JP2009074371A - 内燃機関のアイドリング期間予測装置および制御システム - Google Patents

内燃機関のアイドリング期間予測装置および制御システム Download PDF

Info

Publication number
JP2009074371A
JP2009074371A JP2007241373A JP2007241373A JP2009074371A JP 2009074371 A JP2009074371 A JP 2009074371A JP 2007241373 A JP2007241373 A JP 2007241373A JP 2007241373 A JP2007241373 A JP 2007241373A JP 2009074371 A JP2009074371 A JP 2009074371A
Authority
JP
Japan
Prior art keywords
idling period
internal combustion
combustion engine
idling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007241373A
Other languages
English (en)
Other versions
JP4844516B2 (ja
Inventor
Satoshi Watanabe
智 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007241373A priority Critical patent/JP4844516B2/ja
Publication of JP2009074371A publication Critical patent/JP2009074371A/ja
Application granted granted Critical
Publication of JP4844516B2 publication Critical patent/JP4844516B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

【課題】本発明は、内燃機関の始動時に、その直後のアイドリング期間の長さを予測することが可能な技術を提供することを目的とする。
【解決手段】内燃機関の始動直後において該内燃機関の運転状態がアイドリング状態となっている期間であるアイドリング期間の長さを計測する計測手段と、該計測手段によって計測されたアイドリング期間の長さを記憶する記憶手段と、を備えており、内燃機関の始動時に、記憶手段に記憶されている複数回分の過去のアイドリング期間の長さに基づいて、今回のアイドリング期間の長さを予測する。
【選択図】図2

Description

本発明は、内燃機関の始動時に、その直後のアイドリング期間の長さを予測する内燃機関のアイドリング期間予測装置およびそれを備えた内燃機関の制御システムに関する。
内燃機関が冷間始動されたときは、排気通路に設けられた排気浄化触媒を昇温させ、該排気浄化触媒をより早期に活性化させる必要がある。そこで、内燃機関の始動直後における、内燃機関の運転状態がアイドリング状態となっている期間であるアイドリング期間中に、内燃機関の点火時期を基本点火時期より遅角させると共に内燃機関の吸入空気量を基本空気量より増加させる技術が知られている。
点火時期が遅角されると排気の温度が上昇するため排気浄化触媒をより速やかに昇温させることが可能となる。また、アイドリング期間中に点火時期が遅角されると、内燃機関の出力トルクが低下するために、アイドリング期間中の機関回転数であるアイドル回転数が低下しその値が不安定となる虞がある。しかしながら、吸入空気量を増加させることで、アイドル回転数の低下を抑制することが出来る。
従って、上記技術によれば、内燃機関の始動直後のアイドリング期間中に、アイドル回転数が不安定となることを抑制しつつ排気浄化触媒の活性化を図ることが出来る。
また、特許文献1には、アイドリング期間中に点火時期を遅角させるときに、内燃機関の始動時点からの経過時間に応じてその遅角量を小さくする技術が記載されている。
上記のように、アイドリング期間中に点火時期を遅角させる場合、その遅角量を大きくすると排気浄化触媒の昇温をより促進させることが出来る。しかしながら、点火時期を過度に遅角すると、排気中の未燃燃料成分が増加することにより、排気浄化触媒の昇温中における排気浄化触媒よりも下流側に流出する未燃燃料成分(以下、流出燃料成分と称する)の量が増加する場合がある。その結果、アイドリング期間中の流出燃料成分の積算量が過剰に増加する虞がある。一方、アイドリング期間中に排気浄化触媒が十分に昇温されなかった場合、該アイドリング期間終了直後における流出燃料成分の量を十分に抑制することが困難となる。
しかしながら、内燃機関の始動時に、その直後のアイドリング期間の長さを予測することが出来ない場合、点火時期の遅角量に対するアイドリング期間中の流出燃料成分の積算量およびアイドリング期間終了時点の排気浄化触媒の温度を予測することは困難である。
また、引用文献1のように、内燃機関の始動時点からの経過時間に応じて点火時期の遅角量を変化させる場合においても、アイドリング期間の長さに関わらず点火時期の遅角量を一定の割合で変化させるとすると、アイドリング期間中の流出燃料成分の積算量およびアイドリング期間終了時点の排気浄化触媒の温度を好適な値に制御することは困難である。
特開平6−26432号公報 特開平2−291458号公報 特開2004−218558号公報 特開2007−71113号公報
本発明は、内燃機関の始動時に、その直後のアイドリング期間の長さを予測することが可能な技術を提供することを目的とする。
本発明は、内燃機関の始動時に、過去のアイドリング期間の長さに基づいて、今回のアイドリング期間の長さを予測するものである。
より詳しくは、本発明に係る内燃機関のアイドリング期間予測装置は、
内燃機関の始動直後において該内燃機関の運転状態がアイドリング状態となっている期間であるアイドリング期間の長さを計測する計測手段と、
該計測手段によって計測されたアイドリング期間の長さを記憶する記憶手段と、
前記内燃機関の始動時に、前記記憶手段に記憶されている複数回分の過去のアイドリング期間の長さに基づいて、今回のアイドリング期間の長さを予測する予測手段と、を備えたことを特徴とする。
本発明によれば、内燃機関の始動時に、その直後のアイドリング期間の長さを予測することが出来る。
本発明においては、内燃機関の始動時の機関温度を取得する機関温度取得手段をさらに備えてもよい。この場合、記憶手段は、計測手段によって計測されたアイドリング期間の長さを機関温度取得手段によって取得された機関温度と対応させて記憶する。そして、予測手段は、内燃機関の始動時に、記憶手段に記憶されている過去のアイドリング期間のうち対応している内燃機関の始動時の機関温度が機関温度取得手段によって今回取得された機関温度を含む所定の範囲内となっているものを複数回分選択する。さらに、予測手段は、選択された複数回分の過去のアイドリング期間の長さに基づいて、今回のアイドリング期間の長さを予測する。
アイドリング期間の長さは、内燃機関の始動時の機関温度に応じて変化する傾向がある。従って、上記によれば、内燃機関の始動時に、その直後のアイドリング期間の長さをより高い精度で予測することが出来る。
本発明において、予測手段は、記憶手段に記憶された所定回数分の過去のアイドリング期間の長さの代表値をアイドリング期間の長さの予測値としてもよい。
ここで、所定回数は、アイドリング期間の長さを十分な精度で予測することが可能と判断出来る回数である。また、代表値は、平均値、最高値、最低値、最頻値等どのような値でもよい。
また、内燃機関が冷間始動されたときは、アイドリング期間中に、内燃機関の点火時期を基本点火時期より遅角させることで内燃機関の排気通路に設けられた排気浄化触媒を昇温させる昇温手段を備えた内燃機関の制御システムに、本発明に係る内燃機関のアイドリング期間予測装置を適用してもよい。
ここで、基本点火時期は、アイドリング期間中に排気浄化触媒を昇温する必要がない場合における点火時期として定められた値である。
内燃機関の始動時にアイドリング期間の長さを予測することが出来ると、アイドリング期間中に点火時期を遅角させた場合における、アイドリング期間が終了した時点の排気浄化触媒の温度およびアイドリング期間中の流出燃料成分の積算量をその予測値に基づいて
推定することが出来る。
そこで、上記の場合、昇温手段は、アイドリング期間予測装置によって予測されたアイドリング期間の長さに基づいて、アイドリング期間中の点火時期を制御する。
これによれば、アイドリング期間が終了した時点の排気浄化触媒の温度およびアイドリング期間中における流出燃料成分の積算量をより好適に制御することが出来る。
例えば、昇温手段は、アイドリング期間が終了した時点の排気浄化触媒の温度が所定の活性温度以上となる範囲内で、アイドリング期間中における流出燃料成分の積算量が最少となるように、アイドリング期間予測装置によって予測されたアイドリング期間の長さに基づいて、アイドリング期間中の点火時期を制御してもよい。
