相反転素子は、前記偏光面回転素子の出射側に配置され、
     前記第2の液晶層に含まれる液晶分子は、前記第2の交点を中心とした放射状に配向される、請求項5に記載の顕微鏡装置。
  8.  前記第1の波長と異なる第2の波長を持つ直線偏光を出力し、当該第2の波長を持つ直線偏光が前記偏光変換素子及び前記対物レンズを通って前記物体面に集光されるように配置された第2の光源をさらに有し、
     前記コントローラは、前記第1の光源及び前記第2の光源のうちの何れか一方を点灯させるとともに、当該点灯中の光源から出力される直線偏光の波長に応じた電圧を前記二つの第1の透明電極間及び前記二つの第2の透明電極間に印加する、請求項5~7の何れか一項に記載の顕微鏡装置。
  9.  所定の波長を持つ直線偏光を出力する光源と、
     液晶分子が含まれる液晶層を有し、当該液晶層を透過した前記直線偏光をラジアル偏光に変換する偏光変換素子と、
     前記ラジアル偏光を物体面に集光する対物レンズと、
     前記物体面で反射された光を結像する結像レンズと、
     前記結像レンズにより結像された光を受光し、当該光の強度に応じた信号を出力する受光素子と、
     前記偏光変換素子が有する前記液晶層に前記所定の波長に応じた電圧を印加する駆動回路と、
     前記信号が最大となるように前記駆動回路が出力する電圧を調節するコントローラと、
    を有し、
     前記偏光変換素子は、前記対物レンズの前記光源側の瞳面に配置され、光軸に沿って配置された、入射光の一部の位相を反転する位相反転素子と、前記直線偏光をラジアル偏光に変換する偏光面回転素子とを有し、
     前記偏光面回転素子は、前記液晶層と、該液晶層を挟んで対向するように配置された二つの第1の透明電極とを有し、
     前記液晶層は、前記偏光面回転素子と前記光軸との第1の交点を中心とする円周方向に沿って配置された複数の領域を有し、前記複数の領域のそれぞれに含まれる前記液晶分子の配向方向は互いに異なり、
     前記液晶層の前記複数の領域のそれぞれは、前記二つの第1の透明電極間に前記所定の波長に応じた電圧が印加されることにより、前記直線偏光のうちの当該領域を透過した成分の偏光面を、当該領域に含まれる前記液晶分子の配向方向に応じて前記第1の交点を中心とする放射方向に平行となるように回転させ、
     前記位相反転素子は、該位相反転素子と前記光軸との第2の交点を中心とした放射方向に沿って交互に配置された第1の輪帯部分及び第2の輪帯部分を有し、前記第1の輪帯部分に入射した前記直線偏光または前記ラジアル偏光の位相を、前記第2の輪帯部分に入射した前記直線偏光または前記ラジアル偏光の位相に対して反転させる、
    ことを特徴とする光ピックアップ装置。
  10.  所定の波長を持つ直線偏光を出力する光源と、
     液晶分子が含まれる液晶層を有し、当該液晶層を透過した前記直線偏光をラジアル偏光に変換する偏光変換素子と、
     前記ラジアル偏光を物体面に集光する対物レンズと、
     前記所定の波長に応じた電圧を前記液晶層に印加する駆動回路と、
    を有し、
     前記偏光変換素子は、前記対物レンズの前記光源側の瞳面に配置され、光軸に沿って配置された、入射光の一部の位相を反転する位相反転素子と、前記直線偏光をラジアル偏光に変換する偏光面回転素子とを有し、
     前記偏光面回転素子は、前記液晶層と、該液晶層を挟んで対向するように配置された二つの第1の透明電極とを有し、
     前記液晶層は、前記偏光面回転素子と前記光軸との第1の交点を中心とする円周方向に沿って配置された複数の領域を有し、前記複数の領域のそれぞれに含まれる前記液晶分子の配向方向は互いに異なり、
     前記液晶層の前記複数の領域のそれぞれは、前記二つの第1の透明電極間に前記所定の波長に応じた電圧が印加されることにより、前記直線偏光のうちの当該領域を透過した成分の偏光面を、当該領域に含まれる前記液晶分子の配向方向に応じて前記第1の交点を中心とする放射方向に平行となるように回転させ、
     前記位相反転素子は、該位相反転素子と前記光軸との第2の交点を中心とした放射方向に沿って交互に配置された第1の輪帯部分及び第2の輪帯部分を有し、前記第1の輪帯部分に入射した前記直線偏光または前記ラジアル偏光の位相を、前記第2の輪帯部分に入射した前記直線偏光または前記ラジアル偏光の位相に対して反転させる、
    ことを特徴とする光照射装置。
PCT/JP2011/054819 2010-02-26 2011-02-24 顕微鏡装置、光ピックアップ装置及び光照射装置 WO2011105618A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180010616.1A CN102763020B (zh) 2010-02-26 2011-02-24 显微镜装置、光拾取装置以及光照射装置
JP2012501912A JP5693559B2 (ja) 2010-02-26 2011-02-24 顕微鏡装置、光ピックアップ装置及び光照射装置
US13/581,248 US9182581B2 (en) 2010-02-26 2011-02-24 Microscope apparatus, optical pickup apparatus and light irradiation apparatus
EP11747570.7A EP2541299B1 (en) 2010-02-26 2011-02-24 Microscope device, optical pickup device, and light irradiation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-042763 2010-02-26
JP2010042763 2010-02-26

Publications (1)

Publication Number Publication Date
WO2011105618A1 true WO2011105618A1 (ja) 2011-09-01

Family

ID=44507009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054819 WO2011105618A1 (ja) 2010-02-26 2011-02-24 顕微鏡装置、光ピックアップ装置及び光照射装置

Country Status (5)

Country Link
US (1) US9182581B2 (ja)
EP (1) EP2541299B1 (ja)
JP (1) JP5693559B2 (ja)
CN (1) CN102763020B (ja)
WO (1) WO2011105618A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519909A (zh) * 2011-11-14 2012-06-27 重庆大学 基于液晶可调谐滤波器的空域低相干相位显微镜
JP2012208486A (ja) * 2011-03-11 2012-10-25 Citizen Holdings Co Ltd 光学素子、光学素子を備えた顕微鏡装置ならびに光学素子の組み立て方法
JP2013104950A (ja) * 2011-11-11 2013-05-30 Citizen Holdings Co Ltd 位相及び偏光変調デバイス、また、それを用いたレーザー顕微鏡
JP2013109077A (ja) * 2011-11-18 2013-06-06 Sony Corp 画像取得装置、画像取得方法及び画像取得プログラム
WO2014084007A1 (ja) * 2012-11-29 2014-06-05 シチズンホールディングス株式会社 光変調素子
CN104081259A (zh) * 2012-02-03 2014-10-01 西铁城控股株式会社 相位调制设备以及激光显微镜
CN115066650A (zh) * 2020-02-07 2022-09-16 株式会社日本显示器 光控制装置以及照明装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5802110B2 (ja) * 2011-10-26 2015-10-28 浜松ホトニクス株式会社 光変調制御方法、制御プログラム、制御装置、及びレーザ光照射装置
CN104991336B (zh) * 2015-07-15 2018-03-09 中国科学院广州生物医药与健康研究院 一种用于纵向扫描的显微镜系统
KR102436474B1 (ko) * 2015-08-07 2022-08-29 에스케이하이닉스 주식회사 반도체 패턴 계측 장치, 이를 이용한 반도체 패턴 계측 시스템 및 방법
US20180088378A1 (en) * 2016-09-28 2018-03-29 Electronics And Telecommunications Research Institute Polarimetric-analysis-type dual liquid crystal wavelength filter module
CN110058464B (zh) * 2019-05-29 2022-01-07 京东方科技集团股份有限公司 液晶光子筛结构、近眼显示装置
CN110579869B (zh) * 2019-09-17 2021-06-01 哈工大机器人(中山)无人装备与人工智能研究院 一种幅值调制径向偏振照明共焦显微成像方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007193025A (ja) * 2006-01-18 2007-08-02 Nano Photon Kk 偏光制御素子とその製造方法、並びに、顕微鏡
JP2009541742A (ja) * 2006-06-21 2009-11-26 ユニバーシティ・オブ・デイトン 偏光設計の方法およびそれらの適用例
JP2010019630A (ja) * 2008-07-09 2010-01-28 Tokyo Institute Of Technology 顕微分光装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3813800B2 (ja) 1999-09-24 2006-08-23 佐藤 進 液晶セルパラメータ検出装置
JP4668549B2 (ja) * 2004-04-21 2011-04-13 大日本印刷株式会社 位相差量可変な光学補償素子およびそれを用いた液晶ディスプレイ
KR20060003176A (ko) * 2004-07-05 2006-01-10 삼성전자주식회사 광픽업 및 이를 채용한 광 기록 및/또는 재생기기
JP2006313273A (ja) 2005-05-09 2006-11-16 Osaka Univ 顕微鏡
JP4669995B2 (ja) 2006-08-02 2011-04-13 ナノフォトン株式会社 光学顕微鏡及び観察方法
ES2302460B1 (es) * 2006-12-15 2009-05-21 Universidad De Zaragoza Conversor de polarizacion acromatico y dispositivo de focalizacion basado en dicho conversor.
JP5355961B2 (ja) * 2007-10-16 2013-11-27 三洋電機株式会社 投写型映像表示装置
US8891034B2 (en) * 2008-03-28 2014-11-18 Citizen Holdings Co., Ltd. Liquid crystal optical element and optical pickup apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007193025A (ja) * 2006-01-18 2007-08-02 Nano Photon Kk 偏光制御素子とその製造方法、並びに、顕微鏡
JP2009541742A (ja) * 2006-06-21 2009-11-26 ユニバーシティ・オブ・デイトン 偏光設計の方法およびそれらの適用例
JP2010019630A (ja) * 2008-07-09 2010-01-28 Tokyo Institute Of Technology 顕微分光装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHIN-CHERNG SUN; CHIN-KU LIU: "OPTICS LETTERS", vol. 28, 2003, OPTICAL SOCIETY OF AMERICA, article "Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation", pages: 99 - 101
HAIFENG WANG: "Creation of a needle of longitudinally polarized light in vacuum using binary optics", NATURE PHOTONICS, vol. 2, 2008, pages 501 - 505
See also references of EP2541299A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012208486A (ja) * 2011-03-11 2012-10-25 Citizen Holdings Co Ltd 光学素子、光学素子を備えた顕微鏡装置ならびに光学素子の組み立て方法
JP2013104950A (ja) * 2011-11-11 2013-05-30 Citizen Holdings Co Ltd 位相及び偏光変調デバイス、また、それを用いたレーザー顕微鏡
CN102519909A (zh) * 2011-11-14 2012-06-27 重庆大学 基于液晶可调谐滤波器的空域低相干相位显微镜
JP2013109077A (ja) * 2011-11-18 2013-06-06 Sony Corp 画像取得装置、画像取得方法及び画像取得プログラム
CN104081259A (zh) * 2012-02-03 2014-10-01 西铁城控股株式会社 相位调制设备以及激光显微镜
EP2811335A4 (en) * 2012-02-03 2015-09-02 Citizen Holdings Co Ltd PHASE MODULATION DEVICE AND LASER MICROSCOPE
US9383573B2 (en) 2012-02-03 2016-07-05 Citizen Holdings Co., Ltd. Phase modulation device and laser microscope
WO2014084007A1 (ja) * 2012-11-29 2014-06-05 シチズンホールディングス株式会社 光変調素子
JPWO2014084007A1 (ja) * 2012-11-29 2017-01-05 シチズンホールディングス株式会社 光変調素子
US9772484B2 (en) 2012-11-29 2017-09-26 Citizen Watch Co., Ltd. Light modulating device
CN115066650A (zh) * 2020-02-07 2022-09-16 株式会社日本显示器 光控制装置以及照明装置
CN115066650B (zh) * 2020-02-07 2023-09-15 株式会社日本显示器 光控制装置以及照明装置

Also Published As

Publication number Publication date
US9182581B2 (en) 2015-11-10
JP5693559B2 (ja) 2015-04-01
EP2541299A1 (en) 2013-01-02
CN102763020A (zh) 2012-10-31
CN102763020B (zh) 2015-07-22
EP2541299B1 (en) 2016-05-25
EP2541299A4 (en) 2015-06-24
US20120314147A1 (en) 2012-12-13
JPWO2011105618A1 (ja) 2013-06-20

Similar Documents

Publication Publication Date Title
JP5693559B2 (ja) 顕微鏡装置、光ピックアップ装置及び光照射装置
JP5661098B2 (ja) 偏光変換素子
JP6016782B2 (ja) 光変調素子及び光変調素子を備えた顕微鏡装置
JP6265898B2 (ja) 収差補正光学ユニット及びレーザー顕微鏡
JP6234105B2 (ja) 超解像顕微鏡
JP5484879B2 (ja) 超解像顕微鏡
US9772484B2 (en) Light modulating device
JP6088496B2 (ja) 収差補正デバイス及びレーザー顕微鏡
US7095556B2 (en) Microscope with wavelength compensation
WO2008026435A1 (en) Microscope
JP2010015026A (ja) 超解像顕微鏡およびこれに用いる空間変調光学素子
JP5885546B2 (ja) 光学素子、光学素子を備えた顕微鏡装置ならびに光学素子の組み立て方法
JP3613402B2 (ja) 光学顕微鏡を用いて緻密なライン幅構造を映像化する方法及び装置
WO2017082357A1 (ja) 超解像顕微鏡
JP6785805B2 (ja) 照明装置及び照明光生成方法
JP2018087885A (ja) 偏光制御装置および偏光制御方法
JP2005284081A (ja) 光学素子および光ピックアップならびに記録/再生装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010616.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747570

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012501912

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13581248

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011747570

Country of ref document: EP