JP2009176638A - 高圧放電灯点灯装置、照明器具 - Google Patents

高圧放電灯点灯装置、照明器具 Download PDF

Info

Publication number
JP2009176638A
JP2009176638A JP2008015774A JP2008015774A JP2009176638A JP 2009176638 A JP2009176638 A JP 2009176638A JP 2008015774 A JP2008015774 A JP 2008015774A JP 2008015774 A JP2008015774 A JP 2008015774A JP 2009176638 A JP2009176638 A JP 2009176638A
Authority
JP
Japan
Prior art keywords
voltage
discharge lamp
pressure discharge
circuit
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008015774A
Other languages
English (en)
Inventor
Akira Osada
暁 長田
Hiroyasu Eriguchi
裕康 江里口
Kenji Goriki
健史 強力
Takeshi Kamoi
武志 鴨井
Jun Kumagai
潤 熊谷
Naoki Komatsu
直樹 小松
Akira Yufuku
晶 祐福
Nobutoshi Matsuzaki
宣敏 松崎
Daisuke Yamahara
大輔 山原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008015774A priority Critical patent/JP2009176638A/ja
Publication of JP2009176638A publication Critical patent/JP2009176638A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

【課題】始動電圧を高圧放電灯に印加する前に、高圧放電灯の始動にとって最適な始動電圧値を決定可能とすることで、余計な始動電圧印加を少なくとも1回分削減し、高圧放電灯へのストレスを低減させる。
【解決手段】始動パルス発生回路7は、少なくともコンデンサC1とトランスT1の1次巻線N1とスイッチング素子Q7の直列接続からなる1次巻線回路を備え、トランスT1の2次巻線N2を高圧放電灯8に接続し、始動用の高圧パルス電圧を高圧放電灯8に印加する前に、点灯装置の出力部から高圧放電灯8までの間の出力線による高圧パルス電圧の変動要因を検出する検出手段(共振電圧検出回路13)と、該検出手段で得られた検出値を元に、高圧放電灯8に印加する高圧パルス電圧ピーク値を高圧放電灯8から要求される所定範囲内に維持するように調整する高圧パルス電圧ピーク値調整手段(可変インピーダンス素子71)とを備える。
【選択図】図1

Description

本発明は始動時の高圧パルス電圧のピーク値を調整する手段を具備する高圧放電灯点灯装置及びこれを用いた照明器具に関するものである。
図34は従来の高圧放電灯点灯装置を示すブロック図である。高圧放電灯点灯装置は、商用電源1が投入されると、制御電源回路10が制御電源を生成して、制御回路9が動作し、昇圧チョッパ回路3、降圧チョッパ回路4、極性反転回路6、始動パルス発生回路7に制御信号を送り、それぞれが動作を開始する。昇圧チョッパ回路3は、整流回路2で整流された出力を規定の電圧に昇圧し、降圧チョッパ回路4は高圧放電灯8に流れる電流が規定の電流になるように出力を調整する。極性反転回路6は、高圧放電灯8に規定の周波数の交流矩形波電圧を出力する。始動パルス発生回路7は、高圧パルスを発生させて高圧放電灯8を始動させる。
図35は、始動パルス発生回路7の詳細図である。始動パルス発生回路7は、高圧放電灯8の始動時のみ動作し、高圧パルス電圧を発生する。始動パルス発生回路7は、トランスT1、外部制御信号によりオン/オフ可能なスイッチング素子Q7、商用電源1の交流電圧を整流し、昇圧チョッパ回路3で昇圧した直流電圧Vc3で充電されるコンデンサC1、スイッチング素子Q7の過電流保護を行うインダクタL1、トランスT1で発生した高電圧パルスが極性反転回路6に回り込まないようにブロックするコンデンサC2を有する。
また、トランスT1にはフィードバック電圧検出巻線N3を有し、電圧検出巻線N3に電圧分圧回路11を接続し、任意の電圧に分圧する。さらに電圧分圧回路11にパルス検出回路12を接続し、始動パルス電圧成分のみを検出する。そして、パルス検出回路12の出力を、制御回路9にフィードバックさせることで始動パルス電圧Vpが所定値になるように、制御回路9が1次巻線電圧Vp1を制御する。これにより、出力配線長が増加して出力容量が増加しても、高圧パルス電圧を規定値内に維持することが可能となる。
特開2007−52977号公報
上記従来例では、トランスT1が3次巻線N3を有する構造であり、また、3次巻線N3から制御回路9の間に接続される回路が複雑化していることにより、部品の増大、製品価格の高コスト化を招いている。また、少なくとも1回分は高圧放電灯の始動用では無く、始動電圧値(“高圧パルス電圧値+極性反転回路の出力電圧値”のことを指す)の最適化を図るためのフィードバック用の始動電圧を高圧放電灯に印加しなければならないために、高圧放電灯に過度なストレスがかかっている。
本発明はこのような点に鑑みてなされたものであり、安価で小型化されながらも、始動電圧値を高圧放電灯の始動に最適な所定範囲内に維持することができる高圧放電灯点灯装置を提供することを目的とする。また、始動電圧を高圧放電灯に印加する前に、高圧放電灯の始動にとって最適な始動電圧値を決定可能とすることで、余計な始動電圧印加を少なくとも1回分削減し、高圧放電灯へのストレスを低減させることを目的とする。
請求項1の発明は、前記の課題を解決するために、図1に示すように、直流電源Eの出力を負荷である高圧放電灯8に供給する所定の電力に変換する電力変換回路(降圧チョッパ回路4)と、電力変換回路の出力を所定の矩形波交流電力に変換し、高圧放電灯8に印加する極性反転回路6と、極性反転回路6の出力に重畳し、始動用の高圧パルス電圧を高圧放電灯8に印加する始動パルス発生回路7とを備えた高圧放電灯点灯装置において、前記始動パルス発生回路7は、少なくともコンデンサC1とトランスT1の1次巻線N1とスイッチング素子Q7の直列接続からなる1次巻線回路と、前記トランスT1の2次巻線N2を高圧放電灯8に接続し、トランスT1の1次巻線N1に発生する電圧を昇圧した高圧パルス電圧を高圧放電灯8に印加する2次巻線回路とを具備しており、始動用の高圧パルス電圧を高圧放電灯8に印加する以前に、前記点灯装置の出力部から前記高圧放電灯8までの間に具備する出力線による高圧パルス電圧の変動要因を検出する検出手段(共振電圧検出回路13)と、該検出手段で得られた検出値を元に、高圧放電灯8に印加する高圧パルス電圧ピーク値を高圧放電灯8から要求される所定範囲内に維持するように調整する高圧パルス電圧ピーク値調整手段(可変インピーダンス素子71)とを備えることを特徴とするものである。
請求項2の発明は、請求項1の発明において、出力線による高圧パルス電圧の変動要因を検出する検出手段とは、出力線間の浮遊容量を検出する手段(図1の共振電圧検出回路13、図6の充電電圧検出回路14)であることを特徴とする。
請求項3の発明は、請求項2の発明において、出力線間の浮遊容量を検出する手段は、少なくとも前記トランス2次巻線と前記出力線間の浮遊容量を含むトランス2次巻線回路において前記極性反転回路6のスイッチング素子Q3〜Q6のオン/オフにより発生する共振電圧VR 徴とする(図3〜図5)。
請求項4の発明は、請求項1〜3の発明において、前記検出手段は、前記出力部(出力線の根元部分a−b間)に発生する共振電圧を検出することを特徴とする(図1)。
請求項5の発明は、請求項1〜3の発明において、前記検出手段は、前記トランスT1の2次巻線N2に発生する共振電圧を検出することを特徴とする(図19)。
請求項6の発明は、請求項1〜3の発明において、前記検出手段は、前記トランスT1の1次巻線N1に発生する共振電圧を検出することを特徴とする(図23、図27、図30)。
請求項7の発明は、請求項2の発明において、出力線間の浮遊容量を検出する手段は、前記極性反転回路6のスイッチング素子Q3〜Q6のオン/オフにより前記出力線の浮遊容量に充電される淫遊容量電圧を検出することを特徴とする(図8、図9)。
請求項8の発明は、請求項1〜7の発明において、前記トランス1次巻線回路のスイッチング素子Q7をオンする時、前記コンデンサC1の電圧Vc1は略一定電圧であり、前記高圧パルス電圧ピーク値調整手段は、トランス1次巻線回路内に存在するインピーダンスを調整するインピーダンス可変手段により該インピーダンスを変化させることによって、トランス2次巻線に発生する高圧パルス電圧を調整し、高圧放電灯8に印加する高圧パルス電圧ピーク値を高圧放電灯8から要求される所定範囲内に維持することを特徴とする(図1)。
請求項9の発明は、請求項8の発明において、スイッチング素子Q7を駆動する制御信号の電圧値または電流値、または制御信号の電圧値または電流値の立ち上がりの傾きを変化させ、スイッチング素子Q7のオン時の内部インピーダンスを調整することによってトランス1次巻線回路内に存在するインピーダンスを調整することを特徴とする(図10〜図12)。
請求項10の発明は、請求項8の発明において、スイッチング素子は、オン時の内部インピーダンスの異なる複数のスイッチング素子Q7a,Q7bの並列接続回路から構成され、駆動するスイッチング素子Q7a,Q7bの選択によってトランス1次巻線回路内に存在するインピーダンスを調整することを特徴とする(図16)。
請求項11の発明は、請求項8の発明において、スイッチング素子は、スイッチング素子Q7a,Q7b,Q7cとインピーダンスRa,Rb,Rcの直列接続回路で、スイッチング素子Q7a,Q7b,Q7cのオン時の合成インピーダンスの異なる直列接続回路を複数並列に接続した回路から構成され、駆動するスイッチング素子Q7a,Q7b,Q7cを選択することにより該合成インピーダンスを調整して、トランス1次巻線回路内に存在するインピーダンスを調整することを特徴とする(図17)。
請求項12の発明は、請求項8の発明において、トランスT1の1次巻線N1には複数個のタップを設けており、スイッチング素子Q7a,Q7b,Q7c(またはスイッチング素子とインピーダンスの直列回路)が前記トランスT1の1次巻線N1の各タップに1つ接続されており、駆動するスイッチング素子Q7a,Q7b,Q7cを選択することによってトランス1次巻線回路内に存在するインピーダンスを調整することを特徴とする(図18)。
請求項13の発明は、請求項10〜12の発明において、スイッチング素子Q7a,Q7b,Q7cを駆動する制御信号の電圧値または電流値、または制御信号の電圧値または電流値の立ち上がりの傾きを変化させ、スイッチング素子Q7a,Q7b,Q7cのオン時の内部インピーダンスを調整することを特徴とする(図10〜図12)。
請求項14の発明は、請求項8〜13の発明において、スイッチング素子Q7は、MOSFET、バイポーラトランジスタと回生用のダイオードの並列回路(図13)、双方向サイリスタ、またはIGBTのいずれかの素子であることを特徴とする。
請求項15の発明は、請求項1〜7の発明において、前記高圧パルス電圧ピーク値調整手段は、高圧パルス電圧ピーク値が高圧放電灯から要求される所定範囲内に維持されるように、前記極性反転回路6の出力電圧を調整することを特徴とする(図21、図22)。
請求項16の発明は、請求項15の発明において、前記高圧パルス電圧ピーク値調整手段は、高圧パルス電圧の極性と同極性の極性反転回路6の出力電圧のみ、高圧パルス電圧ピーク値が高圧放電灯から要求される所定範囲内に維持されるように、前記極性反転回路6の出力電圧を調整することを特徴とする(図28)。
請求項17の発明は、請求項15または16の発明において、前記高圧パルス電圧ピーク値調整手段は、前記トランス1次巻線回路のスイッチング素子Q7がオンしている期間のみ、極性反転回路6の出力電圧を調整することを特徴とする(図29)。
請求項18の発明は、請求項15の発明において、前記高圧パルス電圧ピーク値調整手段は、極性反転回路6の出力電圧が一定の変化をしている時、トランス1次巻線回路のスイッチング素子Q7をオンさせ、高圧放電灯8に印加する高圧パルス電圧ピーク値が高圧放電灯8から要求される所定範囲内に維持されるように調整することを特徴とする(図24)。
請求項19の発明は、請求項18の発明において、極性反転回路6の出力電圧を矩形波半サイクル区間で、連続的に変化させることを特徴とする(図25)。
請求項20の発明は、請求項18の発明において、極性反転回路6の出力電圧を矩形波半サイクル区間で、階段状に変化させることを特徴とする(図26)。
請求項21の発明は、請求項1〜7の発明において、前記高圧パルス電圧ピーク値調整手段は、前記トランス1次巻線回路のスイッチング素子Q7がオンする時のコンデンサ電圧を制御するコンデンサ電圧可変手段を含み、高圧放電灯8に印加する高圧パルス電圧ピーク値が高圧放電灯8から要求される所定範囲内に維持されるように高圧パルス電圧を調整することを特徴とする(図30)。
請求項22の発明は、請求項21の発明において、前記コンデンサ電圧可変手段は、少なくとも前記コンデンサC1に充電する経路の時定数もしくは前記トランス1次巻線回路のスイッチング素子Q7がオンするタイミングを変化させることを特徴とする(図31、図32)。
請求項23の発明は、請求項1〜7の発明において、少なくとも極性反転回路6の出力の極性反転期間中は高圧パルス電圧を発生させないことを特徴とする(図15)。
請求項24の発明は、請求項1〜23のいずれかの高圧放電灯点灯装置を具備した照明器具である(図33)。
本発明の高圧放電灯点灯装置は、出力配線長が増加して出力容量が増えても、始動電圧を規定値内に維持することができ、また部品の小型化、低価格化を実現し、また高圧放電灯へのストレスを低減することができる。さらに、高圧放電灯に1回も始動電圧を供給せずに、高圧放電灯始動に最適な始動電圧になるようにトランス1次巻線の電圧を制御できることから、高圧放電灯へのストレスを低減することが可能となる。
(実施形態1)
図1は本発明の実施形態1の全体構成を示す回路図である。以下、その回路構成について説明する。整流回路2は、ダイオードブリッジDBよりなり、商用交流電源1を全波整流して脈流電圧を出力する。ダイオードブリッジDBの出力端には、インダクタL2とスイッチング素子Q1の直列回路が接続されており、スイッチング素子Q1の両端にはダイオードD1を介して平滑コンデンサC3が接続されている。インダクタL2、スイッチング素子Q1、ダイオードD1、平滑コンデンサC3は昇圧チョッパ回路3を構成している。スイッチング素子Q1のオン・オフはチョッパ制御回路30により制御される。チョッパ制御回路30は市販の集積回路(例えばMC33262など)を用いて容易に実現可能である。スイッチング素子Q1が商用交流電源1の商用周波数よりも十分に高い周波数でオン・オフ制御されることにより、ダイオードブリッジDBの出力電圧は、規定の直流電圧に昇圧されて平滑コンデンサC3に充電されると共に、商用交流電源1からの入力電流と入力電圧の位相がずれないように回路に抵抗性を持たせる力率改善制御を行っている。なお、ダイオードブリッジDBの入力端に高周波漏洩阻止用のフィルタ回路を設けても良い。
本実施形態で用いる直流電源Eは、商用交流電源1を整流・平滑した平滑コンデンサC3の直流電圧であり、ダイオードブリッジDBの出力に接続された昇圧チョッパ回路3の出力電圧であるが、これに限定されるものではなく、直流電源Eは電池でもよいし、市販の直流電源でもよい。
直流電源Eには、電力変換回路としての降圧チョッパ回路4が接続されている。降圧チョッパ回路4は負荷である高圧放電灯8に目標電力を供給するための安定器としての機能を有している。また、始動時からアーク放電移行期間を経て安定点灯期間に至るまで高圧放電灯8に適正な電力を供給するように出力電圧を可変制御される。
降圧チョッパ回路4の回路構成について説明する。直流電源Eである平滑コンデンサC3の正極はスイッチング素子Q2、インダクタL3を介してコンデンサC4の正極に接続されており、コンデンサC4の負極は平滑コンデンサC3の負極に接続されている。コンデンサC4の負極には回生電流通電用のダイオードD2のアノードが接続されており、ダイオードD2のカソードはスイッチング素子Q2とインダクタL3の接続点に接続されている。
降圧チョッパ回路4の回路動作について説明する。スイッチング素子Q2は出力制御回路40の出力により高周波でオン・オフ駆動され、スイッチング素子Q2がオンのとき、直流電源Eからスイッチング素子Q2、インダクタL3、コンデンサC4を介して電流が流れ、スイッチング素子Q2がオフのとき、インダクタL3、コンデンサC4、ダイオードD2を介して回生電流が流れる。これにより、直流電源Eの直流電圧を降圧した直流電圧がコンデンサC4に充電される。出力制御回路40によりスイッチング素子Q2のオンデューティ(一周期に占めるオン時間の割合)を変えることにより、コンデンサC4に得られる電圧を可変制御できる。
降圧チョッパ回路4の出力には電流検出抵抗5である抵抗Rsを介して極性反転回路6が接続されている。極性反転回路6はスイッチング素子Q3〜Q6よりなるフルブリッジ回路であり、スイッチング素子Q3,Q6のペアとQ4,Q5のペアが出力制御回路40からの制御信号により低周波もしくは高周波で交互にオンされることで、降圧チョッパ回路4の出力電力を矩形波交流電力に変換して高圧放電灯8に供給するものである。負荷である高圧放電灯8はメタルハライドランプや高圧水銀ランプのような高輝度高圧放電灯(HIDランプ)である。
始動パルス発生回路7は、高圧放電灯8の始動時のみ動作し、高圧放電灯8を絶縁破壊させるための高圧パルス電圧を発生する。始動パルス電圧発生回路7は、昇圧チョッパ回路3で昇圧した直流電源Eから所定の電圧値Vc1に充電されるコンデンサC1と、トランスT1の1次巻線N1と、外部制御信号によりオン/オフ可能なスイッチング素子Q7と、可変インピーダンス素子71とを直列に接続したトランス1次巻線回路と、トランスT1の1次巻線に発生する電圧Vp1を2次巻線N2との巻数比からN2/N1倍(以後、トランスの結合係数は1として説明する)に昇圧して高圧放電灯8に極性反転回路6の出力に重畳して高圧パルス電圧を印加するトランスT1の2次巻線N2とで構成されている。
可変インピーダンス素子71はコンデンサC1と1次巻線N1の間に配置しても良く、1次巻線回路内に直列に挿入されていれば良い。コンデンサC2は、トランスT1で発生した高電圧パルスが極性反転回路6の入力側に回り込まないようにブロックする高周波バイパス用のコンデンサであり、このコンデンサC2とトランスT1の2次巻線N2と高圧放電灯8とで直列閉回路を構成している。トランスT1の2次巻線N2に高圧パルス電圧が発生すると、コンデンサC2を介して高圧放電灯8の両端に印加されることになる。
本実施形態では、高圧放電灯8は出力配線(長さX)を介して極性反転回路6の出力に接続されているものとする。図中、a,bは出力線の根元部分、c,dは出力線の先端部分、Cfは出力配線の浮遊容量である。
出力制御回路40はマイコン等で構成されており、降圧チョッパ回路4のスイッチング素子Q2と極性反転回路6のスイッチング素子Q3〜Q6を高圧放電灯8の状態に応じて適切に制御する信号を出力する。電流検出抵抗5である抵抗Rsに流れる負荷電流と降圧チョッパ回路4の出力コンデンサC4の電圧は出力制御回路40により監視されており、高圧放電灯8への供給電力が適正となるように、降圧チョッパ回路4のスイッチング素子Q2のオン・デューティを制御する。また、出力制御回路40は始動用の高圧パルス電圧を印加する前に、高圧放電灯8への出力配線の浮遊容量Cfを検出するために、スイッチング素子Q3〜Q6を高周波でオン・オフさせたり、高圧放電灯8の安定点灯時にはスイッチング素子Q3〜Q6を低周波でオン・オフさせるように制御する。
始動パルス発生回路7のスイッチング素子Q7は始動パルス制御回路9により制御される。始動パルス制御回路9は、始動用の高圧パルス電圧を印加する前に、共振電圧電圧検出回路13により検出される浮遊容量Cfの電圧|Vla1−Vla2|を検出しており、その検出値に応じて適切なピーク値の高圧パルス電圧を印加するように、可変インピーダンス素子71を制御する。
背景技術でも述べたが、出力線長Xを伸ばすと、始動電圧値(“高圧パルス電圧値(トランス2次巻線電圧)+極性反転回路の出力電圧値”のことを指す)が低下し、高圧放電灯8の始動電圧を下回ると、高圧放電灯8が始動しない不具合が起こる場合がある。
そこで、無負荷時において始動電圧を高圧放電灯8に供給する前に、スイッチング素子Q3〜Q6のオン/オフ動作により、トランス2次巻線N2と出力線浮遊容量Cfの共振から生じる出力部両端の共振電圧VR を検出しておくことで、出力線長Xが長くても始動電圧値を確保し、ランプ始動不良を起こさない始動方式としている。
図3を用いて、本実施形態における共振電圧の発生の原理を説明する。出力線長Xが3mある場合、その出力線の浮遊容量値Cf(3m)は20pFであるとする。また、出力線長Xが10mある場合、その出力線の浮遊容量値Cf(10m)は60pFであるとする。その時、トランス2次巻線N2のインダクタンス値LN2を例えば100μHとすると、出力線長3m及び10mそれぞれの共振周波数f0は、
f0=1/2π√(LN2・Cf)
により、f0(3m)≒2000kHz、f0(10m)≒3500kHzとなる。
よって、図3に示すように、出力線が3mと10mとでは共振系が異なっているので、図4に示すようにスイッチング素子Q3〜Q6を“スイッチング素子Q4・Q5がオン、スイッチング素子Q3・Q6がオフ”の期間T01と、“スイッチング素子Q4・Q5がオフ、スイッチング素子Q3・Q6がオン”の期間T02を交番させて、期間T01、T02を例えばf=400kHzの高周波で交番させた場合、図5に示すように、共振電圧VR に差が出ることが分かる。その共振電圧VR の違いを利用して浮遊容量値Cfを判別できる。ここでは共振特性の違いとして、共振電圧VR のピーク値VRPの違いを検出しているが、共振による固有振動の周期tR の違いを検出してもよい。
図1では、共振電圧VR を共振電圧検出回路13により検出している。そして、共振電圧検出回路13の検出出力を、予め共振電圧VR のピーク値VRPまたは共振による固有振動の周期tR から浮遊容量値Cfを求める、あるいは浮遊容量値Cfから高圧パルス電圧値を決定できるテーブルが格納されたマイコン等を搭載した始動パルス制御回路9にフィードバックする。その後、始動パルス制御回路9は共振電圧検出回路13からの検出値に応じてインピーダンス可変制御回路72により可変インピーダンス素子71のインピーダンスを可変制御する。
ここで、可変インピーダンス素子71としては、例えば図2に示すような可飽和型インダクタンス(可飽和リアクトル)を用いることができる。インピーダンス可変制御回路72では補正値に応じてデューティ比を可変制御されるPWM信号を発生し、積分抵抗R72と積分コンデンサC72によりバイアス電圧Vc72を生成し、このバイアス電圧Vc72のレベルに応じた電流が積分コンデンサC72からバイアス抵抗R71を介して制御巻線N4に流れることでスイッチング素子Q7のオン時に主巻線N5が飽和に至る電流レベルが変化する構成として実現可能である。
可変インピーダンス素子71の値を補正した後、始動パルス制御回路9のオン信号を受けてスイッチング素子Q7がオンすると、トランス1次巻線回路の閉回路が構成され、コンデンサC1に充電された電荷を放出して1次巻線N1に電圧Vp1が発生する。2次巻線N2では巻数比(N2/N1)に応じて高圧パルス電圧が3〜5kV範囲内の一定電圧として発生する。
浮遊容量Cf(出力線長X)の判別後は、図4に示すように“スイッチング素子Q4・Q5がオン、スイッチング素子Q3・Q6がオフ”の期間T21と、“スイッチング素子Q4・Q5がオフ、スイッチング素子Q3・Q6がオン”の期間T22を通常の高圧放電灯点灯周波数(例えば、数百Hz)で交番させる。
以上のように、本実施形態によれば、無負荷時に共振電圧検出回路13により共振電圧VR を検出して始動パルス制御回路9にフィードバックし、可変インピーダンス素子71のインピーダンス値Zを補正することによりトランス1次巻線電圧Vp1を調整できるため、その後、高圧放電灯8に供給する始動電圧(“高圧パルス電圧値(トランス2次巻線電圧)+極性反転回路の出力電圧値”のことを指す)を高圧放電灯8の始動に最適な範囲内に維持できる。
また、従来例(特許文献1)とは違い、高圧放電灯に1回も始動電圧を供給せずに、高圧放電灯の始動に最適な始動電圧になるように1次巻線N1の電圧Vp1を制御できることから、高圧放電灯へのストレスを低減することが可能となる。
(実施形態2)
図6は本発明の実施形態2の全体構成を示す回路図であり、図7はスイッチング素子Q3〜Q6の動作波形図である。図8、図9は出力線長が異なる場合の浮遊容量電圧の時間的変化を示す特性図である。
出力線長が長くても、無負荷時において始動電圧(“高圧パルス電圧値(トランス2次巻線電圧)+極性反転回路の出力電圧値”のことを指す)を供給する前に、出力線浮遊容量Cfに充電される電圧Vcfを充電電圧検出回路14により検出し、始動パルス制御回路9にフィードバックすることで、始動に必要な高圧パルス電圧のピーク値を確保し、ランプ始動不良を起こさない方式を提案する。
図7に示すように、スイッチング素子Q3〜Q6を“スイッチング素子Q3・Q6がオン、スイッチング素子Q4・Q5がオフ”の期間T11(または、“スイッチング素子Q4・Q5がオン、スイッチング素子Q3・Q6がオフ”の期間T11)を設けてDC動作させた場合、図8及び図9に示すように浮遊容量電圧Vcfの立ち上がりに差が出るので、浮遊容量電圧Vcfから浮遊容量値Cfを判別することができる。
例えば、出力線長Xが3mある場合、その出力線の浮遊容量値Cf(3m)は20pFであるとする。また、出力線長Xが10mある場合、その出力線の浮遊容量値Cf(10m)は60pFであるとする。
図8は“ある時間tx経過後の浮遊容量電圧Vcf”の違いを利用して浮遊容量値Cfを判別できることを示した図であり、図9は“ある浮遊容量電圧Vcfxになるまでの時間t”の違いを利用して浮遊容量値Cfを判別できることを示した図である。
浮遊容量電圧Vcfを充電電圧検出回路14により検出し、充電電圧検出回路14の出力を、予め“ある時間tx経過後の浮遊容量電圧Vcf”による浮遊容量値Vcftx、または“ある浮遊容量電圧Vcfxになるまでの時間t”による浮遊容量値Vcfを判定できるテーブルを備えたマイコン等を搭載した始動パルス制御回路9にフィードバックする。
その後、始動パルス制御回路9は、充電電圧検出回路14からの検出値に応じて始動パルス制御回路9がスイッチング素子Q7を駆動する電圧レべルを選択する。出力制御回路40からパルス出力タイミング信号を受けると、決定されたスイッチング素子Q7の駆動電圧レべルによってスイッチング素子Q7をオンする。
スイッチング素子Q7がオンされた後の駆動電圧レベルの時間的推移を図10に示す。図中のVgs1,Vgs2,Vgs3は出力線長に応じて選択された駆動電圧レベルである。
スイッチング素子Q7の駆動電圧レベルが異なると、図11に示すように、FETのゲート・ソース間電圧Vgsに対して、ドレイン・ソース間のオン抵抗Rdsが異なることから、スイッチング素子Q7のオン時のトランス1次巻線回路のインピーダンスが可変制御されることになる。また、図12に示すように、スイッチング素子Q7の駆動電圧の時間的な変化(電圧上昇の傾き)を変化させても同等の制御を行うことが可能である。
始動パルス制御回路9からのオン信号を受けてスイッチング素子Q7がオンすると、トランス1次巻線回路の閉回路が構成され、コンデンサC1に充電されていた電荷を放出して1次巻線N1にパルス電圧が発生する。2次巻線N2では巻数比(N2/N1)倍に昇圧された3〜5kVの範囲内の高圧パルス電圧が発生する。
浮遊容量の判別後は、図7に示すように“スイッチング素子Q4・Q5がオン、スイッチング素子Q3・Q6がオフ”の期間T21と“スイッチング素子Q4・Q5がオフ、スイッチング素子Q3・Q6がオン”の期間T22を通常の高圧放電灯点灯周波数f=数百Hzで交番させる。
以上のように、本実施形態によれば、無負荷時に充電電圧検出回路14により浮遊容量電圧Vcfを検出して始動パルス制御回路9にフィードバックし、始動パルス制御回路9はスイッチング素子Q7を駆動する電圧レべルを選択するようにしたので、その後、高圧放電灯8の始動に最適な始動電圧に維持できる。
また、従来例(特許文献1)とは違い、高圧放電灯に1回も始動電圧を供給せずに、高圧放電灯始動に最適な始動電圧になるようにトランス1次巻線N1の電圧を制御できることから、高圧放電灯へのストレスを低減することが可能となる。
(実施形態3)
図13に本発明の実施形態3の回路図を示す。本実施形態においては、実施形態2のスイッチング素子Q7をMOSFETからバイポーラトランジスタに置き換えた点が異なる。バイポーラトランジスタのコレクタ・エミッタ間には回生用ダイオードが逆並列接続されている。浮遊容量の検出手段に関しては実施形態1と同等であり、共振電圧VR を共振電圧検出回路13により検出し、共振電圧検出回路13の出力を、予め共振電圧VR のピーク値VRPから浮遊容量値Cfを判定し、その浮遊容量値Cfから高圧パルス電圧値を判定できるテーブルを備えたマイコン等を搭載した始動パルス制御回路9にフィードバックする。始動パルス制御回路9は共振電圧検出回路13からの検出値に応じてスイッチング素子Q7を駆動する駆動電圧VBEまたは駆動電流IB のレべルを選択する。
図14はバイポーラトランジスタのベース・エミッタ間電圧VBEとコレクタ電流Icの関係を示している。この特性から明らかなように、コレクタ電流Icを可変制御するには、パルス電圧の補正値に応じてベース・エミッタ間電圧VBEを可変制御すれば良い。これによりトランス1次巻線回路におけるスイッチング素子Q7のオン時のインピーダンス成分を可変制御することができる。その他の構成及び動作については実施形態1,2と同様である。
スイッチング素子Q7のオンタイミングは、図15に例示するように、パルス電圧によって高圧放電灯が絶縁破壊した際に放電状態を安定させるのに必要な押し込み電力を供給できるように次の極性反転まで数百μs〜数ms前のタイミングにパルス電圧を重畳するのが良い。実施形態1,2並びに後述の各実施形態においても同様である。
以上により、本実施の形態によれば、無負荷時に共振電圧検出回路13により共振電圧VRを検出して始動パルス制御回路9にフィードバックし、始動パルス制御回路9はQ7を駆動する電圧VBEまたは電流IBレべルを選択するようにしたので、その後、高圧放電灯の始動に最適な始動電圧に維持できる。
また、従来例(特許文献1)とは違い、高圧放電灯に1回も始動電圧を供給せずに、高圧放電灯始動に最適な始動電圧になるようにトランス1次巻線N1の電圧を制御できることから、高圧放電灯へのストレスを低減することが可能となる。
なお、本実施形態では、浮遊容量の検出手段として、実施形態1の共振電圧検出回路13を用いたが、実施形態2の充電電圧検出回路14を用いても良い。
(実施形態4)
図16に本発明の実施形態4の回路図を示す。本実施形態においては、実施形態2のスイッチング素子Q7をオン抵抗の異なる2個のスイッチング素子Q7a,Q7bの並列回路に置き換えた点が異なる。また、始動パルス制御回路9は、パルス電圧の補正値に応じてスイッチング素子Q7aまたはQ7bを選択するように制御する点が異なる。2つのオン抵抗の異なるスイッチング素子Q7a、Q7bのいずれか一方をオンすることでトランス1次巻線回路のインピーダンス成分を可変制御することができる。
スイッチング素子Q7a、Q7bのオン抵抗の差は補正精度によって選択すれば良く、必要に応じて並列個数を増やすことも可能である。また、実施形態2で説明したゲート電圧の可変制御と組み合わせても構わない。
また、図17に示すように、スイッチング素子Q7a、Q7b、Q7cそれぞれに直列に異なる抵抗Ra,Rb,Rcを接続しておく構成とすることにより、スイッチング素子Q7a、Q7b、Q7cのいずれかをオンしたときのトランス1次巻線回路のインピーダンスを可変制御する構成としても良い。その他の構成及び動作については実施形態2と同様である。
本実施形態によれば、無負荷時に充電電圧検出回路14により浮遊容量電圧Vcfを検出して始動パルス制御回路9にフィードバックし、始動パルス制御回路9によりトランス1次巻線回路の回路インピーダンスを変えるようにしたので、その後、高圧放電灯の始動に最適な始動電圧に維持できる。
また、従来例(特許文献1)とは違い、高圧放電灯に1回も始動電圧を供給せずに、高圧放電灯始動に最適な始動電圧になるようにトランス1次巻線N1の電圧を制御できることから、高圧放電灯へのストレスを低減することが可能となる。
なお、本実施形態では、浮遊容量の検出手段として、実施形態2の充電電圧検出回路14を用いたが、実施形態1の共振電圧検出回路13を用いても良い。
(実施形態5)
図18に本発明の実施形態5の回路図を示す。本実施形態においては、1次巻線N1に複数のタップを持つトランスT1を用いており、トランスT1の各タップに接続して、閉ループを形成する複数のスイッチング素子Q7a、Q7b、Q7cを備えている。浮遊容量の検出手段に関しては実施形態1と同等であり、共振電圧VR を共振電圧検出回路13により検出し、共振電圧検出回路13の出力を、予め共振電圧VR のピーク値VRPから浮遊容量値Cfを判定し、その浮遊容量値Cfから高圧パルス電圧値を判定できるテーブルを備えたマイコン等を搭載した始動パルス制御回路9にフィードバックする。始動パルス制御回路9はパルス電圧の補正値に応じてスイッチング素子Q7a、Q7b、Q7cのいずれかを選択するように制御する。スイッチング素子Q7aがオンのときはトランスT1の1次巻線に発生する電圧をN1a:N2の比で、スイッチング素子Q7bがオンのときはトランスT1の1次巻線に発生する電圧をN1b:N2の比で、スイッチング素子Q7cがオンのときはトランスT1の1次巻線に発生する電圧をN1c:N2の比で、それぞれ昇圧して高圧放電灯8に所望の3〜5kV範囲内の高圧パルス電圧を印加するように構成している。
トランスT1の1次巻線の中間タップの個数や巻数比は補正精度に応じて選択すれば良い。また、実施形態2で説明したゲート電圧の可変制御と組み合わせても構わない。その他の構成及び動作については実施形態1,2と同様である。
このように本実施の形態によれば、出力線を延長した場合においても高圧放電灯の始動に必要な一定ピーク値の高圧パルス電圧を出力可能な高圧放電灯点灯装置を安価に簡単な回路で実現することができる。
なお、始動パルス発生回路7のスイッチング素子としてはMOSFETやバイポーラトランジスタに限定されるものではなく、IGBTや双方向サイリスタなど任意の半導体スイッチング素子を用いても良い。
なお、本実施形態では、浮遊容量の検出手段として、実施形態1の共振電圧検出回路13を用いたが、実施形態2の充電電圧検出回路14を用いても良い。
(実施形態6)
図19に本発明の実施形態6の回路図を示す。本実施形態においては、高圧パルス電圧ピーク値が高圧放電灯から要求される所定範囲内に維持されるように、極性反転回路6の出力電圧を調整することを特徴とする。
降圧チョッパ回路4の制御回路40は、定常動作時に降圧チョッパ回路4の出力目標値を設定する定常時制御回路43と、始動時にパルス検出回路12で検出された高圧パルス電圧を高圧パルス電圧の目標値と比較し、降圧チョッパ回路4の出力目標値を設定する始動時制御回路44と、降圧チョッパ回路4の出力電流を検出し、始動時制御回路44と定常時制御回路43の切替えを行う状態切替回路50と、降圧チョッパ回路4の出力を検出する出力検出回路41と、始動時制御回路44または定常時制御回路43からの入力をもとにスイッチング素子Q2のオン/オフを制御するFET制御回路42からなる。
また、昇圧チョッパ回路3の制御回路30は、定常動作時に昇圧チョッパ回路3の出力目標値を設定する定常時制御回路33と、始動時に昇圧チョッパ回路3の出力目標値を設定する始動時制御回路34と、昇圧チョッパ回路3の出力を検出する出力検出回路31と、始動時制御回路34または定常時制御回路33からの入力をもとにスイッチング素子Q1のオン/オフを制御するFET制御回路32からなる。
図20は高圧放電灯8への出力配線長が短く、配線の浮遊容量が非常に小さいときの各部波形である。このときのトランスT1の昇圧後の高圧パルス電圧の最大値を、高圧パルス電圧の目標値Vmとし、降圧チョッパ回路4の出力電圧値を降圧チョッパ回路3の通常時の出力目標値Vrとする。
図21は高圧放電灯8への出力配線長が長く、配線の浮遊容量の影響でトランスT1の昇圧後の高圧パルス電圧が減衰した時の各部波形である。トランスT1の昇圧後の高圧パルス電圧は、トランスT1の3次巻線N3で検出され、電圧分圧回路11による電圧の分圧を経て、パルス検出回路12で高圧パルス電圧成分を検出し、降圧チョッパ制御回路40内の始動時制御回路44にフィードバックされる。始動時制御回路44は、フィードバックされた高圧パルス電圧Vpと、高圧パルス電圧の目標値Vmの差(目標値からの不足電圧ΔV)から、降圧チョッパ回路4の出力目標値を、降圧チョッパ回路4の通常時目標値VrよりもΔVだけ高く設定する。降圧チョッパ制御回路40のFET制御回路42は、始動時制御回路44の出力を受け、スイッチング素子Q2の制御を行う。出力検出回路41は、降圧チョッパ回路4の出力電圧を検出し、FET制御回路42にフィードバックする。これにより降圧チョッパ回路4の出力電圧を出力目標値となるよう制御する。
図22は、降圧チョッパ制御回路40の始動時制御回路44が設定した降圧チョッパ回路4の出力目標値Vdが、降圧チョッパ回路4の入力電圧より高い電圧値である場合の各部波形である。この時、降圧チョッパ制御回路40の始動時制御回路44は、昇圧チョッパ制御回路30の始動時制御回路34に出力目標値Vdを伝達する。昇圧チョッパ制御回路30の始動時制御回路34は、昇圧チョッパ回路3の出力目標値Vuとして、降圧チョッパ回路4の出力目標値Vdよりも高い電圧を設定する。昇圧チョッパ制御回路30のFET制御回路32は、始動時制御回路34の出力を受け、スイッチング素子Q1の制御を行う。出力検出回路31は、昇圧チョッパ回路3の出力電圧を検出し、FET制御回路32にフィードバックする。このように昇圧チョッパ回路3の出力電圧を上げることで、降圧チョッパ回路4の入力電圧が上がり、降圧チョッパ回路4の出力の上限を広げることができる。
以上のように、トランスT1による昇圧後の高圧パルス電圧の不足分を、降圧チョッパ回路4の出力電圧で補うことにより、始動時の高圧放電灯8の両端電圧のピーク値を常に一定に保つことができる。
浮遊容量の検出手段に関しては実施形態1と同等であり、共振電圧VR を共振電圧検出回路13により検出し、共振電圧検出回路13の出力を、予め共振電圧VR のピーク値VRPから浮遊容量値Cfを判定し、その浮遊容量値Cfから高圧パルス電圧値を判定できるテーブルを備えたマイコン等を搭載した始動時制御回路44にフィードバックする。
始動時制御回路44では、浮遊容量値Cfから判定した高圧パルス電圧値Vpと高圧パルス電圧値の目標値Vmとの差を演算し、降圧チョッパ回路4の出力目標値を設定する。
実施形態1では、共振電圧VR を検出する共振電圧検出回路13を出力線の根元部分に接続していたが、本実施形態ではトランスT1の2次巻線N2の両端の共振電圧を検出している。
本実施の形態によれば、無負荷時に共振電圧検出回路13により共振電圧VR を検出して降圧チョッパ制御回路40の始動時制御回路44にフィードバックするようにし、降圧チョッパ回路4の出力電圧(最終的には極性反転回路6の出力電圧)を調整できるため、その後、高圧放電灯8に供給する始動電圧(“高圧パルス電圧値(トランス2次巻線電圧)+極性反転回路の出力電圧値”のことを指す)を高圧放電灯の始動に最適な範囲内に維持できる。
また、従来例(特許文献1)とは違い、高圧放電灯に1回も始動電圧を供給せずに、高圧放電灯始動に最適な始動電圧になるようにトランス1次巻線N1の電圧を制御できることから、高圧放電灯へのストレスを低減することが可能となる。
なお、本実施形態では、浮遊容量の検出手段として、実施形態1の共振電圧検出回路13を用いたが、実施形態2の充電電圧検出回路14を用いても良い。
(実施形態7)
図23に本発明の実施形態7の回路図を示す。降圧チョッパ制御回路40は、定常動作時に降圧チョッパ回路出力目標値を設定する定常時制御回路43と、始動時に降圧チョッパ回路4の出力電圧がある一定の変化をするように設定する始動時制御回路44と、降圧チョッパ回路4の出力電流を検出し、始動時制御回路44と定常時制御回路43の切替えを行う状態切替回路50と、降圧チョッパ回路4の出力を検出する出力検出回路41と、始動時制御回路44または定常時制御回路43からの入力をもとにスイッチング素子Q2のオン/オフを制御するFET制御回路42からなる。
図24に各部の動作波形を示す。
無負荷時には、図25のように、降圧チョッパ回路4の出力電圧がある一定の変化をするように制御する。横軸は時間、縦軸は電圧値である。ここでは、降圧チョッパ回路4の出力電圧を極性反転回路6により低周波交流出力に変換した後の電圧波形を示している。低周波交流の周期は一般的には数百Hzであり、振幅は数百Vである。
始動パルス発生回路制御回路90は、スイッチング素子Q7のオン/オフ制御を行うFET制御回路96と、降圧チョッパ回路4の出力の変化量を検出する降圧チョッパ回路出力変化検出回路97とからなる。始動パルス発生回路制御回路90のFET制御回路96は、共振電圧検出回路13からの出力(高圧パルス電圧の低下値)と、降圧チョッパ回路出力変化検出回路97の出力(降圧チョッパ回路出力の上昇値)が等しくなった時にスイッチング素子Q7をオンさせる。
実施形態1では、共振電圧VR を検出する共振電圧検出回路13を出力線の根元部分に接続していたが、本実施形態ではトランスT1の1次巻線N1の両端の共振電圧を検出している。
実施形態1と同様にして、無負荷時の共振電圧VR のピーク値から高圧パルス電圧の変化分ΔVを計算し、降圧チョッパ回路出力変化値が、高圧パルス電圧の変化分ΔVと等しくなった時にスイッチング素子Q7をオンし、高圧パルス電圧を発生させる。これにより、高圧パルス電圧の変化分(低下分)を極性反転回路6からの出力電圧の変化分(上昇分)で補うことができ、始動時に高圧放電灯8の両端に印加されるピーク電圧をほぼ一定に保つことができる。
本実施形態では、図25のように、極性反転から連続的に変化するように、降圧チョッパ回路4の出力電圧を変化させているが、出力電圧の変化はこれに限られたものでなく、図26に示すように、階段状に変化させてもよい。降圧チョッパ回路4の出力電圧が階段状に変化する場合、共振電圧検出回路13により判定された高圧パルス電圧の低下値と、降圧チョッパ回路出力変化検出回路97の出力値(降圧チョッパ回路出力の上昇値)が、一番近くなった時にスイッチング素子Q7がオンするように制御する。降圧チョッパ回路出力電圧が図26のように階段状に変化する場合、高圧パルス電圧の変化に応じた、高圧放電灯8の両端電圧のピーク電圧の連続的な調整はできないが、その半面、各制御回路内での信号遅れ時間の影響があっても高圧放電灯8の両端電圧のピーク電圧を目標通りの値に調整しやすいという利点がある。
本実施形態によれば、無負荷時に共振電圧検出回路13により共振電圧VR を検出して始動パルス発生回路制御回路90にフィードバックするようにし、降圧チョッパ回路4の出力電圧(最終的には極性反転回路6の出力電圧)及びスイッチング素子Q7のオンタイミングを調整できるため、その後、高圧放電灯に供給する始動電圧(“高圧パルス電圧値(トランス2次巻線電圧)+極性反転回路の出力電圧値”のことを指す)を高圧放電灯の始動に最適な範囲内に維持できる。
また、従来例(特許文献1)とは違い、高圧放電灯に1回も始動電圧を供給せずに、高圧放電灯始動に最適な始動電圧になるようにトランス1次巻線N1の電圧を制御できることから、高圧放電灯へのストレスを低減することが可能となる。
なお、本実施形態では、浮遊容量の検出手段として、実施形態1の共振電圧検出回路13を用いたが、実施形態2の充電電圧検出回路14を用いても良い。
(実施形態8)
図27に本発明の実施形態8の回路図を示す。無負荷時にトランスT1の1次巻線N1の両端から共振電圧検出回路13により検出された共振電圧VR から浮遊容量Cfを判定し、始動時制御回路44にフィードバックし、降圧チョッパ回路4の出力を調整する構成は実施形態6と同様である。極性反転回路6の制御回路60は、極性反転回路6の極性切替動作を制御する。
図28に各部波形を示し、図27の特徴的な部分の動作を説明する。降圧チョッパ制御回路40の始動時制御回路44は、極性反転制御回路60からの極性切替動作信号を検出して、高圧パルス電圧と同極性の矩形波出力半サイクル時のみ、高圧パルス電圧変化量に応じて降圧チョッパ回路4の出力目標値を設定する。
また、始動時制御回路44は、極性反転制御回路60からの極性切替動作信号を検出して、高圧パルス電圧と同極性の矩形波出力半サイクル時のみ、高圧パルス電圧を発生させる。例えば、極性反転回路6の出力電圧極性がプラスの時に高圧パルス電圧と同じ極性であるとすると、極性反転回路6の出力電圧がマイナスからプラスへの極性切替動作時にスイッチング素子Q7をオンする。
高圧パルス電圧と矩形波の極性の組み合わせには、降圧チョッパ回路4の出力調整が有効に働かない組合せが存在する。高圧パルス電圧と同極性の矩形波出力半サイクル時のみ降圧チョッパ回路4の出力を調整することで、出力電圧実効値が同等の場合に比較して、高圧放電灯の両端電圧のピーク値の調整範囲を広げることができ、なおかつ不必要な高圧パルス電圧の発生を回避できる。
図29に本実施形態の一変形例の動作波形を示す。降圧チョッパ制御回路40の始動時制御回路44は、矩形波制御回路60から矩形波極性切替信号を検出して、高圧パルス電圧と同極性の矩形波出力の半サイクル時における一定時間のみ、高圧パルス電圧変化量に応じた降圧チョッパ回路4の出力目標値を設定し、降圧チョッパ回路4の出力を調整する。
例えば、矩形波出力の電圧極性がプラスの時に降圧チョッパ回路4の出力調整が有効であるとすると、矩形波出力の電圧極性がマイナスからプラスへの極性切替動作時に始動パルス発生回路制御回路90はスイッチング素子Q7をオンする。
降圧チョッパ制御回路40の始動時制御回路44は、矩形波出力の電圧極性がマイナスからプラスへの極性切替動作時に、高圧パルス電圧変化量に応じた降圧チョッパ回路の出力目標値を設定する。つまり、高圧パルス電圧の不足分ΔVpを補うように、降圧チョッパ回路4の出力目標値を一時的に引き上げる。その後、始動パルス発生回路制御回路90がスイッチング素子Q7をオフする時、降圧チョッパ制御回路40の始動時制御回路44は、降圧チョッパ回路4の出力目標値を引き下げる。
このように、高圧パルス電圧を発生させる時のみ降圧チョッパ回路4の出力を調整することで、実施形態6に比べて高圧放電灯8の電圧実効値を大幅に小さくすることができるので、出力電圧実効値が同等の場合に比較して、高圧放電灯の両端に印加されるパルス電圧のピーク値の調整範囲を広げることができ、なおかつ不必要な高圧パルス電圧の発生を回避できる。
また、従来例(特許文献1)とは違い、高圧放電灯に1回も始動電圧を供給せずに、高圧放電灯始動に最適な始動電圧になるようにトランス1次巻線N1の電圧を制御できることから、高圧放電灯へのストレスを低減することが可能となる。
なお、本実施形態では、浮遊容量の検出手段として、実施形態1の共振電圧検出回路13を用いたが、実施形態2の充電電圧検出回路14を用いても良い。
上述の各実施形態において、極性反転回路6はフルブリッジ回路を想定しているが、ハーフブリッジ回路であっても良い。また、電力変換回路としての降圧チョッパ回路4は極性反転回路6を構成するフルブリッジ回路またはハーフブリッジ回路のスイッチング素子と兼用しても良い。
(実施形態9)
図30に本発明の実施形態9の回路図を示す。無負荷時に共振電圧検出回路13により検出された共振電圧VR から浮遊容量Cfを判定し、始動パルス制御回路9にフィードバックし、始動パルスを調整する点は実施形態1と同様である。実施形態1との違いは、コンデンサC1への充電電源21と、充電経路のインピーダンス22と、充電開始を検出する充電開始検出回路23と、充電開始を検出してから所定時間後に信号を出力するタイマー回路24とからなるコンデンサ電圧可変手段を具備した点である。
実施形態1で説明したように共振電圧VR (ただし、本実施形態ではトランスT1の1次巻線N1の両端の共振電圧)を共振電圧検出回路13で検出し、予め共振電圧VR のピーク値VRPから浮遊容量値Cfを判定し、その浮遊容量値Cfから高圧パルス電圧値を判定できるテーブルを備えたマイコンを搭載した始動パルス制御回路9にフィードバックする。
図31は本実施形態の動作説明のための波形図である。コンデンサC1の充電経路のインピーダンス22を切り替えることにより、充電の時定数をτ1,τ2のように切り替えることができる。タイマー回路24の計時時間を一定時間tとすると、出力線長が長いときにはτ1、出力線長が短いときはτ2の時定数に切り替える。
高電圧パルスはコンデンサC1に蓄積された電圧Vc1と相関関係があるので、高電圧パルスを可変とするには、スイッチング素子Q7がオンする瞬間のコンデンサC1の電圧Vc1を変えればよい。すなわち、共振電圧VR を共振電圧検出回路13で検出し、浮遊容量値Cfから判定された高圧パルス電圧が所定値以下であれば、コンデンサC1の電圧が時定数τ1で素早く充電されるように制御することでスイッチング素子Q7をオンするときにコンデンサC1の電圧Vc1を高くすることができる。またその逆として、浮遊容量値Cfから判定された高圧パルス電圧が所定値以上であれば、コンデンサC1の電圧が時定数τ2で遅く充電されるように制御することでスイッチング素子Q7をオンするときにコンデンサC1の電圧Vc1を低くすることができる。
本実施形態によれば、無負荷時に共振電圧検出回路13により共振電圧VR を検出して始動パルス制御回路9にフィードバックするようにし、高圧パルス電圧を調整できるため、その後、高圧放電灯に供給する始動電圧(“高圧パルス電圧値(トランス2次巻線電圧)+極性反転回路の出力電圧値”のことを指す)を高圧放電灯の始動に最適な範囲内に維持できる。
また、従来例(特許文献1)とは違い、高圧放電灯に1回も始動電圧を供給せずに、高圧放電灯始動に最適な始動電圧になるようにトランス1次巻線N1の電圧を制御できることから、高圧放電灯へのストレスを低減することが可能となる。
なお、本実施形態では、浮遊容量の検出手段として、実施形態1の共振電圧検出回路13を用いたが、実施形態2の充電電圧検出回路14を用いても良い。
(実施形態10)
図32に実施形態10の動作波形図を示す。回路構成は実施形態9と同じで良い。実施形態9と異なる点は、実施形態9ではコンデンサC1に充電する経路の時定数を変化させることにより高圧パルスを制御していたが、本実施形態ではコンデンサC1に充電する経路の時定数は一定で、スイッチング素子Q7をオンするタイミングを変化させることにより高圧パルス電圧を制御している。
例えば、出力線が3m(浮遊容量Cfが20pF)であることを検出した場合、コンデンサC1の充電時間をt(3m)とする。つまり、コンデンサC1の電圧がVc1(3m)であるときにスイッチング素子Q7をオンさせるようにし、高圧パルス電圧を最適な電圧に維持させるように始動パルス制御回路9が制御する。また、例えば出力線が10m(浮遊容量Cfが60pF)であることを検出した場合、コンデンサC1の充電時間をt(10m)とする。つまり、コンデンサC1の電圧がVc1(10m)であるときにスイッチング素子Q7をオンさせるようにし、高圧パルス電圧を最適な電圧に維持させるように制御する。
本実施形態によれば、無負荷時に共振電圧検出回路13により共振電圧VR を検出して始動パルス制御回路9にフィードバックすることで、高圧パルス電圧を調整できるため、その後高圧放電灯に供給する始動電圧(“高圧パルス電圧値(トランス2次巻線電圧)+極性反転回路の出力電圧値”のことを指す)を高圧放電灯の始動に最適な範囲内に維持できる。
また、従来例(特許文献1)とは違い、高圧放電灯に1回も始動電圧を供給せずに、高圧放電灯始動に最適な始動電圧になるようにトランス1次巻線N1の電圧を制御できることから、高圧放電灯へのストレスを低減することが可能となる。
(実施形態11)
図33は本発明の高圧放電灯点灯装置を用いた照明器具の構成例を示す。(a)、(b)はそれぞれスポットライトにHIDランプを用いた例、(c)はダウンライトにHIDランプを用いた例であり、図中、8は高圧放電灯、81は高圧放電灯を装着した灯体、82は配線、83は点灯装置の回路を格納した安定器である。これらの照明器具を複数組み合わせて照明システムを構築しても良い。これらの点灯装置として前述の実施形態1〜10のいずれかの高圧放電灯点灯装置を用いることで、始動パルスのピーク値を適正化でき、配線82が長くても始動可能となる。また、配線82が短いときには始動パルスのピーク値を低減できる。
出力線長を延長しても始動パルス電圧の減衰しない本発明の高圧放電灯点灯装置を搭載することで、配線82を例えば2m〜10mの範囲で延長することが可能となり、施工性が高まったり、安定器83の一括設置が可能となり、電源線の引き回し距離が短くできたり、安定器83の一括点検が可能となる等の利点がある。
本発明の実施形態1の構成を示す回路図である。 本発明の実施形態1の要部構成を示す回路図である。 本発明の実施形態1の共振特性を示す特性図である。 本発明の実施形態1の極性反転回路の動作波形図である。 本発明の実施形態1の出力線長に応じた共振電圧の違いを示す波形図である。 本発明の実施形態2の構成を示す回路図である。 本発明の実施形態2の極性反転回路の動作波形図である。 本発明の実施形態2の出力線長に応じた充電電圧の違いを示す波形図である。 本発明の実施形態2の出力線長に応じた充電電圧の違いを示す波形図である。 本発明の実施形態2の動作説明のための特性図である。 本発明の実施形態2の動作説明のための特性図である。 本発明の実施形態2の動作説明のための特性図である。 本発明の実施形態3の構成を示す回路図である。 本発明の実施形態3の動作説明のための特性図である。 本発明の実施形態2の動作説明のための波形図である。 本発明の実施形態4の構成を示す回路図である。 本発明の実施形態4の一変形例の構成を示す回路図である。 本発明の実施形態5の構成を示す回路図である。 本発明の実施形態6の構成を示す回路図である。 本発明の実施形態6の出力線長が最短時の動作波形図である。 本発明の実施形態6の出力線長が中間時の動作波形図である。 本発明の実施形態6の出力線長が最長時の動作波形図である。 本発明の実施形態7の構成を示す回路図である。 本発明の実施形態7の動作波形図である。 本発明の実施形態7の極性反転回路の無負荷時の出力変化を示す波形図である。 本発明の実施形態7の極性反転回路の無負荷時の出力変化の他の一例を示す波形図である。 本発明の実施形態8の構成を示す回路図である。 本発明の実施形態8の動作波形図である。 本発明の実施形態8の一変形例の動作波形図である。 本発明の実施形態9の回路図である。 本発明の実施形態9の動作波形図である。 本発明の実施形態10の動作波形図である。 本発明の実施形態6の照明器具の外観を示す斜視図である。 従来例のブロック図である。 従来例の回路図である。
符号の説明
E 直流電源
4 降圧チョッパ回路(電力変換回路)
6 極性反転回路
7 始動パルス発生回路
8 高圧放電灯
9 始動パルス制御回路
13 共振電圧検出回路
14 充電電圧検出回路

Claims (24)

  1. 直流電源の出力を負荷である高圧放電灯に供給する所定の電力に変換する電力変換回路と、
    電力変換回路の出力を所定の矩形波交流電力に変換し、高圧放電灯に印加する極性反転回路と、
    極性反転回路の出力に重畳し、始動用の高圧パルス電圧を高圧放電灯に印加する始動パルス発生回路とを備えた高圧放電灯点灯装置において、
    前記始動パルス発生回路は、
    少なくともコンデンサとトランスの1次巻線とスイッチング素子の直列接続からなる1次巻線回路と、
    前記トランスの2次巻線を高圧放電灯に接続し、トランスの1次巻線に発生する電圧を昇圧した高圧パルス電圧を高圧放電灯に印加する2次巻線回路とを具備しており、
    始動用の高圧パルス電圧を高圧放電灯に印加する以前に、前記点灯装置の出力部から前記高圧放電灯までの間に具備する出力線による高圧パルス電圧の変動要因を検出する検出手段と、
    該検出手段で得られた検出値を元に、高圧放電灯に印加する高圧パルス電圧ピーク値を高圧放電灯から要求される所定範囲内に維持するように調整する高圧パルス電圧ピーク値調整手段とを備えることを特徴とする高圧放電灯点灯装置。
  2. 請求項1において、出力線による高圧パルス電圧の変動要因を検出する検出手段とは、出力線間の浮遊容量を検出する手段であることを特徴とする高圧放電灯点灯装置。
  3. 請求項2において、出力線間の浮遊容量を検出する手段は、少なくとも前記トランス2次巻線と前記出力線間の浮遊容量を含むトランス2次巻線回路において前記極性反転回路のスイッチング素子のオン/オフにより発生する共振電圧を検出することを特徴とする高圧放電灯点灯装置。
  4. 請求項1〜3のいずれかにおいて、前記検出手段は、前記出力部に発生する共振電圧を検出することを特徴とする高圧放電灯点灯装置。
  5. 請求項1〜3のいずれかにおいて、前記検出手段は、前記トランスの2次巻線に発生する共振電圧を検出することを特徴とする高圧放電灯点灯装置。
  6. 請求項1〜3のいずれかにおいて、前記検出手段は、前記トランスの1次巻線に発生する共振電圧を検出することを特徴とする高圧放電灯点灯装置。
  7. 請求項2において、出力線間の浮遊容量を検出する手段は、前記極性反転回路のスイッチング素子のオン/オフにより前記出力線の浮遊容量に充電される淫遊容量電圧を検出することを特徴とする高圧放電灯点灯装置。
  8. 請求項1〜7のいずれかにおいて、前記トランス1次巻線回路のスイッチング素子をオンする時、前記コンデンサ電圧は略一定電圧であり、前記高圧パルス電圧ピーク値調整手段は、トランス1次巻線回路内に存在するインピーダンスを調整するインピーダンス可変手段により該インピーダンスを変化させることによって、トランス2次巻線に発生する高圧パルス電圧を調整し、高圧放電灯に印加する高圧パルス電圧ピーク値を高圧放電灯から要求される所定範囲内に維持することを特徴とする高圧放電灯点灯装置。
  9. 請求項8において、スイッチング素子を駆動する制御信号の電圧値または電流値、または制御信号の電圧値または電流値の立ち上がりの傾きを変化させ、スイッチング素子のオン時の内部インピーダンスを調整することによってトランス1次巻線回路内に存在するインピーダンスを調整することを特徴とする高圧放電灯点灯装置。
  10. 請求項8において、スイッチング素子は、オン時の内部インピーダンスの異なる複数のスイッチング素子の並列接続回路から構成され、駆動するスイッチング素子の選択によってトランス1次巻線回路内に存在するインピーダンスを調整することを特徴とする高圧放電灯点灯装置。
  11. 請求項8において、スイッチング素子は、スイッチング素子とインピーダンスの直列接続回路で、スイッチング素子のオン時の合成インピーダンスの異なる直列接続回路を複数並列に接続した回路から構成され、駆動するスイッチング素子を選択することにより該合成インピーダンスを調整して、トランス1次巻線回路内に存在するインピーダンスを調整することを特徴とする高圧放電灯点灯装置。
  12. 請求項8において、トランスの1次巻線には複数個のタップを設けており、スイッチング素子またはスイッチング素子とインピーダンスの直列回路が前記トランスの1次巻線の各タップに1つ接続されており、駆動するスイッチング素子を選択することによってトランス1次巻線回路内に存在するインピーダンスを調整することを特徴とする高圧放電灯点灯装置。
  13. 請求項10〜12のいずれかにおいて、スイッチング素子を駆動する制御信号の電圧値または電流値、または制御信号の電圧値または電流値の立ち上がりの傾きを変化させ、スイッチング素子のオン時の内部インピーダンスを調整することを特徴とする高圧放電灯点灯装置。
  14. 請求項8〜13のいずれかにおいて、スイッチング素子は、MOSFET、バイポーラトランジスタと回生用のダイオードの並列回路、双方向サイリスタ、またはIGBTのいずれかの素子であることを特徴とする高圧放電灯点灯装置。
  15. 請求項1〜7のいずれかにおいて、前記高圧パルス電圧ピーク値調整手段は、高圧パルス電圧ピーク値が高圧放電灯から要求される所定範囲内に維持されるように、前記極性反転回路の出力電圧を調整することを特徴とする高圧放電灯点灯装置。
  16. 請求項15において、前記高圧パルス電圧ピーク値調整手段は、高圧パルス電圧の極性と同極性の極性反転回路の出力電圧のみ、高圧パルス電圧ピーク値が高圧放電灯から要求される所定範囲内に維持されるように、前記極性反転回路の出力電圧を調整することを特徴とする高圧放電灯点灯装置。
  17. 請求項15または16において、前記高圧パルス電圧ピーク値調整手段は、前記トランス1次巻線回路のスイッチング素子がオンしている期間のみ、極性反転回路の出力電圧を調整することを特徴とする高圧放電灯点灯装置。
  18. 請求項15において、前記高圧パルス電圧ピーク値調整手段は、極性反転回路の出力電圧が一定の変化をしている時、トランス1次巻線回路のスイッチング素子をオンさせ、高圧放電灯に印加する高圧パルス電圧ピーク値が高圧放電灯から要求される所定範囲内に維持されるように調整することを特徴とする高圧放電灯点灯装置。
  19. 請求項18において、極性反転回路の出力電圧を矩形波半サイクル区間で、連続的に変化させることを特徴とする高圧放電灯点灯装置。
  20. 請求項18において、極性反転回路の出力電圧を矩形波半サイクル区間で、階段状に変化させることを特徴とする高圧放電灯点灯装置。
  21. 請求項1〜7のいずれかにおいて、前記高圧パルス電圧ピーク値調整手段は、前記トランス1次巻線回路のスイッチング素子がオンする時のコンデンサ電圧を制御するコンデンサ電圧可変手段を含み、高圧放電灯に印加する高圧パルス電圧ピーク値が高圧放電灯から要求される所定範囲内に維持されるように高圧パルス電圧を調整することを特徴とする高圧放電灯点灯装置。
  22. 請求項21において、前記コンデンサ電圧可変手段は、少なくとも前記コンデンサに充電する経路の時定数もしくは前記トランス1次巻線回路のスイッチング素子がオンするタイミングを変化させることを特徴とする高圧放電灯点灯装置。
  23. 請求項1〜7のいずれかにおいて、少なくとも極性反転回路の出力の極性反転期間中は高圧パルス電圧を発生させないことを特徴とする高圧放電灯点灯装置。
  24. 請求項1〜23のいずれかに記載の高圧放電灯点灯装置を具備したことを特徴とする照明器具。
JP2008015774A 2008-01-28 2008-01-28 高圧放電灯点灯装置、照明器具 Pending JP2009176638A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008015774A JP2009176638A (ja) 2008-01-28 2008-01-28 高圧放電灯点灯装置、照明器具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008015774A JP2009176638A (ja) 2008-01-28 2008-01-28 高圧放電灯点灯装置、照明器具

Publications (1)

Publication Number Publication Date
JP2009176638A true JP2009176638A (ja) 2009-08-06

Family

ID=41031511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008015774A Pending JP2009176638A (ja) 2008-01-28 2008-01-28 高圧放電灯点灯装置、照明器具

Country Status (1)

Country Link
JP (1) JP2009176638A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119044A (ja) * 2009-12-01 2011-06-16 Ushio Inc 放電ランプ点灯装置
JP2020107490A (ja) * 2018-12-27 2020-07-09 東芝ライテック株式会社 紫外線照射装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283180A (ja) * 1992-03-31 1993-10-29 Toshiba Lighting & Technol Corp 始動装置、放電灯点灯装置および照明装置
JPH0765984A (ja) * 1993-08-26 1995-03-10 Matsushita Electric Works Ltd 放電灯点灯装置
JP2002075673A (ja) * 2000-08-29 2002-03-15 Osram-Melco Ltd 放電灯点灯装置
JP2002352971A (ja) * 2001-05-28 2002-12-06 Matsushita Electric Works Ltd 放電灯点灯装置
JP2004281381A (ja) * 2003-02-24 2004-10-07 Matsushita Electric Ind Co Ltd 高圧放電灯の点灯装置およびそれを用いた電子機器
JP2007052977A (ja) * 2005-08-17 2007-03-01 Osram-Melco Ltd 高圧放電灯点灯装置
JP2007236140A (ja) * 2006-03-02 2007-09-13 Toshiba Lighting & Technology Corp 電力供給装置、放電灯点灯装置および照明装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283180A (ja) * 1992-03-31 1993-10-29 Toshiba Lighting & Technol Corp 始動装置、放電灯点灯装置および照明装置
JPH0765984A (ja) * 1993-08-26 1995-03-10 Matsushita Electric Works Ltd 放電灯点灯装置
JP2002075673A (ja) * 2000-08-29 2002-03-15 Osram-Melco Ltd 放電灯点灯装置
JP2002352971A (ja) * 2001-05-28 2002-12-06 Matsushita Electric Works Ltd 放電灯点灯装置
JP2004281381A (ja) * 2003-02-24 2004-10-07 Matsushita Electric Ind Co Ltd 高圧放電灯の点灯装置およびそれを用いた電子機器
JP2007052977A (ja) * 2005-08-17 2007-03-01 Osram-Melco Ltd 高圧放電灯点灯装置
JP2007236140A (ja) * 2006-03-02 2007-09-13 Toshiba Lighting & Technology Corp 電力供給装置、放電灯点灯装置および照明装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119044A (ja) * 2009-12-01 2011-06-16 Ushio Inc 放電ランプ点灯装置
JP2020107490A (ja) * 2018-12-27 2020-07-09 東芝ライテック株式会社 紫外線照射装置
JP7247580B2 (ja) 2018-12-27 2023-03-29 東芝ライテック株式会社 紫外線照射装置

Similar Documents

Publication Publication Date Title
WO2009096417A1 (ja) 高圧放電灯点灯装置およびこれを用いた照明装置
US7391165B2 (en) Discharge lamp lighting control device
JP2007115660A (ja) 高圧放電ランプ点灯装置及び照明装置
JP5129651B2 (ja) 高圧放電灯点灯装置及び照明器具
CN105637978A (zh) 节拍电子能量转换器
JP5512171B2 (ja) 照明用電源装置
JP6422056B2 (ja) 点灯装置およびそれを用いた照明器具
JP2009176638A (ja) 高圧放電灯点灯装置、照明器具
JP5069573B2 (ja) 高圧放電灯点灯装置、照明器具
WO2009096424A1 (ja) 高圧放電灯点灯装置及びこれを用いた照明器具
JP2009272255A (ja) 放電灯点灯装置、照明装置
JP2008022668A (ja) ハーフブリッジ回路を用いる電力供給装置
JP5081001B2 (ja) 高圧放電灯点灯装置、照明器具
JP2011103326A (ja) Led駆動装置
JP2009176641A (ja) 高圧放電灯点灯装置、照明器具
JP6074722B2 (ja) 放電灯点灯装置及びそれを用いた照明装置
JP2000133488A (ja) 放電灯点灯装置
JP5580677B2 (ja) 放電灯点灯回路
JP2009176642A (ja) 高圧放電灯点灯装置、照明器具
JP6417706B2 (ja) 放電灯点灯装置及び照明装置
JP6074721B2 (ja) 放電灯点灯装置及びそれを用いた照明装置
JP3945715B2 (ja) 照明用点灯装置
JP2007087821A (ja) 高圧放電ランプ点灯装置及び照明装置
JPWO2008123274A1 (ja) 高輝度放電ランプ点灯装置
JPH11121186A (ja) 放電灯用インバータ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925