ここで、所定の活性温度は、排気浄化触媒の温度が該所定の活性温度以上であれば、流出燃料成分の量が許容範囲内となると判断出来る値である。この所定の活性温度は実験等に基づいて予め定められている。
これにより、アイドリング期間中における流出燃料成分の積算量およびアイドリング期間終了直後における流出燃料成分の量の双方を可及的に少なくすることが出来る。
また、昇温手段によってアイドリング期間中の点火時期が基本点火時期よりも遅角されるときは、アイドリング期間中の内燃機関の吸入空気量を基本空気量よりも増加させてもよい。
ここで、基本空気量は、アイドリング期間中において、点火時期が基本時期であれば、吸入空気量を該基本空気量に制御することでアイドル回転数を目標値とすることが可能な値として定められている。
これによれば、アイドル回転数の低下を抑制することが出来る。
内燃機関が冷間始動されたときは、アイドリング期間中に、内燃機関の点火時期、吸入空気量および燃料噴射量を制御することで内燃機関の排気通路に設けられた排気浄化触媒を昇温させる昇温手段を備えた内燃機関の制御システムに、本発明に係る内燃機関のアイドリング期間予測装置を適用してもよい。
アイドリング期間中の排気浄化触媒の温度および流出燃料成分の量は、点火時期のみならず、吸入空気量および燃料噴射量にも相関がある。そこで、上記内燃機関の制御システムに係る昇温手段は、点火時期、吸入空気量および燃料噴射量を制御することで排気浄化触媒を昇温させる。
そして、この場合、内燃機関の始動時にアイドリング期間の長さを予測することが出来ると、アイドリング期間中に点火時期、吸入空気量および燃料噴射量のそれぞれを変化させた場合における、アイドリング期間が終了した時点の排気浄化触媒の温度およびアイドリング期間中の流出燃料成分の積算量をその予測値に基づいて推定することが出来る。
そこで、上記の場合、昇温手段は、アイドリング期間予測装置によって予測されたアイドリング期間の長さに基づいて、アイドリング期間中の点火時期、吸入空気量および燃料噴射量を制御する。
これによれば、アイドリング期間が終了した時点の排気浄化触媒の温度およびアイドリ
ング期間中における流出燃料成分の積算量をより好適に制御することが出来る。
上記の場合においても、昇温手段は、アイドリング期間が終了した時点の排気浄化触媒の温度が所定の活性温度以上となる範囲内で、アイドリング期間中における流出燃料成分の積算量が最少となるように、アイドリング期間予測装置によって予測されたアイドリング期間の長さに基づいて、アイドリング期間中の点火時期、吸入空気量および燃料噴射量を制御してもよい。
これにより、アイドリング期間中における流出燃料成分の積算量およびアイドリング期間終了直後における流出燃料成分の量の双方を可及的に少なくすることが出来る。
本発明によれば、内燃機関の始動時に、その直後のアイドリング期間の長さを予測することが出来る。
以下、本発明に係る内燃機関のアイドリング期間予測装置および制御システムの具体的な実施形態について図面に基づいて説明する。
<実施例1>
<内燃機関およびその吸排気系の概略構成>
図1は、本実施例に係る内燃機関およびその吸排気系の概略構成を示す図である。内燃機関1は、4つの気筒2を有する車両駆動用のガソリンエンジンである。
気筒2内にはピストン3が摺動自在に設けられている。気筒2内上部の燃焼室には吸気ポート4と排気ポート5とが接続されている。吸気ポート4および排気ポート5の燃焼室への開口部は、それぞれ吸気弁6および排気弁7によって開閉される。
また、内燃機関1には、気筒2内の燃焼室において混合気に点火する点火プラグ10、および、吸気ポート4内に燃料を噴射する燃料噴射弁11が設けられている。
吸気ポート4および排気ポート5は、それぞれ吸気通路8および排気通路9に接続されている。吸気通路8にはエアフローメータ12およびスロットル弁13が設けられている。本実施例においては、スロットル弁13によって内燃機関1の吸入空気量が制御される。
排気通路14には三元触媒14が設けられている。本実施例においては、三元触媒14が本発明に係る排気浄化触媒に相当する。尚、本発明に係る排気浄化触媒は、三元触媒14に限られるものではなく、酸化機能を有する触媒であればどのようなものでもよい。そのため、三元触媒14に代えて、酸化触媒や吸蔵還元型NOx触媒等の触媒を設けてもよい。
また、内燃機関1には、該内燃機関1に形成されたウォータージャケット内を流れる冷却水の温度を検出する水温センサ15が設けられている。本実施例では、水温センサ15の検出値を内燃機関1の機関温度として用いる。つまり、水温センサ15が、本発明に係る機関温度取得手段に相当する。
以上述べたように構成された内燃機関1には電子制御ユニット(ECU)20が併設されている。ECU20には、エアフローメータ12、水温センサ15、クランクポジションセンサ16、アクセル開度センサ17、および、イグニッションスイッチ18が電気的
に接続されている。これらの出力信号がECU20に入力される。
クランクポジションセンサ16は、内燃機関1のクランク角を検出するセンサである。また、アクセル開度センサ17は、内燃機関1を搭載した車両のアクセル開度を検出するセンサである。
また、ECU20には、点火プラグ10、燃料噴射弁11およびスロットル弁13が電気的に接続されている。ECU20によってこれらが制御される。
<アイドリング期間中の制御>
本実施例において、内燃機関1の運転状態がアイドリング状態となっているアイドリング期間中の制御について説明する。尚、以下において、「アイドリング期間」とは「内燃機関1の始動直後のアイドリング期間」のことをいうものとする。
本実施例に係る内燃機関1では、アイドリング期間中は、機関回転数(アイドル回転数)が予め定められた目標アイドル回転数に制御される。このとき、三元触媒14を昇温させる必要がない場合(即ち、三元触媒14が十分に活性化している場合)は、内燃機関1の点火時期および吸入空気量は、それぞれ、予め定められた基本点火時期および基本空気量に制御される。つまり、基本点火時期および基本空気量は、内燃機関の点火時期および吸入空気量がこれらの値に制御されるとアイドル回転数が目標アイドル回転数となる値として定められている。
ここで、内燃機関1が冷間始動された場合は、三元触媒14をより早期に活性化させる必要がある。そこで、本実施例では、内燃機関1が冷間始動された場合、その直後のアイドリング期間中において、三元触媒14を昇温させるべく昇温制御が実行される。本実施例に係る昇温制御は、内燃機関の点火時期を基本点火時期よりも遅角させることで実現される。点火時期を遅角させることで、排気の温度を上昇させることが出来る。その結果、三元触媒14をより速やかに昇温させることが可能となる。
また、アイドリング期間中において点火時期が遅角されるとアイドル回転数が低下する虞がある。そこで、本実施例では、アイドリング期間中に昇温制御が実行される場合、吸入空気量を基本空気量より増加させる吸入空気量増加制御が実行される。この吸入空気量増加制御では、点火時期が遅角された場合におけるアイドル回転数が目標アイドル回転数となるように吸入空気量が制御される。尚、本実施例に係る吸入空気量増加制御はスロットル弁13の開度を増加させることで実現される。
このように、本実施例においては、内燃機関1が冷間始動された場合、アイドリング期間中に昇温制御および吸入空気量増加制御が実行されることで、アイドル回転数を目標アイドル回転数に制御しつつ、三元触媒14をより速やかに昇温させることが出来る。
アイドリング期間中に昇温制御を実行する場合、点火時期の遅角量を大きくすると三元触媒14の昇温をより促進させることが出来る。しかしながら、点火時期を過度に遅角すると、排気中の未燃燃料成分が増加することにより、三元触媒14の昇温中における三元触媒14よりも下流側に流出する未燃燃料成分(以下、流出燃料成分と称する)の量が増加する場合がある。その結果、アイドリング期間中の流出燃料成分の積算量が過剰に増加する虞がある。一方、アイドリング期間中に三元触媒14が十分に昇温されなかった場合、該アイドリング期間終了直後における流出燃料成分の量を十分に抑制することが困難となる。
そこで、本実施例では、内燃機関1が冷間始動された場合、その直後のアイドリング期
間の長さを予測する。そして、アイドリング期間中における流出燃料成分の積算量およびアイドリング期間終了直後における流出燃料成分の量の双方を可及的に少なくすべく、アイドリング期間の長さの予測値に基づいてアイドリング期間中の点火時期を制御する。
<アイドリング期間の長さの予測方法>
ここで、本実施例に係るアイドリング期間の長さの予測方法について図2に基づいて説明する。アイドリング期間の長さは、内燃機関1を搭載した車両の運転者の運転パターンの一つである。また、アイドリング期間の長さは内燃機関1の始動時の機関温度に応じて変化する傾向がある。つまり、通常、内燃機関1の始動時の機関温度が低い場合は、内燃機関1の暖機のために、内燃機関1の始動時の機関温度が高い場合に比べてアイドリング期間が長くなる傾向がある。これらのことから、アイドリング期間の長さは、その履歴に基づいて予測することが出来る。
そこで、本実施例においては、内燃機関1の始動毎にアイドリング期間の長さをECU20が計測する。本実施例では、イグニッションスイッチ18がONとなり且つ内燃機関1の機関回転数が所定の機関始動回転数(例えば、400rpm)以上となった時点から、アクセル開度センサ17によって検出されるアクセル開度が零より大きくなるまでの期間の長さがアイドリング期間の長さとして計測される。ここで、機関始動回転数とは、内燃機関1において燃料噴射弁11からの燃料噴射および点火プラグ10による点火が開始されたと判断出来る閾値である。そして、ECU20は、図2に示すように、その計測値を、その計測時(即ち、機関始動時)に水温センサ15によって検出される冷却水の温度と対応させて記憶する。
尚、イグニッションスイッチ18がONとなり且つ内燃機関1の機関回転数が所定の機関始動回転数以上となった時点から、内燃機関1の機関回転数が所定のアイドル終了回転数以上となった時点までの期間の長さをアイドリング期間の長さとして計測してもよい。ここで、アイドル終了回転数とは、目標アイドル回転数よりも高い値である。また、イグニッションスイッチ18がONとなり且つ内燃機関1の機関回転数が所定の機関始動回転数以上となった時点から、内燃機関1の機関負荷が所定のアイドル終了負荷以上となった時点までの期間の長さをアイドリング期間の長さとして計測してもよい。ここで、アイドル終了負荷とは、内燃機関1が目標アイドル回転数で運転されているときの機関負荷よりも高い値である。
本実施例では、アイドリング期間の長さを計測するECU20が、本発明に係る計測手段に相当する。また、アイドリング期間の長さを記憶するECU20が、本発明に係る記憶手段に相当する。
図2において、上段の縦軸はアイドリング期間の長さΔtiを表しており、下段の縦軸は冷却水温Twを表している。尚、第一所定水温Tw1は、内燃機関1の始動時において冷却水温Twが該第一所定水温Tw1以下の場合は冷間始動であると判断される閾値である(例えば、Tw1=40℃)。また、図2において、横軸は、時系列の機関始動回数(n回目の機関始動の“n”)を表している。
そして、内燃機関1が冷間始動された場合、過去に内燃機関1が冷間始動されたときのアイドリング期間の長さΔtiのうち最新の所定回数分のデータを選択する。そして、選択した所定回数分のデータの平均値を算出し、その平均値を今回のアイドリング期間の長さΔtithの予測値とする。
尚、所定回数は、アイドリング期間の長さΔtithを十分な精度で予測することが可能と判断出来る回数であって、実験等に基づいて予め定められている。
例として、今回の冷間始動がn+1回目の機関始動であって、所定回数を5回とした場合について説明する。この場合、n回目以前の機関始動であって機関始動時の冷却水温Twが第一所定水温Tw1以下であったとき(冷間始動であったとき)のアイドリング期間の長さΔtiのうち最新の5回分のデータ(図2の上段において楕円で囲まれたデータ)を選択する。そして、選択した5回分のデータの平均値を今回のアイドリング期間の長さΔtithの予測値とする。
上記のようなアイドリング期間の長さの予測方法によれば、内燃機関1の始動時の冷却水温を考慮しつつ、履歴に基づいてアイドリング期間の長さが予測される。従って、内燃機関1の冷間始動時に、その直後のアイドリング期間の長さをより高い精度で予測することが出来る。
<アイドリング期間中の点火時期およびスロットル弁開度>
内燃機関1の冷間始動後のアイドリング期間中において昇温制御が実行される場合、点火時期の遅角量およびアイドリング期間の長さに応じて、アイドリング期間が終了した時点の三元触媒14の温度およびアイドリング期間中の流出燃料成分の積算量が変化する。例えば、アイドリング期間中の点火時期の遅角量が一定の場合、アイドリング期間の長さが長いほど、アイドリング期間が終了した時点の三元触媒14の温度は高くなり、アイドリング期間中の流出燃料成分の積算量は多くなる。また、アイドリング期間の長さが一定の場合、アイドリング期間中の点火時期の遅角量が大きいほど(即ち、点火時期が遅いほど)、アイドリング期間が終了した時点の三元触媒14の温度は高くなり、アイドリング期間中の流出燃料成分の積算量は多くなる。
そこで、本実施例においては、アイドリング期間が終了した時点の三元触媒14の温度が所定の活性温度以上となる範囲内で、アイドリング期間中における流出燃料成分の積算量が最少となるような、アイドリング期間中の点火時期とアイドリング期間の長さとの関係を実験等に基づいて予め求めておく。そして、それらの関係を図3に示すようなマップとしてECU20に記憶しておく。
尚、ここで、所定の活性温度は、三元触媒14の温度が該所定の活性温度以上であれば、流出燃料成分の量が許容範囲内となると判断出来る値である。この所定の活性温度は実験等に基づいて予め定められている。
図3において、縦軸はアイドリング期間中の点火時期SAを表しており、横軸はアイドリング期間の長さΔtiを表している。尚、曲線L1は機関始動時の冷却水温が第一所定水温Tw1の場合を表しており、曲線L2は機関始動時の冷却水温が第二所定水温Tw2の場合を表しており、曲線L3は機関始動時の冷却水温が第三所定水温Tw3の場合を表している(Tw1>Tw2>Tw3)。このように、図3に示すマップには、機関始動時の冷却水温に応じたアイドリング期間中の点火時期とアイドリング期間の長さとの関係が記憶されている。
そして、ECU20は、内燃機関1が冷間始動されたときに、上記のような方法でその直後のアイドリング期間の長さを予測する。そして、ECU20は、その予測値を図3に示すマップに代入することで今回のアイドリング期間中の点火時期を決定する。さらに、ECU20は、アイドリング期間中の点火時期を、基本点火時期よりも遅角し、このように決定された値に制御する。
これにより、アイドリング期間中の流出燃料成分の積算量を可及的に抑制しつつ、アイドリング期間が終了した時点の三元触媒14の温度を所定の活性温度以上に制御すること
が出来る。従って、内燃機関1が冷間始動された場合において、アイドリング期間中の流出燃料成分の積算量およびアイドリング期間終了直後における流出燃料成分の量の双方を可及的に少なくすることが出来る。
本実施例においては、アイドリング期間中に点火時期が上記のように決定された値に制御された場合においても、吸入空気量増加制御が実行されることにより、アイドル回転数が目標アイドル回転数となるまで吸入空気量が増加される。これにより、アイドリング回転数が低下することが抑制される。
<アイドリング期間中の制御ルーチン>
以下、本実施例に係るアイドリング期間中の制御ルーチンについて図4に示すフローチャートに基づいて説明する。本ルーチンは、ECU20に予め記憶されており、ECU20がONとなっているときに所定の間隔で繰り返し実行される。
本ルーチンでは、ECU20は、先ずS101において、イグニッションスイッチ18がONとなり且つ内燃機関1の機関回転数Neが所定の機関始動回転数Nes以上となったか否かを判別する。S101において、肯定判定された場合、ECU20は、内燃機関1が始動されたと判断し、S102に進む。一方、S101において、否定判定された場合、ECU20は本ルーチンの実行を一端終了する。
S102において、ECU20は、水温センサ15によって検出された冷却水温Twが第一所定水温Tw1以下であるか否かを判別する。S102において、肯定判定された場合、ECU20は、内燃機関1が冷間始動されたと判断し、S103に進む。一方、S102において、否定判定された場合、ECU20はS110に進む。
ECU20がS110に進んだ場合、アイドリング期間中に昇温制御および吸入空気量増加制御を実行する必要はない。そのため、S110において、ECU20は、内燃機関1の点火時期SAを基本点火時期SAbaseに制御する。また、ECU20は、スロットル弁13の開度TAを基本開度TAbaseに制御する。ここで、基本開度TAbaseは、内燃機関1の吸入空気量が基本空気量となる開度として設定されている。ECU20は、S110の後、S108に進む。
一方、S103に進んだECU20は、上述した予測方法によって今回のアイドリング期間の長さΔtithを予測する。本実施例においては、このS103を実行するECU20が、本発明に係る予測手段に相当する。
次に、ECU20は、S104に進み、S103において予測された今回のアイドリング期間の長さΔtithを図3に示すマップに代入することで、今回のアイドリング期間中の点火時期SAthを導出する。
次に、ECU20は、S105に進み、内燃機関1の点火時期SAを点火時期SAthに制御する。これにより、点火時期SAは基本点火時期よりも遅角され、昇温制御が実行されることになる。本実施例においては、このS105を実行するECU20が、本発明に係る昇温手段に相当する。
次に、ECU20は、S106に進み、スロットル弁13の開度TAを基本開度TAbaseよりも増加させる。これにより、吸入空気量増加制御が実行されることになる。
次に、ECU20は、S107に進み、内燃機関1の機関回転数、即ちアイドル回転数Neiが、目標アイドル回転数Neitに達したか否かを判別する。S107において、
肯定判定された場合、ECU20はS108に進み、否定判定された場合、ECU20はS106に戻る。
S108において、ECU20は、アクセル開度センサ17によって検出されるアクセル開度Raccが零より大きくなったか否かを判別する。S108において、肯定判定された場合、ECU20はS109に進み、否定判定された場合、ECU20はS108を繰り返す。
S109において、ECU20は、今回のアイドリング期間の実際の長さΔtith´(即ち、イグニッションスイッチ18がONとなってから、アクセル開度Raccが零より大きくなるまでの期間の長さ)を、機関始動時の冷却水温Twと対応させて記憶する。その後、ECU20は本ルーチンの実行を一旦終了する。
尚、本実施例に係るアイドリング期間の長さの予測方法においては、図2の下段に示す冷却水温Twが第一所定水温Tw1以下の領域をさらに複数の領域に分割してもよい(例えば、Tw1≧ Tw>Tw2の領域とTw2≧Tw>Tw3の領域とTw3≧Twの領
域に分割する)。この場合、内燃機関1の冷間始動時にアイドリング期間の長さを予測する際に、そのときの冷却水温度が属する領域における過去の所定回数分のアイドリング期間の長さを選択し、これらのデータの平均値を予測値とする。
これによれば、上記に比べて、さらに高い精度でアイドリング期間の長さを予測することが可能となる。
また、上記においては、選択した過去の所定回数分のアイドリング期間の長さの平均値を今回のアイドリング期間の長さの予測値としたが、選択したデータの平均値以外の代表値を予測値として用いてもよい。
また、上記のアイドリング期間中の吸入空気量増加制御では、点火時期を基本点火時期よりも遅角させた後、アイドル回転数が目標アイドル回転数となるまでスロットル弁13の開度を増加させた。しかしながら、アイドル回転数が目標アイドル回転数となるスロットル弁13の開度を点火時期に応じて実験等により予め求めておき、それらの関係をマップとしてECU20に記憶させておいてもよい。吸入空気量増加制御の実行時に、このようなマップから導出された値にスロットル弁13の開度を制御することで、アイドル回転数をより速やかに目標アイドル回転数に制御することが出来る。
また、本実施例においては、アイドリング期間中の排気の空燃比を予め定められた目標空燃比に制御してもよい。この場合、アイドリング期間中において昇温制御が実行されないときは、燃料噴射弁11による燃料噴射時間は基本噴射時間に制御される。ここで、燃料噴射時間とは、燃料噴射弁11による一回の燃料噴射にかかる時間のことである。つまり、燃料噴射時間は、燃料噴射弁11による燃料噴射一回当たりの燃料噴射量と捉えることが出来る。そして、基本噴射時間は、内燃機関の吸入空気量が基本空気量であるときに排気の空燃比が目標空燃比となる値として定められる。
一方、アイドリング期間中において昇温制御が実行される場合は、吸入空気量の増加に応じて、燃料噴射時間を基本噴射時間よりも長くする(即ち、燃料噴射一回当たりの燃料噴射量を増加させる)。これにより、アイドリング期間中において昇温制御が実行される場合であっても排気の空燃比を目標空燃比に制御することが出来る。
<実施例2>
本実施例に係る内燃機関およびその吸排気系の概略構成は実施例1と同様である。また
、本実施例においても、内燃機関1が冷間始動されたときは、実施例1と同様、アイドリング期間中に昇温制御および吸入空気量増加制御が実行される。
<アイドリング期間中の点火時期および吸入空気量>
以下、本実施例に係るアイドリング期間中の点火時期、スロットル弁の開度および燃料噴射時間の設定方法について説明する。
本実施例においては、アイドリング期間中における、内燃機関1の始動時点からの経過時間(以下、始動後経過時間と称することもある)に応じた三元触媒14の温度および流出燃料成分の量を算出するための下記式(1)および(2)がECU20に記憶されている。これらの式(1)および(2)は実験等に基づいて予め求めることが出来る。尚、ここでは、アイドリング期間中に0.1sec毎に三元触媒14の温度および流出燃料成分の量を算出する場合を例に挙げて説明する。
Tcat(t)=aTcat(t−0.1)+bTcat(t−0.2)+f(TA(t−td),SA(t−td),INJ(t−td))・・・式(1)
Tcat(t):始動後経過時間tにおける三元触媒14の温度(℃)
TA(t):始動後経過時間tにおけるスロットル弁13の開度(deg)
SA(t):始動後経過時間tにおける点火時期(degBTDC)
INJ(t):始動後経過時間tにおける燃料噴射時間(μsec)
a,b:定数、f:関数、td:応答遅れ時間
上記式(1)において、Tcat(t−0.1)は始動後経過時間tより0.1sec前の三元触媒14の温度である。また、Tcat(t−0.2)は始動後経過時間tより0.2sec前の三元触媒14の温度である。また、スロットル弁13の開度、点火時期および燃料噴射時間のそれぞれが変化してから、その変化に応じて三元触媒14の温度が変化するまでには応答遅れがある。TA(t−td)、SA(t−td)およびINJ(t−td)は、始動後経過時間tよりもそれぞれの応答遅れ時間td前のスロットル弁13の開度、点火時期および燃料噴射時間である。
HC(t)=cHC(t−0.1)+dHC(t−0.2)+g(TA(t−td),SA(t−td),INJ(t−td),Tcat(t−td))・・・式(2)
HC(t):始動後経過時間tにおける流出燃料成分の量(g/sec)
c,d:定数、g:関数、td:応答遅れ時間
上記式(2)において、HC(t−0.1)は始動後経過時間tより0.1sec前の流出燃料成分の量である。また、HC(t−0.2)は始動後経過時間tより0.2sec前の流出燃料成分の量である。また、スロットル弁13の開度、点火時期、燃料噴射時間および三元触媒14の温度のそれぞれが変化してから、それに応じて流出燃料成分の量が変化するまでには応答遅れがある。TA(t−td)、SA(t−td)、INJ(t−td)およびTcat(t−td)は、始後動経過時間tよりもそれぞれの応答遅れ時間td前のスロットル弁13の開度、点火時期、燃料噴射時間および三元触媒14の温度である。
そして、本実施例においても、ECU20は、内燃機関1が冷間始動された場合、実施例1と同様の方法によりその直後のアイドリング期間の長さΔtithを予測する。
このアイドリング期間の長さの予測値Δtithを式(1)のtに代入することにより、今回のアイドリング期間が終了した時点の三元触媒14の温度を算出することが出来る。また、式(2)のtに、0からアイドリング期間の長さの予測値Δtithを代入した
値を積算することにより、アイドリング期間中の流出燃料成分の積算量を算出することが出来る。
そこで、本実施例では、ECU20は、下記式(3)を充たしつつ、下記式(4)によって算出されるアイドリング期間中の流出燃料成分の積算量Jが最少となるようなアイドリング期間中のスロットル弁13の開度TA(t)、点火時期SA(t)および燃料噴射時間INJ(t)を時系列で算出する。
Tcat(Δtith)≧Tcatact・・・式(3)
Tcat(Δtith):今回のアイドリング期間が終了した時点の三元触媒14の温度
Tcatact:所定の活性温度

Figure 2009074371

J:アイドリング期間中の流出燃料成分の積算量
以上によれば、図5に示すような、アイドリング期間中におけるスロットル弁13の開度、点火時期および燃料噴射時間それぞれの最適な制御値を、内燃機関1が冷間始動した時点で求めることが出来る。
そして、本実施例において、ECU20は、アイドリング期間中におけるスロットル弁13の開度、点火時期および燃料噴射時間を、図5に示すように時系列で求められたTA(t)、SA(t)およびINJ(t)に制御する。尚、本実施例においては、アイドリング期間中におけるスロットル弁13の開度、点火時期および燃料噴射時間をこのように制御するECU20が、本発明に係る昇温手段に相当する。
これにより、アイドリング期間中の流出燃料成分の積算量を可及的に抑制しつつ、アイドリング期間が終了した時点の三元触媒14の温度を所定の活性温度以上に制御することが出来る。従って、本実施例によれば、内燃機関1が冷間始動された場合において、アイドリング期間中の流出燃料成分の積算量およびアイドリング期間終了直後における流出燃料成分の量の双方を可及的に少なくすることが出来る。
尚、上記実施例1および2においては、内燃機関1が冷間始動されたときに、その直後のアイドリング期間の長さを履歴に基づいて予測した。しかしながら、以下のような方法により、より簡易的に冷間始動時のアイドリング期間の長さを予測してもよい。
即ち、内燃機関1が冷間始動されたときに、内燃機関1の冷却水温が第四所定水温以下であって且つ車両の室内ブロアの吹き出し口がフロントウインドウの状態でONとなっている場合、その直後のアイドリング期間の長さが通常時の場合よりも長い所定時間であると予測する。
ここで、第四所定水温は、フロントウインドウに霜が張っている可能性が高いと判断出来る閾値である(例えば、−2℃)。つまり、内燃機関1の冷却水温が第四所定水温以下であって且つ車両の室内ブロアの吹き出し口がフロントウインドウの状態でONとなっている場合、アイドリング期間中にフロントウインドウの霜取りが行われていると判断出来
る。そこで、このような場合は、アイドリング期間の長さが通常時の場合よりも長いと予測する。
以上説明した実施例は可能な限り組み合わせることが出来る。
本発明の実施例に係る内燃機関およびその吸排気系の概略構成を示す図。 本発明の実施例に係るアイドリング期間の長さの予測方法について説明するための図。 本発明の実施例1に係る、アイドリング期間中の点火時期とアイドリング期間の長さとの関係を示すマップ。 本発明の実施例1に係るアイドリング期間中の制御ルーチンを示すフローチャート。 本発明の実施例2に係る、アイドリング期間中における、スロットル弁の開度、点火時期および燃料噴射時間の制御値、アイドル回転数、三元触媒の温度、流出燃料成分の量の推移を示す図。
符号の説明
1・・・内燃機関
2・・・気筒
8・・・吸気通路
9・・・排気通路
10・・点火プラグ
11・・燃料噴射弁
12・・エアフローメータ
13・・スロットル弁
14・・三元触媒
15・・水温センサ
16・・クランクポジションセンサ
17・・アクセル開度センサ
18・・イグニッションスイッチ
20・・ECU

Claims (8)

  1. 内燃機関の始動直後において該内燃機関の運転状態がアイドリング状態となっている期間であるアイドリング期間の長さを計測する計測手段と、
    該計測手段によって計測されたアイドリング期間の長さを記憶する記憶手段と、
    前記内燃機関の始動時に、前記記憶手段に記憶されている複数回分の過去のアイドリング期間の長さに基づいて、今回のアイドリング期間の長さを予測する予測手段と、を備えたことを特徴とする内燃機関のアイドリング期間予測装置。
  2. 前記内燃機関の始動時の機関温度を取得する機関温度取得手段をさらに備え、
    前記記憶手段が、前記計測手段によって計測されたアイドリング期間の長さを前記機関温度取得手段によって取得された機関温度と対応させて記憶し、
    前記予測手段が、前記内燃機関の始動時に、前記記憶手段に記憶されている過去のアイドリング期間のうち対応している前記内燃機関の始動時の機関温度が前記機関温度取得手段によって今回取得された機関温度を含む所定の範囲内となっているものを複数回分選択し、それらの長さに基づいて今回のアイドリング期間の長さを予測することを特徴とする請求項1記載の内燃機関のアイドリング期間予測装置。
  3. 前記予測手段が、前記記憶手段に記憶された所定回数分の過去のアイドリング期間の長さの代表値をアイドリング期間の長さの予測値とすることを特徴とする請求項1または2記載の内燃機関のアイドリング期間予測装置。
  4. 請求項1から3のいずれか1項に記載の内燃機関のアイドリング期間予測装置と、
    前記内燃機関が冷間始動されたときは、アイドリング期間中に、内燃機関の点火時期を基本点火時期より遅角させることで前記内燃機関の排気通路に設けられた排気浄化触媒を昇温させる昇温手段と、を備える内燃機関の制御システムにおいて、
    前記昇温手段は、前記アイドリング期間予測装置によって予測されたアイドリング期間の長さに基づいて、アイドリング期間中の点火時期を制御することを特徴とする内燃機関の制御システム。
  5. 前記昇温手段は、アイドリング期間が終了した時点の前記排気浄化触媒の温度が所定の活性温度以上となる範囲内で、アイドリング期間中における前記排気浄化触媒よりも下流側に流出する未燃燃料成分の積算量が最少となるように、アイドリング期間中の点火時期を制御することを特徴とする請求項4記載の内燃機関の制御システム。
  6. 前記昇温手段によってアイドリング期間中の点火時期が基本点火時期よりも遅角されるときは、アイドリング期間中の内燃機関の吸入空気量を基本空気量よりも増加させることを特徴とする請求項4または5記載の内燃機関の制御システム。
  7. 請求項1から3のいずれか1項に記載の内燃機関のアイドリング期間予測装置と、
    前記内燃機関が冷間始動されたときは、アイドリング期間中に、前記内燃機関の点火時期、吸入空気量および燃料噴射量を制御することで前記内燃機関の排気通路に設けられた排気浄化触媒を昇温させる昇温手段と、を備える内燃機関の制御システムにおいて、
    前記昇温手段は、前記アイドリング期間予測装置によって予測されたアイドリング期間の長さに基づいて、アイドリング期間中の点火時期、吸入空気量および燃料噴射量を制御することを特徴とする内燃機関の制御システム。
  8. 前記昇温手段は、アイドリング期間が終了した時点の前記排気浄化触媒の温度が所定の活性温度以上となる範囲内で、アイドリング期間中における前記排気浄化触媒よりも下流側に流出する未燃燃料成分の積算量が最少となるように、前記アイドリング期間予測装置
    によって予測されたアイドリング期間の長さに基づいて、アイドリング期間中の点火時期、吸入空気量および燃料噴射量を制御することを特徴とする請求項7記載の内燃機関の制御システム。
JP2007241373A 2007-09-18 2007-09-18 内燃機関の制御システム Expired - Fee Related JP4844516B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007241373A JP4844516B2 (ja) 2007-09-18 2007-09-18 内燃機関の制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007241373A JP4844516B2 (ja) 2007-09-18 2007-09-18 内燃機関の制御システム

Publications (2)

Publication Number Publication Date
JP2009074371A true JP2009074371A (ja) 2009-04-09
JP4844516B2 JP4844516B2 (ja) 2011-12-28

Family

ID=40609606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007241373A Expired - Fee Related JP4844516B2 (ja) 2007-09-18 2007-09-18 内燃機関の制御システム

Country Status (1)

Country Link
JP (1) JP4844516B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101517794B1 (ko) * 2013-10-31 2015-05-06 한국기계연구원 가솔린엔진의 배기가스 정화방법
CN106909993A (zh) * 2017-03-03 2017-06-30 吉林大学 基于时空学习的马尔科夫链微行程间隔时长预测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02191849A (ja) * 1989-01-18 1990-07-27 Kubota Ltd ディーゼルエンジンの燃料噴射ポンプの暖機運転期間用燃料噴射時期進角装置
JP2002181179A (ja) * 2000-12-12 2002-06-26 Toyota Motor Corp 車両用制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02191849A (ja) * 1989-01-18 1990-07-27 Kubota Ltd ディーゼルエンジンの燃料噴射ポンプの暖機運転期間用燃料噴射時期進角装置
JP2002181179A (ja) * 2000-12-12 2002-06-26 Toyota Motor Corp 車両用制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101517794B1 (ko) * 2013-10-31 2015-05-06 한국기계연구원 가솔린엔진의 배기가스 정화방법
CN106909993A (zh) * 2017-03-03 2017-06-30 吉林大学 基于时空学习的马尔科夫链微行程间隔时长预测方法

Also Published As

Publication number Publication date
JP4844516B2 (ja) 2011-12-28

Similar Documents

Publication Publication Date Title
US7418946B2 (en) Engine start control apparatus and method
JP5590151B2 (ja) 内燃エンジンの始動制御方法及び始動制御装置
JP2003138960A (ja) 内燃機関の触媒早期暖機制御装置
EP2754867B1 (en) Warm-up system for exhaust system of internal combustion engine
JP4304468B2 (ja) 内燃機関の油温推定装置
JP4844516B2 (ja) 内燃機関の制御システム
JP5370295B2 (ja) 内燃機関の機関油温推定装置及びこれを具備する内燃機関のバルブタイミング可変装置
JP2010185433A (ja) 内燃機関の触媒暖機制御装置
JP4270246B2 (ja) エンジンの始動制御装置及び始動制御方法
JP2003343242A (ja) 触媒の温度推定装置
JP2007231861A (ja) 内燃機関の油温推定装置
JP6737728B2 (ja) 内燃機関の制御装置及び制御方法
JP5278054B2 (ja) 内燃機関の制御装置
JP2008232066A (ja) 内燃機関の点火制御システム
JP4789291B2 (ja) 内燃機関の昇温運転制御装置
JPH11315741A (ja) 内燃機関の点火時期制御装置
JP6327240B2 (ja) 内燃機関の制御装置
JP2020045790A (ja) 内燃機関の燃料噴射制御装置
JP6806417B1 (ja) 触媒温度推定装置、およびエンジン制御装置
JP4692478B2 (ja) オイル温度推定装置及びオイル温度推定方法
JP4148081B2 (ja) 内燃機関の制御装置
JP4110534B2 (ja) 内燃機関の可変バルブ制御装置
JP2017194006A (ja) 内燃機関の制御装置
JP2009150354A (ja) 内燃機関のアイドリング期間予測装置および制御システム
JP2010077848A (ja) 内燃機関の空燃比制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees