JP2009108182A - 半導体膜形成用塗布液、半導体膜、色素増感型太陽電池 - Google Patents

半導体膜形成用塗布液、半導体膜、色素増感型太陽電池 Download PDF

Info

Publication number
JP2009108182A
JP2009108182A JP2007281493A JP2007281493A JP2009108182A JP 2009108182 A JP2009108182 A JP 2009108182A JP 2007281493 A JP2007281493 A JP 2007281493A JP 2007281493 A JP2007281493 A JP 2007281493A JP 2009108182 A JP2009108182 A JP 2009108182A
Authority
JP
Japan
Prior art keywords
group
dye
semiconductor film
metal oxide
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007281493A
Other languages
English (en)
Other versions
JP5292766B2 (ja
Inventor
Yusuke Kawahara
雄介 川原
Takahiko Nojima
隆彦 野島
Hiroaki Ito
宏明 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2007281493A priority Critical patent/JP5292766B2/ja
Publication of JP2009108182A publication Critical patent/JP2009108182A/ja
Application granted granted Critical
Publication of JP5292766B2 publication Critical patent/JP5292766B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Paints Or Removers (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

【課題】優れた光電変換効率を有する半導体膜形成用塗布液および、色素増感型太陽電池を提供する。
【解決手段】金属酸化物粒子と溶媒、及び下記一般式〔I〕で表される化合物を含有することを特徴とする半導体膜形成用塗布液。
Figure 2009108182

(式中、R1、R6はアルキル基、アルケニル基、アリール基、ポリオキシアルキレン鎖を有する基、またポリエステル鎖を有する基を、R3、R4はそれぞれ水素原子またはアルキル基を表す。R2、R5は2価の連結基を表し、またnは1以上の整数を表す。)
【選択図】なし

Description

本発明は色素増感型太陽電池に関する、特に、半導体電極として特定の化合物を含有する塗布液を用いて製造された半導体膜を有する色素増感型太陽電池に関する。
近年、シリコン系太陽電池に代わる有機材料を用いた太陽電池として色素増感型太陽電池が着目されており、研究開発が盛んに行われている。
色素増感型太陽電池においては、透明導電性基板上に増感色素を担持した半導体多孔膜からなる半導体電極が用いられるが、従来の半導体多孔膜は、主に界面活性剤存在下、水溶液中に半導体粒子を分散させた塗布液を基板上に塗布又はスクリーン印刷して450度又は500℃近辺で焼成することにより製造されている。
この場合、使用される塗布液の粘性が重要であり、粘性が低すぎると膜を作製する際にたれや流れを生じて成膜が困難になり、又粘性が高すぎると生成した半導体膜の表面にクラックが発生し、このクラックを通って色素及び電解液が直接透明導電性基板と接触し、変換効率の低下を引き起こしたり、また、クラックにより半導体膜が剥離し、太陽電池の寿命が短くなるなどのトラブルが発生する原因になる。
この課題を解決する手段として、半導体粒子の塗布液にポリアルキレングリコールなどのバインダーを含有させることによって、塗布液に適度な粘性を維持させ、焼成後の半導体膜としては多孔性に優れ、結果的に光電変換効率が向上する技術が提案されている(例えば特許文献1、2)。しかし、これらの技術では、ポリマーを消失させるために高温での焼成が必要となり、軟化点の低いプラスチック基材を使用したい場合には適さない。
更に特許文献2では、バインダーを除去するために焼成後に紫外光を照射する技術が開示されているが、同工程を有することにより生産コストが上昇する原因となる。
一方、軟化点の低いプラスチック基材を適用するために、低温での焼成を可能とした半導体膜の製造方法も提案されている。
例えば、特許文献3では、少量の親水性バインダーを含有する塗布液を用いてそれを含有する半導体膜を製造する方法を開示しており、低温の焼成でも好ましいネッキング(多孔質膜の微粒子同士が結着する)を形成し、電子伝導性に優れ、更に充分な機械的強度も有するとされている。
しかし、少量とはいえ有機物が膜中に存在することで充分に優れた光電変換効率を得ることはできず、更に気相法によって得られた金属酸化物粒子を使用した際に特に効果を発現するもので、半導体材料の自由度も劣り、充分に満足できる優れた技術とはいえない。
更に特許文献4では、実質的にバインダーを含まない塗布液でも適度な粘性を有し、低温の焼成でも密着性や耐久性に優れ、更に光電変換効率に優れた色素増感型太陽電池を得ることができることが開示されている。しかしこの技術でも、低温成膜に必ずしも充分に適した塗布液には至ってなく、満足のできる光電変換効率を達成していない。
特開2004−153030号公報 特開2004−234988号公報 特開2005−235657号公報 特開2006−76855号公報
本発明は上述したような従来の課題を解決するためのもので、その目的は、充分に優れた光電変換効率を有する色素増感型太陽電池を作製するための半導体膜形成用塗布液を提供することであり、少量の使用でも粘度向上に効果があり、かつ、特に低温での焼成でも優れた光電変換効率を得ることができる。また、これらを用い色素増感型太陽電池を提供することである。
本発明の上記課題は、半導体電極を作製するにあたり、特定の化合物を含有する塗布液を使用することによって解決されるに至った。
即ち、
1.金属酸化物粒子と溶媒、及び下記一般式〔I〕で表される化合物を含有することを特徴とする半導体膜形成用塗布液。
Figure 2009108182
(式中、R1、R6はアルキル基、アルケニル基、アリール基、ポリオキシアルキレン鎖を有する基、またポリエステル鎖を有する基を、R3、R4はそれぞれ水素原子またはアルキル基を表す。R2、R5はアルキレン基、アルケニレン基、アリーレン基、ポリエステル鎖を有する2価の基、また、ポリオキシアルキレン鎖を有する2価の基を表し、またnは1以上の整数を表す。)
2.前記一般式〔I〕で表される化合物の含有量が1質量%以上10質量%以下であることを特徴とする前記1に記載の半導体膜形成用塗布液。
3.前記1または2のいずれかに記載の半導体膜形成用塗布液を用いて製造されたことを特徴とする半導体膜。
4.導電性基材上に、色素が表面に吸着された半導体膜から構成される金属酸化物半導体電極と、電荷移動層と、対向電極とを順次有する色素増感型太陽電池であって、該半導体膜として前記3に記載の半導体膜を用いることを特徴とする色素増感型太陽電池。
本発明により、色素増感型太陽電池の金属酸化物半導体電極用として、低温での焼成でも充分な成膜性、電子伝導性を得ることができる半導体膜形成用塗布液を提供でき、これらを用いて光電変換効率の高い色素増感型太陽電池を得ることができる。
以下、本発明の半導体膜形成用塗布液、半導体膜更に色素増感型太陽電池について詳細に説明する。
本発明の半導体膜形成用塗布液は、前記一般式〔I〕で表されるウレア系化合物を含有することを特徴とする。
このウレア系化合物を含有する塗布液を使用することによって、塗布性、成膜性、密着性などのバインダーを減ずることによって発生する課題を克服し、低温で焼成する場合においても優れた電子伝導性を有する多孔質膜を形成することが可能となった。
一般式〔I〕において、R1、R6はアルキル基、アルケニル基、アリール基、ポリオキシアルキレン鎖を有する基、またポリエステル鎖を有する基を、R3、R4はそれぞれ水素原子またはアルキル基を表す。R2、R5はアルキレン基、アルケニレン基、アリーレン基、ポリエステル鎖を有する2価の基、また、ポリオキシアルキレン鎖を有する2価の基を表し、またnは1以上の整数を表す。R2、R5の少なくとも1つはポリ(オキシアルキレン)鎖を有する2価の基である。また、R2、R5の少なくとも1つがポリ(オキシアルキレン)鎖を有する場合、R1またはR6のいずれかはポリオキシアルキレン鎖を有する基であることが好ましい。また、R2、R5のうち1つは単なる結合手であってもよい。
1、R6で表される、アルキル基、アルケニル基としては、炭素原子数1〜30のアルキル基、アルケニル基を、好ましくは炭素原子数18以下のアルキル基、アルケニル基であり、より好ましいのは炭素原子数8以下のアルキル基、アルケニル基である。また、アリール基として好ましいのはフェニル基である。
これらの基はまた任意に置換されていてもよい。
代表的な置換基としては、特に制限はなく、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基、デシル基、ドデシル基等)、シクロアルキル基(例えばシクロプロピル基、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、1−プロペニル基、ブテニル基、アリル基等)、アリール基(例えば、フェニル基、ナフチル基等)、ヘテロ環基(例えば、フリル基、チエニル基等)、ハロゲン原子(フッ素原子、塩素原子、臭素原子、沃素原子)、シアノ基、ヒドロキシル基、カルボキシル基、アルコキシ基(例えば前述のアルキル基と酸素原子を組み合わせてできるアルコキシ基)、アリールオキシ基(アリール基としては前述のアリール基として挙げたものと同義)、ヘテロ環オキシ基(ヘテロ環としては前述のヘテロ環基として挙げたものと同義)、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基(アルコキシ部位は前述のアルコキシ基と同義)、アリールオキシカルボニルオキシ基(アリール部位は前述のアリール基と同義)、アミノ基、アルキルおよびアリールアミノ基(アルキル部位、アリール部位としてはそれぞれ前述のアルキル基、アリール基として挙げたものと同義)、アニリノ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基(アルコキシ部位は前述のアルコキシ基と同義)、アリールオキシカルボニルアミノ基(アリール部位は前述のアリール基として挙げたものと同義)、スルファモイルアミノ基、アルキルおよびアリールスルホニルアミノ基(アルキル部位、アリール部位としてはそれぞれ前述のアルキル基、アリール基として挙げたものと同義)、スルファモイル基、スルホ基、アルキルおよびアリールスルフィニル基、アルキルおよびアリールスルホニル基(アルキル部位、アリール部位としてはそれぞれ前述のアルキル基、アリール基として挙げたものと同義)、アシル基、アリールオキシカルボニル基(アリール部位は前述のアリール基として挙げたものと同義)、アルコキシカルボニル基(アルコキシ部位は前述のアルコキシ基と同義)、カルバモイル基、イミド基、ウレイド基、ボロン酸基、ホスファト基、スルファト基、等、またその他公知の置換基が挙げられる。
置換基としては、カルボキシル基、アリールオキシカルボニル基、アルコキシカルボニル基等が好ましい置換基として挙げられる。
また、これらの置換基は複数個置換していてもよい。
1、R6で表される、ポリ(オキシアルキレン)鎖を有する基とは、例えば、
−(R″O)m−R′
で表される基であり、ここにおいてR″は、炭素原子数2〜4のアルキレン基、好ましくはエチレン、プロピレン等の基である。また、R′は水素原子或いは炭素原子数1〜30のアルキル基、アルケニル基、また炭素原子数10以下のアリール基、また、炭素原子数22以下のアシル基、例えば、アセチル基、プロピオニル基等を、また、ベンゾイル基等を表す。また、mは1〜16、好ましくは3〜10の整数を表す。
R′で表されるアルキル基、アルケニル基、アリール基、またアシル基は、それぞれ置換基を有していてもよく、置換基としては、前記の置換基が挙げられる。また、これらは複数個置換していてもよい。特に、カルボキシル基、アリールオキシカルボニル基、アルコキシカルボニル基等が好ましい置換基として挙げられる。
1、R6で表される、ポリエステル鎖を有する基とは、エステル構造単位をその骨格中に有する一価の基であれば特に限定はない。ポリエステル鎖を有する基は、エステル構造単位をその中に1個以上10個程度有するものが好ましい。エステル構造単位としては、例えば、炭素原子数1〜8のアルカンジオールと炭素原子数1〜10のアルカンジカルボン酸またはベンゼンジカルボン酸(フタル酸)とのエステルからなる構造単位が好ましい。とからなるエステルが好ましい。例えば、エチレングリコールとコハク酸から構成されるエステル構造単位等が挙げられる。
また、R2、R5で表される、アルキレン基、アルケニレン基としては、それぞれ炭素原子数1〜30のアルキレン基、アルケニレン基が挙げられ、炭素原子数1〜18のアルキレン基、アルケニレン基が、更には炭素原子数1〜8のアルキレン基、アルケニレン基が好ましい。これらは置換基を有していてもよい。また、アリーレン基としては、代表的には、フェニレン基が挙げられ、置換基を有していてもよい。これらの置換基としては前記の置換基が挙げられる。
また、R2、R5で表される、ポリ(オキシアルキレン)鎖を有する2価の基としては、ポリ(オキシアルキレン)鎖を含む任意の基であって、ポリ(オキシアルキレン)構造単位がR1および尿素構造単位の窒素原子と、またR6および尿素構造単位の窒素原子と直接あるいは他の任意の二価の基を介して結合可能であればよい。二価の基としては、例えば、アルキレン基(炭素原子数1〜22)、アリーレン基(例えばフェニレン基)、また、イミノ基、カルボニル基等の基が好ましく挙げられる。
2、R5で表される、ポリ(オキシアルキレン)鎖を有する2価の基として好ましくは、例えば、
−(R″O)m−
で表される2価の基が挙げられ、R″については前記同様、炭素原子数2〜4のアルキレン基、好ましくはエチレン、プロピレン等の基が挙げられる。また、ここで、mは、0〜16、好ましくは3〜10の整数を表す。
また、R2、R5で表される、ポリエステル鎖を有する2価の基としては、それぞれエステル構造単位をその骨格中に有する2価の基であれば限定はなく、エステル構造単位が1個以上10個程度まで有する基であれば好ましい。ポリエステル構造単位は、R1および尿素構造単位の窒素原子と、また、R6および尿素構造単位の窒素原子と直接あるいは他の任意の二価の基を介して結合可能であればよい。ポリエステル構造単位としては、炭素原子数1〜8のアルカンジオールと炭素原子数1〜10のアルカンジカルボン酸又はベンゼンジカルボン酸(フタル酸)とのエステルからなる構造単位が好ましい。
これらR2、R5で表される二価の基は、また、以上に挙げられた二価の基が連結して構成されてもよい。
これらR2、R5で表される基はそれぞれ異なっていてもよい。
3、R4は、それぞれ水素原子またはアルキル基を表すが、アルキル基としては炭素原子数1〜6のアルキル基が挙げられる。好ましいのは水素原子である。
また、R1、R6、またR3、R5それぞれの炭素原子数については、2〜30の範囲が好ましく、4〜18が更に好ましく、5〜15が最も好ましい。
例えば末端基R1、R6が同様の構造である場合でも、これらの炭素数は任意に異なってもよい。
これらR1、R6、またR3、R5で表される基は、前記一般式〔I〕で表される化合物が、金属酸化物微粒子分散液の溶媒に溶解すれば特に限定されることはないが、それぞれが任意に独立の構造を有することができる。これらの中でも、末端基R1、R6は同じ構造単位を有することが好ましく、また、末端基R1、R6と連結基R2、R5が同じ構造単位を有することが更に好ましい。
また、R1、R6のうち少なくとも1つはポリ(オキシアルキレン)鎖(或いはポリ(アルキレンオキシ)鎖)を有する構造であることが好ましく、更に、末端基R1、R6の少なくとも1つと、R3、R5の少なくとも1つがポリ(オキシアルキレン)鎖を共に有することが更に好ましい。最も好ましいのは、末端基R1、R6と連結基であるR2またはR5がポリ(オキシアルキレン)鎖(構造単位)を有することである。
また、一般式〔I〕中、nは1以上の整数を表し、具体的にはnは1以上1000以下を用いることが可能であるが、1以上100以下が好ましく、1以上50以下が更に好ましく、1以上10以下が最も好ましい。
次に、一般式〔I〕で表される化合物の具体的代表例を示すが、本発明はこれに限定されるものではない。
Figure 2009108182
Figure 2009108182
これらこれら一般式〔I〕で表されるウレア系化合物の製造は公知の方法により製造可能であり、例えば、これらの化合物はレオロジーコントロール剤としてBYK Chemie社から市販されているものであり、また特開昭63−235387号公報を参考に合成することができる。
これら一般式〔I〕で表されるウレア系化合物の含有量としては特に限定は無いが、この化合物は少量でもバインダーの機能を補完する特性を有しており、低温における焼失性、更に半導体膜の電子伝導性の観点から、比較的少量にて適用することが好ましい。具体的には、金属酸化物粒子に対して100質量%以下であることが好ましく、10質量%以上50質量%以下であることが更に好ましい。また、塗布液全体に対しては、20質量%以下であることが好ましく、1質量%以上10質量%以下であることが更に好ましい。
本発明の半導体膜形成用塗布液で使用できる溶媒としては特に限定は無く、水、エタノール、イソプロパノール、アセトン、アセトニトリル、t−ブタノール等、またはそれらの混合溶媒等の親水性溶媒を挙げることができる。基材として樹脂を使用する場合は、後述する色素増感型太陽電池の製造における乾燥工程の乾燥温度が室温〜200℃の範囲であることから、溶媒は常圧での沸点が200℃以下であるものが好ましいが、減圧装置等の分散媒の沸点を降下させる装置の内部で溶媒を塗布するのであればこの限りではない。
本発明の半導体膜形成用塗布液には金属酸化物粒子、及び上述した一般式〔I〕で表される化合物のほかに、界面活性剤などの種々添加剤、又は必要に応じてバインダー(結合剤)を含有しても良い。
次に、本発明の半導体膜形成用塗布液の製造方法について説明する。
本発明の半導体膜形成用塗布液の製造方法において、一般式〔I〕で表される化合物はどのタイミングで添加されても良い。金属酸化物粒子を液相で作製した場合は、作製に使用した溶媒をそのまま持ち込み、これに一般式〔I〕で表される化合物を添加し溶解させ、その後分散を行ってもよいし、または金属酸化物粒子を溶媒に分散させる前に、予め一般式〔I〕で表される化合物が溶媒に溶解されていてもよく、または、金属酸化物粒子の分散が終了した後に一般式〔I〕で表される化合物を添加し溶解させてもよい。しかしながら、一般式〔I〕で表される化合物の特性を顕著に発現させる観点で、一般式〔I〕で表される化合物存在下で金属酸化物粒子を分散させる方法が好ましい。この時、必要に応じて任意のタイミングで希釈操作を施してもよい。金属酸化物の溶媒への分散方法は、ボールミル、高速回転粉砕機、攪拌ミル、超音波発生器を利用した装置、乳鉢、ペイントコンディショナー、ホモジナイザーなど、金属酸化物と分散媒を混合させ、かつ金属酸化物の凝集を解する分散機である。
次に、本発明の色素増感型太陽電池について、図1を用いて説明する。図1は、本発明の色素増感型太陽電池の基本構造を示す概略断面図である。本発明の色素増感型太陽電池は図1によって示される通り、導電性基材1及び表面に色素3を吸着させた金属酸化物2から構成される金属酸化物半導体電極、電荷移動層(「電解質層」と呼ぶこともある)4、更に対向電極5を有する構成である。尚、図1において、e-は電子を表し、矢印は当該電子の流れを示す。
本発明の色素増感型太陽電池を構成する際には、前記半導体電極、電荷移動層及び対向電極をケース内に収納して封止するか、あるいはそれら全体を樹脂封止することが好ましい。
本発明の太陽電池に太陽光または太陽光と同等の電磁波を照射すると、金属酸化物2に吸着された色素3は照射された太陽光もしくは電磁波を吸収して励起する。励起によって発生した電子は金属酸化物2に移動し、次いで導電性基材1を経由して対向電極5に移動して、電荷移動層4のレドックス電解質を還元する。一方、金属酸化物2に電子を移動させた色素3は酸化体となっているが、対向電極5から電荷移動層4のレドックス電解質を経由して電子が供給されることにより、還元されて元の状態に戻り、同時に電荷移動層4のレドックス電解質は酸化されて、再び対向電極5から供給される電子により還元されうる状態に戻る。このようにして電子が流れ、本発明の色素増感型太陽電池を構成することができる。
〈金属酸化物半導体電極〉
本発明に係る金属酸化物半導体電極について説明する。
本発明に係る金属酸化物半導体電極を構成する金属酸化物としては、半導体に吸着した色素で光照射により発生した電子を受け取り、これを導電性基材へ伝達する半導体なら特に限定は無く、公知の色素増感型太陽電池に使用される種々の金属酸化物を使用することができる。
具体的には、酸化チタン、酸化ジルコニウム、酸化亜鉛、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化タングステン等の各種金属酸化物半導体、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸バリウム、ニオブ酸カリウム等の各種複合金属酸化物半導体、酸化マグネシウム、酸化ストロンチウム、酸化アルミニウム、酸化コバルト、酸化ニッケル、酸化マンガン等の遷移金属酸化物、酸化セリウム、酸化ガドリニウム、酸化サマリウム、酸化イッテルビウム等のランタノイドの酸化物等の金属酸化物、シリカに代表される天然または合成の珪酸化合物等の無機絶縁体などを挙げることができる。また、これらの材料を組み合わせて使用することもできる。更に、金属酸化物粒子をコアシェル構造としたり、異なる金属元素をドーピングしたりしても良く、任意の構造、組成の金属酸化物を適用することが可能である。
金属酸化物粒子の平均粒子径は10nm以上300nm以下であることが好ましく、10nm以上100nm以下であることが更に好ましい。また、金属酸化物の形状も特に限定は無く、球状、針状、または不定形結晶であっても良い。
金属酸化物粒子の形成方法としては特に限定は無く、水熱反応法、ゾルゲル法/ゲルゾル法、コロイド化学合成法、塗布熱分解法、噴霧熱分解法等の各種液相法、及び化学気相析出法等の各種気相法を用いて形成することができる。
〈金属酸化物半導体電極の作製方法〉
次に、本発明の金属酸化物半導体電極の作製方法を説明する。
本発明の色素増感型太陽電池の金属酸化物半導体電極の作製方法としては、一般式〔I〕で表される化合物を含有する本発明の半導体膜形成用塗布液を使用していれば特に限定は無く、本発明の半導体膜形成用塗布液を公知の種々の塗布方法により導電性基材上に適用することが可能である。具体的には、スクリーン印刷法、インクジェット法、ロールコート法、ドクターブレード法、スピンコート法、スプレー塗布法等を挙げることができる。
半導体膜形成用塗布液中の金属酸化物微粒子の粒子径は微細であることが好ましく、一次粒子として存在していることが好ましい。金属酸化物微粒子を含有する塗布液は、金属酸化物微粒子を溶媒中に分散させることによって調製され、溶媒としては、金属酸化物微粒子を分散し得るものであれば特に制限はなく、水、有機溶媒、水と有機溶媒との混合液が包含される。有機溶媒としては、メタノールやエタノール等のアルコール、メチルエチルケトン、アセトン、アセチルアセトン等のケトン、ヘキサン、シクロヘキサン等の炭化水素等が用いられる。塗布液中には、必要に応じて界面活性剤や粘度調節剤(ポリエチレングリコール等の多価アルコールなど)を加えることができる。溶媒中の金属酸化物微粒子の濃度の範囲は、0.1〜70質量%が好ましく、0.1〜30質量%が更に好ましい。
上記の金属酸化物粒子を含有する塗布液を導電性基材上に塗布し、乾燥等を行った後、空気中または不活性ガス中で焼成して、導電性基材上に金属酸化物半導体膜が形成される。導電性基材上に塗布液を塗布、乾燥して得られる半導体膜は金属酸化物微粒子の集合体からなるもので、その微粒子の粒子径は使用した金属酸化物粒子の一次粒子径に対応するものである。導電性基材上に形成された金属酸化物半導体膜は、導電性基材との結合力や、微粒子相互の結合力が弱く、機械的強度の弱いものであることから、この金属酸化物微粒子集合体膜を焼成処理して機械的強度を高め、基板に強く固着した焼成物膜とすることが好ましい。この時の焼成温度は特に限定は無いが、特にプラスチック基材を使用する場合には比較的低温で焼成する必要があり、具体的には200℃以下で焼成を行うことが好ましい。
本発明においては、この半導体膜はどのような構造を有していてもよいが、多孔質構造膜(空隙を有する、ポーラスな層ともいう)であることが好ましい。ここで、金属酸化物半導体膜の空隙率は、10体積%以上50体積%以下であることが好ましく、20体積%以上40体積%以下であることが更に好ましい。尚、金属酸化物半導体膜の空隙率は、誘電体の厚み方向に貫通性のある空隙率を意味し、水銀ポロシメーター(島津ポアライザー9220型)等の市販の装置を用いて測定することができる。金属酸化物半導体膜の厚さは、30μm以下であることが好ましく、5μm以上20μm以下であることが更に好ましい。
次に、必要に応じて、金属酸化物半導体膜上に金属酸化物による表面処理を施しても良い。この表面処理の組成は、特に金属酸化物微粒子間の電子伝導性の観点から、コア微粒子と同種の組成を使用することが好ましい。
この表面処理を施す方法としては、導電性基材上に金属酸化物半導体膜を形成した後、表面処理となる金属酸化物の前駆体を該半導体膜に塗布すること、もしくは該半導体膜を前駆体溶液に浸漬し、更に必要に応じて焼成処理を施すことにより、金属酸化物からなる表面処理を行うことができる。具体的には、酸化チタンの前駆体である四塩化チタン水溶液またはチタンアルコキシドを用いた電気化学的処理や、チタン酸アルカリ金属やチタン酸アルカリ土類金属の前駆体を用いることによって表面処理を行うことができる。この際の焼成温度や焼成時間は特に制限は無く、任意に制御することができるが、200℃以下であることが好ましい。
〈導電性基材〉
本発明で用いられる導電性基材1としては、当該導電性基材側を受光面とする場合には、導電性基材は実質的に透明であることが好ましい。実質的に透明であるとは光の透過率が10%以上であることを意味し、50%以上であることが好ましく、80%以上であることが特に好ましい。
導電性基材としてはそれ自体が導電性を有する基材、またはその表面に導電層を有する基材を利用することができる。後者の場合、基材としてはガラス板や、酸化チタンやアルミナ等のセラミックの研磨板、更に公知の種々のプラスチックシートを使用することが可能であるが、コスト面や可撓性を考慮するとプラスチックシートを使用することが好ましい。
プラスチックシートとしては具体的にはトリアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリフェニレンスルファイド(PPS)、シンジオタクチックポリステレン(SPS)、ポリカーボネート(PC)、ポリアリレート(PA)、ポリエーテルイミド(PEI)、ポリスルフォン(PSF)、ポリエーテルスルホン(PES)、環状ポリオレフィン、フェノキシ樹脂、ブロム化フェノキシ等を挙げることができる。
これらの基材上に設ける導電層に使用する導電性材料としては、公知の種々の金属や金属酸化物等からなる無機系導電性材料、ポリマー系導電性材料、無機有機複合型の導電性材料、またはこれらを任意に混合した導電性材料など、あらゆるものを使用することができる。
無機系導電性材料として具体的には、白金、金、銀、銅、亜鉛、チタン、アルミニウム、ロジウム、インジウム等の金属、導電性カーボン、更にスズドープ酸化インジウム(ITO)、酸化スズ(SnO2)、フッ素ドープ酸化スズ(FTO)、アンチモンドープ酸化スズ(ATO)、酸化亜鉛(ZnO2)等の金属酸化物を挙げることができる。
ポリマー系導電性材料として具体的には、各種置換されていてもされていなくても良いチオフェン、ピロール、フラン、アニリンなどを重合させてなる導電性ポリマーやポリアセチレン等を挙げることができるが、導電性が高い観点からポリチオフェンが好ましく、特にポリエチレンジオキシチオフェン(PEDOT)が好ましい。
基材上に導電層を形成する方法としては、導電性材料に応じた公知の適切な方法を用いることが可能で、例えば、ITO等の金属酸化物からなる導電層を形成する場合、スパッタ法、CVD法、SPD法(スプレー熱分解堆積法)、蒸着法等の薄膜形成法が挙げられる。
また、ポリマー系導電性材料からなる導電層を形成する場合は、公知の様々な塗布法により形成することが好ましい。導電層の膜厚は0.01μm〜10μm程度が好ましく、0.05μm〜5μm程度が更に好ましい。
導電性基材としては表面抵抗が低いほど良く、具体的には50Ω/cm2以下であることが好ましく、10Ω/cm2以下であることが更に好ましい。
また、導電性基材の集電効率を向上し更に導電性を上げるために、光透過率を著しく損なわない範囲の面積率で、金、銀、銅、白金、アルミニウム、ニッケル、インジウム、チタン、タングステンなどからなる金属配線層を前記導電層と併用してもよい。
金属配線層を用いる場合、格子状、縞状、櫛状等のパターンとして、光が導電性基材を均一に透過するように配設するとよい。金属配線層を併用する場合、基材に蒸着、スパッタリング等で設置し、その上に前記導電層を設けるのが好ましい。
〈短絡防止層〉
本発明の色素増感型太陽電池においては、前述した導電層と金属酸化物半導体電極との間に、短絡防止層を設けることができる。これにより、電解質と金属酸化物半導体の短絡電流を低減することができる。特に、電解質として固体のp型半導体を用いる場合は、この層を有することが好ましい。
短絡防止層としては、可視光を透過する絶縁性物質で、伝導帯のエネルギー準位が金属酸化物半導体のそれに近い値を有するn型半導体であれば特に制限はない。
例えば、酸化ケイ素、酸化マグネシウム、酸化アルミニウム、炭酸カルシウム、ポリビニルアルコール、ポリウレタンなどが挙げられる。また、一般的に光電変換材料に用いられるものでもよく、例えば、酸化チタン、酸化ニオブ、酸化タングステンなどが挙げられる。
短絡防止層の形成方法としては、透明導電層の場合と同様に真空成膜プロセスや、液相コーティング法などにより作製することができる。真空成膜プロセスを用いる場合、透明導電層、短絡防止層、金属酸化物膜は大気開放することなく真空下でインライン成膜が可能である。
また、短絡防止層の膜厚は0.001μm〜0.02μmの範囲が好ましいが、適宜調整することができる。
〈色素〉
本発明に係る色素について説明する。
本発明において、前述した金属酸化物半導体電極の表面に吸着させる色素3としては、種々の可視光領域または赤外光領域に吸収を有し、金属酸化物半導体の伝導帯より高い最低空準位を有する色素が好ましく、公知の様々な色素を使用することができる。
例えば、アゾ系色素、キノン系色素、キノンイミン系色素、キナクリドン系色素、スクワリリウム系色素、シアニン系色素、シアニジン系色素、メロシアニン系色素、トリフェニルメタン系色素、キサンテン系色素、ポルフィリン系色素、ペリレン系色素、インジゴ系色素、フタロシアニン系色素、ナフタロシアニン系色素、ローダミン系色素、ローダニン系色素などが挙げられる。
尚、金属錯体色素も好ましく使用され、その場合においては、Cu、Ni、Fe、Co、V、Sn、Si、Ti、Ge、Cr、Zn、Ru、Mg、Al、Pb、Mn、In、Mo、Y、Zr、Nb、Sb、La、W、Pt、Ta、Ir、Pd、Os、Ga、Tb、Eu、Rb、Bi、Se、As、Sc、Ag、Cd、Hf、Re、Au、Ac、Tc、Te、Rh等の種々の金属を用いることができる。
上記の中で、シアニン色素、メロシアニン色素、スクワリリウム色素等のポリメチン色素は好ましい態様の1つであり、具体的には特開平11−35836号公報、特開平11−67285号公報、特開平11−86916号公報、特開平11−97725号公報、特開平11−158395号公報、特開平11−163378号公報、特開平11−214730号公報、特開平11−214731号公報、特開平11−238905号公報、特開2004−207224号公報、特開2004−319202号公報、欧州特許第892411号明細書および同911841号明細書等の各明細書に記載の色素を挙げることができる。
更に金属錯体色素も好ましい態様の1つであり、金属フタロシアニン色素、金属ポルフィリン色素またはルテニウム錯体色素が好ましく、特に好ましいのはルテニウム錯体色素である。
ルテニウム錯体色素としては、例えば米国特許第4,927,721号明細書、同4,684,537号明細書、同5,084,365号明細書、同5,350,644号明細書、同5,463,057号明細書、同5,525,440号明細書、特開平7−249790号公報、特表平10−504512号公報、国際公開第98/50393号パンフレット、特開2000−26487号公報、特開2001−223037号公報、特開2001−226607号公報、特許第3430254号公報、等の各公報に記載の錯体色素を挙げることができる。
本発明では、金属酸化物の表面に吸着する色素として、ローダニン系色素を使用することが特に好ましい。ローダニン系色素であればどのような構造であっても好ましく用いることが可能であるが、中でも、下記一般式(1)で表される化合物または一般式(2)で表される化合物の少なくとも1種を用いることが特に好ましい。
(一般式(1)で表される化合物)
Figure 2009108182
一般式(1)において、X11〜X14は、各々酸素原子、硫黄原子またはセレン原子を表すが、好ましくはX11、X12、X14が、硫黄原子またはセレン原子であり、更に好ましくは硫黄原子である。X13は酸素原子であることが好ましい。
一般式(1)において、R11、R12、R13で各々表される置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、1−ヘキシルノニル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基、ビシクロ[2,2,1]ヘプチル基、アダマンチル基等)、アルケニル基(例えば、ビニル基、アリル基、1−プロペニル基、2−ブテニル基、1,3−ブタジエニル基、2−ペンテニル基、イソプロペニル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭化水素環基、芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、ヘテロアリールチオ基(例えば、1−フェニルテトラゾール−5−チオ基、5−メチル−1,3,4−オキサジアゾール−2−チオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。
これらの置換基は、上記の置換基によってさらに置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
以下に、一般式(1)において、R11、R12、R13で各々表される置換基の更に好ましい態様について説明する。
上記の一般式(1)において、R12、R13で各々表される置換基の中でも、ハロゲン原子、アルキル基、アリール基、複素環基、アルコキシカルボニル基等が好ましく、更に好ましく用いられるのはアルキル基である。
上記の一般式(1)において、R11で表される置換基が複数の場合、少なくとも1つは電子吸引性の置換基であることが好ましく、その場合、nは1〜4の整数を表す。R11が、電子吸引性の置換基である場合、ハメットの置換基定数σpの値が0.1〜0.8のものが好ましく、更に好ましくは、σp値の総和が0.2〜2.0の範囲であることが好ましく、特に好ましくは、0.25〜1.5である。
本発明において、ハメットの置換基定数σpの値としては、Hansch,C.Leoらの報告(例えば、J.Med.Chem.16、1207(1973);ibid.20、304(1977))に記載の値を用いるのが好ましい。
σpの値が0.10以上の置換基(原子の場合も含む)としては、塩素原子、臭素原子、ヨウ素原子、カルボキシ基、シアノ基、ニトロ基、ハロゲン置換アルキル基(例えばトリクロロメチル基、トリフルオロメチル基、クロロメチル基、トリフルオロメチルチオメチル基、トリフルオロメタンスルホニルメチル基、パーフルオロブチル基等)、脂肪族・芳香族もしくは複素環アシル基(例えば、ホルミル基、アセチル基、ベンゾイル基等)、脂肪族・芳香族もしくは複素環スルホニル基(例えば、トリフルオロメタンスルホニル基、メタンスルホニル基、ベンゼンスルホニル基等)、カルバモイル基(例えば、カルバモイル基、メチルカルバモイル基、フェニルカルバモイル基、2−クロロ−フェニルカルバモイル基等)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、ジフェニルメチルカルボニル基等)、置換芳香族基(例えば、ペンタクロロフェニル基、ペンタフルオロフェニル基、2,4−ジメタンスルホニルフェニル基、2−トリフルオロメチルフェニル基等)、複素環残基(例えば、2−ベンゾオキサゾリル基、2−ベンズチアゾリル基、1−フェニル−2−ベンズイミダゾリル基、1−テトラゾリル基等)、アゾ基(例えば、フェニルアゾ基)、ジトリフルオロメチルアミノ基、トリフルオロメトキシ基、アルキルスルホニルオキシ基(例えば、メタンスルホニルオキシ基)、アシロキシ基(例えば、アセチルオキシ基、ベンゾイルオキシ基等)、アリールスルホニルオキシ基(例えば、ベンゼンスルホニルオキシ基)、ホスホリル基(例えば、ジメトキシホスホニル基、ジフェニルホスホリル基等)、スルファモイル基(例えば、N−エチルスルファモイル基、N,N−ジプロピルスルファモイル基、N−(2−ドデシルオキシエチル)スルファモイル基、N−エチル−N−ドデシルスルファモイル基、N,N−ジエチルスルファモイル基等)等が挙げられる。
σpの値が0.35以上の置換基としては、シアノ基、ニトロ基、カルボキシ基、弗素置換アルキル基(例えばトリフルオロメチル基、パーフルオロブチル基等)、脂肪族・芳香族もしくは複素環アシル基(例えば、アセチル基、ベンゾイル基、ホルミル基等)、脂肪族・芳香族もしくは複素環スルホニル基(例えば、トリフルオロメタンスルホニル基、メタンスルホニル基、ベンゼンスルホニル基等)、カルバモイル基(例えば、カルバモイル基、メチルカルバモイル基、フェニルカルバモイル基、2−クロロ−フェニルカルバモイル基等)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、ジフェニルメチルカルボニル基等)、弗素またはスルホニル基置換芳香族基(例えばペンタフルオロフェニル、2,4−ジメタンスルホニルフェニル)、複素環残基(例えば1−テトラゾリル)、アゾ基(例えばフェニルアゾ)、アルキルスルホニルオキシ基(例えばメタンスルホニルオキシ)、ホスホリル基(例えばジメトキシホスホリル、ジフェニルホスホリル)、スルファモイル基などが挙げられる。
σpの値が0.60以上の置換基としては、シアノ基、ニトロ基、脂肪族・芳香族もしくは複素環スルホニル基(例えばトリフルオロメタンスルホニル、ジフルオロメタンスルホニル、メタンスルホニル、ベンゼンスルホニル)などが挙げられる。
上記の中でも、R11として好ましいのは、ハロゲン原子、ハロゲン置換アルキル基(トリフルオロメチル基等)、アルコキシカルボニル基、カルバモイル基、シアノ基等が挙げられる。
一般式(1)において、L11で表される2価の連結基としては、アルキレン基(例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、プロピレン基、エチルエチレン基、ペンタメチレン基、ヘキサメチレン基等)、アルケニレン基(例えば、ビニレン基、プロペニレン基、ブテニレン基、ペンテニレン基、1−メチルビニレン基、1−メチルプロペニレン基、2−メチルプロペニレン基、1−メチルペンテニレン基、3−メチルペンテニレン基、1−エチルビニレン基、1−エチルプロペニレン基、1−エチルブテニレン基、3−エチルブテニレン基等)、アルキニレン基(例えば、エチニレン基、1−プロピニレン基、1−ブチニレン基、1−ペンチニレン基、1−ヘキシニレン基、2−ブチニレン基、2−ペンチニレン基、1−メチルエチニレン基、3−メチル−1−プロピニレン基、3−メチル−1−ブチニレン基等)、アリーレン基(例えば、o−フェニレン基、m−フェニレン基、p−フェニレン基、ナフタレンジイル基、アントラセンジイル基、ナフタセンジイル基、ピレンジイル基、ナフチルナフタレンジイル基、ビフェニルジイル基(例えば、[1,1′−ビフェニル]−4,4′−ジイル基、3,3′−ビフェニルジイル基、3,6−ビフェニルジイル基等)、テルフェニルジイル基、クアテルフェニルジイル基、キンクフェニルジイル基、セキシフェニルジイル基、セプチフェニルジイル基、オクチフェニルジイル基、ノビフェニルジイル基、デシフェニルジイル基等)、ヘテロアリーレン基(例えば、カルバゾール環、カルボリン環、ジアザカルバゾール環(モノアザカルボリン環ともいい、カルボリン環を構成する炭素原子のひとつが窒素原子で置き換わった構成の環構成を示す)、トリアゾール環、ピロール環、ピリジン環、ピラジン環、キノキサリン環、チオフェン環、オキサジアゾール環、ジベンゾフラン環、ジベンゾチオフェン環、インドール環からなる群から導出される2価の基等)、酸素や硫黄などのカルコゲン原子であってもよい。
また、アルキルイミノ基、ジアルキルシランジイル基やジアリールゲルマンジイル基のような、ヘテロ原子を会して連結する基でもよい。
上記の中でも、特に好ましく用いられるのは、メチレン基、エチレン基である。
一般式(1)において、R15で表されるアルキル基は、炭素数1〜8のアルキル基が好ましく、更に好ましくは、炭素数2〜4のアルキル基(例えば、エチル基、i−プロピル基、n−ブチル基等)が挙げられる。
(一般式(2)で表される化合物)
本発明に係る一般式(2)で表される化合物(色素ともいう)について説明する。
Figure 2009108182
一般式(2)において、X21〜X26は、各々酸素原子、硫黄原子またはセレン原子を表すが、好ましくはX21、X22、X24、X26が、硫黄原子またはセレン原子であり、更に好ましくは硫黄原子である。X23、X25は、各々酸素原子であることが好ましい。
一般式(2)において、R21、R22、R23で各々表される置換基は、一般式(1)において、R11、R12、R13で各々表される置換基と同義である。
また、一般式(2)において、R22、R23で各々表される置換基の好ましい態様は、一般式(1)において、R12、R13で各々表される置換基の好ましい態様と同義である。
一般式(2)において、R21で表される置換基は、一般式(1)において、R11で表される置換基と同義である。
一般式(2)において、L21、L22で各々表される2価の連結基は、一般式(1)において、L11で表される2価の連結基と同義である。
一般式(2)において、R25で表されるアルキル基は、一般式(1)において、R15で表されるアルキル基と同義である。
また、一般式(1)で表される化合物(色素)、一般式(2)で表される化合物(色素)には、該一般式で表される化合物そのもののほかに、該化合物から誘導されるイオン及び塩が含まれる。
例えば、分子構造中にスルホン酸基(スルホ基)を有している場合には、該化合物の他にスルホン酸基が解離して生じる陰イオン、及び該陰イオンと対陽イオンとで形成される塩が含まれる。
このような塩としてはナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩等の金属イオンと形成した塩であっても良いし、ピリジン、ピペリジン、トリエチルアミン、アニリン、ジアザビシクロウンデセン等のような有機塩基と形成した塩でもよい。
分子内に塩基性基を有する化合物の場合も同様に該化合物がプロトン化されて生成する陽イオン、及び塩酸塩、硫酸塩、酢酸塩、メチルスルホン酸塩、p−トルエンスルホン酸塩等の、酸と形成した塩である場合も含まれる。
以下に、本発明における一般式(1)または一般式(2)で表される化合物の具体例を示すが、本発明の内容がこれら例示化合物に限定されない。
Figure 2009108182
Figure 2009108182
Figure 2009108182
Figure 2009108182
Figure 2009108182
Figure 2009108182
Figure 2009108182
Figure 2009108182
Figure 2009108182
Figure 2009108182
Figure 2009108182
Figure 2009108182
Figure 2009108182
Figure 2009108182
Figure 2009108182
Figure 2009108182
Figure 2009108182
Figure 2009108182
Figure 2009108182
Figure 2009108182
Figure 2009108182
一般式(1)で表される化合物、一般式(2)で表される化合物は、例えばエフ・エム・ハーマ著「シアニン・ダイズ・アンド・リレーテッド・コンパウンズ」(1964,インター・サイエンス・パブリッシャーズ発刊)、米国特許第2,454,629号明細書、同2,493,748号明細書、特開平6−301136号公報、同2003−203684号公報等に記載された従来公知の方法を参照して合成できる。
これらの化合物(色素)は、吸光係数が大きく、且つ、繰り返しの酸化還元反応に対して安定であることが好ましい。
また、上記化合物(色素)は金属酸化物半導体上に化学的に吸着することが好ましく、カルボキシ基、スルホン酸基、リン酸基、アミド基、アミノ基、カルボニル基、ホスフィン基等の官能基を有することが好ましい。
また、光電変換の波長域をできるだけ広くし、且つ、変換効率を上げるため、2種類以上の色素を併用または混合することもできる。
この場合、目的とする光源の波長域と強度分布に合わせるように、併用または混合する色素とその割合を選ぶことができる。
また、上記一般式(1)で表される化合物、一般式(2)で表される化合物と併用できる色素の具体例を以下に示すが、本発明はこれらに限定されない。
Figure 2009108182
Figure 2009108182
Figure 2009108182
Figure 2009108182
Figure 2009108182
Figure 2009108182
(金属酸化物半導体層への化合物(色素)の吸着方法)
本発明において、金属酸化物半導体層に、一般式(1)で表される化合物(色素)または一般式(2)で表される化合物(色素)を吸着させる方法としては、特に限定されず、公知の方法が用いることができる。
例えば、化合物(色素)を有機溶剤に溶解して色素溶液を調製し、得られた色素溶液に透明導電膜上の半導体層を浸漬する方法、または得られた色素溶液を半導体層表面に塗布する方法などが挙げられる。
前者においてはディップ法、ローラ法、エヤーナイフ法などが適用でき、後者においてはワイヤーバー法、アプリケーション法、スピン法、スプレー法、オフセット印刷法、スクリーン印刷法などが適用できる。
尚、化合物(色素)の吸着に先立って、半導体層の表面を予め減圧処理や加熱処理など処理を施し、表面を活性化し膜中の気泡を除去する工程を有しても良い。
半導体層への増感効果を好ましく得る観点から、半導体膜を色素の溶液に浸漬する時間は、3時間〜48時間が好ましく、更に好ましくは、4時間〜24時間である。
また、浸漬にあたり色素溶液は、色素が分解しないかぎりにおいて、沸騰しない温度にまで加熱して用いてもよい。好ましい温度範囲は10℃〜50℃、とくに好ましくは15℃〜40℃であるが、前記の通り溶媒が前記温度範囲で沸騰する場合はこの限りでない。
また、半導体膜を浸漬した色素溶液に超音波照射を行うこともできる。超音波照射は市販の装置を用いることができ、また、照射時間としては、好ましくは30分〜4時間であり、更に好ましくは1時間〜3時間である。
色素溶液に用いる溶媒は、色素を溶解するものであればよく、従来公知の溶媒を用いることができる。
また、当該溶媒は、常法に従って精製された溶媒、また溶媒の使用に先立って、必要に応じて蒸留および/または乾燥を行い、より純度の高い溶媒であることが好ましく、例えば、メタノール、エタノール、ブタノール、1種又はそれ以上の疎水性溶媒、非プロトン性溶媒、疎水性かつ非プロトン性の溶媒またはそれらの混合物が挙げられる。
ここで、疎水性溶媒としては、例えば、塩化メチレン、クロロホルム、四塩化炭素等のハロゲン化脂肪族炭化水素;ヘキサン、シクロヘキサン等の炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;クロロベンゼン、ジクロロベンゼン等のハロゲン化芳香族炭化水素;酢酸エチル、酢酸ブチル、安息香酸エチル等のエステル類等、並びにそれらの組合せた混合溶媒等が挙げられる。
非プロトン性溶媒としては、例えば、アセトン、メチルエチルケトン等のケトン類;ジエチルエーテル、ジイソプロピルエーテル、ジメトキシエタン等のエーテル類;アセトニトリル、ジメチルアセトアミド、ヘキサメチルリン酸トリアミド等の窒素化合物類;二硫化炭素、ジメチルスルホキシド等の硫黄化合物類;ヘキサメチルホスホルアミド等のリン化合物類、並びにそれらの組み合せが挙げられる。
好ましく用いられる溶媒はメタノール、エタノール、n−プロパノール、ブタノール等のアルコール系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン等のエーテル系溶媒、塩化メチレン、1,1,2−トリクロロエタン等のハロゲン化炭化水素溶媒であり、特に好ましくはメタノール、エタノール、アセトン、メチルエチルケトン、テトラヒドロフラン、塩化メチレンである。
色素溶液中の色素の濃度は、増感効果、光電変換効率向上の観点から、使用する色素、溶媒の種類、色素吸着工程により適宜調整することができ、例えば、1×10-5モル/リットル以上、好ましくは、5×10-5モル/リットル〜1×10-2モル/リットル程度が挙げられる。
上記のことから、未吸着の色素を洗浄により速やかに除去するのが好ましい。洗浄溶剤としては、色素の溶解性が比較的低く、かつ比較的乾燥しやすい、アセトン等の溶剤が好ましい。また、洗浄は加熱状態で行うのが好ましい。
また、洗浄により余分な色素を除去した後、色素の吸着状態をより安定にするために、酸化物半導体微粒子の表面を有機塩基性化合物で処理して、未反応色素の除去を促進させてもよい。
有機塩基性化合物としては、ピリジン、キノリン等の誘導体が挙げられる。これら化合物が液体の場合にはそのまま用いてもよいが、固体の場合には溶剤、好ましくは色素溶液と同一の溶剤に溶解して用いてもよい。
色素を2種以上用いる場合は、混合する色素の比率は特に限定は無く、それぞれの色素より最適化し選択されるが、一般的に等モルずつの混合から、1つの色素につき10%モル程度以上使用するのが好ましい。
色素を2種以上併用する場合の具体的方法としては、混合溶解して吸着させても、色素を半導体層に順次吸着させても良い。併用する色素を混合し溶解した溶液を用いて酸化物半導体層に色素を吸着する場合、溶液中の色素合計の濃度は1種類のみ担持する場合と同様でよい。色素を混合して使用する場合の溶媒としては前記したような溶媒が使用可能である。
併用する色素それぞれについて溶液を調製し半導体層に吸着させる場合も、溶媒としては前記したような溶媒が使用可能であり、使用する各色素用の溶媒は同一でも異なっていてもよい。
各色素について別々の溶液を調製し、各溶液に順に浸漬して作製する場合は、半導体層に色素を吸着させる順序がどのようであっても本発明の効果を得ることができる。また、各色素を単独で吸着させた半導体微粒子を混合することで作製してもよい。
酸化物半導体微粒子の薄膜に色素を担持する際、色素同士の会合を防ぐために包摂化合物の共存下、色素を担持することが効果的である。ここで包摂化合物としてはコール酸等のステロイド系化合物、クラウンエーテル、シクロデキストリン、カリックスアレン、ポリエチレンオキサイドなどが挙げられるが、好ましいものとしてはデオキシコール酸、デヒドロデオキシコール酸、ケノデオキシコール酸、コール酸メチルエステル、コール酸ナトリウム等のコール酸類、ポリエチレンオキサイド等が挙げられる。
また、色素を担持させた後、4−t−ブチルピリジン等のアミン化合物で半導体層表面を処理しても良い。処理の方法は例えばアミンのエタノール溶液に色素を担持した半導体微粒子薄膜の設けられた基板を浸す方法等が採られる。
〈電荷移動層〉
本発明に係る電荷移動層について説明する。
電荷移動層は色素の酸化体に電子を補充する機能を有する電荷輸送材料を含有する層である。本発明で用いることのできる代表的な電荷輸送材料の例としては、酸化還元対イオンが溶解した溶剤や酸化還元対イオンを含有する常温溶融塩等の電解液、酸化還元対イオンの溶液をポリマーマトリクスや低分子ゲル化剤等に含浸したゲル状の擬固体化電解質、更には高分子固体電解質等が挙げられる。
また、イオンが関わる電荷輸送材料の他に、固体中のキャリア移動が電気伝導に関わる材料として、電子輸送材料や正孔(ホール)輸送材料を挙げることもでき、これらは併用することも可能である。
電荷移動層に電解液を使用する場合、含有する酸化還元対イオンとしては、一般に公知の太陽電池などにおいて使用することができるものであれば特に限定されない。
具体的には、I-/I3 -系、Br-/Br3 -系等の酸化還元対イオンを含有させたもの、フェロシアン酸塩/フェリシアン酸塩やフェロセン/フェリシニウムイオン、コバルト錯体等の金属錯体等の金属酸化還元系、アルキルチオール−アルキルジスルフィド、ビオロゲン色素、ハイドロキノン/キノン等の有機酸化還元系、ポリ硫化ナトリウム、アルキルチオール/アルキルジスルフィド等のイオウ化合物などを挙げることができる。
ヨウ素系として更に具体的には、ヨウ素とLiI、NaI、KI、CsI、CaI2等の金属ヨウ化物との組み合わせ、テトラアルキルアンモニウムヨーダイド、ピリジニウムヨーダイド、イミダゾリウムヨーダイド等の4級アンモニウム化合物や4級イミダゾリウム化合物のヨウ素塩などとの組み合わせなどが挙げられる。
臭素系として更に具体的には、臭素とLiBr、NaBr、KBr、CsBr、CaBr2等の金属臭化物との組み合わせ、テトラアルキルアンモニウムブロマイド、ピリジニウムブロマイドなど4級アンモニウム化合物の臭素塩等との組み合わせ等が挙げられる。
溶剤としては電気化学的に不活性で、粘度が低くイオン易動度を向上したり、もしくは誘電率が高く有効キャリア濃度を向上したりして、優れたイオン伝導性を発現できる化合物であることが望ましい。
具体的には、ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネート化合物、3−メチル−2−オキサゾリジノン等の複素環化合物、ジオキサン、ジエチルエーテル等のエーテル化合物、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等の鎖状エーテル類、メタノール、エタノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテル等のアルコール類、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ポリプロピレングリコール、グリセリン等の多価アルコール類、アセトニトリル、グルタロジニトリル、プロピオニトリル、メトキシプロピオニトリル、メトキシアセトニトリル、ベンゾニトリル等のニトリル化合物、更にテトラヒドロフラン、ジメチルスルホキシド、スルフォランなど非プロトン極性物質などを用いることができる。
好ましい電解質濃度は0.1M〜15Mであり、更に好ましくは0.2M〜10Mである。また、ヨウ素系を使用する場合の好ましいヨウ素の添加濃度は0.01M〜0.5Mである。
溶融塩電解質は、光電変換効率と耐久性の両立という観点から好ましい。溶融塩電解質としては、例えば、国際公開第95/18456号パンフレット、特開平8−259543号公報、特開2001−357896号公報、電気化学,第65巻,11号,923頁(1997年)等に記載されているピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等の既知のヨウ素塩を含む電解質を挙げることができる。
これらの溶融塩電解質は常温で溶融状態であるものが好ましく、溶媒を用いない方が好ましい。
オリゴマ−及びポリマー等のマトリックスに電解質あるいは電解質溶液を含有させたものや、ポリマー添加、低分子ゲル化剤やオイルゲル化剤添加、多官能モノマー類を含む重合、ポリマーの架橋反応等の手法によりゲル化(擬固体化)させて使用することもできる。
ポリマー添加によりゲル化させる場合は、特にポリアクリロニトリル、ポリフッ化ビニリデンを好ましく使用することができる。
オイルゲル化剤添加によりゲル化させる場合は、好ましい化合物は分子構造中にアミド構造を有する化合物である。また、ポリマーの架橋反応により電解質をゲル化させる場合、架橋可能な反応性基を含有するポリマーおよび架橋剤を併用することが望ましい。
この場合、好ましい架橋可能な反応性基は、含窒素複素環(例えば、ピリジン環、イミダゾール環、チアゾール環、オキサゾール環、トリアゾール環、モルホリン環、ピペリジン環、ピペラジン環等)等から導出される基であり、好ましい架橋剤は、窒素原子に対して求電子反応可能な2官能以上の試薬(例えば、ハロゲン化アルキル、ハロゲン化アラルキル、スルホン酸エステル、酸無水物、酸クロライド、イソシアネート等)である。
電解質の濃度は通常0.01質量%〜99質量%で好ましくは0.1質量%〜90質量%程度である。
また、ゲル状電解質としては、電解質と、金属酸化物粒子および/または導電性粒子とを含む電解質組成物を用いることもできる。金属酸化物粒子としては、TiO2、SnO2、WO3、ZnO、ITO、BaTiO3、Nb25、In23、ZrO2、Ta25、La23、SrTiO3、Y23、Ho23、Bi23、CeO2、Al23からなる群から選択される1種または2種以上の混合物が挙げられる。
これらは不純物がドープされたものや複合酸化物などであってもよい。導電性粒子としては、カーボンを主体とする物質からなるものが挙げられる。
次に、高分子電解質としては、酸化還元種を溶解あるいは酸化還元種を構成する少なくとも1つの物質と結合することができる固体状の物質であり、例えば、ポリエチレンオキシド、ポリプロピレンオキシド、ポリエチレンサクシネート、ポリ−β−プロピオラクトン、ポリエチレンイミン、ポリアルキレンスルフィド等の高分子化合物またはそれらの架橋体、ポリフォスファゼン、ポリシロキサン、ポリビニルアルコール、ポリアクリル酸、ポリアルキレンオキサイド等の高分子官能基に、ポリエーテルセグメントまたはオリゴアルキレンオキサイド構造を側鎖として付加したものまたはそれらの共重合体等が挙げられる。
その中でも特にオリゴアルキレンオキサイド構造を側鎖として有するものやポリエーテルセグメントを側鎖として有するものが好ましい。
前記の固体中に酸化還元種を含有させるには、例えば、高分子化合物となるモノマーと酸化還元種との共存下で重合する方法、高分子化合物等の固体を必要に応じて溶媒に溶解し、次いで、前記の酸化還元種を加える方法等を用いることができる。酸化還元種の含有量は、必要とするイオン伝導性能に応じて、適宜選定することができる。
本発明では、溶融塩等のイオン伝導性電解質の代わりに、有機または無機あるいはこの両者を組み合わせた固体の正孔輸送材料を使用することができる。有機正孔輸送材料としては、芳香族アミン類やトリフェニレン誘導体類、更にポリアセチレンおよびその誘導体、ポリ(p−フェニレン) およびその誘導体、ポリ(p−フェニレンビニレン)およびその誘導体、ポリチエニレンビニレンおよびその誘導体、ポリチオフェンおよびその誘導体、ポリアニリンおよびその誘導体、ポリトルイジンおよびその誘導体等の導電性高分子を好ましく用いることができる。正孔(ホール)輸送材料にはドーパントレベルをコントロールするためにトリス(4−ブロモフェニル)アミニウムヘキサクロロアンチモネートのようなカチオンラジカルを含有する化合物を添加したり、酸化物半導体表面のポテンシャル制御(空間電荷層の補償)を行うためにLi[(CF3SO22N]のような塩を添加しても構わない。
無機正孔輸送材料としては、p型無機化合物半導体を用いることができる。この目的のp型無機化合物半導体は、バンドギャップが2eV以上であることが好ましく、さらに2.5eV以上であることが好ましい。
また、p型無機化合物半導体のイオン化ポテンシャルは色素の正孔を還元できる条件から、色素吸着電極のイオン化ポテンシャルより小さいことが好ましい。
使用する色素によってp型無機化合物半導体のイオン化ポテンシャルの好ましい範囲は異なってくるが、一般に4.5eV以上5.5eV以下であることが好ましく、さらに4.7eV以上5.3eV以下であることが好ましい。
好ましいp型無機化合物半導体は一価の銅を含む化合物半導体であり、CuI及びCuSCNが好ましく、CuIが最も好ましい。
p型無機化合物半導体を含有する電荷移動層の好ましいホール移動度は10-4cm2/V・秒以上104cm2/V・秒以下であり、更に好ましくは10-3cm2/V・秒以上103cm2/V・秒以下である。また、電荷輸送層の好ましい導電率は、10-8S/cm以上102S/cm以下であり、更に好ましくは10-6S/cm以上10S/cm以下である。
例えば、図1に示す本発明の色素増感型太陽電池において、電荷移動層4を金属酸化物半導体電極(単に、半導体電極ともいう)と対向電極5との間に形成する方法としては、特に限定されないが、例えば、半導体電極と対向電極5とを対向配置してから両電極間に前述した電解液や各種電解質を充填して電荷移動層4とする方法、半導体電極または対向電極5の上に電解質や各種電解質を滴下あるいは塗布等することにより電荷移動層4を形成したのち電荷移動層4の上に他方の電極を重ね合わせる方法等を用いることができる。
また、半導体電極と対向電極5との間から電解質が漏れ出さないようにするため、必要に応じて半導体電極と対向電極5との隙間にフィルムや樹脂を用いて封止したり、半導体電極と電荷移動層4と対向電極5を適当なケースに収納したりすることも好ましい。
前者の形成方法の場合、電荷移動層4の充填方法として、浸漬等による毛管現象を利用する常圧プロセス、または常圧より低い圧力にして間隙の気相を液相に置換する真空プロセスを利用できる。
後者の形成方法の場合、塗布方法としてはマイクログラビアコーティング、ディップコーティング、スクリーンコーティング、スピンコーティング等を用いることができる。
湿式の電荷移動層においては未乾燥のまま対極を付与し、エッジ部の液漏洩防止措置を施すことになる。またゲル電解質の場合には湿式で塗布して重合等の方法により固体化する方法があり、その場合には乾燥、固定化した後に対極を付与することもできる。
固体電解質や固体の正孔(ホール)輸送材料の場合には真空蒸着法やCVD法等のドライ成膜処理で電荷移動層を形成し、その後対向電極を付与することもできる。
具体的には、真空蒸着法、キャスト法、塗布法、スピンコート法、浸漬法、電解重合法、光電解重合法等の手法により電極内部に導入することができ、必要に応じて基材を任意の温度に加熱して溶媒を蒸発させるなどにより形成する。
電荷移動層4の厚さは10μm以下であることが好ましく、更に好ましくは5μm以下であり、特に好ましくは1μm以下である。
また、電荷移動層4の導電率は1×10-10S/cm以上が好ましく、1×10-5S/cm以上であることが更に好ましい。
〈対向電極〉
本発明に係る対向電極は、上記の導電性基材と同様に、それ自体が導電性を有する基材の単層構造、またはその表面に対極導電層を有する基材を利用することができる。後者の場合、対極導電層に用いる導電性材料、基材、更にその製造方法としては、前述した導電性基材1の場合と同様で、公知の種々の材料及び方法を適用することができる。
その中でも、I3 -イオン等の酸化や他のレドックスイオンの還元反応を充分な速さで行わせる触媒能をもったものを使用することが好ましく、具体的には白金電極、導電材料表面に白金めっきや白金蒸着を施したもの、ロジウム金属、ルテニウム金属、酸化ルテニウム、カーボン等が挙げられる。
また、前述と同様にコスト面や可撓性を考慮すると、プラスチックシートを基材として使用し、導電性材料としてポリマー系材料を塗布して使用することも好ましい態様の1つである。
対極導電層の厚さは特に制限されないが、3nm〜10μmが好ましい。対極導電層が金属である場合は、その厚さは好ましくは5μm以下であり、さらに好ましくは10nm〜3μmの範囲である。
対向電極の表面抵抗は低い程よく、具体的には表面抵抗の範囲としては50Ω/□以下であることが好ましく、20Ω/□以下であることがより好ましく、10Ω/□以下であることが更に好ましい。
前述した図1に示す色素増感型太陽電池においては、導電性基材1と対向電極5のいずれか一方または両方から光を受光してよいので、導電性基材1と対向電極5の少なくとも一方が実質的に透明であれば良い。
発電効率の向上の観点からは、導電性基材を透明にして、光を導電性基材側から入射させるのが好ましい。この場合対向電極は光を反射する性質を有するのが好ましい。このような対向電極としては、金属または導電性の酸化物を蒸着したガラスまたはプラスチックまたは金属薄膜を使用できる。
対向電極は、前述した電荷移動層上に直接導電性材料を塗布、メッキまたは蒸着(PVD、CVD)するか、対極導電層を有する基材の導電層側または導電性基材単層を貼り付ければよい。
また、導電性基材1の場合と同様に、特に対向電極5が透明の場合には、金属配線層を併用することも好ましい態様の1つである。
対極としては導電性を持っており、レドックス電解質の還元反応を触媒的に作用するものが好ましい。例えばガラス、もしくは高分子フィルムに白金、カーボン、ロジウム、ルテニウム等を蒸着したり、導電性微粒子を塗り付けたものが用いうる。
以下、実施例により本発明を具体的に説明するが本発明はこれにより限定されうるものではない。
《半導体膜形成用塗布液の作製》
〈半導体膜形成用塗布液CC−01の作製〉
結晶性酸化チタン粉末(日本アエロジル製P25)60質量部を水1200質量部中に攪拌しながら添加した後、硝酸15質量部を加えた反応系を80℃に加熱した後、8時間攪拌を続けた。放冷した後、エバポレータにより水分を留去して、粉末状にしてから乳鉢でよく粉砕した。得られた酸化チタン微粒子の平均粒径は30nmであった。
次いで、酸化チタン粒子20質量部、t−ブタノール80質量部を混合後、遊星ボールミルで分散し、半導体膜形成用塗布液CC−01を作製した。
〈半導体膜形成用塗布液CC−02の作製〉
CC−01の作製において、t−ブタノール80質量部を25質量%のポリエチレングリコールが溶解されたt−ブタノール溶液80質量部と変更した以外はCC−01と同様に作製し、半導体膜形成用塗布液CC−02を作製した。
〈半導体膜形成用塗布液CC−03の作製〉
CC−02の作製において、ポリエチレングリコールを一般式〔I〕で表される化合物(化合物例No.1)に変更し、更にt−ブタノールへの濃度を10質量%に変更した以外はCC−02と同様に作製し、半導体膜形成用塗布液CC−03を作製した。
〈半導体膜形成用塗布液CC−04の作製〉
CC−03の作製において、ポリエチレングリコールを化合物例No.2の化合物に変更した以外はCC−03と同様に作製し、半導体膜形成用塗布液CC−04を作製した。
〈半導体膜形成用塗布液CC−05の作製〉
CC−03の作製において、ポリエチレングリコールを化合物例No.10の化合物に変更した以外はCC−03と同様に作製し、半導体膜形成用塗布液CC−05を作製した。
〈半導体膜形成用塗布液CC−06の作製〉
CC−03の作製において、10質量%の化合物No.1の化合物が溶解されたt−ブタノール溶液80質量部を、5質量%の化合物No.1の化合物が溶解されたt−ブタノール溶液80質量部に変更した以外はCC−03と同様に作製し、半導体膜形成用塗布液CC−06を作製した。
《色素増感型太陽電池の作製》
〈色素増感型太陽電池SC−01の作製〉
透明導電性プラスチック基材として、ITOを導電膜(厚み150nm)として担持したフィルム厚み200μm、表面抵抗15Ω/□のポリエチレンテレフタレート(PET)を用いた。このITO/PET基材のITO面に、ドクターブレード法によって上記の半導体膜形成用塗布液CC−01を30μmの液厚みで塗布し、室温で乾燥後、更に120℃で60分間乾燥、焼成を行って、多孔性の金属酸化物粒子層を形成した。
次いで、アセトニトリル:t−ブタノール=1:1溶液200質量部中に、下記色素Iを0.1質量部を溶解した色素溶液を調製し、上記半導体膜(金属酸化物粒子層)を基板ごと24時間浸漬した後、アセトニトリル:t−ブタノール=1:1溶液で洗浄、乾燥して、金属酸化物半導体電極を作製した。
Figure 2009108182
対極として、ITOを導電膜(厚み150nm)として担持した厚み400μm、表面抵抗15Ω/□のポリエチレンテレフタレート(PET)のフィルムのITO表面に、厚さ10nmの白金膜をスパッタリング法で被覆したシート抵抗0.8Ω/□の導電性フィルムを用いた。
前記金属酸化物半導体電極と前記対向電極とを、6.5mm角の穴を開けた25μm厚のシート状スペーサー兼封止材(SOLARONIX社製SX−1170−25)を用いて向き合うように張り合わせ、カソード電極に設けた電解質注入穴から、アセトニトリルを溶媒としてヨウ化リチウム、ヨウ素、1,2−ジメチル−3−プロピルイミダゾリウムアイオダイド、t−ブチルピリジンとを、それぞれの濃度が0.1モル/リットル、0.05モル/リットル、0.6モル/リットル、0.5モル/リットルとなるように溶解したレドックス電解質を入れた電荷移動層を注入し、ホットボンドで穴を塞ぎ、上から前記封止剤を用いて封止した。前記金属酸化物半導体電極を有する基材の受光面側に反射防止フィルム(コニカミノルタオプト社製ハードコート/反射防止タイプセルロース系フィルム)を張り合わせ、色素増感型太陽電池SC−01を作製した。
〈色素増感型太陽電池SC−02〜08の作製〉
色素増感型太陽電池SC−01の作製において、半導体形成用塗布液、及び焼成温度を表1に記載の通りに変更した以外はSC−01の作製と同様に行い、色素増感型太陽電池SC−02〜08を作製した。尚、焼成温度が500℃の場合は、基材としてガラス基板を使用しており、焼成時間は10分間とした。
《太陽電池の光電変換特性評価》
上記で得られた太陽電池SC−01〜SC−08の各々にソーラーシミュレーター(JASCO(日本分光)製、低エネルギー分光感度測定装置CEP−25)により100mW/m2の強度の光を照射した時の短絡電流密度Jsc(mA/cm2)、開放電圧値Voc(V)、形状因子(F.F.)、を求め、これらから光電変換効率(η(%))を求めた。これを表1に示した。示した値は、同じ構成及び作製方法の太陽電池3つずつ作製して評価した測定結果の平均値とした。
太陽電池の光電変換効率(η(%))は、下記式に基づいて算出した。
η=100×(Voc×Jsc×F.F.)/P
ここで、Pは入射光強度[mW/cm-2]、Vocは開放電圧[V]、Jscは短絡電流密度[mA・cm-2]、F.F.は形状因子を示す。
Figure 2009108182
表1から分かるように、本発明の半導体膜形成用塗布液を用いて作製した金属酸化物半導体電極を有する色素増感型太陽電池SC−04〜SC−08では、高い短絡電流が得られ、光電変換効率が向上している。特に、本発明の半導体膜形成用塗布液を用いて作製した金属酸化物半導体電極を有する色素増感型太陽電池は、低温で焼成した場合においても、高温焼成の太陽電池とほぼかわらない、優れた光電変換効率を有しており、プラスチック基材を使用する場合の適性に優れることが明らかである。
本発明の色素増感型太陽電池の基本構造を示す概略断面図である。
符号の説明
1 導電性基材
2 金属酸化物
3 色素
4 電荷移動層
5 対向電極

Claims (4)

  1. 金属酸化物粒子と溶媒、及び下記一般式〔I〕で表される化合物を含有することを特徴とする半導体膜形成用塗布液。
    Figure 2009108182
    (式中、R1、R6はアルキル基、アルケニル基、アリール基、ポリオキシアルキレン鎖を有する基、またポリエステル鎖を有する基を、R3、R4はそれぞれ水素原子またはアルキル基を表す。R2、R5はアルキレン基、アルケニレン基、アリーレン基、ポリエステル鎖を有する2価の基、また、ポリオキシアルキレン鎖を有する2価の基を表し、またnは1以上の整数を表す。)
  2. 前記一般式〔I〕で表される化合物の含有量が1質量%以上10質量%以下であることを特徴とする請求項1に記載の半導体膜形成用塗布液。
  3. 請求項1または2のいずれかに記載の半導体膜形成用塗布液を用いて製造されたことを特徴とする半導体膜。
  4. 導電性基材上に、色素が表面に吸着された半導体膜から構成される金属酸化物半導体電極と、電荷移動層と、対向電極とを順次有する色素増感型太陽電池であって、該半導体膜として請求項3に記載の半導体膜を用いることを特徴とする色素増感型太陽電池。
JP2007281493A 2007-10-30 2007-10-30 半導体膜形成用塗布液、半導体膜、色素増感型太陽電池 Expired - Fee Related JP5292766B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007281493A JP5292766B2 (ja) 2007-10-30 2007-10-30 半導体膜形成用塗布液、半導体膜、色素増感型太陽電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007281493A JP5292766B2 (ja) 2007-10-30 2007-10-30 半導体膜形成用塗布液、半導体膜、色素増感型太陽電池

Publications (2)

Publication Number Publication Date
JP2009108182A true JP2009108182A (ja) 2009-05-21
JP5292766B2 JP5292766B2 (ja) 2013-09-18

Family

ID=40777028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007281493A Expired - Fee Related JP5292766B2 (ja) 2007-10-30 2007-10-30 半導体膜形成用塗布液、半導体膜、色素増感型太陽電池

Country Status (1)

Country Link
JP (1) JP5292766B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013012415A (ja) * 2011-06-29 2013-01-17 Fujifilm Corp 光電変換素子、光電気化学電池、及びそれらに用いられる色素
JP2013539155A (ja) * 2010-06-29 2013-10-17 ビーエーエスエフ ソシエタス・ヨーロピア ヒドロキサム酸誘導体又はその塩を添加剤として含む光電変換装置及びその製造方法
JP2015018664A (ja) * 2013-07-10 2015-01-29 大日本印刷株式会社 色素増感型太陽電池の製造方法および多孔質層形成用塗工液
JP2015115488A (ja) * 2013-12-12 2015-06-22 日立化成株式会社 パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208373A (ja) * 1989-02-07 1990-08-17 Tanaka Kikinzoku Kogyo Kk 有機銀パラジウムインク
JPH03285965A (ja) * 1990-03-31 1991-12-17 Fujitsu Ltd グリーンシート用導体ペースト組成物
JP2002241733A (ja) * 2001-02-13 2002-08-28 Fuji Photo Film Co Ltd 電荷輸送材料及び光電変換素子
JP2002261310A (ja) * 2001-03-02 2002-09-13 Fuji Photo Film Co Ltd 酸化チタン微粒子の製造方法、光電変換素子及び光電池
JP2002298936A (ja) * 2001-03-30 2002-10-11 Fuji Xerox Co Ltd 光電変換素子、及びその製造方法
JP2002334727A (ja) * 2000-08-15 2002-11-22 Fuji Photo Film Co Ltd 光電変換素子の作成方法及び光電変換素子
JP2005288884A (ja) * 2004-03-31 2005-10-20 Mitsubishi Paper Mills Ltd インクジェット記録材料
JP2006096821A (ja) * 2004-09-28 2006-04-13 Fuji Photo Film Co Ltd 有機ゲル化剤、塗布組成物、および機能性フィルム
JP2006324201A (ja) * 2005-05-20 2006-11-30 Nippon Oil Corp 色素増感型太陽電池素子の製造方法
JP2007167775A (ja) * 2005-12-22 2007-07-05 Sekisui Jushi Co Ltd 水中用構造物
JP2007194000A (ja) * 2006-01-17 2007-08-02 Seiko Epson Corp 光電変換層形成用組成物の製造方法、光電変換層形成用組成物、光電変換素子の製造方法、光電変換素子および電子機器
JP2007234299A (ja) * 2006-02-28 2007-09-13 Asahi Glass Co Ltd 透明導電膜の製造方法、透明導電膜および塗布液

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208373A (ja) * 1989-02-07 1990-08-17 Tanaka Kikinzoku Kogyo Kk 有機銀パラジウムインク
JPH03285965A (ja) * 1990-03-31 1991-12-17 Fujitsu Ltd グリーンシート用導体ペースト組成物
JP2002334727A (ja) * 2000-08-15 2002-11-22 Fuji Photo Film Co Ltd 光電変換素子の作成方法及び光電変換素子
JP2002241733A (ja) * 2001-02-13 2002-08-28 Fuji Photo Film Co Ltd 電荷輸送材料及び光電変換素子
JP2002261310A (ja) * 2001-03-02 2002-09-13 Fuji Photo Film Co Ltd 酸化チタン微粒子の製造方法、光電変換素子及び光電池
JP2002298936A (ja) * 2001-03-30 2002-10-11 Fuji Xerox Co Ltd 光電変換素子、及びその製造方法
JP2005288884A (ja) * 2004-03-31 2005-10-20 Mitsubishi Paper Mills Ltd インクジェット記録材料
JP2006096821A (ja) * 2004-09-28 2006-04-13 Fuji Photo Film Co Ltd 有機ゲル化剤、塗布組成物、および機能性フィルム
JP2006324201A (ja) * 2005-05-20 2006-11-30 Nippon Oil Corp 色素増感型太陽電池素子の製造方法
JP2007167775A (ja) * 2005-12-22 2007-07-05 Sekisui Jushi Co Ltd 水中用構造物
JP2007194000A (ja) * 2006-01-17 2007-08-02 Seiko Epson Corp 光電変換層形成用組成物の製造方法、光電変換層形成用組成物、光電変換素子の製造方法、光電変換素子および電子機器
JP2007234299A (ja) * 2006-02-28 2007-09-13 Asahi Glass Co Ltd 透明導電膜の製造方法、透明導電膜および塗布液

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013539155A (ja) * 2010-06-29 2013-10-17 ビーエーエスエフ ソシエタス・ヨーロピア ヒドロキサム酸誘導体又はその塩を添加剤として含む光電変換装置及びその製造方法
JP2013012415A (ja) * 2011-06-29 2013-01-17 Fujifilm Corp 光電変換素子、光電気化学電池、及びそれらに用いられる色素
JP2015018664A (ja) * 2013-07-10 2015-01-29 大日本印刷株式会社 色素増感型太陽電池の製造方法および多孔質層形成用塗工液
JP2015115488A (ja) * 2013-12-12 2015-06-22 日立化成株式会社 パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池

Also Published As

Publication number Publication date
JP5292766B2 (ja) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5135777B2 (ja) 色素増感型光電変換素子及び色素増感型太陽電池
JP5626185B2 (ja) 光電変換素子およびこれを含む太陽電池
JP2007115665A (ja) ホール輸送材料とこれを用いた固体電解質および光電変換素子
JP2000323190A (ja) 電解質組成物、光電変換素子および光電気化学電池
JP5418172B2 (ja) 光電変換素子及び太陽電池
JP2004227825A (ja) 色素増感光電変換素子
JP5292766B2 (ja) 半導体膜形成用塗布液、半導体膜、色素増感型太陽電池
JP5278894B2 (ja) 金属酸化物多孔質膜の製造方法及び色素増感型太陽電池
JP5217581B2 (ja) 色素増感型太陽電池
WO2009145140A1 (ja) 色素増感型太陽電池
JP2008226470A (ja) 色素増感型太陽電池
JP5471352B2 (ja) 光電変換素子及び太陽電池
JP2009059646A (ja) 色素増感型太陽電池及びその製造方法
JP2009096842A (ja) 半導体膜形成用塗布液、それを用いた半導体膜及び色素増感型太陽電池
JP2008300044A (ja) 色素増感型太陽電池
JP5162904B2 (ja) 光電変換素子及び色素増感型太陽電池
WO2015190398A1 (ja) 光電変換素子、色素増感太陽電池、ルテニウム錯体色素、色素溶液およびビピリジン化合物
JP2011258328A (ja) 光電変換素子及び太陽電池
JP2009252727A (ja) 色素増感型太陽電池の製造方法及び色素増感型太陽電池
JP2009252403A (ja) 色素増感型太陽電池の作製方法、及び色素増感型太陽電池
JP2004238213A (ja) 酸化チタン粒子の製造方法、及びそれを用いた光電変換素子
JP2008147122A (ja) 色素増感型光電変換素子及び色素増感型太陽電池
KR101940491B1 (ko) 신규한 루테늄계 염료 및 이의 제조방법
WO2016047344A1 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素および色素溶液
WO2016052194A1 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素および色素溶液

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100720

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees