JP2009075288A - 高分子光回路の製造方法 - Google Patents

高分子光回路の製造方法 Download PDF

Info

Publication number
JP2009075288A
JP2009075288A JP2007243320A JP2007243320A JP2009075288A JP 2009075288 A JP2009075288 A JP 2009075288A JP 2007243320 A JP2007243320 A JP 2007243320A JP 2007243320 A JP2007243320 A JP 2007243320A JP 2009075288 A JP2009075288 A JP 2009075288A
Authority
JP
Japan
Prior art keywords
mold
core
waveguide core
waveguide
optical circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007243320A
Other languages
English (en)
Inventor
Takashi Shimizu
敬司 清水
Toru Fujii
徹 藤居
Toshihiko Suzuki
俊彦 鈴木
Kazutoshi Tanida
和敏 谷田
Shigemi Otsu
茂実 大津
Hidekazu Akutsu
英一 圷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2007243320A priority Critical patent/JP2009075288A/ja
Priority to US12/099,312 priority patent/US7749410B2/en
Publication of JP2009075288A publication Critical patent/JP2009075288A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

【課題】導波路コアの両端に傾斜ミラーなどを設けた高分子光回路をダイシング工程なしに製造できる製造方法の提供。
【解決手段】導波路コア2とそれを囲繞するクラッド4とを備える高分子光回路1の製造方法であって、導波路コア2における前記特定の形状の端部を除いた部分に対応する凹部12Aと、凹部12に注入孔13Aと吸引孔13Bとを備え、鋳型形成用エラストマから形成された主鋳型11と、導波路コア2の前記特定の形状の端部に対応する形状の凹部を有し、鋳型形成用エラストマから形成された補助鋳型20とによって鋳型10を構成し、鋳型10の凹部12が形成された側の面にクラッド基材4を密着させ、コア形成用樹脂を注入孔13Aから凹部12に注入し、吸引孔13Bから吸引することにより、凹部12にコア形成用樹脂を充填し、前記コア形成用樹脂を硬化させて導波路コアを形成する高分子光回路の製造方法。
【選択図】図1

Description

本発明は、高分子光回路の製造方法に関する。
高分子光回路の製造方法としては、(1)フィルムにモノマーを含浸させてコア部を選択的に露光して屈折率を変化させ、このフィルムを張り合わせる方法(選択重合法)、(2)コア層及びクラッド層を塗布後、反応性イオンエチングを用いてクラッド部を形成する方法(RIE法)、(3)高分子材料中に感光性の材料を添加した紫外線硬化樹脂を用いて、露光・現像するフォトリソグラフィー法を用いる方法(直接露光法)、(4)射出成形を利用する方法、(5)コア層及びクラッド層を塗布後、コア部を露光してコア部の屈折率を変化させる方法(フォトブリーチング法)等が提案されている。
中でも、導波路コアのパターンに対応する凹部を形成したシリコーンゴム鋳型における凹部を形成した側の面にクラッド用フィルムを密着させ、前記凹部に導波路コア形成用樹脂を注入して硬化させ、前記クラッド用フィルムの表面に導波路コアを形成する方法が、導波路コアの透過損失が少ない高分子光回路が低コストで作製できる方法として注目されている(特許文献1、2)。
高分子光回路においては、導波路コアの末端に、導波路コアの光軸に対して概略45度の角度を有する傾斜ミラーを形成したり、凸レンズを形成したりして受発光素子と接続できるようにすることが多い。この傾斜ミラーは概ね30度から60度の角度を持ち、導波路パターンが形成された面の法線方向に伝搬する光を導波路コアに結合する役割を持つ。よって通常の傾斜ミラーの角度は45度に形成される。
特許文献1、2に記載の方法で作製された高分子光回路においては、先端がV字型または「レ」の字型の形状を有するダイシングブレードを有するダイシングソーによって導波路コアの末端を切削加工することにより、傾斜ミラーを形成することができる。
しかしながら、導波路コアの末端部に傾斜ミラーを形成する場合には、前記傾斜ミラーの面粗さを、前記導波路コアを伝播される光の波長の1/10以下にする必要があった。したがって、前記傾斜ミラーをダイシングソーで仕上げようとすると、ダイシングソーによる精密切削加工を行う必要があり、必要に応じて別途研磨処理を行う必要がある。
ここで、ダイシングソーによる切削加工においては、ダイシングブレードの送り速度によって加工時間が決まるが、45度面をダイシングソーで仕上げようとするとダイシングブレードの送り速度を高く取れないために、加工に長時間を要する。また、導波路コアに傾斜ミラーを形成しようとすると、45度面用と垂直切落し用と別々のダイシングブレードが必要になるので、段取りが複雑になる。
更に、ダイシングソーにおいては、傾斜ミラーの光路変換方向をダイシングソーの吸着面のある方向にしか取ることができないので、高分子光回路において、導波路コアの末端に傾斜ミラーを形成するときは、先ず一方の末端を加工し、次いで高分子光回路をダイシングテープから剥がして表裏を反転させてから再びダイシングテープに貼付して他方の末端を加工する必要があった。したがって、高分子光回路の両方の端部に傾斜ミラーを形成しようとすると、一方の端部のみに傾斜ミラーを形成する場合に比較して工程が増加する上、ダイシングテープの使用量が2倍になる。また、高分子光回路を2回目にダイシングテープに貼着する際の貼着位置の誤差により、2つの傾斜ミラー相互の位置関係に狂いが生じる可能性もあった。
そこで、ダイシングソーを用いない導波路コアの末端成形方法として、以下のような方法、即ち
光導波路をダイに載置し、パンチによって打抜いて傾斜ミラーを形成する方法(特許文献3)、
所定の形状の型にコア材を注入、硬化させて両端に傾斜ミラーを有する導波路コアを形成するとともに、前記導波路コアを囲繞するクラッド層に金型によるスタンピングによって集光用凸レンズを形成する方法(特許文献4)、
フォトリソグラフィー法による導波路コアの形成において、導波路コア端部の露光条件を変えて傾斜ミラーを形成する方法(特許文献5)、および
シリコーンゴム鋳型を用いて導波路コアを形成する方法において、シリコーンゴム鋳型の両端に傾斜ミラーに対応する部分を形成しておく方法(特許文献6)
などが提案された。
特開2004−086144号公報 特開2004−109926号公報 特開2006−011179号公報 特開2005−181645号公報 特開2000−298221号公報 特開2004−078084号公報
本発明は、導波路コアの両端に導波路パターンが形成された面の法線方向に伝搬する光を導波路コアに結合する役割を持つ概略45度の角度を持つ傾斜ミラーや凸レンズなどを設けた高分子光回路の製造方法において、ダイシング工程を極力排除できる製造方法を提供することを目的とする。
請求項1に記載の発明は、一方または両方の端部が所定の形状を有する導波路コアとそれを囲繞するクラッドとを備える高分子光回路の製造方法であって、前記導波路コアにおける前記特定の形状の端部を除いた部分に対応する凹部と、前記凹部にコア形成用樹脂を注入するための注入孔と、注入孔から凹部に注入されたコア形成用樹脂鋳を吸い出すための吸引孔とを備え、鋳型形成用エラストマから形成された主鋳型と、前記導波路コアの前記特定の形状の端部に対応する形状の凹部を有し、鋳型形成用エラストマから形成された補助鋳型とによって鋳型を構成し、前記鋳型の凹部が形成された側の面に前記クラッドの一部を構成するクラッド基材を密着させ、コア形成用樹脂を前記鋳型の注入孔から凹部に注入し、前記吸引孔から吸引することにより、前記凹部にコア形成用樹脂を充填し、前記コア形成用樹脂を硬化させて導波路コアを形成する高分子光回路の製造方法に関する。
請求項2に記載の発明は、請求項1に記載の高分子光回路の製造方法において、前記補助鋳型は、導波路コアの端部に形成される傾斜ミラー、凸レンズ、および傾斜ミラーと凸レンズとの組合せに対応する形状を有するものに関する。
請求項3に記載の発明は、請求項2に記載の高分子光回路の製造方法において、前記導波路コアの両端に傾斜ミラーが形成されるとともに、前記傾斜ミラーが、前記導波路コアの一端と他端とで反射方向が互いに導波路の上下反対方向になるように形成されるものに関する。
請求項4に記載の発明は、請求項2に記載の高分子光回路の製造方法において、前記導波路コアの両端に傾斜ミラーが形成されるとともに、前記傾斜ミラーは、前記導波路コアの一端と他端とで反射方向が導波路の上下同一方向になるように形成されるものに関する。
請求項5に記載の発明は、請求項1〜4の何れか1項に記載の高分子光回路の製造方法において、前記導波路コアを形成後、前記補助鋳型が残った状態でクラッドの残りの部分を形成し、その後、補助鋳型を除去するものに関する。
請求項6に記載の発明は、一方または両方の端部が所定の形状を有する導波路コアとそれを囲繞するクラッドとを備える高分子光回路の製造方法であって、前記導波路コアにおける前記特定の形状の端部を除いた部分に対応する凹部と、前記凹部にコア形成用樹脂を注入するための注入孔と、注入孔から凹部に注入されたコア形成用樹脂鋳を吸い出すための吸引孔とを備え、鋳型形成用エラストマから形成された主鋳型と、前記導波路コアにおける所定の形状の端部を形成する端部形成部材とによって鋳型を構成し、前記鋳型の凹部が形成された側の面に前記クラッドの一部を構成するクラッド基材を密着させ、コア形成用樹脂を前記鋳型の注入孔から凹部に注入し、前記吸引孔から吸引することにより、前記凹部にコア形成用樹脂を充填し、前記コア形成用樹脂を硬化させて導波路コアを形成する高分子光回路の製造方法に関する。
以上説明したように請求項1の発明によれば、導波路コアの一方または両方の端部が所定の形状を有する場合においても、導波路コアには、主鋳型と補助鋳型の面粗さがそのまま転写されるから、補助鋳型の面粗さをたとえば前記導波路コアを伝搬する光の波長の1/10以下にできれば、前記端部におけるダイシング加工を省略できる。
請求項2の発明によれば、導波路コアの端部にダイシング加工なしに傾斜ミラーや凸レンズなどの光学部材を形成できる。
請求項3の発明によれば、導波路コアの両端にダイシング加工なしに反射方向が互いに反対の傾斜ミラーを形成できる。
請求項4の発明によれば、導波路コアの両端にダイシング加工なしに反射方向が互いに同一の傾斜ミラーを形成できる。
請求項5の発明によれば、たとえば導波路コアにおいて傾斜ミラーや凸レンズを形成した側の末端がクラッドから露出した形態の高分子光回路を作製できる。
請求項6の発明によれば、導波路コアの端部は端部形成部材によって形成されるから、端部形成部材の光入出射部およびミラーの面粗さを予め所定の範囲またはそれ以上に小さくなるように仕上げることにより、ダイシング加工による導波路コアの加工を省略できる。
1.実施形態1
以下、図5の(C)および(D)に示すように、4本の導波路コア2を有し、夫々の導波路コア2の両端に傾斜ミラー2Aおよび2Bを形成した高分子光回路1の作製に本発明の高分子光回路の製造方法を適用した例について説明する。
図1〜図3に示すように、実施形態1の製造方法で使用される鋳型10は、高分子光回路1の導波路コア2を形成するための主鋳型11と、傾斜ミラー2A、2Bを形成するための補助鋳型20とからなる。
主鋳型11の図1および図2における下面には凹部12が形成されている。凹部12は、導波路コア2に対応する溝状の凹部12Aと、凹部12Aの一方および他方の端部を連通するとともに補助鋳型20が嵌装される一対の矩形状の凹部12Bとに分けられる。
凹部12Bの一方における凹部12Aに近い側の隅部には、凹部12に後述するコア形成用樹脂を注入するための注入孔13Aが形成され、凹部12Bの他方における凹部12Aに近い側の隅部には、凹部12に注入されたコア形成用樹脂を吸引するための吸引孔13Bが形成されている。注入孔13Aと吸引孔13Bとは、主鋳型11の中心点を挟んで互いに反対側に位置する。
主鋳型11は、凹部12に対応する凸部をシリコンや石英ガラスなどの基板上に形成した原盤に鋳型形成用エラストマを流し込み、熱硬化や光硬化などの適宜の手段で硬化させることにより形成される。
補助鋳型20は、鋳型形成用エラストマから形成され、図3のように主鋳型11の凹部12Bに嵌装される矩形状の部材である。補助鋳型の1の長辺には、導波路コア2の端面を形成するための端面形成面20Aが形成されている。図1〜図3の例においては、端面形成面20Aは導波路コア2の光軸に対して45度の角度を成す45度面であり、補助鋳型20は、端面形成面20Aが下方を向くように主鋳型11の凹部12Bに嵌装される。
端面形成面20Aは、下方を向いた45度面には限定されることはなく、導波路コア2の末端形状に応じて種々選択できる。
端面形成面20Aは、たとえば図6において(a)に示すように上方を向いた45度面であってもよく、同図の(b)に示すように凹部12Aを向いた円形断面を有する溝であってもよい。また、同図の(c)に示すように上方を向いた凹陥面であってもよく、下方を向いた円形断面を有する溝であってもよい。
端面形成面20Aが図6において(a)に示す形態の補助鋳型20は、導波路コア2の末端に傾斜ミラーを形成するのに使用され、端面形成面20Aが同図の(b)に示す形態の補助鋳型20は、導波路コア2の末端面に凸レンズを形成するのに使用される。また、端面形成面20Aが同図の(d)に示す形態の補助鋳型20は、導波路コア2端部の上面に凸レンズを形成するのに使用される。
また、本発明の製造方法においては、鋳型10の凹部12にコア形成用樹脂を低圧で注入しているので主鋳型11と補助鋳型20との間の隙間にコア形成用樹脂が流入することがない。したがって、図6の(a)〜(d)に示す形態の補助鋳型20を厚さ方向に積層したものを補助鋳型として使用してもよい。
補助鋳型20を積層した例としては、図6において(e)に示すように、同図の(a)と(d)とを重ね合わせた形態、同図の(a)に示す形態の補助鋳型20を上下逆にして矩形状断面を有する補助鋳型20と重ねた同図(f)の形態、および同図の(c)に示す形態の補助鋳型20を上下逆にして矩形状断面を有する補助鋳型20と重ねた同図(g)の形態などがある。
主鋳型11および補助鋳型20を形成するのに使用される鋳型形成用エラストマは、その硬化物が原盤から容易に剥離できること、主鋳型11および補助鋳型20(繰り返し用いる)として一定以上の機械的強度・寸法安定性を有すること、凹部12を維持する硬さ(硬度)を有すること、クラッド基材4との密着性が良好なことが好ましい。鋳型形成用エラストマには、必要に応じて各種添加剤を加えることができる。
鋳型形成用エラストマは、原盤の表面に塗布や注型等することが可能で、また、原盤に形成された個々の導波路コアに対応する凸部を正確に写し取らなければならないので、ある限度以下の粘度、たとえば、500〜7000mPa・s程度を有することが好ましい。(なお、本発明において用いる「鋳型形成用エラストマ」の中には、硬化後、弾性を有するゴム状体となるものも含まれる。)また、粘度調節のために溶剤を、溶剤の悪影響が出ない程度に加えることができる。
鋳型形成用エラストマとしては、前記のごとき剥離性、機械強度・寸法安定性、硬度、クラッド基材との密着性の点から、硬化後、シリコーンゴム(シリコーンエラストマー)又はシリコーン樹脂となる硬化性オルガノポリシロキサンが好ましく用いられる。前記硬化性オルガノポリシロキサンは、分子中にメチルシロキサン基、エチルシロキサン基、フェニルシロキサン基を含むものが好ましい。また、前記硬化性オルガノポリシロキサンは、一液型のものでも硬化剤と組み合わせて用いる二液型のものでもよく、また、熱硬化型のものでも室温硬化型(例えば空気中の水分で硬化するもの)のものでもよく、更に他の硬化(紫外線硬化等)を利用するものであってもよい。
前記硬化性オルガノポリシロキサンとしては、硬化後シリコーンゴムとなるものが好ましく、これには通常液状シリコーンゴム(「液状」の中にはペースト状のように粘度の高いものも含まれる)と称されているものが用いられ、硬化剤と組み合わせて用いる二液型のものが好ましく、中でも付加型の液状シリコーンゴムは、表面と内部が均一にかつ短時間に硬化し、またその際副生成物が無く又は少なく、かつ離型性に優れ収縮率も小さいので好ましく用いられる。
前記液状シリコーンゴムの中でも特に液状ジメチルシロキサンゴムが密着性、剥離性、強度及び硬度の点から好ましい。また、液状ジメチルシロキサンゴムの硬化物は、一般に屈折率が1.43程度と低いために、これから作った鋳型は、クラッド基材から剥離させずに、そのままクラッド層として利用することができる。この場合には、鋳型と、充填したコア形成用樹脂及びクラッド基材とが剥がれないような工夫が必要になる。
前記液状シリコーンゴムの粘度は、導波路コア2に対応する凸部を正確に写し取り、かつ気泡の混入を少なくして脱泡し易くする観点と、数ミリの厚さの鋳型形成の点から、500〜7000mPa・s程度のものが好ましく、さらには、2000〜5000mPa・s程度のものがより好ましい。
さらに、主鋳型11および補助鋳型20の表面エネルギーは、10dyn/cm〜30dyn/cm、好ましくは15dyn/cm〜24dyn/cmの範囲にあることが、上述するクラッド基材4との密着性の点からみて好ましい。
主鋳型11のシェア(Share)ゴム硬度は、15〜80、好ましくは20〜60であることが、型取り性能、凹部形状の維持、剥離性の点からみて好ましい。
主鋳型11および補助鋳型20の表面粗さ(二乗平均粗さ(RMS))は、0.2μm以下、好ましくは0.1μm以下にすることが、ダイシング加工や研磨なしに傾斜ミラーを形成する上からみて好ましい。
また、主鋳型11および補助鋳型20は、紫外領域及び/又は可視領域において光透過性であることが好ましい。主鋳型11および補助鋳型20が可視領域において光透過性であることが好ましいのは、主鋳型11をクラッド基材4に密着させる際、位置決めが容易に行え、また、コア形成用樹脂が凹部12に充填される様子が観察でき、充填完了等が容易に確認しうるからである。また、コア形成用樹脂として紫外線硬化性樹脂を用いる場合に、鋳型を透して紫外線硬化を行う点からは、主鋳型11および補助鋳型20の紫外領域(250nm〜400nm)における透過率は80%以上であることが好ましい。
前記硬化性オルガノポリシロキサン、中でも硬化後シリコーンゴムとなる液状シリコーンゴムは、後述するクラッド基材4との密着性と剥離性という相反した特性に優れ、ナノ構造を写し取る能力を持ち、シリコーンゴムとクラッド基材とを密着させると液体の進入さえ防ぐことができる。このようなシリコーンゴムを用いた主鋳型11および補助鋳型20からなる鋳型10は、高精度に原盤を写し取り、クラッド基材4に良く密着するため、鋳型10とクラッド基材4の間の凹部12のみに効率よくコア形成用樹脂を充填することが可能となり、さらにクラッド基材4と主鋳型11の剥離も容易である。したがって、この鋳型10からは高精度に形状を維持した高分子光導波路を、極めて簡便に作製することができる。
主鋳型11と補助鋳型20とから鋳型10が形成されたら、図3に示すように、鋳型10における凹部12が形成された側の面にクラッド基材4を密着させ、注入孔13Aから凹部12にコア形成用樹脂を注入するとともに、吸引孔13Bからコア形成用樹脂を吸引することにより、凹部12にコア形成用樹脂を充填することができる。
高分子光回路1は、カプラー、ボード間の光配線や光分波器等として使用しうるので、クラッド基材4の材質は、前記用途に応じ、屈折率、光透過性等の光学的特性、機械的強度、耐熱性、鋳型との密着性、フレキシビリティー(可撓性)等を考慮して選択される。
クラッド基材4としては、可撓性を有するフィルム状の基材が好ましいが、用途によっては剛直な基材であっても良い。
可撓性のクラッド基材4としては脂環式アクリル樹脂フィルム、脂環式オレフィン樹脂フィルム、三酢酸セルロースフィルム、含フッ素樹脂フィルム等が挙げられる。クラッド基材の屈折率は、コアとの屈折率差を確保するため、1.55より小さく、好ましくは1.53より小さくすることが望ましい。
前記脂環式アクリル樹脂フィルムとしてはトリシクロデカン等の脂肪族環状炭化水素をエステル置換基に導入した、OZ−1000、OZ−1100(日立化成(株)製)等が用いられる。
また、脂環式オレフィン樹脂フィルムとしては主鎖にノルボルネン構造を有するもの、及び主鎖にノルボルネン構造を有しかつ側鎖にアルキルオキシカルボニル基(アルキル基としては炭素数1から6のものやシクロアルキル基)等の極性基をもつものが挙げられる。中でも前記のごとき主鎖にノルボルネン構造を有しかつ側鎖にアルキルオキシカルボニル基等の極性基をもつ脂環式オレフィン樹脂は、低屈折率(屈折率が1.50近辺であり、コア・クラッドの屈折率の差を確保できる)及び高い光透過性等の優れた光学的特性を有し、鋳型との密着性に優れ、さらに耐熱性に優れているので特に本発明の高分子光導波路の作製に適している。
また、前記クラッド基材4の厚さはフレキシビリティーと剛性や取り扱いの容易さ等を考慮して適切に選ばれ、一般的には0.05mm〜0.5mm程度が好ましい。
鋳型10にクラッド基材4を密着させたら、注入孔13Aからコア形成用樹脂を注入する。
注入孔13Aから注入されたコア形成用樹脂は、毛細管現象により鋳型10の凹部12に充填され吸引孔13Bから排出される。コア形成用樹脂としては放射線硬化性樹脂、紫外線硬化性樹脂、電子線硬化性樹脂、および熱硬化性樹脂の何れも用いることができ、中でも紫外線硬化性樹脂及び熱硬化性樹脂が好ましく用いられる。
コア形成用樹脂として使用される紫外線硬化性樹脂又は熱硬化性樹脂としては、紫外線硬化性又は熱硬化性のモノマー、オリゴマー若しくはモノマーとオリゴマーの混合物が好ましく用いられる。
また、前記紫外線硬化性樹脂としてエポキシ系、アクリル系紫外線硬化性樹脂が好ましく用いられる。
コア形成用樹脂は、毛細管現象により鋳型10の凹部12とクラッド基材4との間に形成された空隙に充填させるため、十分低粘度であることが必要である。したがって、前記硬化性樹脂の粘度は、10mPa・s〜2000mPa・s、望ましくは20mPa・s〜1000mPa・s、更に好ましくは30mPa・s〜500mPa・sにするのが好ましい。
このほかに、原盤に形成された導波路コア2および傾斜ミラー2A、2Bの形状を高精度に再現できるように、前記コア形成用樹脂の硬化前後の体積変化が小さいことが必要である。例えば、体積が減少すると導波損失の原因になる。したがって、前記コア形成用樹脂は、体積変化ができるだけ小さいものが望ましく、10%以下、好ましくは6%以下であるのが望ましい。溶剤を用いて低粘度化することは、硬化前後の体積変化が大きいのでできれば避ける方が好ましい。
コア形成用樹脂の硬化後の体積変化(収縮)を小さくするため、前記樹脂にポリマーを添加することができる。前記ポリマーはコア形成用樹脂との相溶性を有し、かつ該樹脂の屈折率、弾性率、透過特性に悪影響を及ぼさないものが好ましい。またポリマーを添加することにより体積変化を小さくする他、粘度や硬化樹脂のガラス転移点を高度に制御できる。前記ポリマーとしては例えばアクリル系、メタクリル酸系、エポキシ系のものが用いられるが、これらに限定されるものではない。
コア形成用樹脂の硬化物の屈折率は、クラッドとなる前記クラッド基材4より大きいことが必要で、1.50以上、好ましくは1.53以上である。クラッド(以下の5)の工程におけるクラッド層を含む)とコアの屈折率の差は、0.01以上、好ましくは0.02以上である。
また、この工程において、毛細管現象によるコア形成用樹脂の凹部12への充填を促進するために、系全体を減圧(0.1〜200Pa程度)することが望ましい。
また、前記充填を促進するため、前記系の減圧に加えて、コア形成用樹脂を加熱することによって低粘度化することも有効な手段である。
鋳型10の凹部12にコア形成用樹脂を注入したらコア形成用樹脂を硬化させる。
コア形成用樹脂の硬化は、注入したコア形成用樹脂の種類に応じて熱、紫外線、放射線、電子線などが使用される。前記コア形成用樹脂として紫外線硬化性樹脂を用いたときは、紫外線ランプ、紫外線LED,UV照射装置などによって硬化させることができる。また、熱硬化性樹脂を用いたときは、鋳型10をオーブン中で加熱するなどの手段によって硬化させることができる。
コア形成用樹脂が硬化したら、図4に示すように主鋳型11を除去し、図5の(A)および(B)に示すようにクラッド基材4の導波路コア2が形成された面にクラッド層6を形成する。クラッド層6は、クラッド基材4と同様のフィルムを積層して形成しても良く、紫外線硬化性樹脂、光硬化性樹脂、熱硬化性樹脂、放射線硬化性樹脂、電子線硬化性樹脂などの硬化性樹脂を流延して硬化させてもよい。但し、前記硬化性樹脂は、硬化物の屈折率が導波路コア2よりも小さく、好ましくはクラッド基材4と同様であることが好ましい。なお、図5の例においては、導波路コア2および補助鋳型20の上方から硬化性樹脂を流延し、その上からクラッド基材4と同様のフィルムであるクラッドフィルム8を重ねて硬化させてクラッド層6を形成している。
クラッド層6が形成されたら、図5の(C)に示すように、補助周囲をダイシングソーなどによって切断、除去し、高分子光回路1とする。
なお、図7に示すように、図面に向かって右側に位置する補助鋳型20として図6の(e)に示す形状のものを用い、導波路コア2における向かって右側の端部に傾斜ミラー2Bおよび凸レンズ2Cを形成してもよい。なお、図7の例においては、傾斜ミラー2A、傾斜ミラー2B、および凸レンズ2Cは何れもクラッド層6の外側に露出している。
更に、図8に示すように、図面に向かって左側の補助鋳型20として矩形断面を有するものを用い、図面に向かって右側の補助鋳型20として図6の(e)に示す形態のものを用いて導波路コア2の向かって左側の端部に垂直面を、向かって右側の端部に傾斜ミラー2Bおよび凸レンズ2Cを形成してもよい。
クラッド基材4上に導波路コア2が形成されたら、図8において(A)に示すように、導波路コア2に対して図面に向かって左側に位置する補助鋳型20のみを除去して代わりに所定の波長の光を選択的に反射させる波長選択フィルタ3を配置した。
次いで、同図の(B)に示すようにクラッド基材4の導波路コア2を形成した側の面に硬化性樹脂を流延し、その上からクラッドフィルム8を載置して硬化性樹脂を硬化させてクラッド層6を形成する。
クラッド層6が形成されたら、同図の(C)に示すように導波路コア2に対して図面に向かって右側に位置する補助鋳型20を除去して周囲をトリミングし、高分子光回路1とする。
1.実施例1
図1〜図3に示す形態の主鋳型11の凹部12Bに、補助鋳型20として図6の(a)に示す形態のものを上下反転させて配設した鋳型10を用いた。主鋳型11において、凹部12Aは、コア径が50μmの導波路コア2が形成されるように幅および深さを設定した。
鋳型10の凹部12を形成した側の面を、厚み50μm、屈折率1.51のクラッド基材4に密着させた。そして、注入孔13Aから凹部12にコア形成用樹脂(エポキシ系紫外線硬化性樹脂、屈折率=1.53、粘度=500cPs)を注入し、同時に吸引孔13Bに100hPaの負圧を印加して5分間吸引を行い、凹部12にコア形成用樹脂を注入した。
凹部12全体にコア形成用樹脂が充填されたら、鋳型10に波長365nm、光強度50mW/cmの紫外線を5分間照射してコア形成用樹脂を硬化させた。
コア形成用樹脂が硬化したら、主鋳型11を除去して導波路コア2の中央部分を露出させ、左右の補助鋳型20は残した状態で紫外線硬化樹脂(エポキシ系、屈折率1.51)を流延し、厚み50μ、屈折率1.51のクラッドフィルム8を貼着した。そして、波長365nm、光強度50mW/cmの紫外線を5分間照射して前記紫外線硬化樹脂の層を硬化させてクラッド層6とした。
クラッド層6が硬化したら補助鋳型20を除去し、周囲をトムソン刃で打抜いて高分子光回路1として導波路コア2の両端に傾斜ミラー2A、2Bが形成された直線導波路アレイが得られた。完成した高分子光回路における導波路コアの長さは約7cmであり、挿入損失は1.5dBであった。
2.実施例2
主鋳型11の図1に向かって左側の凹部12Bに挿着される補助鋳型20として図6の(f)に示す形態のものを用い、図1に向かって右側の凹部12Bに挿着される補助鋳型20として図6の(e)に示す形態のものを用いた。補助鋳型20は何れも厚みが100μmであったので、凹部12Bの深さも100μmとした。
上記の点を除いては実施例1と同様の手順で高分子光回路1として、図7に示すように、一方の端部に45ミラー2Aが形成され、他方の端部に45ミラー2Bおよび凸レンズ452Cが形成された直線導波路アレイを形成した。高分子光回路1の導波路コア2の長さは7cm、凸レンズ2Cは直径が50μm、高さが5μmであった。VCSELからの光を凸レンズ2Cから入射し、傾斜ミラー2Aの下方で受光したところ、挿入損失は1.2dBであった。
3.実施例3
図8に示すように、波長選択フィルタ3を導波路コア2の光軸に対して45度の角度で導波路コア2の左端に密着させ、実施例2と同様の工程によってクラッド層6を形成した。波長選択フィルタとしては、ポリイミドフィルム上に誘電体多層膜を積層した厚さ20μmのものを用いた。波長選択フィルタ3は、垂直入射時の波長760nmの光と波長850nmの光との分離比が40dBであった。
得られた高分子光回路1の導波路コア2の長さは4cmであり、導波路コア2の右端の凸レンズ2Cは直径が50μmであり、高さが5μmであった。
VCSELからの光を凸レンズ2Cから入射し、導波路コア2の左側端部の下方で受光したところ、波長790nmの光は波長選択フィルタ3を透過し、波長850nmの光は波長選択フィルタ3で反射された。2つの光の分離比は15dBであった。
図1は、実施形態1に係る高分子光回路の製造に使用される鋳型の構成を示す分解平面図である。 図2は、実施形態1に係る高分子光回路の製造に使用される鋳型の構成を示す分解断面図である。 図3は、図1および図2に示す鋳型をクラッド基材と密着させ、コア形成用樹脂を注入するところを示す説明図である。 図4は、コア形成用樹脂を硬化させた後、主鋳型を除去したところを示す平面図である。 図5は、主鋳型を除去した後、クラッド層を形成する手順を示す流れ図である。 図6は、図1および図2に示す鋳型で使用される補助鋳型の断面形状の例を示す断面図である。 図7は、実施形態1の製造方法で作製される高分子光回路の別の例およびその作製手順を示す流れ図である。 図8は、実施形態1の製造方法で作製される高分子光回路の更に別の例およびその作製手順を示す流れ図である。 図9は、実施形態1の製造方法で作製された高分子光回路で2枚の回路基板30、32を光接続した例を示す概略図である。
符号の説明
1 高分子光回路
2 導波路コア
2A 概略45度の角度を有する傾斜ミラー
2B 概略45度の角度を有する傾斜ミラー
2C 凸レンズ
3 波長選択フィルタ
4 クラッド基材
6 クラッド層
8 クラッドフィルム
10 鋳型
11 主鋳型
12 凹部
12A 凹部
12B 凹部
13A 注入孔
13B 吸引孔
20 補助鋳型
20A 端面形成面

Claims (6)

  1. 一方または両方の端部が所定の形状を有する導波路コアとそれを囲繞するクラッドとを備える高分子光回路の製造方法であって、
    前記導波路コアにおける前記特定の形状の端部を除いた部分に対応する凹部と、前記凹部にコア形成用樹脂を注入するための注入孔と、注入孔から凹部に注入されたコア形成用樹脂を吸い出すための吸引孔とを備え、鋳型形成用エラストマから形成された主鋳型と、
    前記導波路コアの前記特定の形状の端部に対応する形状の凹部を有し、鋳型形成用エラストマから形成された補助鋳型と
    によって鋳型を構成し、
    前記鋳型の凹部が形成された側の面に前記クラッドの一部を構成するクラッド基材を密着させ、
    コア形成用樹脂を前記鋳型の注入孔から凹部に注入し、前記吸引孔から吸引することにより、前記凹部にコア形成用樹脂を充填し、
    前記コア形成用樹脂を硬化させて導波路コアを形成する
    高分子光回路の製造方法。
  2. 前記補助鋳型は、導波路コアの端部に形成される傾斜ミラー、凸レンズ、および傾斜ミラーと凸レンズとの組合せに対応する形状を有する請求項1に記載の高分子光回路の製造方法。
  3. 前記導波路コアの両端に傾斜ミラーが形成されるとともに、前記傾斜ミラーは、前記導波路コアの一端と他端とで反射方向が互いに導波路の上下反対方向になるように形成される請求項2に記載の高分子光回路の製造方法。
  4. 前記導波路コアの両端に傾斜ミラーが形成されるとともに、前記傾斜ミラーは、前記導波路コアの一端と他端とで反射方向が導波路の上下同一方向になるように形成される請求項2に記載の高分子光回路の製造方法。
  5. 前記導波路コアを形成後、前記補助鋳型が残った状態でクラッドの残りの部分を形成し、その後、補助鋳型を除去する請求項1〜4の何れか1項に記載の高分子光回路の製造方法。
  6. 一方または両方の端部が所定の形状を有する導波路コアとそれを囲繞するクラッドとを備える高分子光回路の製造方法であって、
    前記導波路コアにおける前記特定の形状の端部を除いた部分に対応する凹部と、前記凹部にコア形成用樹脂を注入するための注入孔と、注入孔から凹部に注入されたコア形成用樹脂鋳を吸い出すための吸引孔とを備え、鋳型形成用エラストマから形成された主鋳型と、
    前記導波路コアにおける所定の形状の端部を形成する端部形成部材と
    によって鋳型を構成し、
    前記鋳型の凹部が形成された側の面に前記クラッドの一部を構成するクラッド基材を密着させ、
    コア形成用樹脂を前記鋳型の注入孔から凹部に注入し、前記吸引孔から吸引することにより、前記凹部にコア形成用樹脂を充填し、
    前記コア形成用樹脂を硬化させて導波路コアを形成する
    高分子光回路の製造方法。
JP2007243320A 2007-09-20 2007-09-20 高分子光回路の製造方法 Withdrawn JP2009075288A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007243320A JP2009075288A (ja) 2007-09-20 2007-09-20 高分子光回路の製造方法
US12/099,312 US7749410B2 (en) 2007-09-20 2008-04-08 Method of fabricating polymer optical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007243320A JP2009075288A (ja) 2007-09-20 2007-09-20 高分子光回路の製造方法

Publications (1)

Publication Number Publication Date
JP2009075288A true JP2009075288A (ja) 2009-04-09

Family

ID=40470783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007243320A Withdrawn JP2009075288A (ja) 2007-09-20 2007-09-20 高分子光回路の製造方法

Country Status (2)

Country Link
US (1) US7749410B2 (ja)
JP (1) JP2009075288A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161140A1 (ja) * 2011-05-20 2012-11-29 ヤマハ株式会社 導光体
JP2012242684A (ja) * 2011-05-20 2012-12-10 Yamaha Corp 導光体
JP2013003465A (ja) * 2011-06-20 2013-01-07 Yamaha Corp 導光体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5910056B2 (ja) * 2011-12-13 2016-04-27 富士ゼロックス株式会社 レンズ製造装置
JP7070572B2 (ja) * 2017-08-16 2022-05-18 Agc株式会社 ポリマー光導波路
JP7263966B2 (ja) * 2019-08-02 2023-04-25 富士通オプティカルコンポーネンツ株式会社 光デバイス

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000298221A (ja) 1999-04-15 2000-10-24 Sony Corp 光導波路の製造方法および光送受信装置の製造方法
JP2004086144A (ja) 2002-06-27 2004-03-18 Fuji Xerox Co Ltd 高分子光導波路の製造方法
JP3979225B2 (ja) 2002-08-22 2007-09-19 凸版印刷株式会社 光導波路の製造方法
JP3969263B2 (ja) * 2002-09-20 2007-09-05 富士ゼロックス株式会社 高分子光導波路の製造方法
CN1620620A (zh) * 2002-09-20 2005-05-25 凸版印刷株式会社 光波导及其制造方法
JP2005181645A (ja) 2003-12-19 2005-07-07 Sony Corp 光導波路及びその製造方法、並びに光情報処理装置
FR2864630B1 (fr) * 2003-12-24 2006-03-10 Essilor Int Procede de fabrication d'un conduit optique en matiere thermoplastique
JP4196839B2 (ja) * 2004-01-16 2008-12-17 富士ゼロックス株式会社 高分子光導波路の製造方法
JP2006011179A (ja) 2004-06-28 2006-01-12 Omron Corp フィルム光導波路の製造方法および製造装置
CN1715033A (zh) * 2004-06-29 2006-01-04 柯尼卡美能达精密光学株式会社 注射成形用模具和光学元件的成形方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161140A1 (ja) * 2011-05-20 2012-11-29 ヤマハ株式会社 導光体
JP2012242684A (ja) * 2011-05-20 2012-12-10 Yamaha Corp 導光体
US9632227B2 (en) 2011-05-20 2017-04-25 Yamaha Corporation Light guide body
JP2013003465A (ja) * 2011-06-20 2013-01-07 Yamaha Corp 導光体

Also Published As

Publication number Publication date
US20090079099A1 (en) 2009-03-26
US7749410B2 (en) 2010-07-06

Similar Documents

Publication Publication Date Title
JP2008020722A (ja) 光導波路及びその製造方法
JP2006126568A (ja) 高分子光導波路デバイスの製造方法
JP2006337748A (ja) 光導波路及びその製造方法
JP4196839B2 (ja) 高分子光導波路の製造方法
JP4144468B2 (ja) 積層型高分子光導波路およびその製造方法
JP2006039282A (ja) 光導波路、光導波路用フェルール、及び光コネクタ
JP2006023385A (ja) 積層型光導波路フィルム及びその製造方法、並びに導波路型光モジュール
JP2009075288A (ja) 高分子光回路の製造方法
JP2005181662A (ja) 高分子光導波路の製造方法
JP2007279515A (ja) レンズ内蔵光導波路及びその製造方法
JP4265293B2 (ja) 鋳型及びコネクタ一体型高分子光導波路の製造方法
JP4581328B2 (ja) 高分子光導波路及び光学素子の製造方法
JP4175183B2 (ja) 高分子光導波路の製造方法
JP2007233303A (ja) 高分子光導波路モジュールの製造方法
JP2005321560A (ja) 受発光素子付き高分子光導波路モジュール
JP4848986B2 (ja) 光導波路及びその製造方法
JP2007086330A (ja) 高分子光導波路デバイスの製造方法
JP4292892B2 (ja) 積層型高分子光導波路の製造方法及びこの方法により作製される積層型高分子光導波路
JP4140475B2 (ja) 高分子光導波路作製用原盤及び高分子光導波路の製造方法
JP2005208376A (ja) 高分子光導波路の製造方法
JP2005043652A (ja) 高分子光導波路の製造方法及びその製造装置
JP4273975B2 (ja) フレキシブル高分子光導波路の製造方法
JP4193616B2 (ja) 積層型高分子導波路及びその製造方法
JP4517704B2 (ja) 高分子光導波路の製造方法
JP4337559B2 (ja) 高分子光導波路製造用鋳型及び高分子光導波路の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100818

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110715