JP2009506724A - Cmos撮像素子内での効率的な電荷転送 - Google Patents

Cmos撮像素子内での効率的な電荷転送 Download PDF

Info

Publication number
JP2009506724A
JP2009506724A JP2008529159A JP2008529159A JP2009506724A JP 2009506724 A JP2009506724 A JP 2009506724A JP 2008529159 A JP2008529159 A JP 2008529159A JP 2008529159 A JP2008529159 A JP 2008529159A JP 2009506724 A JP2009506724 A JP 2009506724A
Authority
JP
Japan
Prior art keywords
gate
voltage
pixel cell
reset
integration period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008529159A
Other languages
English (en)
Inventor
マウリッツソン,リチャード,エイ.
アグラノフ,ジェナディ,エイ.
ホン,ソンゴン,シー.
ホン,カナン,エス.
Original Assignee
マイクロン テクノロジー, インク.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マイクロン テクノロジー, インク. filed Critical マイクロン テクノロジー, インク.
Publication of JP2009506724A publication Critical patent/JP2009506724A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14654Blooming suppression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/741Circuitry for compensating brightness variation in the scene by increasing the dynamic range of the image compared to the dynamic range of the electronic image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/571Control of the dynamic range involving a non-linear response
    • H04N25/575Control of the dynamic range involving a non-linear response with a response composed of multiple slopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • H04N25/621Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels for the control of blooming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/63Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

画素セルを動作する方法として、付随している感光センサーの電荷集積期間中にトランジスタ転送ゲートにむけて多重のパルスを用いて光電荷の効率的な転送をすることを含んでいる。通常のダイナミックレンジモード、もしく高ダイナミックレンジ(HDR)モードのどちらかで、効率的な転送特性をともない前記画素セルを動作することができる。任意のHDRトランジスタを動作すること、もしくは、リセットゲートに印加される電圧を変動させることのどちらかで高ダイナミックレンジを実現することができる。
【選択図】図6

Description

本発明は、一般的に、半導体デバイス、そして特に、撮像画素で使用するための転送トランジスタ技術に関連している。
CMOS撮像センサーは、低コスト撮像素子として頻繁に使用されている。CMOS撮像センサー回路は、各々のセルが、例えば、フォトゲート、フォトコンダクター、あるいは光によって生成された電荷を蓄積するための基板内に付随している電荷蓄積領域を有している感光センサーなどの、感光センサーを含んでいる画素セルの焦点平面アレイを含んでいる。各画素セルは、感知するノードにむけて電荷蓄積領域から電荷を転送するためのトランジスタ、および、感知するノードを電荷転送前の所定の電荷レベルにリセットするためのトランジスタを含んでいてもよい。また、画素セルは、感知するノードから電荷を受信および増幅するためのソースフォロワトランジスタ、および、ソースフォロワトランジスタからのセル内容の読み出しを調節するためのアクセストランジスタを含んでいてもよい。
CMOS撮像センサーでは、画素セルの構成要素は、(1)光子から電荷への変換、(2)画像電荷の蓄積、(3)電荷増幅を伴う感知するノードへの電荷の転送、(4)既知の状態へ感知するノードをリセットすること、(5)読み出しをする画素の選択、および(6)感知するノードからの画素電荷を表す信号の出力および増幅、という必須の機能を果たす。
上述の種類のCMOS撮像センサーは、例えばNixon et al., "256 x 256 CMOS Active
Pixel Sensor Camera-on-a-Chip," IEEE Journal of Solid-State Circuits, Vol. 31(12), pp. 2046-2050 (1996)およびMendis et al., "CMOS Active Pixel Image Sensors", IEEE Transactions on Electron Devise, Vol. 41(3), pp. 452-453 (1994)で議論されているように一般的に知られている。また、従来のCMOS画像センサーの動作の記載がありMicron Technology, Inc.に譲渡されている米国特許No. 6,177,333およびNo.6,204,524の内容が参照として本明細書に含まれるものとして理解されたい。
従来のCMOS画素セル10の上面図を図1で示している。図示されているCMOS画素セル10は、4つのトランジスタ(4T)セルである。そのCMOS画素セル10は、一般的に画素セル10上への入射光に応じて電荷を生成して蓄積するための、例えばフォトダイオード13のような感光センサー、および、フォトダイオード13から、通常、浮遊拡散領域3である感知するノードへ光電荷を転送するためのゲート7を有する転送トランジスタを含んでいる。浮遊拡散領域3は出力ソースフォロワトランジスタのゲート27に電気的に接続されている。また、画素セル10は、所定の電圧に浮遊拡散領域3をリセットするためのゲート17を有するリセットトランジスタ、および、ソースフォロワトランジスタ27からゲート37におけるアドレス信号に応じた出力端末へ信号を出力するためのゲート37を有している行選択トランジスタ、を含んでいる。
図2は、フォトダイオードとして構成されている感光センサー13、ゲート7を有している転送トランジスタ、および、ゲート17を有しているリセットトランジスタを示している線2-2’に沿って切りとった図1の画素セル10の一部分の断面図である。CMO
S画素セル10は、ピン(pinned)フォトダイオードとして形成してもよいフォトダイオード13を有している。描かれているフォトダイオードは、p型基板2内にp型表層5およびn型フォトダイオード電荷蓄積領域14を含んでいるp-n-p構造を有してい
る。フォトダイオード13は、転送トランジスタのゲート7に隣接し、一部が転送トランジスタのゲート7の直下にある。リセットトランジスタゲート17は、転送トランジスタゲート7に関してフォトダイオード13と反対側にある。図2中で示されているように、リセットトランジスタは分離領域9に隣接しているソース/ドレイン領域32を含んでいる。浮遊拡散領域3は、転送トランジスタのゲート7とリセットトランジスタのゲート17の間に位置している。
図1および図2で描かれているCMOS画素セル10を動作するための一つの従来の方法を図3のタイミング図で描いている。転送ゲート制御信号TXおよびリセットゲート制御信号RSTをハイにすることによってフォトダイオード13および浮遊拡散領域3をリセットした後に、時間Tで画素セル10の電荷集積期間を開始する。これによって、転送トランジスタゲートおよびリセットゲートオフになったとき電荷集積を始める。電荷集積期間中に、フォトダイオード13へ入射する光によって電子が生成され、n型電荷蓄積領域14内で電子が蓄積される。転送トランジスタゲート7を時間Tで再び起動するとき、これらの電荷は転送トランジスタによって浮遊拡散領域3に転送される。ソースフォロワトランジスタは、浮遊拡散領域3に蓄積されている転送された電荷に基づいて出力信号を生成する。電荷転送後、例えば時間Tの後、行選択信号RSを印加することによって行選択ゲート37が起動される。これによって、読み出しサンプリングに対応する適切な列ラインへむけてソースフォロアトランジスタによって生成される信号が出力される。図3は、フォトダイオード13信号の転送および読み出しに関するタイミングを描いているだけであることに留意されたい。通常、(相互関連のある二重サンプルリングもしくはCDSにおいて)浮遊拡散領域3がリセットされた後に、行選択ゲート27による浮遊拡散領域3の追加の読み出しがある。
従来の撮像画素セル(画素セル10など)、に関連する一つの一般的な問題としては、暗電流、すなわち、光の当たっていないフォトダイオード13で収集されている電子の生成/再結合による電流、がある。暗電流は、フォトダイオード接合漏出、フィールド絶縁端に沿う漏出、閾値下のトランジスタからの漏出、ドレイン誘導障壁低下漏出、ゲート誘導ドレイン漏出、トラップアシストトンネリング、および、画素製造欠陥を含む多くの異なる要因によって引き起こされるおそれがある。
転送トランジスタゲートスタック7の端の直下の領域は、暗電流の主要な発生源である。転送効率を改良するために転送ゲートスタック7下の基板の表面の近傍にフォトダイオード13のn型電荷蓄積領域14を形成する。これによって、画素セル10の電荷集積期間中にもたらされるフォトダイオード欠損領域が生じ、この欠損領域はn型蓄積領域14およびp型表層領域5に関連し、さらに、この領域内における基板2の表層近傍に生じることになる。この領域は、特に転送トランジスタゲートスタック端の近傍に、シリコン表層空隙によって熱的に生じる多くの電子/正孔対を有する。リセットした後の電荷集積期間中に、フォトダイオード13は逆バイアスされ、生じた電場は、p型表層領域5内へ熱的に生じる正孔を運び去り、フォトダイオード13のn型電荷蓄積領域14の方へ熱的に生じる電荷キャリアを運ぶ。これらの熱的に生成した電荷キャリアは、転送ゲートスタック7下の領域内で撮像画素セル10に対して望まれない暗電流を増加させる。
従来の転送ゲート技術に関連する別の問題としては、電荷転送効率の悪化による固定パターンノイズおよび遅延がある。暗電流を最小にするために転送ゲート17を部分的に稼働しても、転送ゲートのポテンシャル障壁が高すぎて全ての光から生成された電荷を完全に転送することができなくなるおそれがあるため、固定パターンノイズおよび遅延を生じる。
よって、暗電流、固定パターンノイズ、および遅延を最小にしながら効率的な電荷転送
ができる画素セルが望まれている。また、そのような画素セルを製作し動作する単純な方法が必要とされる。
様々な例示的実施の形態として記載されている本発明では、画素セルにおける電荷集積期間中もしくはその期間の最後のどちらかにおいて、パルスによって起動される転送ゲートを有する効率的な転送トランジスタをともなう画素セルの動作を提示している。
本発明に従っている画素セルを動作するための第一の方法の例としては、電荷集積中においてリセットゲートを一定の電圧で維持し、そして、電荷集積期間の最後に転送ゲートにパルスが入力されるまで転送ゲートを同じように維持する。
本発明に従っている画素セルを動作するための第二の方法の例としては、制御可能な手段によりリセットゲート電圧を変動させ、そして、電荷集積期間中に転送ゲート信号を数回パルス化する。一つの実施の形態としては、リセットゲート電圧を変動させるそれぞれの時にパルスを生成する。また、その手段は、画素セルのダイナミックレンジを増加させることを可能とする。
下記の詳述では、本明細書の一部を形成し、本発明を実施することのできる特定の実施の形態を描画している添付図を参照としている。図において、類似した参照番号は、いくつかの図をとおして実質的に同様の構成物として記載している。これらの実施形態は、当業者が本発明を実施できるように十分詳細に述べられており、他の実施の形態を用いることができ、さらに、その構造的、論理的、電気的な変形を本発明の概念と範囲から外れることなく行うことができることを理解されたい。
用語「画素」および「画素セル」は、感光センサー(すなわち、フォトダイオード)および電磁放射物を電気信号に変換するためのトランジスタを含む画像素子ユニットセル(picture element unit cell)を意味する。例示目的として、本明細書の図および記載に
おいては、代表的な画素セルの部分を描いている。動作の方法を記載している部分では、説明を単純化することを目的として特定の画素セルを参照例としてそれらの方法を記載している。その動作が、アレイ中の全ての画素セルに対して行えるとして理解されたい。動作のステップを、そのアレイにわたって一斉に行ってもよく、一方で、一行一行の態様(row-by-row manner)で画素からの信号を読み出すなど他のステップを順次行ってもよい。
様々な実施形態において、本発明は電荷集積期間中および終了時において効率的に光電荷を転送するための画素セルおよび画素セルを動作をするための方法に関連している。効率的な電荷転送により、固定パターンノイズもしくは信号遅延を得ることなく最小の暗電流になる。
なお、ここで類似した番号が類似した構成要素を表している図を参照して、図4では本発明の実施の形態の例にしたがって構成されている画素セル100を描いている。画素セル100は、5つのトランジスタ(5T)画素セル100であり、これはアンチブルーミングゲート(anti-blooming gate)147、転送ゲート107、リセットゲート117、ソースフォロワゲート127、および行選択ゲート137を含んでいる。また、画素セル100は、入射光を光電荷に変換するための感光センサー105(例えば、フォトダイオード)を有している。浮遊拡散領域103は、転送ゲート107に関して感光センサー105と反対側に位置している。浮遊拡散領域103は、転送ゲート107をとおして光電荷を受信すること、および、読み出し命令が画素セル100から発するまで電荷を蓄積す
ることに関しており、それは、図1〜図3を参照して上述したように行われることができる。
画素セル100に対するダイナミックレンジを増大させ、画素セル100の望ましくない部分上にまたは隣接している画素に光電荷の望まれないブルームを妨げるようにアンチブルーミングゲート147を動作することができる。アンチブルーミングゲート147により、フォトダイオード105から電源電圧に接続されているドレイン領域109へ過剰な光電荷の流出を行うことができる。しかし、画素セル100がアンチブルーミングトランジスタゲート147を有していることが望ましいが、このゲート147は必ずしも必要ではないと言うことを理解されたい。実際、画素セル100は、画素セル100が用いられる所望の画像化用途に応じて、5つ以上または5つ以下のトランジスタを有することができる。
画素セル100は、本発明にしたがっているいくつかのモードの例によって動作される。3つのモードの例を図5〜図7で示されているタイミング図および下記の説明によって描いている。説明を目的として、本発明の効率的な電荷転送を記載するために不必要な信号を除いて図5〜図7のタイミング図を単純化しているとして理解されたい。例えば、行選択トランジスタゲート137およびアンチブルーミングトランジスタゲート147を動作するための信号などの他の信号もまた、画素セル100の動作とともに連携して用いてもよいとして理解されたい。特に指定のない限り、これらのトランジスタは当該技術分野において公知のように動作することができ、画素セル100からの信号を読み出す公知の方法を画素セルの動作とともに関連して用いることができる。
