JP2009111933A - 低雑音増幅器及び差動増幅器 - Google Patents

低雑音増幅器及び差動増幅器 Download PDF

Info

Publication number
JP2009111933A
JP2009111933A JP2007284566A JP2007284566A JP2009111933A JP 2009111933 A JP2009111933 A JP 2009111933A JP 2007284566 A JP2007284566 A JP 2007284566A JP 2007284566 A JP2007284566 A JP 2007284566A JP 2009111933 A JP2009111933 A JP 2009111933A
Authority
JP
Japan
Prior art keywords
electrode
transistor
tfc
lna
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007284566A
Other languages
English (en)
Other versions
JP4998211B2 (ja
Inventor
Koichiro Yamaguchi
耕一郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Icom Inc
Original Assignee
Icom Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Icom Inc filed Critical Icom Inc
Priority to JP2007284566A priority Critical patent/JP4998211B2/ja
Priority to US12/183,857 priority patent/US7633344B2/en
Priority to AT08018346T priority patent/ATE537603T1/de
Priority to EP08018346A priority patent/EP2056448B1/en
Publication of JP2009111933A publication Critical patent/JP2009111933A/ja
Application granted granted Critical
Publication of JP4998211B2 publication Critical patent/JP4998211B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/26Modifications of amplifiers to reduce influence of noise generated by amplifying elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/14Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of neutralising means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/22Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • H03F1/347Negative-feedback-circuit arrangements with or without positive feedback using transformers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/4508Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using bipolar transistors as the active amplifying circuit
    • H03F3/45085Long tailed pairs
    • H03F3/45089Non-folded cascode stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/50Amplifiers in which input is applied to, or output is derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/117A coil being coupled in a feedback path of an amplifier stage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/153Feedback used to stabilise the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/36Indexing scheme relating to amplifiers the amplifier comprising means for increasing the bandwidth
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/372Noise reduction and elimination in amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45516Indexing scheme relating to differential amplifiers the FBC comprising a coil and being coupled between the LC and the IC
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45528Indexing scheme relating to differential amplifiers the FBC comprising one or more passive resistors and being coupled between the LC and the IC
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45621Indexing scheme relating to differential amplifiers the IC comprising a transformer for phase splitting the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45722Indexing scheme relating to differential amplifiers the LC comprising one or more source followers, as post buffer or driver stages, in cascade in the LC
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45731Indexing scheme relating to differential amplifiers the LC comprising a transformer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/50Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower
    • H03F2203/5009Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower the output signal being capacitively coupled to the source of the source follower
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/50Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower
    • H03F2203/5021Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower the source follower has a controlled source circuit

Abstract

【課題】広帯域で高い帰還ループ利得を保ち尚且つ安定な低雑音負帰還増幅器を実現する。
【解決手段】トランジスタ24、トランジスタ27及び抵抗30で構成されるカスコード増幅器に帰還トランス23及び帰還抵抗44による二重の負帰還路を付加した二重負帰還低雑音増幅器において、該二重負帰還低雑音増幅器の出力端子とカスコード増幅器の入力端子即ちトランジスタ24の入力端子との間にキャパシタ42及び抵抗45からなる位相補償回路を付加し、カスコード増幅器の上段トランジスタ即ちトランジスタ27の入力端子にキャパシタ43及び抵抗28からなる位相補償回路を付加する。これらの位相補償回路により、高周波帯まで高い帰還ループ利得を保ち尚且つ安定な、従来よりも広帯域で高いダイナミックレンジを持つ低雑音負帰還増幅器を実現できる。
【選択図】図1

Description

本発明は、無線通信機器用RFアンプ、A/Dコンバータ用入力アンプなどに利用される高ダイナミックレンジを持つ広帯域の低雑音増幅器に関する。
従来の低雑増幅器としては、下記特許文献1に示されたカスコード接続型の増幅器がある。カスコード接続型の増幅器は、トランジスタの寄生容量の影響を受けにくい広帯域増幅器への応用に適した回路形式として知られている。
特開2003−289226号公報
一方、下記非特許文献1には、変圧器(以下、トランスという)と抵抗による二重負帰還路を備えた低雑音増幅回路が示されている。この二重負帰還路を備えた低雑音増幅器は、低い雑音指数と、安定な利得と、良好な入力インピーダンスマッチングとを同時に広帯域で達成することを可能とする優れた回路である。
K. van Hartingsveldt, M. H. L. Kouwenhoven, C. J. M. Verhoeven, A. N. Burghartz著"HF Low Noise Amplifiers with Integrated Transformer Feedback", ISCAS 2002, vol.2, pp. II-815 - II-818, May 2002
上述のカスコード型低雑音増幅器と、上述のトランス及び抵抗による二重負帰還方式を組み合せたトランス帰還カスコード型低雑音増幅器(Transformer Feedback Cascode LNA,:以下TFC-LNAという)に高い帰還ループ利得を持たせることにより、高ダイナミックレンジを持ち尚且つ低消費電力で動作する低雑音増幅器を実現することが原理的には可能であるが、高い帰還ループ利得を持たせることと、帰還ループ利得のカットオフ周波数を高めることとはトレードオフの関係にあり、高周波帯まで高い帰還ループ利得を保持しようとすると、従来の補償法を適用した場合に十分な位相補償が得られず、容易に発振を起こし増幅器としての用を成さなくなってしまうという問題がある。
TFC-LNAの発振抑制のために従来の位相補償法を適用した例として、以下では、一般的によく使われている位相補償方法であるドミナントポール補償法(従来例1)とミラー補償法(従来例2)について採り上げ、その特性について述べる。
図14は、ドミナントポール補償法を適用したTFC-LNA10Aの例を示す回路図である(従来例1)。
従来例1では、直流電圧源DCSから直流電源電圧Vd1として10Vが印加されており、トランジェント周波数が8GHzのトランジスタが用いられている。出力インピーダンスRが50Ωの信号源1が、直流遮断用キャパシタ2を介して、変圧器(以下、トランスという)3の一次巻線のホット側に接続されている。トランス3には、例えば巻数比が1:2の市販のトランスが用いられている。
トランス3の一次巻線のコールド側が、NPN型トランジスタ4のベースに接続されている。トランジスタ4のベースには、さらにバイアス用電源5の正極がチョークコイル6を介して接続されている。
トランジスタ4のコレクタは、NPN型トランジスタ7のエミッタに接続されている。トランジスタ7のベースは、バイアス用直流電圧源8の正極に接続され、交流的に接地されている。トランジスタ4及びトランジスタ7は、カスコード接続され、抵抗9を負荷とするカスコード増幅器を構成している。トランジスタ7のコレクタに、カスコード増幅器の負荷となる抵抗9の一端が接続されている。抵抗9の他端には直流電源電圧Vd1が印加されている。
抵抗9とトランジスタ7のコレクタとの接続点は、カスコード増幅器の増幅出力電圧信号を出力する出力ノードとなっており、NPN型トランジスタ10のベース、即ちエミッタフォロワの入力端子に接続されている。トランジスタ10と定電流源18は、エミッタフォロワを構成し、このTFC-LNA10Aの出力バッファとして動作している。トランジスタ10のコレクタには、直流電圧源DCSから直流電源電圧Vd1が印加されている。トランジスタ10のベース、即ちカスコード増幅器の出力ノードと、直流電圧源DCSの正極、即ち交流的基準電位点との間には、位相補償用キャパシタ11が接続されており、負荷抵抗9とキャパシタ11は帰還ループ利得のドミナントポールを与え、カスコード増幅器の出力を低域濾波するように作用する。トランジスタ10のエミッタ、即ちTFC-LNA10Aの出力端子には直流遮断用キャパシタ12を介して当該増幅器の負荷13が接続されている。図14では、負荷13を、例えば5KΩの抵抗で構成している。
トランス3の二次巻線のコールド側はトランジスタ10のエミッタ、即ちTFC-LNA10Aの出力端子に接続されている。二次巻線のホット側はグランドに接続されている。トランス3の二次巻線に印加された出力電圧信号は、電磁結合によりトランス3の一次側に伝達され、直列帰還される。これがTFC-LNA10Aの第1の負帰還路を構成している。トランジスタ10のエミッタ即ちTFC-LNA10Aの出力端子と、トランス3の一次巻線のホット側端子即ちTFC-LNA10Aの信号入力端子との間には、抵抗16と直流遮断用キャパシタ17が直列に接続されており、出力信号をシャント帰還するように作用する。これがTFC-LNA10Aの第2の負帰還路を構成している。トランジスタ10のエミッタには、エミッタフォロワの動作電流を与えるために例えば定電流源18が接続されている。
従来例1では、エミッタフォロワの動作電流を約12mAとしている。カスコード増幅器の電圧利得として200倍(46dB)程度の利得を設定しているため、従来例1のTFC-LNA10Aの最大帰還ループ利得は、40dB以上の高い値となっている。
TFC-LNA10Aの電圧利得はトランス3の巻数比Nで理論的には与えられ、従来例1で用いられている市販トランスの巻数比が1:2であるため、従来例1のTFC-LNA10Aの電圧利得は約6dBとなっている。従来例1で用いられている市販トランスは、1.0dB程度のロスを持つ、通過帯域が3〜200MHz程度のトランスである。帰還抵抗となる抵抗16の最適な抵抗値は、理論的にはTFC-LNA10Aの仕様として定められる入力インピーダンスRとトランス3の巻数比Nにより、(N+1)Rという式で与えられる。従来例1では、入力インピーダンスRとして一般的な値である50Ωを仕様としており、抵抗16の抵抗値は150Ωとなっている。
前述のように、負荷抵抗9とキャパシタ11は帰還ループ利得の伝達関数にドミナントポールを生じさせるように作用し、その効果によって従来例1のTFC-LNA10Aの位相補償が行われている。従来例1のTFC-LNA10Aについて、トランジスタ4のベースにおいて観測した帰還ループ利得が約45°の位相余裕を持つように位相補償を行った場合、キャパシタ11の容量として140pF以上の値が必要となった。このような大容量のキャパシタを集積回路上で作成することはコスト制約上不可能で外付け部品とする必要があり、このことは部品点数、基板面積の増大といった不利益を生じさせるため、ドミナントポール補償法の欠点の一つとなっている。
図15は、従来例1のTFC-LNA10Aの帰還ループ利得をBodeプロットで表示したものであり、トランジスタ4のベースにおいて観測される帰還ループ利得をシミュレーションで測定した結果をプロットしたものである。
従来例1のTFC-LNA10Aの帰還ループ利得は、周波数360KHz付近で最大値約44dBを与え、周波数約190MHz付近で0dBまで低下している。位相余裕は45°、利得余裕は約5dBとなっている。帰還ループ利得が減衰し始める周波数を示す−3dBカットオフ周波数は、約1.1MHzとなっており、このためTFC-LNA10Aが高ダイナミックレンジを保つ帯域は、高々数MHz程度にとどまることが判る。
ドミナントポール補償法では−20dB/decで帰還ループ利得が減少するように補償される。従来例1で用いられている市販トランスがほぼ理想的に振舞う通過帯域の上限周波数は約200MHzであり、これ以上の高周波数帯では、ドミナントポールによる位相余裕の減衰に加えてトランスの寄生容量等の影響による位相余裕の悪化が顕著となる。
従って満足な位相余裕を持つように補償をこの方法で行おうとすると、最大帰還ループ利得を従来例1のように40dB以上の高い値に設定した場合には、カットオフ周波数を200MHz/2dec(=100)、つまり2MHz以下まで低く設定せざるを得ない。このように、高い帰還ループ利得が保持される帯域がトランス通過帯域上限よりもはるかに低い周波数に限られてしまい、高周波低雑音増幅器として用いた場合に十分な性能を発揮させられないことは、ドミナントポール補償法を用いた場合のもう一つの欠点となっている。
図16は、従来例1(図14)のTFC-LNA10Aについて3次入力インターセプトポイント特性を測定したシミュレーション結果である。
従来例1(図14)のTFC-LNA10Aの3次入力インターセプトポイント(以下、IIP3という)特性のシミュレーションでは測定周波数を中心として±10KHzだけ外れた周波数で、−50dBmのパワーを持つ2つのトーン信号を入力として用いた。図16の横軸は周波数(MHz)、縦軸はIIP3(dBm)をそれぞれ表している。
図16から、10MHzにおいてすでにIIP3が最大値の42dBから20dB以上悪化していることが判る。このIIP3の悪化は、図15に示したTFC-LNA10Aの帰還ループ利得の減衰に対応して生じているものである。一般に、負帰還増幅器では、その帰還ループ利得が低下するに従いそのIIP3の値も減少する。前述のようにドミナントポール補償法を適用したTFC-LNA10Aでは、高い帰還ループ利得を高周波帯で保持することが困難であるため、従来例1の回路は良好な歪特性、即ち高ダイナミックレンジが要求される高周波低雑音増幅器の用途には適していない。
次に、従来例2としてミラー補償法を用いた位相補償をTFC-LNAに適用した例について説明する。
図17は、ミラー補償法を用いた位相補償をTFC-LNAに適用した例を示す回路図である(従来例2)。
従来例2のTFC-LNA10Bは、従来例1のTFC-LNA10Aと同じ仕様(直流電源電圧Vd1=10V、電圧利得6dB、入力インピーダンス50Ω)のTFC-LNAについて、ドミナントポール補償法の代わりにミラー補償法を適用した回路になっている。つまり、従来例2のTFC-LNA10Bにおいて、位相補償用キャパシタ19以外の全ての素子、電圧源及び電流源は、従来例1のTFC-LNA10Aと共通した回路定数を持っており、トランジェント周波数が8GHzの同じトランジスタが用いられている。
従来例1では位相補償用キャパシタ11を、カスコード増幅器の出力ノード即ちトランジスタ7のコレクタと交流的基準電位点との間に接続していたが、従来例2では、位相補償用キャパシタ19を、カスコード増幅器の出力ノードとカスコード増幅器の入力ノード即ちトランジスタ4のベースとの間に接続している。位相補償用キャパシタ19の容量をC、カスコード増幅器の電圧増幅度をβとすると、このようにミラー補償法により接続された位相補償用キャパシタ19は、カスコード増幅器の入力ノードにβCの容量を持つシャントキャパシタが接続された場合とほぼ同等の効果を持つように作用する。このため、一般にミラー補償法ではドミナントポール補償法に比べて小さな容量のキャパシタを用いて位相補償を行うことが、可能になる。
図18は、従来例2のTFC-LNA10Bの帰還ループ利得をBodeプロットで表示したものであり、トランジスタ4のベースにおいて観測される帰還ループ利得をシミュレーションで測定した結果をプロットしたものである。
図18に示すように、550MHz付近からループ利得の低下が急に緩やかになっている。これは、キャパシタ19がこの周波数付近から信号をフィードフォワードするように、つまりカスコード増幅器の入力ノードへ印加される信号がキャパシタ19を通り抜けてエミッタフォロワトランジスタ10のベースに伝達されるように、動作し始めていることを示す。このため、位相余裕を0°以上に保てなくなっている。また、200〜500MHzの間で帰還ループ利得が約−60dB/decという急な傾きで減衰しているために、この帯域付近で位相減衰傾度が急峻になっており、−180°近くまで位相が低下している部分が顕れている。
キャパシタ19の容量値をより大きな値へ増加させ、帰還ループ利得のカットオフ周波数を低くすることで位相補償しようとした場合には、550MHzよりも低い周波数で、キャパシタ19がフィードフォワード方向に動作し始め、帰還ループ利得の減衰傾度が緩やかになってくるため、クロスポイント周波数は十分低下せず、TFC-LNAの安定化が実現できない。帰還ループ利得を下げることでクロスポイント周波数が高くならないようにすることは可能であるが、増幅器の帰還量を下げることになり、増幅器のIIP3特性が悪化してしまう。上述の理由からミラー補償法により高ダイナミックレンジを持ったTFC-LNAの位相補償を実現することは困難であると言える。
TFC-LNAにおいて、高い帰還ループ利得を持たせることと帰還ループ利得のカットオフ周波数を高めることはトレードオフの関係にあり、高周波数帯まで高い帰還ループ利得を保持しようとすると、従来の補償法を適用した場合十分な位相補償が得られず容易に発振を起こし、増幅器としての用を成さなくなってしまうという問題がある。
本発明は、従来よりも高い周波数まで高い帰還ループ利得を持たせられるように、即ち、従来よりも広帯域で高いダイナミックレンジを持つTFC-LNAを提供することを目的とする。
上記目的を達成するために、本発明の第1の観点に係る低雑音増幅器は、
入力信号が印加される信号入力端子に一端が接続された一次巻線と該一次巻線に電磁結合する二次巻線とを有する変圧器と、
制御電極と該制御電極によって導通状態が変化する第1の導通電極及び第2の導通電極とを有し、前記一次巻線の端子の内、前記信号入力端子と接続されていない方の端子と該制御電極が接続された入力段トランジスタと、
制御電極と該制御電極によって導通状態が変化する第1の導通電極及び第2の導通電極とを有し、該第2の導通電極が負荷素子に接続されると共に該第1の導通電極が前記入力段トランジスタの第2の導通電極に接続されて該入力段トランジスタにカスコード接続され、出力インピーダンスを高めるように作用する上段トランジスタと、
前記入力信号の増幅結果を出力ノードに与える増幅結果伝達回路と、
前記出力ノード上の入力信号の増幅結果を前記二次巻線に印加する第1の負帰還回路と、
前記出力ノードと前記信号入力端子の間に接続される第2の負帰還回路と、
前記出力ノードと前記上段トランジスタの制御電極に接続された第1の位相補償回路と、
前記出力ノードと前記入力段トランジスタの制御電極に接続された第2の位相補償回路と、
を備えることを特徴とする。
なお、前記増幅結果伝達回路は、前記上段トランジスタの第2の導通電極に接続されたエミッタフォロワまたはソースフォロワを備え、該エミッタフォロワまたはソースフォロワから出力される信号を前記入力信号の増幅結果として前記出力ノードに与えてもよい。
また、前記エミッタフォロワまたはソースフォロワに流れる電流を可変とする消費電流調整手段を備えてもよい。
上記目的を達成するために、本発明の第2の観点に係る差動増幅器は、
第1の入力信号が印加される第1の信号入力端子に一端が接続された一次巻線と該一次巻線に電磁結合する二次巻線とを有する第1の変圧器と、
制御電極と該制御電極によって導通状態が変化する第1の導通電極及び第2の導通電極とを有し、前記第1の変圧器が有する一次巻線の端子の内、前記第1の信号入力端子と接続されていない方の端子と該制御電極が接続された第1の入力段トランジスタと、
制御電極と該制御電極によって導通状態が変化する第1の導通電極及び第2の導通電極とを有し、該第2の導通電極が第1の負荷素子に接続されると共に該第1の導通電極が前記第1の入力段トランジスタの第2の導通電極に接続されて該第1の入力段トランジスタにカスコード接続され、出力インピーダンスを高めるように作用する第1の上段トランジスタと、
前記第1の入力信号の増幅結果を第1の出力ノードに与える第1の増幅結果伝達回路と、
前記第1の出力ノード上の第1の入力信号の増幅結果を前記第1の変圧器の二次巻線に印加する第1の負帰還回路と、
前記第1の出力ノードと前記第1の信号入力端子の間に接続される第2の負帰還回路と、
第2の入力信号が印加される第2の信号入力端子に一端が接続された一次巻線と該一次巻線に電磁結合する二次巻線とを有する第2の変圧器と、
制御電極と該制御電極によって導通状態が変化する第1の導通電極及び第2の導通電極とを有し、前記第2の変圧器が有する一次巻線の端子の内、第2の信号入力端子と接続されていない方の端子と該制御電極が接続された第2の入力段トランジスタと、
制御電極と該制御電極によって導通状態が変化する第1の導通電極及び第2の導通電極とを有し、該第2の導通電極が第2の負荷素子に接続されると共に該第1の導通電極が前記第2の入力段トランジスタの第2の導通電極に接続されて該第2の入力段トランジスタにカスコード接続され、出力インピーダンスを高めるように作用する第2の上段トランジスタと、
前記第2の入力信号の増幅結果を第2の出力ノードに与える第2の増幅結果伝達回路と、
前記第2の出力ノード上の第2の入力信号の増幅結果を前記第2の変圧器の二次巻線に印加する第3の負帰還回路と、
前記第2の出力ノードと前記第2の信号入力端子の間に接続される第4の負帰還回路と、
前記第1の入力段トランジスタ、前記第1の上段トランジスタ及び前記第1の負荷素子を含む電流路と前記第2の入力段トランジスタ、前記第2の上段トランジスタ及び前記第2の負荷素子を含む電流路とに接続された定電流回路と、を備えた差動増幅器であって、
前記第1の出力ノードと前記第1の上段トランジスタの制御電極に接続された第1の位相補償回路と、
前記第1の出力ノードと前記第1の入力段トランジスタの制御電極に接続された第2の位相補償回路と、
前記第2の出力ノードと前記第2の上段トランジスタの制御電極に接続された第3の位相補償回路と、
前記第2の出力ノードと前記第2の入力段トランジスタの制御電極に接続された第4の位相補償回路と、
を備えることを特徴とする。
なお、前記第1の増幅結果伝達回路は、前記第1の上段トランジスタの第2の導通電極に接続された第1のエミッタフォロワまたは第1のソースフォロワを備え、該第1のエミッタフォロワまたは第1のソースフォロワから出力される信号を前記第1の入力信号の増幅結果として前記第1の出力ノードに与え、
前記第2の増幅結果伝達回路は、前記第2の上段トランジスタの第2の導通電極に接続された第2のエミッタフォロワまたは第2のソースフォロワを備え、該第2のエミッタフォロワまたは第2のソースフォロワから出力される信号を前記第2の入力信号の増幅結果として前記第2の出力ノードに与えてもよい。
また、前記第1のエミッタフォロワまたは第1のソースフォロワに流れる電流と、前記第2のエミッタフォロワまたは第2のソースフォロワに流れる電流とを可変とする消費電流調整手段を備えてもよい。
本発明によれば、高い周波数まで高い帰還ループ利得を持つ、従来よりも広帯域で高いダイナミックレンジを持つTFC-LNAを実現できる。
以下、図面に基づき、本発明の実施の形態について詳細に説明する。
[第1の実施形態]
図1は、本発明の第1の実施形態に係るTFC-LNA20を示す構成図である。
このTFC-LNA20には、直流電圧源DCSから直流電源電圧Vd1として10Vが印加されており、トランジェント周波数が8GHzのトランジスタが用いられている。
出力インピーダンスRが50Ωの信号源21が、キャパシタ22を介して、変圧器(以下、トランスという)23の一次巻線のホット側に接続されている。トランス23には、巻数比が1:2の市販トランスが用いられている。
トランス23の一次巻線のコールド側が、カスコード接続の入力段トランジスタとなるNPN型トランジスタ24のベースに接続されている。トランジスタ24のベースには、さらにバイアス用電源25の正極がチョークコイル26を介して接続されている。
トランジスタ24のコレクタは、カスコード接続の上段トランジスタとなるNPN型トランジスタ27のエミッタに接続されている。トランジスタ27のベースは、位相補償用抵抗28を介してバイアス用電源29の正極に接続されている。抵抗28は、後述するキャパシタ43と相まって作用し、第1の実施形態における第1の位相補償回路を構成するものである。バイアス用電源29の負極はグランドに接続されている。
トランジスタ24及びトランジスタ27は、カスコード接続され、抵抗30を負荷とするカスコード増幅器を構成している。トランジスタ27のコレクタに、カスコード増幅器の負荷素子となる抵抗30の一端が接続されている。抵抗30の他端は直流電圧源DCSに接続され、直流電源電圧Vd1が印加されている。
抵抗30とトランジスタ27のコレクタとの接続点は、カスコード増幅器の増幅出力信号を出力する出力ノードとなっており、NPN型トランジスタ31のベース、即ちエミッタフォロワの入力端子に接続されている。トランジスタ31と定電流源(トランジスタ35)は、エミッタフォロワを構成しており、TFC-LNA20の出力バッファとして動作する。
トランジスタ31のコレクタは、直流電圧源DCSに接続されている。トランジスタ31のエミッタは、TFC-LNA20の出力端子になっており、直流遮断用キャパシタ32を介して、負荷となる例えば5KΩの抵抗33に接続されている。TFC-LNA20の出力端子、即ち、トランジスタ31のエミッタには、トランス23の二次巻線のコールド側が直流遮断用キャパシタ34を介して接続されている。トランス23の二次巻線に印加された出力電圧信号は、電磁結合により、トランス23の一次側に伝達され直列帰還される。これがTFC-LNA20の第1の負帰還路を構成している。
トランジスタ31のエミッタは、NPN型トランジスタ35のコレクタに接続され、トランジスタ35のエミッタが抵抗36を介してグランドに接続されている。トランジスタ35のベースは、NPN型トランジスタ37のエミッタとNPN型トランジスタ38のベースに接続されている。トランジスタ37のコレクタは直流電圧源DCSに接続され、直流電圧源DCSから直流電源電圧Vd1が印加される。トランジスタ37のベース及びトランジスタ38のコレクタが直流電流源39に接続され、トランジスタ35,37,38がカレントミラーを構成している。
トランジスタ38のエミッタは、抵抗40を介してグランドに接続されている。トランジスタ35とトランジスタ38、抵抗36と抵抗40にはそれぞれ同じ部品が用いられており、カレントミラーの電流比は1:1となっている。直流電流源39の電流値は、12mAに設定されており、エミッタフォロワを構成するトランジスタ31の動作電流を与えている。
このTFC-LNA20の出力端子であるトランジスタ31のエミッタには、さらに、直流遮断用キャパシタ41の一方の電極と、位相補償用キャパシタ42の一方の電極と、位相補償用キャパシタ43の一方の電極とが接続されている。
キャパシタ41の他方の電極には、抵抗44の一端が接続されており、キャパシタ41は直流遮断用キャパシタとして動作している。抵抗44の他端には、TFC-LNA20の信号入力端子が接続されており、抵抗44は、出力信号をシャント帰還させるように作用する。これがTFC-LNA20における第2の負帰還路を構成している。
キャパシタ42の他方の電極は、位相補償用抵抗45を介してトランジスタ24のベースに接続されている。キャパシタ42及び抵抗45により、第1の実施形態における第2の位相補償回路が構成される。
キャパシタ43の他方の電極は、トランジスタ27のベースに接続されている。前述したように、キャパシタ43及び抵抗28により第1の実施形態における第1の位相補償回路が構成される。
第1の実施形態のTFC-LNA20は、従来例1及び従来例2と同じ仕様のTFC-LNA(直流電源電圧Vd1=10V、電圧利得6dB、入力インピーダンス50Ω)について、前述の第1及び第2の位相補償回路による新規な位相補償を施した回路となっている。従来例1のTFC-LNA10A、従来例2のTFC-LNA10Bと同様に、第1の実施形態のTFC-LNA20で用いられているカスコード増幅器は約46dBの電圧増幅度を持ったものとなっており、エミッタフォロワには12mAの動作電流が与えられている。
ここで、図1のTFC-LNA20の特性を説明する。
図1のTFC-LNA20で用いられているトランス23を巻数比1:2の理想トランスとした場合に、トランジスタ24のベースにおいて観測される帰還ループ利得の伝達関数(s)は、簡単なモデルを用いると以下の式(1)で表される。
Figure 2009111933
なお、
m1は、トランジスタ24のトランスコンダクタンス、
m2は、トランジスタ27のトランスコンダクタンス、
は、トランジスタ24のベース−コレクタ間寄生容量値、
は、キャパシタ43の容量値、
は、抵抗28の抵抗値、
は、キャパシタ42の容量値、
は、抵抗45の抵抗値、
fbは、抵抗44の抵抗値、
は、抵抗30の抵抗値、
は、信号源21の出力インピーダンス値を示す。
抵抗45及びキャパシタ42による位相補償の無い場合、つまり、g=0の場合について考えると、帰還ループ利得の伝達関数T(s)は、簡単な二次式となり、s=−1/(C・R)で与えられる点に零点が生じる。sの右半面領域にもT(s)の零点が存在するが、これは通常非常に高い周波数に位置しており、帰還ループ利得が1以上の周波数領域にはあまり影響しない。
ωz1=1/(C・R)で与えられる周波数付近で、零点の効果により位相の減衰が緩和される部分が現れるために、帰還ループ利得が1になるクロスポイント周波数における位相余裕が増大し、TFC-LNA20が安定化される。
このように基本的には、TFC-LNA20における第1の位相補償回路即ち抵抗28及びキャパシタ43のみを使用し、後述の第2の位相補償回路を省いた場合でもTFC-LNA20を安定に動作させることが可能であるが、実際にはTFC-LNA20で使用している素子やトランス23に様々な寄生容量、寄生インダクタンスが伴っているために十分な位相余裕が確保できない場合もある。このため、本実施形態では、更に位相余裕を増加させるために、第2の位相補償回路即ちキャパシタ42と抵抗45とを付加している。
このときωz2=1/(C・R)で与えられる周波数付近にも零点が生じ、帰還ループ利得の位相を増加させるように作用するために、第1の位相補償回路即ち抵抗28及びキャパシタ43のみを使用した場合に比べて更に位相余裕を増加させることが可能となる。
図2は、第1の実施形態(図1)のTFC-LNA20について、その帰還ループ利得をBodeプロットとして表示したものであり、トランジスタ24のベースにおいて観測される帰還ループ利得をシミュレーションで測定した結果をプロットしたものである。
第1の実施形態のTFC-LNA20について、その帰還ループ利得は最大絶対値(低周波帯で周波数によらずほぼ一定となっている領域での値)が約45dB、−3dBカットオフ周波数が約50MHz、帰還ループ利得の大きさが0dBに等しくなるクロスポイント周波数が約550MHzという特性を持ったものになっている。また、TFC-LNA20の安定性を表す位相余裕は約45°、利得余裕は約13dBとなっている。
第1の実施形態(図1)のTFC-LNA20における第1の位相補償回路の回路定数から前述のωz1を求めると、約130MHzとなる。同様に、第2の位相補償回路の回路定数から前述のωz2を求めると、約710MHzとなる。
従来例1(図14)のドミナントポール補償法により補償されたTFC-LNA10Aに比べて、第1の実施形態(図1)では同程度の安定性を持ち尚且つより高い周波数まで高い帰還ループ利得を保持することができるTFC-LNA20を、集積化可能な程度の小容量の位相補償用キャパシタを用いて実現することが可能になっている。
次に本実施形態の効果についてシミュレーション結果により説明する。
図3(a)〜(c)は、図1のTFC-LNA20の雑音指数(NF)、反射係数(S11)及び透過係数(S21)のシミュレーション結果を示す図である。
第1の実施形態(図1)のTFC-LNA20では、図3(a)〜(c)のように、大体200MHz付近まで満足なS11、NFの値と安定なS21が得られており、広帯域での動作が可能となっていることが判る。
図4は、第1の実施形態(図1)のTFC-LNA20について、3次入力インターセプトポイント(IIP3)特性をシミュレーションした結果を示す図であり、横軸は周波数(MHz)、縦軸はIIP3(dBm)をそれぞれ表している。
第1の実施形態(図1)のTFC-LNA20についてのIIP3特性のシミュレーションでは、測定周波数を中心として±10kHzだけ外れた周波数で−50dBmのパワーを持つ2つのトーン信号を入力として用いている。図4に示されているように、75MHz以下の帯域で+40dBm以上の、200MHz以下の帯域で約19dBm以上のIIP3値が得られており、第1の実施形態のTFC-LNA20により、広帯域で高い3次歪特性を持ったTFC-LNAが実現されていることが判る。
図5は、第1の実施形態(図1)のTFC-LNA20について、2次入力インターセプトポイント(以下、IIP2)特性をシミュレーションした結果を示す図であり、横軸は周波数(MHz)、縦軸はIIP2(dBm)をそれぞれ表している。
第1の実施形態(図1)のTFC-LNA20についてのIIP2のシミュレーションでは、IIP3特性測定時と同じ仕様の2つのトーン信号を入力として用いている。図5に示されるように、60MHz以下の帯域で+60dBm以上の、100MHz以下の帯域で約+50dBm以上のIIP2値が得られており、第1の実施形態のTFC-LNA20により、広帯域で高い2次歪特性を持ったTFC-LNAが実現されていることが判る。
図6は、第1の実施形態(図1)のTFC-LNA20について、そのNF値(図3)とそのIIP3値(図4)を用いてスプリアスフリーダイナミックレンジ(以下、SFDRと言う)特性を算出した結果を示す図である。
第1の実施形態(図1)のTFC-LNA20のSFDR特性(図6)は、受信信号の帯域幅を12.5KHz、環境温度を300Kと仮定して、1MHz〜200MHzの帯域について算出したものである。図6に示されているように、200MHz以下の帯域で約100dB以上のSFDR値が得られており、第1の実施形態のTFC-LNA20により、広帯域で高いダイナミックレンジを持ったTFC-LNAが実現されていることが判る。
先に説明したように、TFC-LNA20の利得は、トランス23の巻数比Nによって決定されるが、現在市販されている高周波用広帯域トランスの巻数比は最大でも1:4程度に止まっている。このため、高周波用増幅器に応用された場合、TFC-LNA20の最大利得として実現可能な値は、大体12dB程度以下に限られたものとなる。受信機全体で高ダイナミックレンジを達成することを考えた時、TFC-LNA20の利得が高いほど後段のミキサーに要求されるIIP3も高くなる。
一般的に、IIP3特性を向上させることは、消費電力を増加させることを意味し、所要のダイナミックレンジを達成し尚且つ受信機システム全体の消費電力を最小化するためには、低雑音増幅器とミキサーの消費電力即ちIIP3値のバランスをとる必要がある。低雑音増幅器の利得が高すぎることは、受信機システムにおいてこのバランスが崩れ、受信機システム全体の消費電力が最適化されたものとなっていないことを意味し、必ずしも望ましいことではない。
このため、本実施形態の適用対象としているような高ダイナミックレンジを必要とする用途では、トランス23の巻数比を高くできないことがTFC-LNA20の利用にあたって重大な欠点となることはない。
また、実際のトランス23で特にコア材を利用したものは、コアの非線形性・ヒステリシス・飽和等によって増幅器の線形性が理想よりも悪化したものとなるが、これは、小電力信号入力時の増幅器の歪特性を表すIIP3値よりも、大電力信号入力時のそれを表すP1dB値の低下という形で現れやすい。
[第2の実施形態]
図7は、本発明の第2の実施形態に係るTFC-LNA50を示す構成図である。
本実施形態のTFC-LNA50は、第1の実施形態のTFC-LNA20の電流源39を可変電流源51に置換したものであり、他の構成は第1の実施形態のTFC-LNA20と同様である。
前述の第1の実施形態に係るTFC-LNA20では、高いダイナミックレンジを実現する必要から、その出力バッファとなるエミッタフォロワに12mAあまりの動作電流が与えられている。TFC-LNA20には直流電源電圧Vd1として10Vが印加されているため、出力バッファにより、120mWの電力が消費されていることになる。120mWという消費電力値は、固定無線機にとってはその全消費電力に比べて僅かなものであり問題となることはないが、一般的なバッテリー動作機器にとっては、バッテリー持続時間を考える上で無視できない大きさであると言える。
高ダイナミックレンジのTFC-LNAを備えたバッテリー動作受信機を長時間連続運用することを考えた場合、一般的に受信環境は妨害波発信源の移動などによって動的に変化しているため、受信機運用期間中には、妨害波の信号強度が比較的弱く、低いダイナミックレンジの低雑音増幅器を用いても十分満足な復調・受信を行うことができる期間も存在している。
従って、常に高ダイナミックレンジのTFC-LNAを用いる必要はなく、受信環境に応じて動的にダイナミックレンジを増減させた場合でも、満足な復調・受信を連続して行うことが可能であることが判る。一般に、低雑音増幅器のダイナミックレンジはその消費電力に対して単調増加関係にあるため、動的にTFC-LNAのダイナミックレンジを増減させることにより、常に高ダイナミックレンジで運用した場合に比べて、受信機運用期間中の総消費電力量を低減させ、バッテリー持続時間を延ばすことが可能となる。
このようにTFC-LNAの消費電力を動的に変化させることを考えた場合に、それに合わせて補償回路の定数を動的に切り替えることは、一般に困難で現実的ではない。同じ位相補償回路でTFC-LNAの安定性が保たれるようにするためには、消費電力を変化させた場合でもTFC-LNAのループ利得の周波数特性が変化しないことが望ましい。
トランジスタ31によるエミッタフォロワは、一般に、その消費電力を変化させると歪特性は変化するものの、小信号特性はあまり変化しないという特徴がある。従って、トランジスタ24,27からなるカスコード増幅器部分の電流は一定に保ったまま、エミッタフォロワの消費電力のみを変化させることで、TFC-LNAの帰還ループ利得の周波数特性を維持しつつ、そのIIP3を増減させることができる。
エミッタフォロワの消費電力を変化させるためには、エミッタフォロワのトランジスタ31の電源電圧(コレクタ電圧)を増減させるか、あるいはトランジスタ31のエミッタに接続されている定電流源の電流(トランジスタ35のコレクタ電流)を増減させることが考えられる。電源電圧(コレクタ電圧)を変化させる方法は安定化された可変電圧源を必要とし、かなり面倒なのに対して、定電流源の電流を変化させるために必要な可変電流源を作成することは、一般に知られている方法で簡単に実現可能である。このため、本実施形態のTFC-LNA50では、可変電流源51を用いている。
TFC-LNA50の可変電流源51の出力する直流電流を、第1の実施形態のTFC-LNA20におけるエミッタフォロワの動作電流値である12mAから2mAへ変化させると、エミッタフォロワの消費電力は120mWから20mWまで低減し、第1の実施形態のTFC-LNA20に比べて100mWほど消費電力が削減された状態となる。
図8は、第2の実施形態(図7)のTFC-LNA50のIIP3特性をシミュレーションした結果を示す図であり、横軸は周波数(MHz)、縦軸はIIP3(dBm)をそれぞれ表している。
第2の実施形態(図7)のTFC-LNA50についてのIIP3特性のシミュレーションでは、可変電流源51の出力する直流電流を2mAとし、測定周波数を中心として±10kHzだけ外れた周波数で−50dBmのパワーを持つ2つのトーン信号を入力として用いている。図8のシミュレーション結果に示されているように、100MHz以下の帯域で+20dBm以上の、200MHz以下の帯域で+10dBm以上のIIP3値が得られている。
+10dBm程度のIIP3値を持つ低雑音増幅器は、一般的な受信機システムにおいて普通に使用されており、図8に示したTFC-LNA50のIIP3特性は特に悪いものではなく、実用的な受信機に用いるために十分な性能であると言える。
図8には、可変電流源51の出力する直流電流の値を12mAとしたときのTFC-LNA50のIIP3特性についてシミュレーションした結果も、2mA時の特性と併せて示されている。可変電流源51の出力電流を2mAから12mAの間で連続的或いは段階的に変化させることで、図8に斜線で表示されている2本のIIP3特性曲線の間に挟まれた領域中の任意のIIP3値を持つ動作状態となるように、TFC-LNA50を設定することができる。例えば10MHzの点では+45dBm〜+25dBmの範囲でTFC-LNA50のIIP3を増減させることができる。後述するように、可変電流源51の出力電流値にTFC-LNA50の雑音指数特性は殆ど依存しないため、これはTFC-LNA50のダイナミックレンジの上限のみを可変電流源51の出力電流により制御することが可能であることを意味する。
実際に、受信器システムおいてTFC-LNA50を有効に用い省電力化を図るには、受信状態に合わせて適切なダイナミックレンジ即ち適切な可変電流源51の出力電流値をTFC-LNA50に動的に設定することが必要となる。このためには、例えばデジタル変調信号用受信機の場合、ある時刻における隣接チャネルと隣隣接チャネルでの信号レベル及び復調信号のビットエラーレートを検出し、それらの値に基づき満足なS/N比を持った復調信号を得るために必要な可変電流源51の最小設定電流値を算出し、TFC-LNA50の可変電流源51にその算出した電流値を設定する、といった一連のダイナミックレンジ調整手順が、一定時間間隔で繰り返し実行されるようにしておけばよい。
図9は、第2の実施形態(図7)のTFC-LNA50についてのIIP2特性のシミュレーション結果を示す図であり、横軸は周波数(MHz)、縦軸はIIP2(dBm)をそれぞれ表している。
第2の実施形態(図7)のTFC-LNA50についてのIIP2特性のシミュレーションでは、可変電流源51の出力する直流電流を2mAとし、IIP3特性の測定時と同じ仕様の2つのトーン信号を入力として用いている。図9には、可変電流源51の出力する直流電流の値を12mAとしたときのTFC-LNA50のIIP2特性についてシミュレーションした結果も、2mA時の特性と併せて示されている。図9に示されているように、TFC-LNA50の消費電力を約100mW低減させた時に、例えば100MHz以下の帯域でIIP2特性の値が最大電流(12mA)時に比べて約10dBm程低下しているが、最小電流(2mA)時においても100MHz以下の帯域で+40dBm以上のIIP2特性が得られており、十分実用的であると言える。
図10(a)〜(c)は、第2の実施形態(図7)のTFC-LNA50の雑音指数(NF)、反射係数(S11)及び透過係数(S21)のシミュレーション結果を示す図である。
図10(a)〜(c)には、第2の実施形態(図7)において、可変電流源51の出力する直流電流の値を12mAとした時のTFC-LNA50の雑音指数(NF)、反射係数(S11)及び透過係数(S21)のシミュレーション結果と、可変電流源51の出力する直流電流の値を2mAとした時のそれらの特性が1MHz〜1GHzの帯域について合わせて示されている。図10(a)〜(c)の各周波数特性について見ると、可変電流源51の出力電流を12mAから2mAに変えたことによる影響は殆ど認められず、TFC-LNA50の小信号特性がエミッタフォロワのトランジスタ31の動作電流値に依存しないことが判る。
図11は、第2の実施形態(図7)のTFC-LNA50についての帰還ループ利得のシミュレーション結果を示す図である。
図11は、第2の実施形態(図7)のTFC-LNA50に関して、可変電流源51の出力する直流電流の値を2mAとし、トランジスタ24のベースにおいて観測される帰還ループ利得をシミュレーションにより測定した結果と、可変電流源51の出力する直流電流の値を12mAとしたときの同特性の結果とを、共に0.1MHz〜10GHzの帯域について併せてBodeプロットとして表示したものである。図11に示されている帰還ループ利得の大きさと位相の各周波数特性について見ると、可変電流源51の出力電流を12mAから2mAに変えたことによる影響は、1GHz以下の帯域では殆ど現れていない。これは、第2の実施形態のTFC-LNA50のダイナミックレンジを、そのエミッタフォロワのトランジスタ31の動作電流値を変えることにより増減させた場合でも、固定された回路定数を持つ同一の位相補償回路により、常に同程度の安定性を保つことが可能であることを示している。
[第3の実施形態]
図12は、本発明の第3の実施形態に係るTFC-LNA60を示す図である。
このTFC-LNA60は、第1の実施形態(図1)のTFC-LNA20からエミッタフォロワを構成するトランジスタ31と、カレントミラーを構成するトランジスタ35,37,38と、抵抗36,40と電流源39とを取り除き、トランジスタ27のコレクタ即ちカスコード増幅器の出力ノードを直接TFC-LNA60の出力端子としたものである。このTFC-LNA60の出力端子には、直流遮断用キャパシタ32を介して出力負荷33が接続されており、更に、直流遮断用キャパシタ34を介して第1の負帰還路を構成するトランス23の二次巻線と、直流遮断用キャパシタ41を介して第2の負帰還路を構成する抵抗44が接続されている。TFC-LNA60の他の構成は、第1の実施形態(図1)のTFC-LNA20と同様である。
このTFC-LNA60のように、エミッタフォロワを構成するトランジスタ31やカレントミラーを構成するトランジスタ35,37,38及び電流源39を取り除くことで、消費電力のさらなる低減が可能となる。消費電力の低減が可能になる代償として、TFC-LNA60はTFC-LNA20に比べてその歪特性が劣化したものとなることが想定されるが、高いダイナミックレンジが要求されない場合、あるいは低消費電流が要求される場合には、TFC-LNA60を利用することができる。
[第4の実施形態]
図13は、本発明の第4の実施形態に係る差動化されたTFC-LNA80(以下、差動TFC-LNA80という)を示す構成図である。
前述の第1〜第3の実施形態では、単相の入力信号を増幅するTFC-LNA20,50,60を示したが、本実施形態の差動TFC-LNA80は、帰還ループ利得の安定したTFC-LNAを2個組み込んだ構成となっており、差動入力信号を増幅し、差動増幅信号を出力する差動増幅回路である。差動TFC-LNA80は共通した回路定数を持つ、互いに対称な左右の増幅器から構成されている。図13において、差動TFC-LNA80の右側増幅器には、トランジスタ84、87及び91が含まれ、左側増幅器にはトランジスタ114、117及び121が含まれている。差動TFC-LNA80の左右の増幅器はそれぞれ個別の入出力端子を備えており、抵抗99とトランス83の一次巻線の接続点が右側増幅器の入力端子、抵抗129とトランス113の一次巻線の接続点が左側増幅器の入力端子、トランジスタ91のエミッタが右側増幅器の出力端子、トランジスタ121のエミッタが左側増幅器の出力端子となっている。
この差動TFC-LNA80では、出力インピーダンスRが50Ωの信号源71が、バラントランス72の一次巻線のホット側に接続されている。バラントランス72の一次巻線のコールド側は、グランドに接続されている。バラントランス72の二次巻線の両端は、直流遮断用キャパシタ81,82を介して、差動TFC-LNA80の左右の入力端子に接続されている。バラントランス72は、入力信号を差動信号に変換するものであり、その一次巻線と二次巻線の巻数比は例えば1:1となっている。
キャパシタ81の他方の電極は、トランス83の一次巻線のホット側に、接続されている。トランス83には、例えば巻数比が1:2の市販トランスが用いられている。
トランス83の一次巻線のコールド側が、NPN型トランジスタ84のベースに接続されている。トランジスタ84のベースには、さらにバイアス用電源85の正極がチョークコイル86を介して接続されている。
トランジスタ84のコレクタは、NPN型トランジスタ87のエミッタに接続されている。トランジスタ87のベースは、位相補償用抵抗88を介してバイアス用電源89の正極に接続されている。抵抗88は、後述するキャパシタ98と相まって作用し、差動TFC-LNA80の右側増幅器に関して位相補償を行うための、第4の実施形態における第1の位相補償回路を構成するものである。バイアス用電源89の負極はグランドに接続されている。
トランジスタ84及びトランジスタ87は、カスコード接続され、抵抗90を負荷とするカスコード増幅器を構成している。トランジスタ87のコレクタに、カスコード増幅器の負荷素子となる抵抗90の一端が接続されている。抵抗90の他端には直流電源電圧Vd1が印加されている。
抵抗90とトランジスタ87のコレクタとの接続点は、カスコード増幅器の増幅出力電圧信号を出力する出力ノードになっており、NPNトランジスタ91のベース即ちエミッタフォロワの入力端子に接続されている。トランジスタ91と定電流源95はエミッタフォロワを構成しており、差動TFC-LNA80の右側増幅器の出力バッファとして動作している。トランジスタ91のコレクタには、直流電源電圧Vd1が印加されている。トランジスタ91のエミッタは、直流遮断用のキャパシタ92の一方の電極に接続されている。
差動TFC-LNA80の右側出力端子即ちトランジスタ91のエミッタには、トランス83の二次巻線のコールド側が直流遮断用キャパシタ94を介して接続されている。トランス83の二次巻線に印加された出力電圧信号は、電磁結合により、トランス83の一次側に伝達され直列帰還される。これが第4の実施形態の差動TFC-LNA80における第1の負帰還路を構成している。トランジスタ91のエミッタには、エミッタフォロワの動作電流を与えるための定電流源95が接続されている。電流源95はカレントミラー回路で構成してもよい。
トランジスタ91のエミッタには、さらに、直流遮断用キャパシタ96の一方の電極と、位相補償用キャパシタ97の一方の電極と、位相補償用キャパシタ98の一方の電極とが接続されている。
差動TFC-LNA80の右側出力端子とトランス83の一次巻線のホット側即ち差動TFC-LNA80の右側信号入力端子との間には、抵抗99と直流遮断用キャパシタ96が直列に接続されており、出力信号をシャント帰還するように作用する。これが第4の実施形態の差動TFC-LNA80における第2の負帰還路を構成している。
キャパシタ97及び抵抗100により、差動TFC-LNA80の右側増幅器に関して位相補償を行うための、第4の実施形態における第2の位相補償回路が構成される。
一方、キャパシタ82の他方の電極は、トランス113の一次巻線のホット側に、接続されている。トランス113には、例えば巻数比が1:2の市販トランスが用いられている。
トランス113の一次巻線のコールド側が、NPN型トランジスタ114のベースに接続されている。トランジスタ114のベースには、さらにバイアス用電源115の正極がチョークコイル116を介して接続されている。
トランジスタ114のコレクタは、NPN型トランジスタ117のエミッタに接続されている。トランジスタ117のベースは、抵抗118を介してバイアス用電源119の正極に接続されている。抵抗118は、後述するキャパシタ128と相まって作用し、差動TFC-LNA80の左側増幅器に関して位相補償を行うための、第4の実施形態における第3の位相補償回路を構成するものである。バイアス用電源119の負極はグランドに接続されている。
トランジスタ114及びトランジスタ117は、カスコード接続され、抵抗120を負荷とするカスコード増幅器を構成している。トランジスタ117のコレクタに、カスコード増幅器の負荷素子となる抵抗120の一端が接続されている。抵抗120の他端には直流電源電圧Vd1が印加されている。
抵抗120とトランジスタ117のコレクタとの接続点は、カスコード増幅器の増幅出力電圧信号を出力する出力ノードとなっており、NPN型トランジスタ121のベース即ちエミッタフォロワの入力端子に接続されている。トランジスタ121と定電流源125はエミッタフォロワを構成しており、差動TFC-LNA80の左側増幅器の出力バッファとして動作している。トランジスタ121のコレクタには、直流電源電圧Vd1が印加されている。トランジスタ121のエミッタは、直流遮断用のキャパシタ122の一方の電極に接続されている。
差動TFC-LNA80の左側出力端子即ちトランジスタ121のエミッタには、トランス113の二次巻線のコールド側が直流遮断用キャパシタ124を介して接続されている。トランス113の二次巻線に印加された出力電圧信号は、電磁結合により、トランス113の一次側に伝達され直列帰還される。これが第4の実施形態の差動TFC-LNA80における第3の負帰還路を構成している。
トランジスタ121のエミッタには、エミッタフォロワの動作電流を与えるために定電流源125が接続されている。電流源125はカレントミラー回路で構成してもよい。
トランジスタ121のエミッタには、さらに、直流遮断用キャパシタ126の一方の電極と、位相補償用キャパシタ127の一方の電極と、位相補償用キャパシタ128の一方の電極とが接続されている。
差動TFC-LNA80の左側出力端子とトランス113の一次巻線のホット側即ち差動TFC-LNA80の左側信号入力端子との間には、抵抗129と直流遮断用キャパシタ126が直列に接続されており、出力信号をシャント帰還するように作用する。これが第4の実施形態の差動TFC-LNA80における第4の負帰還路を構成している。
キャパシタ127及び抵抗130により、TFC-LNA80の左側増幅器に関して位相補償を行うための、第4の実施形態における第4の位相補償回路が構成される。
トランジスタ84,114のエミッタには、NPN型トランジスタ131のコレクタが接続されている。トランジスタ131のベースは、NPN型トランジスタ132のベース及びコレクタに接続され、トランジスタ131,132がカレントミラー回路を構成する。
トランジスタ132のコレクタには、定電流源133が接続されている。トランジスタ131のエミッタは、抵抗134を介してグランドに接続されている。トランジスタ132のエミッタは、抵抗135を介してグランドに接続されている。トランジスタ131のコレクタ電流は、定電流源133により常に一定となるように制御されており、このため差動TFC-LNA80の左右の増幅器は、その左右の出力信号の和が常に一定値を保つ平衡信号となるように関連付けられて動作する。
エミッタフォロワのトランジスタ91とエミッタフォロワのトランジスタ121の各エミッタ端子が差動TFC-LNA80の差動出力端子対となっており、これらの出力端子は、直流遮断用キャパシタ92及び122を介してバラントランス140の一次巻線の両端に接続されている。バラントランス140の二次巻線のホット側に、例えば5KΩの負荷141が接続される。
第4の実施形態(図13)では、単相入力信号が、バラントランス72により差動入力信号に変換された後に差動TFC-LNA80に入力されており、また、差動TFC-LNA80の差動増幅出力信号が、バラントランス140により単相出力信号に変換された後に負荷141に印加されている。バラントランス140の巻数比は、例えば1:1となっている。
差動カスコード増幅器においては通常カスコード増幅器の上段のトランジスタ、即ちトランジスタ87及びトランジスタ117に当たるトランジスタの各ベース端子が交流的に接地された状態となっている。これに対して前述のように、第4の実施形態の差動TFC-LNA80では、トランジスタ87のベースにはキャパシタ98と抵抗88からなる第1の位相補償回路が、トランジスタ117のベースには前述のキャパシタ128と抵抗118からなる第3の位相補償回路が接続されており、更に、差動TFC-LNA80の右側増幅器の出力端子と入力端子の間には、キャパシタ97と抵抗100からなる第2の位相補償回路が、差動TFC-LNA80の左側増幅器の出力端子と入力端子の間にはキャパシタ127と抵抗130からなる第4の位相補償回路が、接続されている。これらの位相補償回路によって、差動TFC-LNA80の安定化が実現されている。
差動TFC-LNA80の電圧利得は理想的にはトランス83及びトランス113の巻数比Nで与えられる。第4の実施形態(図13)の差動TFC-LNA80では巻数比が1:2の市販トランスが用いられており、その電圧利得は約6dBとなっている。差動TFC-LNA80の差動入力インピーダンスは、理想的には前述の巻数比Nと帰還抵抗99及び129の抵抗値Rを用いて2R/(N+1)で与えられる。第4の実施形態(図13)の差動TFC-LNA80では、標準的な信号源インピーダンス値である50Ωに整合するために、その帰還抵抗値Rが75Ωに設定されている。
なお、本発明は、上記第1〜第4の実施形態に限定されるものではなく、種々の変形が可能である。
例えば、第1〜第4の実施形態では、各トランジスタをバイポーラトランジスタで構成したが、MOSトランジスタ或いはバイポーラトランジスタとMOSトランジスタの両方を用いて構成してもよい。
第4の実施形態の差動TFC-LNA80では、そのエミッタフォロワを構成するトランジスタ91及びトランジスタ121の動作電流を固定し、定電流源95及び定電流源125により与えていたが、第2の実施形態のTFC-LNA50と同様に、これらの動作電流を可変としてもよい。
また、第3の実施形態のTFC-LNA60と同様に、出力バッファ即ちエミッタフォロワを省き、トランジスタ87及びトランジスタ117のコレクタを直接差動出力端子としてもよい。これらの変形により、差動TFC-LNAの消費電力量を低減することができる。
本発明の第1の実施形態に係るTFC-LNAを示す構成図である。 第1の実施形態のTFC-LNAについての帰還ループ利得のシミュレーション結果を示す図である。 第1の実施形態のTFC-LNAについての雑音指数(NF)、反射係数(S11)及び透過係数(S21)のシミュレーション結果を示す図である。 第1の実施形態のTFC-LNAについてのIIP3特性のシミュレーション結果を示す図である。 第1の実施形態のTFC-LNAについてのIIP2特性のシミュレーション結果を示す図である。 第1の実施形態のTFC-LNAについてのTFC-LNAのSFDR特性の計算結果を示す図である。 本発明の第2の実施形態に係るTFC-LNAを示す図である。 第2の実施形態のTFC-LNAについてのIIP3特性のシミュレーション結果を示す図である。 第2の実施形態のTFC-LNAについてのIIP2特性のシミュレーション結果を示す図である。 第2の実施形態のTFC-LNAについての雑音指数(NF)、反射係数(S11)及び透過係数(S21)のシミュレーション結果を示す図である。 第2の実施形態のTFC-LNAについての帰還ループ利得のシミュレーション結果を示す図である。 本発明の第3の実施形態に係るTFC-LNAを示す図である。 本発明の第4の実施形態に係る差動TFC-LNAを示す構成図である。 従来の位相補償法の一つであるドミナントポール補償法を適用したTFC-LNAの例を示す図である。 従来例1のTFC-LNAについての帰還ループ利得を示す図である。 従来例1のTFC-LNAについてのIIP3特性のシミュレーション結果を示す図である。 従来の位相補償法の一つであるミラー補償法を適用したTFC-LNAの例を示す図である。 従来例2のTFC-LNAについての帰還ループ利得を示す図である。
符号の説明
10A,10B,20,50,60・・・TFC-LNA
80・・・差動TFC-LNA
3,23,83,113・・・トランス
4,7,10,24,27,31,84,87,91,114,117,121・・・NPN型トランジスタ
11,19,42,43,97,98,127,128・・・位相補償用キャパシタ
28,45,88,100,118,130・・・位相補償用抵抗

Claims (6)

  1. 入力信号が印加される信号入力端子に一端が接続された一次巻線と該一次巻線に電磁結合する二次巻線とを有する変圧器と、
    制御電極と該制御電極によって導通状態が変化する第1の導通電極及び第2の導通電極とを有し、前記一次巻線の端子の内、前記信号入力端子と接続されていない方の端子と該制御電極が接続された入力段トランジスタと、
    制御電極と該制御電極によって導通状態が変化する第1の導通電極及び第2の導通電極とを有し、該第2の導通電極が負荷素子に接続されると共に該第1の導通電極が前記入力段トランジスタの第2の導通電極に接続されて該入力段トランジスタにカスコード接続され、出力インピーダンスを高めるように作用する上段トランジスタと、
    前記入力信号の増幅結果を出力ノードに与える増幅結果伝達回路と、
    前記出力ノード上の入力信号の増幅結果を前記二次巻線に印加する第1の負帰還回路と、
    前記出力ノードと前記信号入力端子の間に接続される第2の負帰還回路と、
    前記出力ノードと前記上段トランジスタの制御電極に接続された第1の位相補償回路と、
    前記出力ノードと前記入力段トランジスタの制御電極に接続された第2の位相補償回路と、
    を備えることを特徴とする低雑音増幅器。
  2. 前記増幅結果伝達回路は、前記上段トランジスタの第2の導通電極に接続されたエミッタフォロワまたはソースフォロワを備え、該エミッタフォロワまたはソースフォロワから出力される信号を前記入力信号の増幅結果として前記出力ノードに与えることを特徴とする請求項1に記載の低雑音増幅器。
  3. 前記エミッタフォロワまたはソースフォロワに流れる電流を可変とする消費電流調整手段を備えることを特徴とする請求項2に記載の低雑音増幅器。
  4. 第1の入力信号が印加される第1の信号入力端子に一端が接続された一次巻線と該一次巻線に電磁結合する二次巻線とを有する第1の変圧器と、
    制御電極と該制御電極によって導通状態が変化する第1の導通電極及び第2の導通電極とを有し、前記第1の変圧器が有する一次巻線の端子の内、前記第1の信号入力端子と接続されていない方の端子と該制御電極が接続された第1の入力段トランジスタと、
    制御電極と該制御電極によって導通状態が変化する第1の導通電極及び第2の導通電極とを有し、該第2の導通電極が第1の負荷素子に接続されると共に該第1の導通電極が前記第1の入力段トランジスタの第2の導通電極に接続されて該第1の入力段トランジスタにカスコード接続され、出力インピーダンスを高めるように作用する第1の上段トランジスタと、
    前記第1の入力信号の増幅結果を第1の出力ノードに与える第1の増幅結果伝達回路と、
    前記第1の出力ノード上の第1の入力信号の増幅結果を前記第1の変圧器の二次巻線に印加する第1の負帰還回路と、
    前記第1の出力ノードと前記第1の信号入力端子の間に接続される第2の負帰還回路と、
    第2の入力信号が印加される第2の信号入力端子に一端が接続された一次巻線と該一次巻線に電磁結合する二次巻線とを有する第2の変圧器と、
    制御電極と該制御電極によって導通状態が変化する第1の導通電極及び第2の導通電極とを有し、前記第2の変圧器が有する一次巻線の端子の内、第2の信号入力端子と接続されていない方の端子と該制御電極が接続された第2の入力段トランジスタと、
    制御電極と該制御電極によって導通状態が変化する第1の導通電極及び第2の導通電極とを有し、該第2の導通電極が第2の負荷素子に接続されると共に該第1の導通電極が前記第2の入力段トランジスタの第2の導通電極に接続されて該第2の入力段トランジスタにカスコード接続され、出力インピーダンスを高めるように作用する第2の上段トランジスタと、
    前記第2の入力信号の増幅結果を第2の出力ノードに与える第2の増幅結果伝達回路と、
    前記第2の出力ノード上の第2の入力信号の増幅結果を前記第2の変圧器の二次巻線に印加する第3の負帰還回路と、
    前記第2の出力ノードと前記第2の信号入力端子の間に接続される第4の負帰還回路と、
    前記第1の入力段トランジスタ、前記第1の上段トランジスタ及び前記第1の負荷素子を含む電流路と前記第2の入力段トランジスタ、前記第2の上段トランジスタ及び前記第2の負荷素子を含む電流路とに接続された定電流回路と、を備えた差動増幅器であって、
    前記第1の出力ノードと前記第1の上段トランジスタの制御電極に接続された第1の位相補償回路と、
    前記第1の出力ノードと前記第1の入力段トランジスタの制御電極に接続された第2の位相補償回路と、
    前記第2の出力ノードと前記第2の上段トランジスタの制御電極に接続された第3の位相補償回路と、
    前記第2の出力ノードと前記第2の入力段トランジスタの制御電極に接続された第4の位相補償回路と、
    を備えることを特徴とする差動増幅器。
  5. 前記第1の増幅結果伝達回路は、前記第1の上段トランジスタの第2の導通電極に接続された第1のエミッタフォロワまたは第1のソースフォロワを備え、該第1のエミッタフォロワまたは第1のソースフォロワから出力される信号を前記第1の入力信号の増幅結果として前記第1の出力ノードに与え、
    前記第2の増幅結果伝達回路は、前記第2の上段トランジスタの第2の導通電極に接続された第2のエミッタフォロワまたは第2のソースフォロワを備え、該第2のエミッタフォロワまたは第2のソースフォロワから出力される信号を前記第2の入力信号の増幅結果として前記第2の出力ノードに与える、
    ことを特徴とする請求項4に記載の差動増幅器。
  6. 前記第1のエミッタフォロワまたは第1のソースフォロワに流れる電流と、前記第2のエミッタフォロワまたは第2のソースフォロワに流れる電流とを可変とする消費電流調整手段を備えることを特徴とする請求項5に記載の差動増幅器。
JP2007284566A 2007-10-31 2007-10-31 低雑音増幅器及び差動増幅器 Expired - Fee Related JP4998211B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007284566A JP4998211B2 (ja) 2007-10-31 2007-10-31 低雑音増幅器及び差動増幅器
US12/183,857 US7633344B2 (en) 2007-10-31 2008-07-31 Low noise amplifier and differential amplifier
AT08018346T ATE537603T1 (de) 2007-10-31 2008-10-20 Rauscharmer verstärker und differenzverstärker
EP08018346A EP2056448B1 (en) 2007-10-31 2008-10-20 Low noise amplifier and differential amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007284566A JP4998211B2 (ja) 2007-10-31 2007-10-31 低雑音増幅器及び差動増幅器

Publications (2)

Publication Number Publication Date
JP2009111933A true JP2009111933A (ja) 2009-05-21
JP4998211B2 JP4998211B2 (ja) 2012-08-15

Family

ID=40050368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007284566A Expired - Fee Related JP4998211B2 (ja) 2007-10-31 2007-10-31 低雑音増幅器及び差動増幅器

Country Status (4)

Country Link
US (1) US7633344B2 (ja)
EP (1) EP2056448B1 (ja)
JP (1) JP4998211B2 (ja)
AT (1) ATE537603T1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056860A (ja) * 2008-08-28 2010-03-11 Icom Inc 低雑音増幅器
JP2011029872A (ja) * 2009-07-24 2011-02-10 Nippon Telegr & Teleph Corp <Ntt> トランスインピーダンスアンプ
JP2012191600A (ja) * 2011-02-24 2012-10-04 Fujitsu Ltd 増幅回路
JP2015041987A (ja) * 2013-08-23 2015-03-02 日本電信電話株式会社 周波数変換器
US9621116B2 (en) 2015-03-09 2017-04-11 Kabushiki Kaisha Toshiba Active load circuit and semiconductor integrated circuit
CN111245373A (zh) * 2020-01-16 2020-06-05 中国科学技术大学 一种采用部分有源负反馈技术及正反馈技术的超宽带低噪声放大器

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803189B2 (ja) * 2008-01-31 2011-10-26 アイコム株式会社 差動増幅器
TWI404329B (zh) * 2009-06-11 2013-08-01 Nat Univ Tsing Hua 寬頻高電流輸出級電路
KR20120061155A (ko) 2010-11-01 2012-06-13 한국전자통신연구원 귀환 증폭기
EP2466746B1 (en) * 2010-12-16 2013-09-18 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Low noise amplifier
US8362813B2 (en) 2011-03-24 2013-01-29 Pericom Semiconductor Corp. Re-driver with pre-emphasis injected through a transformer and tuned by an L-C tank
KR101094397B1 (ko) 2011-05-27 2011-12-15 (주)다빛다인 증폭 회로 및 이를 이용한 디지털 마이크로폰
RU2488952C1 (ru) * 2012-01-10 2013-07-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ФГБОУ ВПО "ЮРГУЭС") Избирательный усилитель
CN103259553A (zh) * 2012-02-17 2013-08-21 Imec公司 一种用于无线电设备的前端系统
CN103457545B (zh) * 2013-09-11 2016-05-04 东华理工大学 三维电阻率采集系统的超低噪声模拟放大器
US9831832B2 (en) * 2015-04-30 2017-11-28 Taiwan Semiconductor Manufacturing Company, Ltd. Low noise amplifier having transformer feedback and method of using the same
US9531086B1 (en) * 2016-01-06 2016-12-27 International Business Machines Corporation Dynamic phased array tapering without phase recalibration
US9912301B2 (en) * 2016-04-12 2018-03-06 City University Of Hong Kong Facilitation of increased bandwidth for a low noise amplifier
US10038413B2 (en) * 2016-12-13 2018-07-31 Globalfoundries Inc. Fully depleted silicon on insulator power amplifier
CN113242020A (zh) * 2021-04-26 2021-08-10 北京智联安科技有限公司 一种宽带匹配低噪声放大器

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517009B1 (ja) * 1969-11-26 1976-03-04
JPS5347754A (en) * 1976-10-13 1978-04-28 Matsushita Electric Ind Co Ltd Amplifier
JPS53119846U (ja) * 1977-03-02 1978-09-22
JPS5739605A (en) * 1980-08-21 1982-03-04 Toshiba Corp Preamplifier
JPS6485407A (en) * 1987-09-28 1989-03-30 Mitsubishi Electric Corp Semiconductor device
JPH04154310A (ja) * 1990-10-18 1992-05-27 Nec Corp トランジスタ増幅器
JP2002043866A (ja) * 2000-07-27 2002-02-08 Sanyo Electric Co Ltd 広帯域増幅回路
JP2006054607A (ja) * 2004-08-10 2006-02-23 Sony Corp 電流電圧変換回路および光検出回路
JP2006303668A (ja) * 2005-04-18 2006-11-02 Matsushita Electric Ind Co Ltd 出力インピーダンス可変回路
JP2007006484A (ja) * 2005-06-21 2007-01-11 Seiko Epson Corp 差動増幅器
JP2007214748A (ja) * 2006-02-08 2007-08-23 Alps Electric Co Ltd 広帯域増幅回路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6011438A (en) * 1997-11-27 2000-01-04 Nec Corporation Push-pull wideband semiconductor amplifier
US6542037B2 (en) * 2001-08-09 2003-04-01 Tyco Electronics Corp. Low distortion broadband amplifier using GaAs pHEMT devices
JP3929031B2 (ja) 2002-03-28 2007-06-13 松下電器産業株式会社 増幅装置
US7095994B1 (en) * 2002-11-27 2006-08-22 Lucent Technologies Inc. Method and apparatus for dynamic biasing of baseband circuitry in a communication system receiver
JP3885073B2 (ja) * 2004-07-30 2007-02-21 日本テキサス・インスツルメンツ株式会社 バッファ回路
US7224225B2 (en) * 2005-04-26 2007-05-29 Intel Corporation Differential inductor based low noise amplifier
JP4935003B2 (ja) * 2005-06-30 2012-05-23 アイコム株式会社 可変利得増幅器及び差動増幅器
JP2007284566A (ja) 2006-04-17 2007-11-01 Sharp Corp シリコン系青色発光材料及びその製造方法
JP4662888B2 (ja) * 2006-05-31 2011-03-30 アイコム株式会社 可変利得増幅器及び差動増幅器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517009B1 (ja) * 1969-11-26 1976-03-04
JPS5347754A (en) * 1976-10-13 1978-04-28 Matsushita Electric Ind Co Ltd Amplifier
JPS53119846U (ja) * 1977-03-02 1978-09-22
JPS5739605A (en) * 1980-08-21 1982-03-04 Toshiba Corp Preamplifier
JPS6485407A (en) * 1987-09-28 1989-03-30 Mitsubishi Electric Corp Semiconductor device
JPH04154310A (ja) * 1990-10-18 1992-05-27 Nec Corp トランジスタ増幅器
JP2002043866A (ja) * 2000-07-27 2002-02-08 Sanyo Electric Co Ltd 広帯域増幅回路
JP2006054607A (ja) * 2004-08-10 2006-02-23 Sony Corp 電流電圧変換回路および光検出回路
JP2006303668A (ja) * 2005-04-18 2006-11-02 Matsushita Electric Ind Co Ltd 出力インピーダンス可変回路
JP2007006484A (ja) * 2005-06-21 2007-01-11 Seiko Epson Corp 差動増幅器
JP2007214748A (ja) * 2006-02-08 2007-08-23 Alps Electric Co Ltd 広帯域増幅回路

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056860A (ja) * 2008-08-28 2010-03-11 Icom Inc 低雑音増幅器
JP2011029872A (ja) * 2009-07-24 2011-02-10 Nippon Telegr & Teleph Corp <Ntt> トランスインピーダンスアンプ
JP2012191600A (ja) * 2011-02-24 2012-10-04 Fujitsu Ltd 増幅回路
JP2015041987A (ja) * 2013-08-23 2015-03-02 日本電信電話株式会社 周波数変換器
US9621116B2 (en) 2015-03-09 2017-04-11 Kabushiki Kaisha Toshiba Active load circuit and semiconductor integrated circuit
CN111245373A (zh) * 2020-01-16 2020-06-05 中国科学技术大学 一种采用部分有源负反馈技术及正反馈技术的超宽带低噪声放大器
CN111245373B (zh) * 2020-01-16 2022-10-28 中国科学技术大学 一种采用部分有源负反馈技术及正反馈技术的超宽带低噪声放大器

Also Published As

Publication number Publication date
JP4998211B2 (ja) 2012-08-15
EP2056448B1 (en) 2011-12-14
US7633344B2 (en) 2009-12-15
EP2056448A3 (en) 2010-02-24
US20090108937A1 (en) 2009-04-30
ATE537603T1 (de) 2011-12-15
EP2056448A2 (en) 2009-05-06

Similar Documents

Publication Publication Date Title
JP4998211B2 (ja) 低雑音増幅器及び差動増幅器
US7843272B2 (en) Low noise amplifier
TWI345370B (en) Amplifier and the method thereof
JP4803189B2 (ja) 差動増幅器
KR20060122915A (ko) 자동 이득 제어를 갖는 무선 주파수 저잡음 증폭기
KR100427878B1 (ko) 증폭회로
TW200937844A (en) Amplifier, attenuating module and method for attenuating an RF signal
CN110677132A (zh) 一种射频线性功率放大器电路
JP2012257070A (ja) トランスインピーダンスアンプ
CN106603022A (zh) 一种短波高线性平衡结构功率放大器
US7605655B2 (en) Highly linear differential amplifier with a novel resistive source degeneration network
CN115913134A (zh) 一种宽带低噪声放大器和电子设备
JP2011250084A (ja) ジャイレータ回路、広帯域増幅器及び無線通信装置
JP2009165100A5 (ja)
KR101590605B1 (ko) 무선 송수신기용 선형 전력증폭기
JP2000134046A (ja) 電流増幅器
TWI623193B (zh) 功率放大器電路
JP4704293B2 (ja) バイアス回路、増幅器、および携帯端末
WO2007008042A1 (en) Cascode low-noise amplifier
JP6177422B2 (ja) アクティブバラン回路及びトランス
Dang et al. A low noise figure K-band receiver in 130 nm CMOS
Hu et al. A novel DC-12GHz variable gain amplifier in InGaP/GaAs HBT technology
CN113659940B (zh) 一种单端输入的伪差分超宽带晶体管放大器
KR101045541B1 (ko) 전류 미러링을 이용한 믹서
CN113364438A (zh) 一种高线性度的中频缓冲电路及缓冲器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4998211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees