JP2010010864A - 電圧制御発振器 - Google Patents

電圧制御発振器 Download PDF

Info

Publication number
JP2010010864A
JP2010010864A JP2008165344A JP2008165344A JP2010010864A JP 2010010864 A JP2010010864 A JP 2010010864A JP 2008165344 A JP2008165344 A JP 2008165344A JP 2008165344 A JP2008165344 A JP 2008165344A JP 2010010864 A JP2010010864 A JP 2010010864A
Authority
JP
Japan
Prior art keywords
controlled oscillator
variable capacitance
voltage controlled
voltage
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008165344A
Other languages
English (en)
Inventor
Kenichi Hosoya
健一 細谷
Hiroyuki Okada
博之 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2008165344A priority Critical patent/JP2010010864A/ja
Priority to US12/489,789 priority patent/US7893782B2/en
Publication of JP2010010864A publication Critical patent/JP2010010864A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/10Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range
    • H03L7/113Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using frequency discriminator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1206Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification
    • H03B5/1212Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the amplifier comprising a pair of transistors, wherein an output terminal of each being connected to an input terminal of the other, e.g. a cross coupled pair
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1228Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more field effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/124Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/1262Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising switched elements
    • H03B5/1265Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising switched elements switched capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/003Circuit elements of oscillators
    • H03B2200/0034Circuit elements of oscillators including a buffer amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L2207/00Indexing scheme relating to automatic control of frequency or phase and to synchronisation
    • H03L2207/05Compensating for non-linear characteristics of the controlled oscillator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

【課題】VCO利得の変動を抑圧した簡易な構成のVCOの提供。
【解決手段】二つの周波数可変手段を具備することでマルチバンド動作を行なう電圧制御発振器(VCO)において、可変容量素子11iaと12ia及び11ibと12ib(i=1、2、3)をそれぞれ互いに極性が逆になる向きに並列接続可能とし、可変容量素子対を形成する。一般に、可変容量素子11iaと12ia、11ibと12ib(i=1、2、3)の容量値は異なる値に設定される。これらの可変容量素子対は、ループコントロール端子3に印加されるコントロール電圧VCNTにより制御されると同時に、帯域設定信号VSW1、VSW2、VSW3によってオンオフされるスイッチ素子であるトランジスタ101a、102a、103a、101b、102b、103bの切替により、VCO本体に電気的に分離・接続される。
【選択図】図1

Description

本発明は、電圧制御発振器(VCO)に関し、特に、マルチバンドで動作する電圧制御発振器に関する。
電圧制御発振器は、様々な電子機器において広く使用されている。特にPLL(位相ロックループ)回路やCDR(クロック・データ再生回路)では、ループ中において電圧制御発振器が用いられ、所望のクロック信号を発生している。このような電圧制御発振器は、高い周波数帯で使用される場合、インダクタと電圧制御可能な可変容量素子との共振回路によって構成されることが多い。さらに、通信機器などに用いられる場合、マルチバンドで動作するように可変容量素子を複数備え、これらの可変容量素子を切り替えて発振周波数を変更するように構成される。
図29は、マルチバンドで動作する差動型の電圧制御発振器の典型的な例を示す回路図である。この電圧制御発振器(VCO)は、電源端子1、出力端子2a、2b、ループコントロール端子3、周波数帯切替端子41、42、43、交差結合されるNMOSトランジスタ5a、5b、交差結合されるPMOSトランジスタ6a、6b、インダクタ7、可変容量素子8a、8b、切替容量部13c、13d、出力バッファ16、とから構成される。可変容量素子8a、8bで構成される部分を、可変容量部9a、9bと呼ぶ。
NMOSトランジスタ5aは、ソースを接地し、ドレインを、切替容量部13cの一端、出力バッファ16の一方の入力端、可変容量素子8aの一端、インダクタ7の一端、PMOSトランジスタ6aのドレインに接続する。NMOSトランジスタ5bは、ソースを接地し、ドレインを、切替容量部13dの一端、出力バッファ16の他方の入力端、可変容量素子8bの一端、インダクタ7の他端、PMOSトランジスタ6bのドレインに接続する。PMOSトランジスタ6a、6bのソースは、電源端子1に接続される。可変容量素子8aの他端、可変容量素子8bの他端は、共通にループコントロール端子3に接続される。
切替容量部13cは、固定容量素子181a、182a、183a、スイッチ素子であるトランジスタ101a、102a、103aを備える。切替容量部13dは、固定容量素子181b、182b、183b、スイッチ素子であるトランジスタ101b、102b、103bを備える。トランジスタ101a、102a、103a、101b、102b、103bのそれぞれの一端は、接地される。トランジスタ10ia(i=1、2、3)の他端は、それぞれ固定容量素子18iaを介して切替容量部13cの一端とされる。トランジスタ10ib(i=1、2、3)の他端は、それぞれ固定容量素子18ibを介して切替容量部13dの一端とされる。トランジスタ10ia(i=1、2、3)の制御端とトランジスタ10ib(i=1、2、3)の制御端は、それぞれ周波数帯切替端子4i
に接続される。
出力バッファ16は、出力トランジスタ14a、14b、出力抵抗15a、15bを備える。出力トランジスタ14aは、ソースを接地し、ゲートを出力バッファ16の一方の入力端とし、ドレインを出力端子2bに接続すると共に出力抵抗15aを介して電源端子1に接続する。出力トランジスタ14bは、ソースを接地し、ゲートを出力バッファ16の他方の入力端とし、ドレインを出力端子2aに接続すると共に出力抵抗15bを介して電源端子1に接続する。
固定容量素子181a、182a、183a、181b、182b、183bは、通常MIM(Metal Insulator Metal)容量などの固定容量で実現される。固定容量素子181a、182a、183a、181b、182b、183bのそれぞれの容量値C1、C2、C3、C1、C2、C3において、容量値C1、C2、C3は、通常それぞれ異なる値に設定される。周波数帯切替端子41、42、43へ入力される帯域設定信号VSW1、VSW2、VSW3は、ハイレベル、ローレベルの2値で制御され、切替容量部13c、13dにおける容量値を変更して電圧制御発振器の発振周波数を切り替える。また、この例では3ビットの場合を示したが、このビット数は必要に応じ任意に設定される。
次に、上記のVCOの動作について説明する。NMOSトランジスタ5a、5bで構成される交差結合部、及び、PMOSトランジスタ6a、6bで構成される交差結合部が負性抵抗を発生する。この負性抵抗が回路の他の部分で発生する損失を発振周波数において補償することにより、持続した発振動作が実現される。
発振周波数fは、ループコントロール端子3に与えられる制御電圧vCNTの関数として近似的に、
Figure 2010010864
・・・(1)式
と表される。制御電圧vCNTが中心電圧vCNT0のときの周波数f(vCNT0)を中心周波数と呼ぶこととする。ここでCは、NMOSトランジスタ5a、5b、PMOSトランジスタ6a、6b、等の可変容量部10a、10b以外の部分の寄生的な容量成分の寄与を表す。Cは、可変容量部9a、9bの容量である。CSWは、切替容量部13c、13dの容量を表し、周波数帯切替端子41、42、43への入力信号により、0から(C1+C2+C3)までの8つの値に設定可能である。ただし説明の簡単化の為、スイッチトランジスタ101a、102a、103a、101b、102b、103bの容量を無視する。また、差動回路のため、C、C、及びCSWは、片側のみの寄与分を表す。Lは、インダクタ7のインダクタンスである。
SWの変化により、中心周波数は、離散的に可変となり、マルチバンド動作が可能となる。このとき、VCO利得は、
Figure 2010010864
・・・(2)式
となる。
図29に示した従来のマルチバンドVCOの利得は、(2)式により与えられる。周波数帯切替端子41、42、43の帯域設定信号VSW1、VSW2、VSW3の設定により、中心周波数を変化させマルチバンド化を行う場合、VCO利得の構成要素のうち分母[・]内のCSWのみが変化し、他の要素は不変である。従って、中心周波数の変化に伴い(バンド切替に伴い)VCO利得が変動してしまう。CSWを増大させ(1)式に従い中心周波数を低下させる場合には、(2)式においてVCO利得は減少する。逆にCSWを減少させ(1)式に従い中心周波数を上昇させる場合には、(2)式においてVCO利得は増加する。従って、中心周波数とVCO利得の関係は、図30のようになる。
VCO利得は、PLLやCDRのループ特性に強い影響を与えるパラメータである。VCO利得が中心周波数に依存して変動してしまうと、このVCOを用いて構成したPLLの特性が動作周波数に依存して変動したり、CDRの特性が動作速度に依存して変動したりしてしまう。従って、マルチバンドで動作するPLLやマルチビットレートで動作するCDRの安定な動作が困難になる。
そこで、周波数変換利得(VCO利得)の少ない電圧制御発振器が特許文献1に開示されている。この電圧制御発振器は、第一の可変容量素子と第一の切替容量部の並列回路と、第二の可変容量素子と第二の切替容量部の直列回路を用いた構成となっている。
また、特許文献2には、PLLループ中に、チャージポンプ回路の出力信号に対し電圧変換を行う電圧調整回路を挿入し、この電圧調整回路の電圧変換係数をVCOの周波数帯切替信号に応じて変化させるPLL回路構成が開示されている。
さらに、特許文献3には、インダクタと、制御電圧により容量値を可変とされた複数の可変容量を有する共振回路を備える電圧制御発振器であって、可変容量設定信号により選択動作を制御され、複数の可変容量の中から制御電圧を供給する可変容量を選択する可変容量選択部を備え、複数の可変容量の各々は、制御電圧に対する容量変化の極性が異なる2つの可変容量からなる電圧制御発振器が開示されている。
特許文献3の電圧制御発振器についてより詳細に説明する。図31は、特許文献3の電圧制御発振器における共振回路部を具体的に表す回路図である。ここでは、図示の簡略化のために、一組の可変容量に係る共振回路のみを取り出して示している。この共振回路は、インダクタLと、制御電圧VCONTにより容量値を可変とされた可変容量C101、C102とを有する。可変容量C101、C102は、可変容量設定信号により選択動作がなされ、連動するスイッチ素子S101、S102によって一端が電源VDDに接続されるか制御電圧VCONTが供給されるかが選択される。なお、可変容量C101、C102は、制御電圧VCONTに対する容量変化の極性が互いに異なる。
特開2007−267353号公報 特開2005−311690号公報 特開2004−254162号公報
以下の分析は本発明において与えられる。
特許文献1に開示された電圧制御発振器によれば、周波数帯切替に伴うVCO利得の変動の抑圧が可能である。しかし、可変容量素子、切替容量素子の数が増加する等、高周波特性に強く影響する部分の回路構成が複雑になり、占有面積の増大や設計性の劣化といった問題がある。
また、特許文献2に開示された技術によれば、周波数帯切替に伴うループ全体の利得変動を抑圧することが可能である。しかし、VCOの利得変動を他のブロックの特性で補償する方法には、ループ設計の煩雑化、VCOの汎用性の低下、等の問題が残る。また電圧調整回路の実現には複雑な回路構成が必要であり、消費電力やチップ面積の点でも問題がある。
さらに、特許文献3に開示された電圧制御発振器によれば、図31においてスイッチ素子S101、S102が制御電圧VCONTを選択しない場合、制御電圧VCONTに依存しない一定の容量が共振回路に接続された状態となる。したがって、回路構成が複雑になる上に、常に付加されることになる一定の容量のために中心周波数の制御範囲が制限されてしまう。このため同じ中心周波数の制御範囲を実現しようとすれば、より大きな可変容量素子を用いる必要が生じ、回路規模が増大してしまう虞がある。
本発明は、構成が簡単で回路規模の小さな電圧制御発振器を提供することを目的とする。
上記の目的を達成するため、本発明の1つのアスペクト(側面)に係る電圧制御発振器は、共振回路を構成するインダクタと可変容量素子群とを備える電圧制御発振器であって、可変容量素子群は、容量に対する制御電圧感度比の絶対値が互いに異なる第1および第2の可変容量素子を並列形態に接続可能となるように含んで構成され、第1および第2の可変容量素子は、双方の一端に共振回路の共振周波数を制御するための制御電圧が供給され、共振周波数の存在する帯域を決定するための帯域設定信号によって他端が選択的にインダクタに接続される。
本発明の電圧制御発振器において、第1および第2の可変容量素子は、他端が第1のスイッチ素子を介してインダクタに接続され、第1のスイッチ素子は、帯域設定信号によってオンオフ可能とされてもよい。
本発明の電圧制御発振器において、第1および第2の可変容量素子は、素子サイズが互いに異なっていてもよい。
本発明の電圧制御発振器において、第1および第2の可変容量素子は、容量に対する制御電圧感度比の極性が互いに異なっていてもよい。
本発明の電圧制御発振器において、第1および第2の可変容量素子は、容量に対する制御電圧感度比の極性が互いに同じであってもよい。
本発明の電圧制御発振器において、可変容量素子群は、第3の可変容量素子と第2のスイッチ素子との第1の直列回路をさらに含み、第3の可変容量素子は、一端に制御電圧が供給され、他端が第2のスイッチ素子を介してインダクタに接続され、第2のスイッチ素子は、帯域設定信号によってオンオフ可能とされてもよい。
本発明の電圧制御発振器において、可変容量素子群は、固定容量素子と第3のスイッチ素子との第2の直列回路をさらに含み、第2の直列回路は、一端を接地し、他端をインダクタに接続し、第3のスイッチ素子は、帯域設定信号によってオンオフ可能とされてもよい。
本発明の電圧制御発振器において、差動の発振信号を出力可能としてもよい。
本発明の電圧制御発振器において、単相の発振信号を出力可能としてもよい。
本発明の位相ロックループ回路は、上記の電圧制御発振器を用いてもよい。
本発明のクロック・データ再生回路は、上記の電圧制御発振器を用いてもよい。
本発明によれば、構成が簡単で規模の小さな回路が構成される。
本発明の実施形態に係る電圧制御発振器は、コントロール電圧が印加される第一の可変容量素子とは別に第二の周波数可変手段を有するマルチバンド電圧制御発振器において、容量の大きさと電圧感度が独立に制御可能な可変容量回路を具備し、前記可変容量回路の一方の端子に前記コントロール電圧が印加され、前記可変容量回路の他方の端子にはスイッチ素子が接続され、前記スイッチ素子が前記第二の周波数可変手段のコントロール信号により制御されることを特長とする電圧制御発振器であって、前記可変容量回路とスイッチ素子により構成される回路が一組以上接続される。
電圧制御発振器において、コントロール電圧が印加される第一の可変容量素子とは別に第二の周波数可変手段を有するマルチバンド電圧制御発振器において、2つの可変容量素子が極性を逆にして並列に接続された可変容量素子対を具備し、前記可変容量素子対の一方の端子に前記コントロール電圧が印加され、前記可変容量素子対の他方の端子にはスイッチ素子が接続され、前記スイッチ素子が前記第二の周波数可変手段のコントロール信号により制御されることを特長とする電圧制御発振器であって、前記可変容量素子対とスイッチ素子により構成される回路が一組以上接続されてもよい。
電圧制御発振器において、可変容量素子対を構成する可変容量素子どうしの素子サイズがお互いに異なってもよい。
電圧制御発振器において、前記可変容量素子対の一部が、ひとつの可変容量素子で置換されてもよい。
電圧制御発振器において、可変容量素子対とスイッチ素子により構成される回路の組の一部が、固定容量素子とスイッチ素子で構成された回路で置換されてもよい。
電圧制御発振器において、可変容量素子対とスイッチ素子により構成される回路の組の一部が、ひとつの可変容量素子とスイッチ素子で構成された回路、及び固定容量素子とスイッチ素子で構成された回路、で置換されてもよい。
電圧制御発振器において、可変容量素子対が、極性が逆向きのものを含む3つ以上の可変容量素子から構成されてもよい。
本発明の実施形態に係る他の電圧制御発振器は、コントロール電圧が印加される第一の可変容量素子とは別に第二の周波数可変手段を有するマルチバンド電圧制御発振器において、可変容量素子とスイッチ素子により構成される回路が一組以上接続され、前記可変容量素子の一方の端子に前記コントロール電圧が印加され、前記可変容量素子の他方の端子にはスイッチ素子が接続され、前記スイッチ素子が前記第二の周波数可変手段のコントロール信号により制御されることを特長とする電圧制御発振器であって、前記可変容量素子の極性の向きが異なって接続されたものが混在している。
電圧制御発振器において、コントロール電圧が印加される第一の可変容量素子とは別に第二の周波数可変手段を有するマルチバンド電圧制御発振器において、可変容量素子とスイッチ素子により構成される回路が一組以上接続され、それとは別に固定容量素子とスイッチ素子で構成された回路が一組以上接続され、前記可変容量素子の一方の端子に前記コントロール電圧が印加され、前記可変容量素子の他方の端子にはスイッチ素子が接続され、前記スイッチ素子が前記第二の周波数可変手段のコントロール信号により制御されることを特長とする電圧制御発振器であって、前記可変容量素子の極性の向きが異なって接続されたものが混在してもよい。
電圧制御発振器において、可変容量素子対とスイッチ素子により構成される回路の組の一部が、固定容量素子とスイッチ素子で構成された回路で置換されてもよい。
電圧制御発振器において、コントロール電圧が印加される第一の可変容量素子とは別に第2の周波数可変手段を有するマルチバンド電圧制御発振器において、可変容量素子とスイッチ素子により構成される回路が一組以上接続され、前記可変容量素子の一方の端子に前記コントロール電圧が印加され、前記可変容量素子の他方の端子にはスイッチ素子が接続され、前記スイッチ素子が前記第二の周波数可変手段のコントロール信号により制御されることを特長とする電圧制御発振器であって、前記可変容量素子の極性の向きが前記第一の可変容量素子の極性の向きに揃って接続されてもよい。
電圧制御発振器において、コントロール電圧が印加される第一の可変容量素子とは別に第二の周波数可変手段を有するマルチバンド電圧制御発振器において、単位容量当たりの容量の電圧感度が異なる2つの種類の可変容量素子が並列に接続された可変容量素子対を具備し、前記可変容量素子対の一方の端子に前記コントロール電圧が印加され、前記可変容量素子対の他方の端子にはスイッチ素子が接続され、前記スイッチ素子が前記第二の周波数可変手段のコントロール信号により制御されることを特長とする電圧制御発振器であって、前記可変容量素子対とスイッチ素子により構成される回路が一組以上接続されてもよい。
電圧制御発振器において、コントロール電圧が印加される第一の可変容量素子とは別に第二の周波数可変手段を有するマルチバンド電圧制御発振器において、単位容量当たりの容量の電圧感度が異なる2つの種類の可変容量素子が極性を逆向きに並列に接続された可変容量素子対を具備し、前記可変容量素子対の一方の端子に前記コントロール電圧が印加され、前記可変容量素子対の他方の端子にはスイッチ素子が接続され、前記スイッチ素子が前記第二の周波数可変手段のコントロール信号により制御されることを特長とする電圧制御発振器であって、前記可変容量素子対とスイッチ素子により構成される回路が一組以上接続されてもよい。
電圧制御発振器において、可変容量素子対が、単位容量当たりの電圧感度が異なるものを含む3つ以上の可変容量素子から構成されてもよい。
電圧制御発振器において、コントロール電圧が印加される第一の可変容量素子を具備しなくともよい。
電圧制御発振器において、第二の周波数可変手段に含まれるスイッチ素子がトランジスタで構成されてもよい。
上記の電圧制御発振器は、差動電圧制御発振器であってもよく、単相電圧制御発振器であってもよい。
本発明の位相ロックループ回路において、上記の電圧制御発振器を用いてもよい。
本発明のクロック・データ再生回路において、上記の電圧制御発振器を用いてもよい。
以上のような、二つの周波数可変手段を有することでマルチバンド動作を行なう電圧制御発振器において、コントロール電圧により制御される2つの可変容量素子を極性を逆にして並列に接続した可変容量素子対を形成し、これをスイッチにより分離・接続する。この可変容量素子対は、その容量値と電圧感度を独立に制御可能である。従って、中心周波数の制御幅とVCO利得を独立に制御可能となる。この性質を利用する事で、マルチバンドVCOにおける中心周波数制御時のVCO利得変動を抑圧する効果を有する。
また、VCO利得変動の抑圧を、回路構成の複雑化を殆ど伴わずに実現することができる。従って、ミリ波帯等の超高周波帯への適用時には特に有効である。さらに、固定容量素子を使用しない、あるいは使用数を削減できる為、回路の小型化にも寄与する。
以下、図面を参照して本発明の実施例について詳細に説明する。
図1は、本発明の第1の実施例に係る電圧制御発振器の回路図である。図1において、電圧制御発振器は、電源端子1、出力端子2a、2b、ループコントロール端子(制御端子)3、周波数帯切替端子41、42、43、ドレインとゲートがそれぞれ交差結合されたNMOSトランジスタ5a、5b、ドレインとゲートがそれぞれ交差結合されたPMOSトランジスタ6a、6b、インダクタ7、可変容量素子8a、8b、切替容量部13a、13b、出力バッファ16を備える。可変容量素子8a、及び8bで構成される部分を、それぞれ可変容量部9a、9bと呼ぶ。
NMOSトランジスタ5aは、ソースを接地し、ドレインを、切替容量部13aの一端、出力バッファ16の一方の入力端、可変容量素子8aの一端、インダクタ7の一端、PMOSトランジスタ6aのドレインに接続する。NMOSトランジスタ5bは、ソースを接地し、ドレインを、切替容量部13bの一端、出力バッファ16の他方の入力端、可変容量素子8bの一端、インダクタ7の他端、PMOSトランジスタ6bのドレインに接続する。PMOSトランジスタ6a、6bのソースは、電源端子1に接続される。切替容量部13aの他端、切替容量部13bの他端、可変容量素子8aの他端、可変容量素子8bの他端は、共通にループコントロール端子3に接続される。
切替容量部13aは、可変容量素子111a、112a、113a、121a、122a、123a、スイッチ素子であるトランジスタ101a、102a、103aを備える。切替容量部13bは、可変容量素子111b、112b、113b、121b、122b、123b、スイッチ素子であるトランジスタ101b、102b、103bを備える。トランジスタ101a、102a、103aのそれぞれの一端は、共通に切替容量部13aの一端とされる。トランジスタ101b、102b、103bのそれぞれの一端は、共通に切替容量部13bの一端とされる。トランジスタ10ia(i=1、2、3)の他端は、並列接続される可変容量素子11ia、12iaを介して切替容量部13aの他端とされる。トランジスタ10ib(i=1、2、3)の他端は、並列接続される可変容量素子11ib、12ibを介して切替容量部13bの他端とされる。
出力バッファ16は、出力トランジスタ14a、14b、出力抵抗15a、15bを備える。出力トランジスタ14aは、ソースを接地し、ゲートを出力バッファ16の一方の入力端とし、ドレインを出力端子2bに接続すると共に出力抵抗15aを介して電源端子1に接続する。出力トランジスタ14bは、ソースを接地し、ゲートを出力バッファ16の他方の入力端とし、ドレインを出力端子2aに接続すると共に出力抵抗15bを介して電源端子1に接続する。
可変容量素子11iaと12ia(i=1、2、3)は、互いに極性が逆になる向きに並列に接続され、可変容量素子対を形成する。同様に、可変容量素子11ibと12ib(i=1、2、3)も、また互いに極性が逆になる向きに並列に接続され、可変容量素子対を形成する。ここで、可変容量素子11ia、11ib(i=1、2、3)の向きを、可変容量素子8a、8bと同じ極性の向き(ループコントロール電圧が印加される端子の極性が同じ)という意味で「順極性」の向き、可変容量素子12ia、12ib(i=1、2、3)の向きを、その逆の意味で「逆極性」の向きと呼ぶ。
可変容量素子8a、8bの容量値を、ループコントロール端子3のループコントロール電圧(制御電圧)vCNTの関数としてCv(vCNT)と表す。可変容量素子11ia、11ib(i=1、2、3)の容量値を可変容量素子8a、8bの容量値のk倍として、kCv(vCNT)と表す。一般に可変容量素子11ia、11ib(i=1、2、3)のサイズは、可変容量素子8a、8bのサイズのk倍である。通常、k(i=1、2、3)の値は、それぞれ異なる値に設定する。同様に、可変容量素子12ia、12ib(i=1、2、3)の容量値を可変容量素子8a、8bの容量値のm倍として、mCv(vCNT)と表す。一般に可変容量素子12ia、12ib(i=1、2、3)のサイズは、可変容量素子8a、8bのサイズのm倍である。通常、m(i=1、2、3)の値は、それぞれ異なる値に設定される。また、kとm(i=1、2、3)も互いに異なる値に設定する。
可変容量素子11iaと12ia(i=1、2、3)で形成される可変容量素子対、及び可変容量素子11ibと12ib(i=1、2、3)で形成される可変容量素子対は、周波数帯切替端子41、42、43へ与えられるそれぞれの帯域設定信号VSW1、VSW2、VSW3の切替により、VCO本体に電気的に分離・接続される。すなわち、インダクタ7と、可変容量素子群(可変容量部9a、9b、切替容量部13a、13b)とで構成される共振回路の共振周波数の存在する周波数帯域が、帯域設定信号VSW1、VSW2、VSW3によって切り替えられる。なお、図1の例では3ビットの場合を示したが、このビット数は必要に応じ任意に設定される。
次に、この電圧制御発振器の基本的な動作を説明する。NMOSトランジスタ5a、5bで構成される交差結合部、及び、PMOSトランジスタ6a、6bで構成される交差結合部が負性抵抗を発生する。この負性抵抗が回路の他の部分で発生する損失を発振周波数において補償することにより、持続した発振動作が実現される。
出力バッファ16は、出力レベルや出力振幅を適正値に設定したり、電圧制御発振器の発振周波数への外部回路の影響を遮断する等の働きをする。ただしこのバッファ回路の構成は任意であり、バッファ回路の具備自体、本発明の必須用件ではない。
ここで、可変容量素子の容量対制御電圧特性(C−V特性)について説明する。図2に、CMOS(Complementary Metal Oxide Semiconductor)プロセスにおいて可変容量素子として用いられるアキュミュレーションモード・バラクタのC−V特性の一例を示す。図2に示すように、ループコントロール電圧vCNTの中心電圧v0を適切な値に設定することにより、可変容量特性Cv(vCNT)は、中心電圧v0に関し対称になる。以下の説明では、このように可変容量Cv(vCNT)が、中心電圧v0に関し対称の特性を有する場合について説明する。ただし、この前提は議論の簡単化の為のものであって、本発明の必須用件ではない。従って、用いられる可変容量素子も上記のものに限られない。
次に、図1に示した回路の詳細な動作及び効果を説明するために、先ず図3に示す回路の動作について説明する。図1の回路の可変容量素子対が極性を逆向きにした可変容量素子の並列接続で構成されていたのに対し、図3の回路では極性が同じ向きの可変容量素子の並列接続で構成されている。この回路は、図4に示すように可変容量素子対を一つの可変容量で置換したものと同等である。すなわち、可変容量素子11iaと12ia(i=1、2、3)は、可変容量素子17iaとして表され、可変容量素子11ibと12ib(i=1、2、3)は、可変容量素子17ibとして表される。
したがって、図3に示す電圧制御発振器の発振周波数fは、近似的に、
Figure 2010010864
・・・(3)式
と表される。ここでnは、バンド切替のビット数であり、図3の例ではn=3である。また、Cは、交差結合トランジスタ5a、5b、6a、6b、等の可変容量部9a、9b、及び切替容量部13a、13b以外の部分の寄生的な容量成分を表す。Δは、2つの値をとる変数であって、帯域設定信号VSWiがHighレベルのときΔ=1、LowレベルのときΔ=0である(i=1、2、・・・、n)。
ループコントロール電圧vCNTが中心電圧vのときの周波数f(vCNT=v)を中心周波数と呼ぶこととする。この中心周波数は、
Figure 2010010864
・・・(4)式
で与えられる。帯域設定信号VSWi(i=1、2、・・・、n)の設定により、中心周波数は離散的に可変となり、マルチバンド動作が可能となる。
このとき、VCO利得は、
Figure 2010010864
・・・(5)式
となる。
従って、
Figure 2010010864
・・・(6)式
が全てのスイッチ状態(2n通り、3ビットの場合は8通り)に対して満たされれば、VCO利得変動は、完全に抑圧される。(6)式を満たす解k+m>0(i=1、2、・・・、n)が存在するかどうかは、条件(CとCの比)により決まる。ただし、もしそのような解が存在する場合であっても、そもそも(k+m)の値は、中心周波数の変化量を決める量であり、所要性能から決められるべき量である。従って、一般に、図3に示す回路で、所要性能を考慮しながら中心周波数切替時のVCO利得変動を抑圧することは困難である。
これに対し、図1に示す電圧制御発振器の発振周波数fは、近似的に、
Figure 2010010864
・・・(7)式
と表される。図1の例では、やはりn=3である。
中心周波数は、
Figure 2010010864
・・・(8)式
となり、これは(4)式に一致する。
また、VCO利得は、
Figure 2010010864
・・・(9)式
で与えられる。
(8)式及び(9)式の分母の(k+m)C(vCNT=v)の項は、i番目のスイッチがオンすることによって付加される可変容量値であり、中心周波数の変化量を決める。従って先に述べたように、(k+m)の値は、所要性能から決められるべき量である。一方、(9)式の分子には、(k−m)という項が現れる。図3に示した回路のVCO利得を与える(5)式では、この項が(k+m)であった。その結果、中心周波数の変化量を決めればVCO利得も決まってしまい、VCO利得の設定に自由度は無かった。しかし、図1に示した回路では、中心周波数の変化量が決まってもVCO利得の設定には自由度がある。すなわち、(k+m)の値が決まっても(k−m)の値は、−|k+m|から|k+m|の範囲で回路設計時に自由に設定することができる。この結果、生じるVCO利得の自由度を利用して、中心周波数制御に伴うVCO利得変動を抑圧することができる。
次に、上記の説明を図を用いて説明する。図5は、図1に示した回路における一つの可変容量素子対の容量対制御電圧特性を示したものである。順極性の可変容量素子の容量−コントロール電圧特性の傾き(荒い破線)は、逆極性の可変容量素子の容量−コントロール電圧特性の傾き(細かい破線)により弱められ、可変容量素子対の容量−コントロール電圧特性の傾き(実線)が決まっている。順極性の可変容量素子の大きさと逆極性の可変容量素子の大きさの和を一定に保持しながら両者の配分比を変化させることで、可変容量素子対の中心電圧における絶対値とは独立に傾きを制御可能となる。逆極性の可変容量素子のほうを大きくすれば、全体の傾きの符号を逆にすることも可能である。図6は、このときの可変容量素子対の中心電圧における絶対値と、コントロール電圧に対する傾きの関係を示したものである。可変容量素子対の中心電圧における絶対値の各値に対して、図6中の斜線部の範囲でコントロール電圧に対する傾きを制御することが可能である。このことは、スイッチ設定切替による周波数切替幅が決まっていても、VCO利得をある範囲で自由に設定できることを意味している。
これに対し、図7は、図3に示した回路における一つの可変容量素子対の容量−コントロール電圧特性を示したものである。順極性の可変容量素子の容量−コントロール電圧特性の傾き(荒い破線)と、順極性の可変容量素子の容量−コントロール電圧特性の傾き(細かい破線)は、そのまま足し合わされ、可変容量素子対の容量−コントロール電圧特性の傾き(実線)が決まっている。順極性の可変容量素子の大きさと逆極性の可変容量素子の大きさの和が決まってしまえば、可変容量素子対の可変容量素子対の容量−コントロール電圧特性の傾きは、一意に決まってしまう。図8は、このときの可変容量素子対の中心電圧における絶対値と、コントロール電圧に対する傾きの関係を図示したものである。可変容量素子対の中心電圧における絶対値の各値に対して、コントロール電圧に対する傾きは、図中の直線上の値に一意に決まってしまう。このことは、スイッチ設定切替による周波数切替幅が決まっていれば、VCO利得も自動的に決まってしまうことを意味している。
以上説明したVCO利得変動抑圧の効果を回路シミュレーションにより確認した。本発明の回路(図1)、及び従来の回路(図29)について、周波数切替信号の設定を8段階に切替えることによって中心周波数を変化させたときのVCO利得変動を図9に示す。シミュレーションは、ハーモニック・バランス法(調波平衡法)により行った。40Gbps光通信システム用途を想定し、中心周波数範囲が39.8GHz(OC−768)、43.01GHz(OTU−3)、及び44.57GHz(10GbE×4)をカバーするよう設計を行った。従来の技術に比較し本発明では、中心周波数制御に伴うVCO利得変動を1/8程度に抑圧できていることが分かる。
以上説明したように、本実施例のマルチバンドVCOでは、中心周波数の制御を行う際のVCO利得の変動を抑圧することが可能となる。また本実施例によれば、このような効果を、回路構成の複雑化を殆ど伴わずに実現することができる。従って、特にミリ波帯等の超高周波帯への適用時には有効である。さらには、固定容量素子を使用しない、あるいは使用数を削減できる為、回路の小型化にも寄与する。
図10は、本発明の第2の実施例に係る電圧制御発振器の回路図である。図1に示した電圧制御発振器と同一部には同一の符号を付し説明を省略する。第1の実施例の電圧制御発振器では、全てのビットで可変容量素子対を形成していた。しかし、VCO利得変動を所望の範囲に抑えられるならば、一部のビットを一つの可変容量素子で構成することも可能である。図10に示す回路は、3ビット中の2番目のビットに対応するそれぞれの可変容量素子対をひとつの可変容量素子112a、112bでそれぞれ構成した例である。
図11は、本発明の第3の実施例に係る電圧制御発振器の回路図である。図1に示した電圧制御発振器と同一部には同一の符号を付し説明を省略する。第1の実施例の電圧制御発振器では、全てのビットで可変容量素子対を形成していた。しかし、VCO利得変動を所望の範囲に抑えられるならば、一部のビットを固定容量素子で構成することも可能である。図11に示す回路は、3ビット中の2番目のビットに対応するそれぞれの可変容量素子対をひとつの固定容量素子182a、182bでそれぞれ構成した例である。
図12は、本発明の第4の実施例に係る電圧制御発振器の回路図である。図1に示した電圧制御発振器と同一部には同一の符号を付し説明を省略する。本実施例は、図10に示した回路構成と、図11に示した回路構成の混合形に相当する。すなわち、3ビット中の2番目のビットに対応する可変容量素子対をひとつの固定容量素子182a、182bでそれぞれ構成し、3ビット中の3番目のビットに対応するそれぞれの可変容量素子対をひとつの可変容量素子113a、113bでそれぞれ構成した例である。
図13は、本発明の第5の実施例に係る電圧制御発振器の回路図である。図1に示した電圧制御発振器と同一部には同一の符号を付し説明を省略する。本実施例の電圧制御発振器では、切替容量部13a、13bの各ビットに対応する可変容量素子対が一つの可変容量素子で構成され、可変容量素子の接続方向が順方向および逆方向とで混合している。図13では切替容量部13a、13bは、順方向2ビット、逆方向2ビット(全4ビット)で構成した例である。
本実施例の電圧制御発振器の動作について説明する。可変容量Cと寄生容量Cを含むVCO本体に可変容量素子kが順方向に接続されたとき、VCO利得は、(5)式と同様に、
Figure 2010010864
・・・(10)式
で与えられる。このとき、可変容量素子kの付加によってVCO利得が増大するか、減少するか、あるいは不変かは、k、及びC/Cの値によって決まる。
本実施例は、可変容量素子kの付加によってVCO利得が増大する場合を想定する。一方、可変容量Cと寄生容量Cを含むVCO本体に可変容量素子mが逆方向に接続されたとき、VCO利得は、
Figure 2010010864
・・・(11)式
となる。この場合、可変容量素子mの付加によってVCO利得は減少する。
従って、切替容量部13a、13bの各ビットを一つの可変容量素子で構成し、可変容量素子の接続方向を順方向および逆方向で適当な割合に混合しておけば、中心周波数の変化に応じてVCO利得が単調に一方向に変化してしまうことはなく、増減を繰り返しながらある一定の範囲内に収める事ができる。
図14は、本発明の第6の実施例に係る電圧制御発振器の回路図である。図14において、図13に示した電圧制御発振器と同一部には同一の符号を付し説明を省略する。本実施例の電圧制御発振器では、図13における逆極性の方向に接続された可変容量素子をそれぞれ固定容量素子182a、184a、182b、184bで置換している。動作原理は、第5の実施例で説明したものと同様である。
図15は、本発明の第7の実施例に係る電圧制御発振器の回路図である。図15において、図13に示した電圧制御発振器、図14に示した電圧制御発振器と同一部には同一の符号を付し説明を省略する。本実施例の電圧制御発振器は、図13に示した第5の実施例の電圧制御発振器、図14に示した第6の実施例の電圧制御発振器の混合形である。すなわち、順極性方向の可変容量素子、逆方向の可変容量素子、固定容量素子が混在している。動作原理は、第5及び第6の実施例で説明したものと同様である。
図16は、本発明の第8の実施例に係る電圧制御発振器の回路図である。図16において、図1に示した第1の実施例の電圧制御発振器と同一部には同一の符号を付し説明を省略する。本実施例の電圧制御発振器では、切替容量部13a、13bの各ビットは一つの順方向に接続された可変容量素子で構成されている。すなわち図4と同等である。第5の実施例の説明において、順方向に接続された可変容量素子kの付加によりVCO利得が増大するか、減少するか、あるいは不変かは、k、及びC/Cの値により決まると述べた。本実施例では、可変容量素子kの付加によってVCO利得がほぼ不変となる場合を想定している。ただし、第1の実施例の説明で述べたようにkの値は、所要性能から決められるべき量であるため、このような条件が満足される事は多くはない。
図17は、本発明の第9の実施例に係る電圧制御発振器の回路図である。図17において、図1に示した第1の実施例の電圧制御発振器と同一部には同一の符号を付し説明を省略する。本実施例の電圧制御発振器では、切替容量部13a、13bの各ビットは異なる種類の可変容量素子A(19ia、19ib(i=1、2、3))、及び可変容量素子B(20ia、20ib(i=1、2、3))から成る可変容量素子対で構成されている。ここで「異なる種類の可変容量」とは、図18に示すように、それぞれの素子サイズを中心電圧における容量値が同じになるように選んだ時、ループコントロール電圧vCNTに対する傾きの異なる容量素子のことを指す。関数C (vCNT)、及びC (vCNT)は、C (vCNT=v)=C (vCNT=v)=Cv(vCNT=v)となるよう規格化している。
図19は、図17に示した回路における一つの可変容量素子対の容量−コントロール電圧特性を示したものである。異なる単位容量当りの傾きを有する素子を足し合わせることにより、可変容量素子対の中心電圧における絶対値と傾きを独立に制御可能となる。
図20は、このときの可変容量素子対の中心電圧における絶対値と、コントロール電圧に対する傾きの関係を図示したものである。可変容量素子対の中心電圧における絶対値の各値に対して、図中の斜線部の範囲でコントロール電圧に対する傾きを制御可能である。このことは、スイッチ設定切替による周波数切替幅が決まっていても、VCO利得がある範囲で自由に設定できることを意味している。
図21は、本発明の第10の実施例に係る電圧制御発振器の回路図である。図21において、図17に示した電圧制御発振器と同一部には同一の符号を付し説明を省略する。本実施例の電圧制御発振器は、図17に示した第9の実施例の電圧制御発振器に対し、可変容量素子対の一方(20ia、20ib(i=1、2、3))を逆極性の方向に接続を変更したものである。図22は、このときの可変容量素子対の中心電圧における絶対値と、コントロール電圧に対する傾きの関係を図示したものである。可変容量素子対の中心電圧における絶対値の各値に対して、図中の斜線部の範囲でコントロール電圧に対する傾きを制御可能である。このことは、スイッチ設定切替による周波数切替幅が決まっていても、VCO利得をある範囲で自由に設定できることを意味している。
図23は、本発明の第11の実施例に係る電圧制御発振器の回路図である。図23において、図17に示した第9の実施例の電圧制御発振器と同一部には同一の符号を付し説明を省略する。本実施例の電圧制御発振器は、図17に示した第9の実施例の電圧制御発振器に対し、可変容量素子対の一方(20ia、20ib(i=1、2、3))を可変容量素子8a、8bと同じ種類の容量素子(12ia、12ib(i=1、2、3))で構成した例である。図21に示した第10の実施例の電圧制御発振器においても同様に、可変容量素子対の一方を可変容量素子8a、8bと同じ種類の容量素子で構成することが可能である。
図24は、本発明の第12の実施例に係る電圧制御発振器の回路図である。図24において、図1に示した電圧制御発振器と同一部には同一の符号を付し説明を省略する。第1の実施例の電圧制御発振器では周波数帯切替を3ビットで行っていたが、このビット数は任意に設定可能である。本実施例の電圧制御発振器においては、一般的にnビット(nは任意の自然数)の場合についてその構成を示している。
これまで述べた他の実施例において、3ビットあるいは4ビットの例を挙げたが、同様に任意のビット数の場合に適用可能である。
図25は、本発明の第13の実施例に係る電圧制御発振器の回路図である。図25において、図1に示した電圧制御発振器と同一部には同一の符号を付し説明を省略する。第1の実施例の電圧制御発振器では、負性抵抗の発生をNMOS及びPMOS両方の交差結合用のトランジスタを用いたコンプリメンタリ(CMOS)型としていた。しかし、本発明は任意の負性抵抗発生回路を用いた電圧制御発振器に適用可能である。本実施例の電圧制御発振器は、その一例として、負性抵抗発生回路を交差結合用のNMOSトランジスタ5a、5bで構成し(NMOS型)、さらに電源端子1とインダクタ7a、7bの間に電流源21を設けた例である。
これまで述べた他の実施例の電圧制御発振器についても、負性抵抗発生回路の形式は問わない。その他、本発明の動作に直接係らない部分の回路形式については、本発明で述べる実施例に限るものではない。
図26は、本発明の第14の実施例に係る位相ロックループ(PLL)回路のブロック図であり、本発明の電圧制御発振器の一応用例を示すものである。図26において、電圧制御発振器27は、図1、図10乃至17、図21、図23乃至25、の何れか一図に示した電圧制御発振器を示している。図1、図10乃至17、図21、図23乃至25、の何れか一図に示した電圧制御発振器の出力は、差動出力であるが、ここでは簡単化の為、出力2a、2bを纏めて出力2として示している。
本実施例のPLL回路は、電圧制御発振器27、リファレンスクロック信号入力端子22、クロック信号出力端子23、位相比較器24、ループフィルタ25、周波数分周器26、を備える。位相比較器24は、電圧制御発振器27の出力2を周波数分周器26で分周した信号と、リファレンスクロック信号入力端子22の信号とを比較し、比較誤差信号をループフィルタ25を介して電圧制御発振器27のループコントロール端子3に供給する。電圧制御発振器27は、周波数帯切替端子41、42、43へ入力する周波数帯切替信号によって発振信号の周波数帯を変更すると共に、比較誤差信号によって発振周波数が可変となるように制御される。
周波数帯切替端子41、42、43へ入力する周波数帯切替信号を変化させることにより、電圧制御発振器の中心周波数帯を切替えることができ、PLL回路は複数周波数帯での動作が可能となる。この際、本発明によりVCO利得は一定に保持される為、PLLループ利得も一定に保持される。従って、複数の動作周波数帯で最適なPLL動作を確保する事が可能となる。
なお、以上の説明では電圧制御発振器以外の構成ブロックの利得が動作周波数帯に依存しない場合を想定した。しかし、電圧制御発振器以外の構成ブロック、例えば位相比較器24などの利得が動作周波数帯によって変化する場合もある。そのような場合には、ループ全体の利得を一定に保持するような特定のVCO利得変動(VCO利得と中心周波数の関係)が求められる。この場合でも本発明の電圧制御発振器27を用いれば、任意のVCO利得と中心周波数の関係を近似的に作り出すことが出来る。
図27は、本発明の第15の実施例に係るクロック・データ再生(CDR)回路のブロック図であり、本発明の電圧制御発振器の一応用例を示すものである。図27において、電圧制御発振器27は、図1、図10乃至17、図21、図23乃至25、の何れか一図に示した電圧制御発振器を示している。
本実施例のCDR回路は、電圧制御発振器27、位相比較器24、ループフィルタ25、データ信号入力端子28、再生クロック信号出力端子29、再生データ信号出力端子30、遅延回路31、フリップ・フロップ回路32を備える。フリップ・フロップ回路32は、データ信号入力端子28における入力信号を電圧制御発振器27の出力2によってリタイミングし、再生データ信号出力端子30と位相比較器24とに出力する。位相比較器24は、フリップ・フロップ回路32の出力信号と、データ信号入力端子28の入力信号を遅延回路31を介して遅延した信号とを比較し、比較誤差信号をループフィルタ25を介して電圧制御発振器27に供給する。電圧制御発振器27は、周波数帯切替端子41、42、43へ入力する周波数帯切替信号によって発振信号の周波数帯を変更すると共に、比較誤差信号によって発振周波数が可変となるように制御される。
周波数帯切替端子41、42、43へ入力する周波数帯切替信号を変化させることにより、電圧制御発振器の中心周波数帯を切替えることができ、CDR回路は、複数のビットレートでの動作が可能となる。この際、本発明によりVCO利得は一定に保持される為、ループ利得も一定に保持される。従って、複数の動作周波数帯で最適なCDR動作を確保する事が可能となる。
なお、以上の説明では電圧制御発振器以外の構成ブロックの利得が動作周波数帯に依存しない場合を想定した。しかし、電圧制御発振器以外の構成ブロック、例えば位相比較器24などの利得が動作周波数帯によって変化する場合もある。そのような場合には、ループ全体の利得を一定に保持するような特定のVCO利得変動(VCO利得と中心周波数の関係)が求められる。この場合であっても、本発明の電圧制御発振器27を用いれば、任意のVCO利得と中心周波数の関係を近似的に作り出すことが出来る。
図28は、本発明の第16の実施例に係るクロック・データ再生(CDR)回路のブロック図であり、本発明の電圧制御発振器の一応用例を示すものである。図28において、電圧制御発振器27は、図1、図10乃至17、図21、図23乃至25、の何れか一図に示した電圧制御発振器を示している。図27に示した第15の実施例のCDRと同一部には同一の符号を付してある。
本実施例では、図27に示したCDR回路に対しビットレート検知回路33が付加されている。ビットレート検知回路33は、データ信号入力端子28における入力信号のビットレートを検知し、その検知結果に基づき、周波数帯切替端子41、42、43へ周波数帯切替信号を出力する。したがって、入力信号のビットレートに応じて自動的に電圧制御発振器27の中心周波数の設定が行われるので、入力信号のビットレートの異なるシステムへも調整無しで適用可能となる。さらに、時間的に入力信号ビットレートが変化するようなシステムへも適用可能である。この際、本発明の電圧制御発振器27によってVCO利得変動も自動的に抑圧される。
以上の全ての実施例において、可変容量部9a、9bを具備しない構成も可能である。
また、以上の実施例においては、差動形式の電圧制御発振器について記したが、本発明は単相形式の電圧制御発振器にも適用可能である。
さらに、以上の実施例においては、スイッチ素子としてトランジスタを用いた例について記したが、他のスイッチ素子を用いる事も可能である。
また、以上の実施例においては、能動素子としてMOSFET(Metal Oxide Semiconductor Field Effect Transistor)を使用した例を示したが、MESFET(Metal Semiconductor Field Effect Transistor)、HEMT(High Electron Mobility Transistor)、バイポーラトランジスタ、HBT(Heterojunction Bipolar Transistor)等を用いた場合も、同様な構成で実現が可能である。
さらに、以上の実施例においては、VCO利得の変動を可能な限り抑圧した設計例を示した。しかし、電圧制御発振器が用いられるPLLループの諸要件から、特定のVCO利得変動(VCO利得と中心周波数の関係)が求められる場合もある。そのような場合であっても本発明の電圧制御発振器を用いれば、任意のVCO利得と中心周波数の関係を近似的に作り出すことが出来る。
なお、前述の特許文献等の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素の多様な組み合わせないし選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
本発明の第1の実施例に係る電圧制御発振器の回路図である。 可変容量素子の容量対制御電圧特性を示す図である。 図1に示した回路の動作を説明するための補助的な回路図である。 図1に示した回路の動作を説明するための補助的な第2の回路図である。 可変容量素子の容量対制御電圧特性を示す図である。 本発明の第1の実施例に係る可変容量素子対の中心電圧における絶対値と、コントロール電圧に対する傾きの関係を示す図である。 可変容量素子の容量対制御電圧特性を示す第2の図である。 可変容量素子対の中心電圧における絶対値と、コントロール電圧に対する傾きの関係を示す第2の図である。 中心周波数を変化させたときのVCO利得変動を示す図である。 本発明の第2の実施例に係る電圧制御発振器の回路図である。 本発明の第3の実施例に係る電圧制御発振器の回路図である。 本発明の第4の実施例に係る電圧制御発振器の回路図である。 本発明の第5の実施例に係る電圧制御発振器の回路図である。 本発明の第6の実施例に係る電圧制御発振器の回路図である。 本発明の第7の実施例に係る電圧制御発振器の回路図である。 本発明の第8の実施例に係る電圧制御発振器の回路図である。 本発明の第9の実施例に係る電圧制御発振器の回路図である。 本発明の第9の実施例に係る可変容量素子の容量対制御電圧特性を示す図である。 本発明の第9の実施例に係る可変容量素子の容量対制御電圧特性を示す第2の図である。 本発明の第9の実施例に係る可変容量素子対の中心電圧における絶対値と、コントロール電圧に対する傾きの関係を示す図である。 本発明の第10の実施例に係る電圧制御発振器の回路図である。 本発明の第10の実施例に係る可変容量素子対の中心電圧における絶対値と、コントロール電圧に対する傾きの関係を示す図である。 本発明の第11の実施例に係る電圧制御発振器の回路図である。 本発明の第12の実施例に係る電圧制御発振器の回路図である。 本発明の第13の実施例に係る電圧制御発振器の回路図である。 本発明の第14の実施例に係る位相ロックループ(PLL)回路のブロック図である。 本発明の第15の実施例に係るクロック・データ再生(CDR)回路のブロック図である。 本発明の第16の実施例に係るクロック・データ再生(CDR)回路のブロック図である。 従来の電圧制御発振器の典型的な例を示す回路図である。 従来のVCOにおける、VCO利得と中心周波数の関係を示す図である。 特許文献3の電圧制御発振器における共振回路部を具体的に表す回路図である。
符号の説明
1 電源端子
2、2a、2b 出力端子
3 ループコントロール端子
41、42、43、4k 周波数帯切替端子
5a、5b NMOSトランジスタ
6a、6b、341a、342a、343a、341b、342b、343b PMOSトランジスタ
7、7a、7b インダクタ
8a、8b 可変容量素子
9a、9b 可変容量部
13a、13b 切替容量部
14a、14b 出力トランジスタ
15a、15b 出力抵抗
16 出力バッファ
21 電流源
22 リファレンスクロック信号入力端子
23 クロック信号出力端子
24 位相比較器
25 ループフィルタ
26 周波数分周器
27 電圧制御発振器
28 データ信号入力端子
29 再生クロック信号出力端子
30 再生データ信号出力端子
31 遅延回路
32 フリップ・フロップ回路
33 ビットレート検知回路
101a、102a、103a、104a、10na、101b、102b、103b、104b、10nb スイッチトランジスタ
111a、112a、113a、114a、11na、111b、112b、113b、114b、11nb、121a、122a、123a、124a、12na、121b、122b、123b、124b、12nb、171a、172a、173a、171b、172b、173b、191a、192a、193a、191b、192b、193b、201a、202a、203a、201b、202b、203b 可変容量素子
181a、182a、183a、184a、181b、182b、183b、184b 固定容量素子

Claims (11)

  1. 共振回路を構成するインダクタと可変容量素子群とを備える電圧制御発振器であって、
    前記可変容量素子群は、容量に対する制御電圧感度比の絶対値が互いに異なる第1および第2の可変容量素子を並列形態に接続可能となるように含んで構成され、
    前記第1および第2の可変容量素子は、双方の一端に前記共振回路の共振周波数を制御するための制御電圧が供給され、前記共振周波数の存在する帯域を決定するための帯域設定信号によって他端が選択的に前記インダクタに接続されることを特徴とする電圧制御発振器。
  2. 前記第1および第2の可変容量素子は、他端が第1のスイッチ素子を介して前記インダクタに接続され、
    前記第1のスイッチ素子は、前記帯域設定信号によってオンオフ可能とされることを特徴とする電圧制御発振器。
  3. 前記第1および第2の可変容量素子は、素子サイズが互いに異なることを特徴とする請求項1または2記載の電圧制御発振器。
  4. 前記第1および第2の可変容量素子は、容量に対する制御電圧感度比の極性が互いに異なることを特徴とする請求項1または2記載の電圧制御発振器。
  5. 前記第1および第2の可変容量素子は、容量に対する制御電圧感度比の極性が互いに同じであることを特徴とする請求項1または2記載の電圧制御発振器。
  6. 前記可変容量素子群は、第3の可変容量素子と第2のスイッチ素子との第1の直列回路をさらに含み、
    前記第3の可変容量素子は、一端に前記制御電圧が供給され、他端が前記第2のスイッチ素子を介して前記インダクタに接続され、
    前記第2のスイッチ素子は、前記帯域設定信号によってオンオフ可能とされることを特徴とする請求項1または2記載の電圧制御発振器。
  7. 前記可変容量素子群は、固定容量素子と第3のスイッチ素子との第2の直列回路をさらに含み、
    前記第2の直列回路は、一端を接地し、他端を前記インダクタに接続し、
    前記第3のスイッチ素子は、前記帯域設定信号によってオンオフ可能とされることを特徴とする請求項1、2、5のいずれか一に記載の電圧制御発振器。
  8. 差動の発振信号を出力可能とする請求項1乃至7のいずれか一に記載の電圧制御発振器。
  9. 単相の発振信号を出力可能とする請求項1乃至7のいずれか一に記載の電圧制御発振器。
  10. 請求項1乃至9のいずれか一に記載の電圧制御発振器を用いた位相ロックループ回路。
  11. 請求項1乃至9のいずれか一に記載の電圧制御発振器を用いたクロック・データ再生回路。
JP2008165344A 2008-06-25 2008-06-25 電圧制御発振器 Pending JP2010010864A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008165344A JP2010010864A (ja) 2008-06-25 2008-06-25 電圧制御発振器
US12/489,789 US7893782B2 (en) 2008-06-25 2009-06-23 Voltage-controlled oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008165344A JP2010010864A (ja) 2008-06-25 2008-06-25 電圧制御発振器

Publications (1)

Publication Number Publication Date
JP2010010864A true JP2010010864A (ja) 2010-01-14

Family

ID=41446664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008165344A Pending JP2010010864A (ja) 2008-06-25 2008-06-25 電圧制御発振器

Country Status (2)

Country Link
US (1) US7893782B2 (ja)
JP (1) JP2010010864A (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8138845B1 (en) * 2009-09-16 2012-03-20 Integrated Device Technology, Inc. Method and apparatus for auto-frequency calibration for multi-band VCO
US9413365B2 (en) 2010-03-11 2016-08-09 Intel Deutschland Gmbh Oscillator with controllable frequency
JP5694696B2 (ja) * 2010-07-15 2015-04-01 ラピスセミコンダクタ株式会社 周波数シンセサイザ装置及び変調周波数変位調整方法
US20120286888A1 (en) * 2011-05-09 2012-11-15 Taiwan Semiconductor Manufacturing Company, Ltd. Switched Capacitor Array for Voltage Controlled Oscillator
JP5847527B2 (ja) * 2011-10-13 2016-01-27 ルネサスエレクトロニクス株式会社 ディジタル制御発振装置および高周波信号処理装置
US9390861B2 (en) * 2013-01-29 2016-07-12 Intel Deutschland Gmbh Capacitance bank systems and methods
TWI739595B (zh) * 2020-09-15 2021-09-11 瑞昱半導體股份有限公司 收發電路以及自校正方法
US11677430B2 (en) * 2020-11-18 2023-06-13 Swiftlink Technologies Inc. Transformer-based current-reuse amplifier with embedded IQ generation for compact image rejection architecture in multi-band millimeter-wave 5G communication

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190709A (ja) * 2000-12-22 2002-07-05 Kawasaki Microelectronics Kk 電圧制御発振回路
JP2003347844A (ja) * 2002-05-29 2003-12-05 Fujitsu Ltd 電圧制御発振器、pll回路及び半導体装置
JP2004147310A (ja) * 2002-10-03 2004-05-20 Matsushita Electric Ind Co Ltd 電圧制御発振器、無線通信機器、電圧制御発振方法
JP2004254162A (ja) * 2003-02-21 2004-09-09 Fujitsu Ltd 電圧制御発振器及びpll回路
WO2006095502A1 (ja) * 2005-03-08 2006-09-14 Nec Corporation 電圧制御発振器および電圧制御発振器の周波数制御方法
JP2007243314A (ja) * 2006-03-06 2007-09-20 Nippon Telegr & Teleph Corp <Ntt> 周波数可変シンセサイザおよび周波数可変発振器
JP2007300582A (ja) * 2006-05-08 2007-11-15 Oki Electric Ind Co Ltd 電圧制御発振器
JP2008099132A (ja) * 2006-10-13 2008-04-24 Nec Corp 電圧制御発振器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064691A (ja) * 2003-08-08 2005-03-10 Sony Ericsson Mobilecommunications Japan Inc 共振回路および電圧制御発振器
EP1583221A1 (en) * 2004-03-31 2005-10-05 NEC Compound Semiconductor Devices, Ltd. PLL frequency synthesizer circuit and frequency tuning method thereof
JP4163141B2 (ja) 2004-04-21 2008-10-08 松下電器産業株式会社 Pll回路
JP5027472B2 (ja) 2005-11-09 2012-09-19 ルネサスエレクトロニクス株式会社 発振器およびそれを用いた情報機器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190709A (ja) * 2000-12-22 2002-07-05 Kawasaki Microelectronics Kk 電圧制御発振回路
JP2003347844A (ja) * 2002-05-29 2003-12-05 Fujitsu Ltd 電圧制御発振器、pll回路及び半導体装置
JP2004147310A (ja) * 2002-10-03 2004-05-20 Matsushita Electric Ind Co Ltd 電圧制御発振器、無線通信機器、電圧制御発振方法
JP2004254162A (ja) * 2003-02-21 2004-09-09 Fujitsu Ltd 電圧制御発振器及びpll回路
WO2006095502A1 (ja) * 2005-03-08 2006-09-14 Nec Corporation 電圧制御発振器および電圧制御発振器の周波数制御方法
JP2007243314A (ja) * 2006-03-06 2007-09-20 Nippon Telegr & Teleph Corp <Ntt> 周波数可変シンセサイザおよび周波数可変発振器
JP2007300582A (ja) * 2006-05-08 2007-11-15 Oki Electric Ind Co Ltd 電圧制御発振器
JP2008099132A (ja) * 2006-10-13 2008-04-24 Nec Corp 電圧制御発振器

Also Published As

Publication number Publication date
US20090322436A1 (en) 2009-12-31
US7893782B2 (en) 2011-02-22

Similar Documents

Publication Publication Date Title
JP2010010864A (ja) 電圧制御発振器
JP4358185B2 (ja) 電圧制御発振器、並びに、送信機及び受信機
US7375596B2 (en) Quadrature voltage controlled oscillator
US7233211B2 (en) Method to improve high frequency divider bandwidth coverage
US7276979B2 (en) Oscillation device and mobile communication apparatus
US20090302958A1 (en) Digitally controlled oscillator and phase locked loop circuit using the digitally controlled oscillator
US20090085681A1 (en) High-resolution digitally controlled oscillator and method thereof
WO2005062462A1 (en) Voltage controlled digital analog oscillator and frequency synthesizer using the same
US7652544B2 (en) Voltage controlled oscillator and frequency control method of the voltage controlled oscillator
JP2008311820A (ja) 電圧制御発振器および発振制御システム
US7847640B2 (en) Voltage controlled oscillator
JP2008148210A (ja) 電圧制御発振器、pll回路
JP4793595B2 (ja) 周波数シンセサイザ
JP5176966B2 (ja) 電圧制御発振器、位相ロックループ回路、およびクロック・データ再生回路
US7394329B2 (en) Analog varactor
JP2006054749A (ja) 発振回路
JP2006042338A (ja) 線形容量を有する電圧制御発振器
WO2009096413A1 (ja) 電圧制御発振器、位相ロックループ回路、クロック・データ再生回路及び制御方法
US9503017B1 (en) Infrastructure-grade integrated voltage controlled oscillator (VCO) with linear tuning characteristics and low phase noise
JP2004274673A (ja) Pll周波数シンセサイザ
US7843276B2 (en) Oscillator
KR100742581B1 (ko) 프리스케일러 및 버퍼
JP2012114679A (ja) 電圧制御発振器
US20060139110A1 (en) Method to compensate the VCO buffer Q factor at low frequency band
KR100759070B1 (ko) 엘씨 탱크형 전압제어 발진기

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130903