JP2017194006A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2017194006A
JP2017194006A JP2016084392A JP2016084392A JP2017194006A JP 2017194006 A JP2017194006 A JP 2017194006A JP 2016084392 A JP2016084392 A JP 2016084392A JP 2016084392 A JP2016084392 A JP 2016084392A JP 2017194006 A JP2017194006 A JP 2017194006A
Authority
JP
Japan
Prior art keywords
fuel injection
temperature
catalyst
injection amount
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016084392A
Other languages
English (en)
Inventor
了允 菊池
Ryosuke Kikuchi
了允 菊池
孝治 川本
Koji Kawamoto
孝治 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016084392A priority Critical patent/JP2017194006A/ja
Publication of JP2017194006A publication Critical patent/JP2017194006A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

【解決手段】この内燃機関の制御装置は、推定触媒温度TCEが所定の閾値温度TCth以上であるか否かを判定する過昇温判定処理を実行する触媒過昇温判定手段と、点火遅角要求が発生した場合に点火時期を所定量遅角させる点火時期制御手段と、基本燃料噴射量Fbaseを決定する基本燃料噴射量決定手段と、推定触媒温度TCEが閾値温度TCth以上であると判定された場合、所定の燃料増量値Kaによって基本燃料噴射量Fbaseを増大させる燃料噴射量補正処理を行う燃料噴射量算出手段と、を備える。本制御装置は、点火時期の遅角要求が発生したとき、触媒過昇温判定手段に直ちに過昇温判定処理を実行させ且つ燃料噴射量算出手段に直ちに燃料噴射量補正処理を実行させるように構成される。【効果】これによれば、点火遅角後の排気ガス温度の上昇による急激な触媒の過昇温を抑え、触媒の溶損を回避することができる。【選択図】図4

Description

本発明は、点火時期の遅角制御により触媒が過昇温となると判定したときに燃料噴射量を増量して、触媒の溶損を防止する内燃機関の制御装置に関する。
排気ガスを浄化するための排気浄化装置(以下、単に「触媒」とも称呼する。)を備えた内燃機関において、高温の排気ガスにより触媒が過昇温状態となり、浄化能力の低下及び触媒の溶損等が発生することがある。従来から、触媒が過昇温状態となる虞があるときは、燃料噴射量を増量して未燃燃料を内燃機関の排気系統に供給し、触媒を冷却するOTP(Over Temperature Protection)増量制御が知られている。
例えば、OTP増量制御が実行される場合としては、点火時期の遅角制御によって排気ガスの温度が上昇する場合が挙げられる。そこで、従来の制御装置の一つ(以下、「従来装置」とも称呼する。)は、触媒温度を推定し、その推定した触媒温度が所定の閾値温度(以下、「過昇温判定温度」とも称呼する。)を超えたと判定したときに、上記OTP増量制御を実行するようになっている(例えば、特許文献1を参照。)。
特開2013−249792号公報