図5で示しているような第一の転送モードの例は、集積期間中の感光センサー105によって生じる電荷が、(感光センサー105の飽和点まで)時間に線形従属していることを意味する動作の線形モードを表している。図5で示されているように、画素セル100の集積期間は、時間T1-0で、上昇している転送ゲートTX信号およびリセットRST
信号で表されているように転送ゲート107およびリセットゲート117の両方を少なくとも部分的に「ON」にして、感光センサー105および浮遊拡散領域103をリセットすることによって始まる。この時に、感光センサー105あるいは浮遊拡散領域103におけるいくつかの電荷が、ドレイン領域132内に流出され、画素セル100から抜ける。
その後、転送ゲート制御信号TXを低くして、感光センサー105で光電荷を集める。時間T1-1において、転送ゲート制御信号TXを少なくとも部分的に上昇させることで
転送ゲート107がONになる。より好ましい実施形態にしたがえば、転送ゲート制御信号TXは部分的にONにされるだけである。この部分的な起動は、転送ゲート107における中間状態を表しており、ここでゲート107に印加される電圧はゼロ電圧とVddの間である。このようにすることで、転送ゲート107付近の暗電流は、最大の転送ゲート制御信号TXを印加する場合の暗電流よりも少なくなる。この期間中(T1-1およびT1-2の間)では、感光センサー105ならびにより大きい電荷容量を有する浮遊拡散領域103の両方で電荷が集積される。
集積期間の終わりの直前のT1-2において、より高い転送ゲート制御信号TXを素早
くパルス化する。このパルスは、感光センサー105および浮遊拡散領域103間の電荷障壁をより低くし、その結果、感光センサー105によって集積された全ての光電荷は、浮遊拡散領域103に流出することになる。しかし、高い転送ゲート制御信号TXのパルス化が素早くなされることで、転送ゲート107の下の基板内で暗電流が強くなるための時間がなくなる。したがって、この第一の動作モードの例にしたがうことによって、従来の電荷転送に関連する暗電流などの欠点をともなわずに完全な電荷転送がなされる。
図6および図7で示されているタイミング図によって第二の動作モードおよび第三の動作モードの例がそれぞれ描かれている。第二のモードおよび第三のモードの例では、画素セル100の高ダイナミックレンジ動作を描いている。CMOS画素の高ダイナミックレンジは、Micron Technology, Inc.に譲渡されている出願番号10/881,525に記載されてお
り、その参照を本明細書に含むものとする。電荷生成特性は、リセット電圧レベルの変動制御に基づく反射応答(knee response)を含むため、高ダイナミックレンジ動作中に、
画素セル100は、飽和する前までより長時間にわたり電荷を生成することができる。本発明にしたがって高ダイナミックレンジモードで画素セル100が動作されている時、電荷集積期間中にリセットゲート電圧RSTを高い正電圧から低い正電圧に変える。制御回路250(図8)でこれを制御することができる。
図6は画素セル100を動作するための第二の方法例を図示している。集積期間は、上述の転送ゲート107およびリセットゲート117がONにされ、感光センサー105および浮遊拡散領域103をリセットする時である時間T2-0で始まる。その後、各これ
らの制御信号は低く戻され、感光センサー105が光電荷の収集を始める。
時間T2-1では、転送ゲート制御信号TXを部分的にONにし、第一の電圧V1がリセットゲート117を介して浮遊拡散領域103に印加される。この時、感光センサー105内で蓄積されているいくつかの光電荷が、浮遊拡散領域103にむけて流出し始める。画素セル100の集積期間が進行している間は、リセットゲート117に印加されている電圧を小さくしている。図6で示されているように、印加されている電圧レベルをVまで小さくすることができ、その後に、Vまで小さくすることができる。また、異なる大きさおよび回数の電圧レベル減少は本発明の範囲内である。
本発明によれば、リセットゲート117の電圧レベルを最初に小さくする直前に、例えば、転送ゲート107に印加される電圧を上げることで転送ゲート制御信号TXに高レベルのパルス化をする。この集積期間中、転送ゲート制御信号TXのパルス化を素早く行い、そして、転送ゲート信号TXを各パルス後に図示されているように中間状態に戻す。
最後の転送ゲート制御信号TXのパルス化が集積期間の最後である時間T2-2でなさ
れる。この時には、感光センサー105上の全ての残りの光電荷が浮遊拡散領域103に転送されるようになる。その後、リセットゲート信号RSTと同様に、転送ゲート信号TXを低レベルに戻す。この方法は、最適な列ライン上の画素信号をVsigとして浮遊拡散領域103から光電荷を読み出すことにより続けられるとして理解されたい。したがって、転送ゲート信号TXパルスに対応している繰り返しを、画像用途における所望の結果に関連して最適になるように決定されているいずれかの所定の回数行うことができるとして理解されたい。
図7で示しているタイミング図によって画素セル100を動作するための第三のモードの例を図示している。第三のモードの例は、特別な言及を除いて第二のモードの例と類似している。図7で示されているように、高パルス間において中間レベルで転送ゲート信号を維持するよりも、それらの高パルスを除く低状態VTX-loで転送ゲート信号TXを維
持している。
また、図7で示されているものには、アンチブルーミングトランジスタゲート147に関する制御信号ABがある。本発明のより好ましい実施の形態に従い、集積期間中に転送ゲート107を越える光電荷の漏出を避けるためにVAB-loを電圧VTX-loよりも高く維持していることに留意することが重要である。さらに加えて、アンチブルーミングゲート信号ABではなくリセットゲート信号RSTによって飽和レベルが限定されるように感
光センサー105で収集された光電荷の容量を浮遊拡散領域103で蓄積された光電荷の容量より大きくするべきである。この動作により、完全な電荷転送を保持しながら転送ゲート107下において暗電流のレベルを最小にすることができる。その後、この動作により、低ノイズおよび高ダイナミックレンジのかなりの高画質を実現することができる。
図7Aに移り、画素セル100に関するポテンシャル図は、本発明にしたがっている画素セル100の動作中における様々なポテンシャル障壁を描いている。陰影部は、感光センサー105領域および浮遊拡散領域103に示される、蓄積される電荷の容量を表している。なお、アンチブルーミングゲート147、転送ゲート107、およびリセットゲート117それぞれに印加される電圧レベルに依存して、電子は変動する電荷障壁に衝突し、十分な電荷が蓄積した時点においてのみ、電荷が障壁を超えて次の領域に流出する。
本発明にしたがうと、転送ゲート107は、接地電位(負の電圧)、中間電圧、もしくは高電圧(電源電圧Vddよりも大きいもしくは等しい)を受信することができる。部分Aで転送ゲート107は、接地電位(負の電圧)を受信し、電子は大きいポテンシャル障壁によって、浮遊拡散領域103へ流出するのを強く妨げられる。転送ゲート107が部分Bで中間電圧を受信するとき、ゲート107は部分的に「ON」になり、感光センサー105および浮遊拡散領域103の間の障壁がより低くなる。最後に、転送ゲートが、部分Cで、高電圧レベルで「ON」にパルス化される。この部分は、ほぼポテンシャル障壁がなく、電子が自由に浮遊拡散領域103に流出する。したがって、上述の実施の形態に従っている集積期間中の部分Cおよび部分Aもしくは部分Bのうちの一つ以上における転送ゲート107を動作することによって、望ましくない暗電流の効果を得ることなく完全に電荷を転送することができる。
本発明の画素セルおよび動作方法の例として、図8で示されているよう撮像素子308における画素アレイ240を用いることができる。画素アレイ240は、所定の列数および行数で配置されている複数の画素セルを含んでおり、ここで各画素セルは上述されている実施形態の例の一つにしたがい構成され、そして動作される。アレイ240に接続されているものとしては信号処理回路があり、その少なくとも一部が基板内に形成されていてもよい。アレイ240の各行の画素セルは、行選択ラインによって同時に全てONにされ、各行の画素セルは、それぞれの列選択ラインによって選択的に出力される。複数の行ラインおよび複数の列ラインをアレイ240全体に設けている。行ラインは、行アドレスデコーダ255に対応している行ドライバ245によって選択的に起動される。列選択ラインは、列アドレスデコーダ270に対応している列ドライバ260によって選択的に起動される。したがって、行アドレスおよび列アドレスを各画素に設けている。
CMOS撮像素子308は、画素読み出しにおいて適切な行ラインおよび列ラインを選択して上述の転送トランジスタ制御電圧およびリセットトランジスタ制御電圧を印加するためのアドレスデコーダ255、270を制御しているタイミング&制御回路250によって動作されている。また、制御回路250は、選択された行ラインおよび列ラインの駆動トランジスタに駆動電圧を印加するための行ドライバ回路245および列ドライバ回路260を制御している。画素リセット信号(Vrst)および画素画像信号(Vsig)を通常含んでいる画素セル列信号は、サンプル&ホールド回路261によって読まれる。差分信号(Vrst-Vsig)は、差分増幅器262によって各画素に対して生成される。その差分
信号は、アナログデジタル変換器275(ADC)によってデジタル化される。そのアナログデジタル変換器275は、デジタル画像を形成して出力する画像プロセッサ280にデジタル化した画素信号をわたす。
図9は、本明細書で述べられている実施の形態にしたがって構成されている画素を有する撮像素子308を含んでいるプロセッサベースシステム1100を描いている。例えば
、画素は本発明の実施形態の例にしたがって構成され、動作されることができる。プロセッサベースシステム1100は、画像センサーデバイスを含むことができるデジタル回路を有する処理系統の例である。このような処理系統は、限定されることなく、コンピュータシステム、カメラシステム、スキャナー、マシン・ビジョン、車両ナビゲーション、テレビ電話、監視システム、自動焦点システム、星軌道システム、動き探知システム、画像安定化システム、および、他のデジタル画像システムを含むことができる。
プロセッサベースシステム1100(例えば、カメラシステム)は、バス1104を介して入力/出力(I/O)装置1106に接続されているマイクロ処理装置などの中央処理
装置(CPU)1102を一般的に含んでいる。また、撮像素子308は、バス1104を
介してCPU1102に接続されている。また、プロセッサベースシステム1100は、ランダムアクセスメモリ(RAM)1110を含んでおり、そして、また、バス1104を
介してCPU1102に接続されているフラッシュメモリなどのリムーバブルメモリ1115を含むことができる。撮像素子308を、単一の集積回路上、もしくは、処理回路以外のチップ上に、メモリストレージを伴うかまたは伴わなずに、CPU、デジタル信号処理回路、あるいはマイクロ処理回路などの処理回路と組み合わせてもよい。プロセッサベースシステム1100内のメモリストレージ装置のいくつかは、上述の方法を用いるためのソフトウェアを保持することができる。
上述および上図は、本発明の特徴および利点を達成できる実施形態の例の説明に役立てることを考慮していているだけである。本発明の概念および範囲から外れることなく特定の処理条件および構造を改造したり代用したりすることができる。したがって、本発明は、前述の記載や図によって限定されることを考えておらず、添付している請求項の範囲によって限定されるだけである。
本発明の前述および他の特徴は、添付図に関連している本発明の下記の詳細な記述によってよりよく理解することができる。
従来の4つのトランジスタ(4T)画素セルの上面図である。 線2-2’に沿って切り取った図1の画素セルの断面図である。 図1および図2で描かれている従来の画素セルに関するタイミング図である。 本発明にしたがって構成されている画素セル例の上面図である。 本発明にしたがっている画素セルを動作するための第一の方法の例に関するタイミング図である。 本発明にしたがっている画素セルを動作するための第二の方法の例に関するタイミング図である。 本発明にしたがっている画素セルを動作するための第三の方法の例に関するタイミング図である。 図7aは、本発明にしたがっている方法の例の一つに従い動作される画素セルに関するポテンシャル変化図である。 本発明の実施形態の例にしたがっているCMOS撮像センサーのブロック図である。 本発明のCMOS撮像センサーの例を含んでいるコンピュータ処理系統の図である。

Claims (30)

  1. 画素セルを動作する方法であって、
    感光センサーが光電荷を収集する、前記画素セルの電荷集積期間を開始するステップと、
    第一の量の光電荷が前記感光センサーからストレージ領域に転送されるにように前記集積期間中に前記画素セルの転送ゲートへ第一信号レベルを印加するステップと、
    第二の量の光電荷が前記感光センサーからストレージ領域に転送されるにように前記集積期間中に前記転送ゲートへ第二の信号レベルを印加し、ここで前記第二の信号レベルがパルス信号であるステップと、
    を含むことを特徴とする画素セルを動作する方法。
  2. 前記第一信号レベルが、前記転送トランジスタのゲートに対してのゼロ電圧および最大ON電圧の間にある中間レベルである、
    ことを特徴とする請求項1記載の方法。
  3. 前記第一信号レベルが、前記画素セルに対しての電源電圧である、
    ことを特徴とする請求項2記載の方法。
  4. 前記集積期間中に前記画素セルのリセットゲートへ第一のリセット信号レベルを印加するための動作をさらに含む、
    ことを特徴とする請求項1記載の方法。
  5. 前記集積期間中に前記第一のリセット信号レベルから第二のリセット信号レベルへ前記リセットレベルを小さくする動作をさらに含む、
    ことを特徴とする請求項4記載の方法。
  6. 前記リセット信号レベルを小さくする動作の直前に前記転送ゲートにパルスである第二信号レベルを印加する動作を有する、
    ことを特徴とする請求項5記載の方法。
  7. 前記集積期間中に第一のリセット信号レベルから第二のリセット信号レベルへ前記リセットゲートに印加される前記電圧を小さくする動作と、
    前記集積期間中に前記第二のリセット信号レベルの電圧を第三の信号レベルへ小さくする動作、
    をさらに含むことを特徴とする請求項4記載の方法。
  8. 前記リセット信号レベルを小さくする各動作の前に前記転送ゲートへ印加される前記転送ゲート信号がパルスされる、
    ことを特徴とする請求項7記載の方法。
  9. 前記集積期間の最後に前記転送ゲート信号および前記リセットゲート信号の両方を接地に戻す、
    ことを特徴とする請求項8記載の方法。
  10. アンチブルーミングストレージ領域へ感光センサーに位置している電荷を転送するための動作、
    リセットゲートへ第一のリセット電圧を印加するための動作、
    電荷ストレージ領域およびドレイン領域間のポテンシャル障壁を大きくするために前記画素に対する電荷集積期間中において所定の間隔で前記リセットゲートに印加される前記
    電圧を減らすための動作、
    前記感光センサーおよび前記電荷ストレージ領域間の前記ポテンシャル障壁を小さくするために前記電荷集積期間中に転送トランジスタの転送ゲートに印加される電圧をパルス化するための動作、
    を含む画素セルを動作するための高ダイナミックレンジ方法。
  11. 前記リセットゲートに印加される前記電圧を小さくするための動作の直前に前記転送ゲートに印加される電圧をパルスするための動作がなされる、
    ことを特徴とする請求項10記載の方法。
  12. 前記アンチブルーミングゲートに印加される信号を接地に戻すための動作、
    前記集積期間の最後に、前記転送ゲートに印加される前記信号を接地に戻すための動作、
    をさらに含むことを特徴とする請求項10記載の方法。
  13. 前記アンチブルーミングゲートに対する前記OFF状態の電圧信号が、前記転送ゲートに印加される前記OFF状態の電圧信号よりもより高い電圧である、
    ことを特徴とする請求項12記載の方法。
  14. 前記高電圧パルス間の前記転送ゲートに印加される中間電圧を維持するための動作をさらに含む、
    ことを特徴とする請求項10記載の方法。
  15. 前記中間電圧が、前記画素セルに対するゼロ電圧および電源電圧の間にある、
    ことを特徴とする請求項14記載の方法。
  16. 前記高電源パルス間の前記転送ゲートに印加される接地電圧を維持するための動作、
    をさらに含むことを特徴とする請求項10記載の方法。
  17. 集積期間中に光電荷を生成するための感光センサーと、
    前記生成した光電荷を蓄積するためのストレージ領域と、
    前記感光センサーから前記ストレージ領域へ電荷を転送するための転送ゲートであって、前記集積期間中に第一信号および少なくとも一つのパルスされる第二信号を受信するよう適応された転送ゲートと、
    前記転送ゲートに印加される前記信号を制御するための制御回路と、
    をそれぞれ含んでいる複数の画素セルを含んでいる画素アレイを含んでいる撮像素子。
  18. 前記撮像素子が、CMOS撮像素子である、
    ことを特徴とする請求項17記載の撮像素子。
  19. 前記制御回路によって前記画素セルを全体的に制御する、
    ことを特徴とする請求項17記載の撮像素子。
  20. 前記制御回路によって随時前記画素セルを制御する、
    ことを特徴とする請求項17記載の撮像素子。
  21. 一方が前記感光センサーに接続されており、前記感光センサーからの過剰な電荷を受信するためのドレイン領域に他方が接続されているアンチブルーミングトランジスタゲート、
    をさらに含むことを特徴とする請求項17記載の撮像素子。
  22. 前記集積期間中に少なくとも一つのリセットレベルを受信するように適応されたリセットゲート、
    をさらに含むことを特徴とする請求項17記載の撮像素子。
  23. 前記制御回路は、前記集積期間中に前記リセットゲートに新しいリセットレベルを印可する度毎に、前記転送ゲートに印可するパルス信号を生成する、
    ことを特徴とする請求項22記載の撮像素子。
  24. 画素セルを動作するための方法であって、前記方法は、
    集積期間中に転送トランジスタゲートに第一の電圧レベルを印可することによって感光センサーおよびストレージ領域間のポテンシャル障壁を小さくして、前記感光センサーにおける光電荷を前記ストレージ領域に流すようにするステップ、
    前記集積期間中に前記転送トランジスタゲートにさらに第二の電圧レベルを印可することによって、前記感光センサーおよび前記ストレージ領域間のポテンシャル障壁を小さくし、ここで前記第二の電圧レベルを前記第一の電圧レベルよりも大きくしているステップ、
    を含むことを特徴とする画素セルを動作するための方法。
  25. 前記第一の電圧レベルが接地電位である、
    ことを特徴する請求項24記載の方法。
  26. 前記第二の電圧レベルが、前記画素セルの電源電圧に少なくとも等しい、
    ことを特徴する請求項24記載の方法。
  27. 前記第二の電圧レベルが、前記画素セルの前記電源電圧よりも大きい、
    ことを特徴とする請求項26記載の方法。
  28. 前記第二の電圧レベルが、前記画素セルの電源電圧よりも小さい、
    ことを特徴とする請求項24記載の方法。
  29. 前記集積期間中において、リセットトランジスタのリセットゲートに印可される電圧を小さくすることによって、前記画素セルの前記ダイナミックレンジを大きくする動作、
    をさらに含むことを特徴とする請求項24記載の方法。
  30. 前記集積期間中に、さらに前記転送トランジスタゲートに第二の電圧レベルを印可することによって前記感光センサーおよび前記ストレージ領域間の前記ポテンシャル障壁を小さくする動作が所定の回数繰り返される、
    ことを特徴とする請求項29記載の方法。
JP2008529159A 2005-08-30 2006-08-25 Cmos撮像素子内での効率的な電荷転送 Pending JP2009506724A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/213,815 US7829832B2 (en) 2005-08-30 2005-08-30 Method for operating a pixel cell using multiple pulses to a transistor transfer gate
PCT/US2006/033505 WO2007027590A2 (en) 2005-08-30 2006-08-25 Efficient charge transferring in cmos imagers

Publications (1)

Publication Number Publication Date
JP2009506724A true JP2009506724A (ja) 2009-02-12

Family

ID=37685629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008529159A Pending JP2009506724A (ja) 2005-08-30 2006-08-25 Cmos撮像素子内での効率的な電荷転送

Country Status (7)

Country Link
US (1) US7829832B2 (ja)
EP (1) EP1941714A2 (ja)
JP (1) JP2009506724A (ja)
KR (1) KR100954487B1 (ja)
CN (1) CN101292514A (ja)
TW (1) TW200721814A (ja)
WO (1) WO2007027590A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130054508A (ko) * 2011-11-17 2013-05-27 삼성전자주식회사 화소 회로 및 이를 포함하는 깊이 센서
CN108141555A (zh) * 2015-09-30 2018-06-08 株式会社尼康 摄像元件及电子相机

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8139130B2 (en) 2005-07-28 2012-03-20 Omnivision Technologies, Inc. Image sensor with improved light sensitivity
US8274715B2 (en) 2005-07-28 2012-09-25 Omnivision Technologies, Inc. Processing color and panchromatic pixels
JP4807014B2 (ja) * 2005-09-02 2011-11-02 ソニー株式会社 固体撮像装置、固体撮像装置の駆動方法および撮像装置
KR100877691B1 (ko) * 2005-12-08 2009-01-09 한국전자통신연구원 이미지 센서 및 이미지 센서의 트랜스퍼 트랜지스터 구동방법
KR100731122B1 (ko) * 2005-12-28 2007-06-22 동부일렉트로닉스 주식회사 씨모스 이미지 센서 및 그 제조방법
US7916362B2 (en) * 2006-05-22 2011-03-29 Eastman Kodak Company Image sensor with improved light sensitivity
US8031258B2 (en) 2006-10-04 2011-10-04 Omnivision Technologies, Inc. Providing multiple video signals from single sensor
JP5016941B2 (ja) * 2007-02-08 2012-09-05 株式会社東芝 固体撮像装置
JP5167677B2 (ja) * 2007-04-12 2013-03-21 ソニー株式会社 固体撮像装置、固体撮像装置の駆動方法、固体撮像装置の信号処理方法および撮像装置
US8023023B2 (en) 2007-04-24 2011-09-20 Canon Kabushiki Kaisha Image sensing apparatus including charge transfer operation and control method therefor
US8022994B2 (en) * 2007-08-31 2011-09-20 Omnivision Technologies, Inc. Image sensor with high dynamic range in down-sampling mode
DE102007045448A1 (de) 2007-09-24 2009-04-02 Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg Bildsensor
US20090086074A1 (en) * 2007-09-27 2009-04-02 Omnivision Technologies, Inc. Dual mode camera solution apparatus, system, and method
US7920193B2 (en) * 2007-10-23 2011-04-05 Aptina Imaging Corporation Methods, systems and apparatuses using barrier self-calibration for high dynamic range imagers
US7777804B2 (en) * 2007-10-26 2010-08-17 Omnivision Technologies, Inc. High dynamic range sensor with reduced line memory for color interpolation
KR101437912B1 (ko) * 2007-11-19 2014-09-05 삼성전자주식회사 이미지 센서의 구동 방법
US8093541B2 (en) 2008-06-05 2012-01-10 Aptina Imaging Corporation Anti-blooming protection of pixels in a pixel array for multiple scaling modes
US8130289B2 (en) * 2008-09-25 2012-03-06 Aptima Imaging Corporation System, method, and apparatus for correction of dark current error in semiconductor imaging devices
FR2939950B1 (fr) * 2008-12-12 2011-02-25 E2V Semiconductors Procede de commande des pixels d'un capteur d'image a grande dynamique
US8174601B2 (en) * 2008-12-19 2012-05-08 Omnivision Technologies, Inc. Image sensor with controllable transfer gate off state voltage levels
WO2011142774A1 (en) 2010-05-14 2011-11-17 Omnivision Technologies, Inc. Alternative color image array and associated methods
US8847136B2 (en) * 2011-01-02 2014-09-30 Pixim, Inc. Conversion gain modulation using charge sharing pixel
US8723975B2 (en) 2011-01-24 2014-05-13 Aptina Imaging Corporation High-dynamic-range imaging devices
TWI491252B (zh) * 2011-02-25 2015-07-01 Omnivision Tech Inc 影像感測器及用以對影像感測器所產生之影像進行向下取樣之方法
JP6132500B2 (ja) 2012-09-24 2017-05-24 キヤノン株式会社 撮像装置、撮像装置の駆動方法、および撮像システム。
KR101414202B1 (ko) * 2012-10-31 2014-07-01 주식회사 동부하이텍 이미지 센서
US9070802B2 (en) * 2013-08-16 2015-06-30 Himax Imaging, Inc. Image sensor and fabricating method of image sensor
US9531976B2 (en) 2014-05-29 2016-12-27 Semiconductor Components Industries, Llc Systems and methods for operating image sensor pixels having different sensitivities and shared charge storage regions
US9888198B2 (en) 2014-06-03 2018-02-06 Semiconductor Components Industries, Llc Imaging systems having image sensor pixel arrays with sub-pixel resolution capabilities
FR3027479B1 (fr) * 2014-10-21 2017-12-29 Commissariat Energie Atomique Pixel de capteur d'image ayant de multiples gains de noeud de detection
US9467633B2 (en) 2015-02-27 2016-10-11 Semiconductor Components Industries, Llc High dynamic range imaging systems having differential photodiode exposures
US9686486B2 (en) 2015-05-27 2017-06-20 Semiconductor Components Industries, Llc Multi-resolution pixel architecture with shared floating diffusion nodes
FR3039319B1 (fr) 2015-07-24 2018-06-15 Pyxalis Capteur d'image a pixels actifs avec fonctionnement en mode d'obturateur global, soustraction du bruit de reinitialisation et lecture non destructive
US9521351B1 (en) 2015-09-21 2016-12-13 Rambus Inc. Fractional-readout oversampled image sensor
KR101679598B1 (ko) * 2016-01-04 2016-11-25 주식회사 동부하이텍 이미지 센서
CN107465961B (zh) * 2017-07-17 2020-06-09 深圳创维-Rgb电子有限公司 一种峰值亮度提升方法、存储介质及智能电视
US10313613B2 (en) * 2017-10-24 2019-06-04 Semiconductor Components Industries, Llc High dynamic range image sensors with flicker and fixed pattern noise mitigation
US11218653B2 (en) 2019-07-09 2022-01-04 Semiconductor Components Industries, Llc Methods and circuitry for improving global shutter efficiency in backside illuminated high dynamic range image sensor pixels
KR20220036751A (ko) 2020-09-16 2022-03-23 삼성전자주식회사 다중 전송을 이용하는 이미지 센서 및 이의 동작 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283426A (en) * 1993-05-17 1994-02-01 X-Ray Scanner Corporation Methods and apparatus for obtaining nonlinear responses from photodetector arrays
EP0863663A2 (en) * 1997-03-04 1998-09-09 Sony Corporation Driving method for solid-state imaging device provided with blooming prevention structure
JP2001203940A (ja) * 2000-01-18 2001-07-27 Eastman Kodak Co イメージセンサ
US20040252211A1 (en) * 2003-06-16 2004-12-16 Rhodes Howard E. Pumps for CMOS imagers
US20050012168A1 (en) * 2003-07-15 2005-01-20 Hong Sungkwon C. 4T CMOS image sensor with floating diffusion gate capacitor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8063963B2 (en) * 1998-02-09 2011-11-22 On Semiconductor Image Sensor Imaging device having a pixel structure with high dynamic range read-out signal
US20040242211A1 (en) 2003-05-30 2004-12-02 A. Akhteruzzaman Mobile subscriber station with low frequency call alerting capability
US20050283426A1 (en) * 2004-05-11 2005-12-22 Ebs Group Limited Price display in an anonymous trading system
US7851798B2 (en) * 2005-05-04 2010-12-14 Micron Technology, Inc. Method and apparatus for dark current and blooming suppression in 4T CMOS imager pixel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283426A (en) * 1993-05-17 1994-02-01 X-Ray Scanner Corporation Methods and apparatus for obtaining nonlinear responses from photodetector arrays
EP0863663A2 (en) * 1997-03-04 1998-09-09 Sony Corporation Driving method for solid-state imaging device provided with blooming prevention structure
JPH10248035A (ja) * 1997-03-04 1998-09-14 Sony Corp ブルーミング防止構造を備えた固体撮像素子のダイナミックレンジ拡大方法
JP2001203940A (ja) * 2000-01-18 2001-07-27 Eastman Kodak Co イメージセンサ
US20040252211A1 (en) * 2003-06-16 2004-12-16 Rhodes Howard E. Pumps for CMOS imagers
US20050012168A1 (en) * 2003-07-15 2005-01-20 Hong Sungkwon C. 4T CMOS image sensor with floating diffusion gate capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130054508A (ko) * 2011-11-17 2013-05-27 삼성전자주식회사 화소 회로 및 이를 포함하는 깊이 센서
KR101869277B1 (ko) 2011-11-17 2018-06-22 삼성전자주식회사 화소 회로 및 이를 포함하는 깊이 센서
CN108141555A (zh) * 2015-09-30 2018-06-08 株式会社尼康 摄像元件及电子相机
CN108141555B (zh) * 2015-09-30 2021-04-20 株式会社尼康 摄像元件及电子相机

Also Published As

Publication number Publication date
EP1941714A2 (en) 2008-07-09
US7829832B2 (en) 2010-11-09
WO2007027590A3 (en) 2007-06-28
CN101292514A (zh) 2008-10-22
KR20080038446A (ko) 2008-05-06
US20070045681A1 (en) 2007-03-01
WO2007027590A2 (en) 2007-03-08
TW200721814A (en) 2007-06-01
KR100954487B1 (ko) 2010-04-22

Similar Documents

Publication Publication Date Title
JP2009506724A (ja) Cmos撮像素子内での効率的な電荷転送
US7176434B2 (en) Row driven imager pixel
US7244918B2 (en) Method and apparatus providing a two-way shared storage gate on a four-way shared pixel
US7714917B2 (en) Method and apparatus providing a two-way shared storage gate on a four-way shared pixel
US7420154B2 (en) Pixel circuit with non-destructive readout circuit and methods of operation thereof
US7800675B2 (en) Method of operating a storage gate pixel
JP2009505438A (ja) 多方向に共有される画素上の高ダイナミックレンジ/耐ブルーミング共通ゲート
US20100097509A1 (en) Pixel for boosting pixel reset voltage
US20070114584A1 (en) Active photosensitive structure with buried depletion layer
JP2007516654A (ja) 2段階変換利得イメージャ
JP2008541454A (ja) 高フィルファクタ多方向共有ピクセル
TWI387100B (zh) 成影像器像素結構及電路
US20050237404A1 (en) Jfet charge control device for an imager pixel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207