しかしながら、従来装置によれば、点火時期を遅角させる制御は、内燃機関の1サイクル毎にその点火タイミングに反映される。一方、触媒温度の推定及び推定された触媒温度が過昇温判定温度以上であるか否かの判定(過昇温判定処理)、並びに燃料噴射量の増量値算出処理は、第1時間(例えば、16ms)が経過する毎に実行される。更に、上記燃料噴射量の増量値によって燃料噴射量を増大させる燃料噴射量補正処理は、第2時間(例えば、8ms)が経過する毎に実行される。その結果、点火時期の遅角が実行されるタイミングからOTP増量制御による燃料噴射量の増量のタイミングが遅れ、触媒が過昇温になる虞がある。機関回転速度が高いときには点火サイクルが短くなるので、更に触媒が過昇温になり易い。
本発明は上記問題に対処するために為されたものである。即ち、本発明の目的の一つは、点火遅角後の排気ガス温度の上昇による急激な触媒の過昇温を抑え、触媒の溶損を回避することが可能な内燃機関の制御装置を提供することにある。
そこで、本発明の内燃機関の制御装置(以下、「本発明装置」とも称呼する。)は、排気通路に触媒(53)が配設され、燃焼室(25)に供給される混合気に含まれる燃料を噴射する燃料噴射弁(38)と、前記混合気を点火する点火装置(37)と、を備える内燃機関(10)に適用される。
本発明装置は、前記触媒の温度を前記機関の運転状態パラメータに基づいて推定するとともに、前記推定された触媒の温度(TCE)が所定の閾値温度(TCth)以上であるか否かを判定する「過昇温判定処理」を実行する触媒過昇温判定手段(図5のルーチン)と、
点火時期の遅角要求が発生した場合に前記機関の運転状態パラメータに基づいて決定される基本点火時期(Abase)を所定の遅角量(Ad)だけ遅角させた点火時期(Aig)にて前記混合気の点火を行うように前記点火装置を制御する点火時期制御手段(図3のルーチン)と、
前記混合気の空燃比を理論空燃比に一致させるために必要な前記燃料噴射弁から噴射される燃料の量を前記機関の運転状態パラメータに基づいて基本燃料噴射量(Fbase)として決定する基本燃料噴射量決定手段(ステップ710乃至ステップ730)と、
前記「過昇温判定処理」によって前記推定された触媒の温度が前記閾値温度以上であると判定された場合(ステップ550:Yes)、所定の燃料増量値(Ka)によって前記基本燃料噴射量を増大させる「燃料噴射量補正処理」を行う燃料噴射量算出手段(ステップ760)と、
を備える。
ところで、点火時期の遅角要求が発生していない通常運転時においては、触媒の溶損の虞は少ない。
この場合、本発明装置の前記触媒過昇温判定手段は一定の第1時間が経過する毎に前記「過昇温判定処理」を実行し且つ前記燃料噴射量算出手段は一定の第2時間が経過する毎に前記「燃料噴射量補正処理」を実行する。
ところが、点火時期の遅角要求が発生すると、排気ガス温度が急激に上昇し、触媒が過昇温状態となり溶損する虞がある。
そこで、本発明装置は、前記点火時期の遅角要求が発生したとき(ステップ325:Yes、ステップ330)、前記触媒過昇温判定手段に前記第1時間が経過する前であっても直ちに前記「過昇温判定処理」を実行させ(図5のルーチン)且つ前記燃料噴射量算出手段に前記第2時間が経過する前であっても直ちに前記「燃料噴射量補正処理」を実行させる(ステップ760)。
これによれば、従来、個別のタイミングにて実行されていた過昇温判定処理と、燃料噴射量補正処理とを直ちに実行させることにより、点火遅角要求時点から点火遅角に伴う燃料の増量値が反映された燃料噴射量が算出される時点までの時間を極力短くすることができる。よって、点火遅角要求時点から増量された燃料噴射量が実際の燃料噴射に反映されるまでの時間を従来装置より短縮することができる。その結果、点火遅角後の排気ガス温度の上昇による急激な触媒の過昇温を抑え、触媒の溶損を回避することができる。
上記説明においては、発明の理解を助けるために、実施形態に対応する発明の構成に対して、実施形態で用いた符号を括弧書きで添えているが、発明の各構成要件は、前記符号によって規定される実施形態に限定されるものではない。本発明の目的、他の特徴及び付随する利点は、以下の図面を参照しつつ記述される本発明の実施形態についての説明から容易に理解されるであろう。
図1は、本発明の実施形態に係る内燃機関の制御装置を適用した内燃機関の概略構成図である。 図2は、図1に示した内燃機関の制御装置における点火遅角要求発生時の点火遅角要求フラグ、点火遅角量、推定触媒温度、触媒過昇温判定フラグ、燃料噴射量及び触媒温度の時間推移(タイミングチャート)を示した図である。 図3は、図1に示した内燃機関の制御装置のCPUが実行する「点火時期遅角制御ルーチン」を示したフローチャートである。 図4は、図1に示した内燃機関の制御装置のCPUが実行する「即時燃料増量制御ルーチン」を示したフローチャートである。 図5は、図1に示した内燃機関の制御装置のCPUが実行する「触媒温度推定・過昇温判定ルーチン」を示したフローチャートである。 図6は、図1に示した内燃機関の制御装置のCPUが実行する「燃料増量値算出ルーチン」を示したフローチャートである。 図7は、図1に示した内燃機関の制御装置のCPUが実行する「燃料噴射量算出ルーチン」を示したフローチャートである。 図8は、本発明の実施形態の変形例に係る燃料増量値算出方法を説明するためのルックアップテーブルであり、図8(A)は点火遅角時の温度上昇量を算出するためのテーブル、図8(B)は温度上昇を補償する目標空燃比を算出するためのテーブルである。
以下、図面を参照しながら本発明の実施形態に係る内燃機関の制御装置(以下、「本制御装置」と称呼する。)について説明する。
(構成)
図1は、この制御装置を4サイクル火花点火式4気筒内燃機関10に適用したシステムの概略構成を示している。なお、図1は特定気筒の断面のみを示しているが、他の気筒も同様の構成となっている。
この内燃機関10は、シリンダブロック部20と、シリンダブロック部20の上部に固定されるシリンダヘッド部30と、シリンダブロック部20にガソリン混合気を供給するための吸気系統40と、シリンダブロック部20からの排気ガスを外部に放出するための排気系統50と、を含んでいる。
シリンダブロック部20は、シリンダ21、ピストン22、コンロッド23及びクランクシャフト24を含んでいる。
シリンダ21のボア壁面、ピストン22の冠面及びシリンダヘッド部30の下面は燃焼室25を形成している。
シリンダヘッド部30は、燃焼室25に連通した吸気ポート31、吸気ポート31を開閉する吸気弁32、吸気弁32を駆動するインテークカムシャフト33、燃焼室25に連通した排気ポート34、排気ポート34を開閉する排気弁35、排気弁35を駆動するエキゾーストカムシャフト36、点火プラグ、イグニッションコイル及びイグナイタを含む点火装置37及び燃料噴射弁38を備えている。
点火装置37は、その点火プラグが燃焼室25に露出するようにしてシリンダヘッド部30に配設されている。点火装置37は電子制御装置70から送出される信号に従って点火プラグから火花を発生させるようになっている。
燃料噴射弁38は、吸気ポート31に配設されている。燃料噴射弁38は、電子制御装置70から送出される信号に従って燃料を吸気ポート31に噴射するようになっている。
吸気系統40は、吸気ポート31に連通し吸気ポート31とともに吸気通路を形成するインテークマニホールドを含む吸気管41及び吸気管41内にあって吸気通路の開口断面積を可変とするスロットルバルブ42を備えている。
スロットルバルブ42は、DCモータからなるスロットルバルブアクチュエータ42aにより吸気管41内で回転駆動されるようになっている。
排気系統50は、各気筒の排気ポート34に一端が接続された複数の枝部を含むエキゾーストマニホールド51、各エキゾーストマニホールド51の枝部の他端であってすべての枝部が集合している集合部に接続された排気管52、排気管52に配設された上流側触媒53、及び上流側触媒53よりも下流の排気管52に配設された下流側触媒54を備えている。排気ポート34、エキゾーストマニホールド51及び排気管52は、排気通路を構成している。
上流側触媒53及び下流側触媒54のそれぞれは、白金等の貴金属からなる活性成分を担持する三元触媒装置(排気浄化装置)である。各触媒は、各触媒に流入するガスの空燃比が理論空燃比であるとき、HC及びCO等の未燃成分を酸化するとともに窒素酸化物(NOx)を還元する機能を有する。この機能は触媒機能とも称呼される。更に、各触媒は、酸素を吸蔵(貯蔵)する酸素吸蔵能を有し、空燃比が理論空燃比から偏移したとしても、未燃成分及び窒素酸化物を浄化することができる。
近年、貴金属の価格高騰により触媒に担持される貴金属の量が削減されてきている。そこで、近年の触媒は従来と同様の暖機性能を確保するために、触媒の壁厚を薄くして熱容量を小さくしている。ところが、触媒の熱容量を小さくすることにより、触媒の温度は排気ガスの温度変化の影響を受け易くなる。例えば、排気ガスが急激に高温になると触媒の温度も急激に上昇してしまう。従って、近年の触媒は、従来の触媒よりも過昇温状態になり易く、触媒溶損が起こり易い。
一方、本制御装置は、エアフローメータ61、スロットルポジションセンサ62、カムポジションセンサ63、クランクポジションセンサ64、水温センサ65、空燃比センサ66、及びアクセル開度センサ67を備えている。
エアフローメータ61は、吸気管41内を流れる吸入空気の質量流量Gaに応じた信号を出力するようになっている。
スロットルポジションセンサ62は、スロットルバルブ43の開度(スロットル弁開度)を検出し、スロットル弁開度TAを表す信号を出力するようになっている。
カムポジションセンサ63は、インテークカムシャフトが90°回転する毎に(即ち、クランクシャフト24が180°回転する毎に)1つのパルスを有する信号(G2信号)を発生するようになっている。
クランクポジションセンサ64は、クランクシャフト24が10°回転する毎に狭幅のパルスを有するとともにクランクシャフト24が360°回転する毎に広幅のパルスを有する信号を出力するようになっている。この信号は、後述する電子制御装置70によって機関回転速度NE(内燃機関10の回転速度)に変換される。
水温センサ65は、内燃機関10の冷却水の温度を検出し、冷却水温THWを表す信号を出力するようになっている。
空燃比センサ66は、排気通路であってエキゾーストマニホールド51の枝部の集合部又はその集合部よりも下流側に配設されている。空燃比センサ66は、限界電流式の酸素濃度センサである。空燃比センサ66は、「被検出ガス」の空燃比A/Fに応じた電圧である出力値Vabyfsを出力するようになっている。
アクセル開度センサ67は、運転者によって操作されるアクセルペダルAPの操作量Accpを表す信号を出力するようになっている。
電子制御装置(ECU)70は、互いにバス接続されたCPU71、CPU71が実行するプログラム、ルックアップテーブル(マップ、関数)及び定数等を予め記憶したROM72、CPU71が必要に応じてデータを一時的に格納するRAM73、及び、バックアップRAM74並びにA/Dコンバータを含むインタフェース75等からなるマイクロコンピュータである。
電子制御装置70は、カムポジションセンサ63及びクランクポジションセンサ64からの信号に基づいて、基準気筒(例えば、第1気筒)の圧縮上死点を基準とした絶対クランク角度CAを取得する。この絶対クランク角度CAは、基準気筒の圧縮上死点において「0°クランク角度」に設定され、クランクシャフト24の回転角度に応じて720°クランク角度まで増大し、その時点にて再び0°クランク角度に設定される。
インタフェース75は、前記センサ61乃至67と接続され、CPU71にセンサ61乃至67からの信号を伝送するようになっている。更に、インタフェース75は、CPU71の指示に応じて可変吸気タイミング装置33のアクチュエータ33a、点火装置37、燃料噴射弁38及びスロットルバルブアクチュエータ42a等に駆動信号(指示信号)を送出するようになっている。
(作動の概要)
次に、上記のように構成された本制御装置の作動の概要について図2のタイムチャートを参照しながら説明する。
図2に示した例においては、本制御装置は、時刻t1にて点火遅角要求フラグXRTDの値を「0」から「1」に変更する。この点火遅角要求フラグXRTDは、その値が「0」のとき点火遅角要求がないことを示し、その値が「1」のとき点火遅角要求があることを示す。点火遅角要求は、点火時期を「MBT(Minimum advance for Best Torque) に設定されている基本点火時期」から遅角することの要求である。本制御装置は、例えば、車両10の変速機にダウンシフトを実行させる際に点火遅角要求を発生して点火時期を遅角させ、以て、エンジントルクを一時的に低下させることによって変速ショックを低減させる。
ところが、点火時期が遅角されると(点火遅角制御が行われると)排気ガス温度Texが上昇する。排気ガス温度Texの上昇に伴って、触媒53が過昇温状態となると触媒53が溶損してしまう虞があるので、これを防止するために燃料噴射弁38から噴射される燃料を増量する燃料増量制御が実行される。燃料を増量することにより燃料の気化熱を用いて触媒を冷却することができるからである。
本制御装置は、点火を実行する毎に点火時期を演算している。即ち、本制御装置は、クランク角が180°(180°CA)回転する毎に(クランク角に同期して)点火時期を演算している。従って、本制御装置は、時刻t1にて点火遅角要求が発生すると、その直後の点火がなされる時刻t2までに点火遅角量を「0」から所定量(本例においては、クランク角2°)にまで増大させることにより、点火時期を遅角させる。
ところで、従来の制御装置は、一定の第1時間(例えば、16ms)が経過する毎に「触媒温度を推定するための演算(即ち、推定触媒温度TCEの更新)及び推定触媒温度TCEが過昇温判定温度TCth以上となったか否かの判定(以下、「過昇温判定処理」と称呼する。)」を行うように構成されている。なお、推定触媒温度TCEは、筒内吸入空気量Mc(1回の吸気行程において1つの気筒に吸入される空気量)、機関回転速度NE及び点火時期遅角量Ad等に基づいて推定される。
更に、従来の制御装置は、第2時間(例えば、8ms)が経過する毎に「所定の燃料増量値(増量係数)によって燃料噴射量を増大させる燃料噴射量の算出(以下、「燃料噴射量補正処理」と称呼する。)」を行うように構成されている。そして、従来の制御装置は、過昇温判定処理により推定触媒温度TCEが過昇温判定温度TCth以上となったと判定した場合に過昇温判定フラグXCOTの値を「1」に設定し、過昇温判定フラグXCOTの値が「1」である場合に燃料噴射量補正処理のタイミングが到来したときに燃料噴射量Fiを増量するようになっている。
従って、図2に破線により示したように、時刻t2にて点火時期が遅角され、実際の触媒の温度Tcatが時刻t2の直後において過昇温判定温度TCth以上となったとしても、過昇温判定フラグXCOTの値は「時刻t1から第1時間経過後の時刻t4」において漸く「1」に設定される。更に、「時刻t4から第2時間経過後の時刻t5」において燃料噴射量Fiが増量される。その結果、燃料噴射量Fiの増量が遅れるので、実際の触媒の温度Tcatは過昇温判定温度TCthを大きく超えてしまう。
これに対し、本制御装置は、点火遅角要求が発生した直後でない場合(即ち、点火遅角要求フラグXRTDの値が「0」から「1」に変化した直後でない場合)には、従来の制御装置と同様のタイミングにて、「過昇温判定処理」及び「燃料噴射量補正処理」を実行させる。一方、本制御装置は、点火遅角要求が発生した直後である場合(即ち、点火遅角要求フラグXRTDの値が「0」から「1」に変化した直後の場合)には、「過昇温判定処理」及び「燃料噴射量補正処理」を直ちに実行させるように構成されている。
この結果、図2において実線により示したように、時刻t1において推定触媒温度TCEが更新され、次いで、推定触媒温度TCEが過昇温判定温度TCth以上となったと判定されることにより過昇温判定フラグXCOTの値が「1」に設定される。そして、直ちに、燃料増量値の演算及び燃料噴射量Fiの演算がなされるので、燃料噴射量Fiは時刻t1以降において直ちに増量される。よって、実際の触媒の温度Tcatが過昇温判定温度TCthを大きく超えてしまうことを回避することができる。
(実際の作動)
次に、上記のように構成された空燃比制御装置の実際の作動について説明する。
なお、以下に説明する「点火時期遅角制御ルーチン」において点火遅角要求フラグXRTDの値が「0」から「1」に変化した直後でない場合、「触媒温度推定・触媒過昇温判定ルーチン」(サブルーチンA)及び「燃料増量値(増量係数)算出ルーチン」(サブルーチンB)は一定の第1時間(16ms)が経過する毎に実行され、「燃料噴射量算出ルーチン」(サブルーチンC)は一定の第2時間(8ms)が経過する毎に実行されるようになっている。
<点火時期遅角制御>
前述したように、点火時期の遅角は、例えば、ダウンシフト時に実行される。以下に、ダウンシフト時の点火時期遅角制御の実際の作動を説明する。
CPU71は機関10の任意の気筒のクランク角度CAがその気筒の圧縮上死点前の所定角度に達したときに図3にフローチャートにより示した「点火時期遅角制御ルーチン」をその気筒に対して実行するようになっている。
機関10の特定の気筒のクランク角度CAが前述の所定角度に達すると、CPU71は図3のステップ300から処理を開始してステップ305に進み、ROM72に格納された「機関回転速度NEと、機関負荷KLと、基本点火時期Abaseと、の関係を規定したルックアップテーブルMap1(NE,KL)」に実際の機関回転速度NEと、機関負荷KLとを適用して基本点火時期Abaseを取得する。
次いで、CPU71はステップ310に進み、ROM72に格納された「機関回転速度NEと、図示しない変速機の入力軸回転速度NTと、ギヤ比ρと、基準遅角量Adbと、の関係を規定したルックアップテーブルMap2(NE,NT,ρ)」に実際の機関回転速度NEと、変速機の入力軸回転速度NTと、ギヤ比ρとを適用して基準遅角量Adbを算出する。
次いで、CPU71はステップ315に進み、変速機の入力軸回転速度NTと機関回転速度NEとの回転速度差ΔN(=NT−NE)を算出し、その差ΔNに基づいて補正係数kを算出する。なお、補正係数kは回転速度差ΔNが大きいほど大きい値であり、「0」から「1」の間で変化する値となるように算出される。補正係数kは、関数f(NT−NE)に基づいて演算されてもよいし、ROM72に格納された変速機の入力軸回転速度NT、機関回転速度NE、及び補正係数kとの関係を規定するルックアップテーブルを参照して取得されてもよい。
次いで、CPU71はステップ320に進み、ステップ310にて取得された基準遅角量Adbにステップ315にて取得された補正係数kを乗じることによって遅角量Adを算出し(Ad=k・Adb)、ステップ325に進んで遅角量Adが「0」より大きいか否かを判定する。
遅角量Adが「0」より大きい場合、CPU71はステップ325にて「Yes」と判定してステップ330に進み、点火遅角要求フラグXRTDの値を「1」に設定してステップ340に進む。一方、遅角量Adが「0」以下である場合、CPU71はステップ325にて「No」と判定してステップ335に進み、点火遅角要求フラグXRTDの値を「0」に設定してステップ340に進む。
次いで、CPU71はステップ305にて取得された基本点火時期Abaseからステップ320にて取得された遅角量Adを減ずることによって点火時期Aigを算出し(Aig=Abase−Ad)、ステップ345に進んで点火を実行しステップ395に進んで本ルーチンを一旦終了する。
<即時燃料増量制御>
CPU71は機関10の任意の気筒のクランク角度CAがその気筒の圧縮上死点前の所定のクランク角度(例えば、BTDC90°CA)に達したときに図4にフローチャートにより示した「即時燃料増量制御ルーチン」をその気筒に対して実行するようになっている。
任意の気筒のクランク角度が上記所定クランク角度に達すると、CPU71は図4のステップ400から処理を開始してステップ410に進み、点火時期の遅角要求が発生した直後か否か(点火遅角要求フラグXRTDの値が「0」から「1」に変化した直後であるか否か)を判定する。よって、点火遅角要求フラグXRTDの値が「0」から「1」に変化した直後ではない場合、CPU71はステップ410にて「No」と判定してステップ495に直接進んで本ルーチンを一旦終了する。従って、サブルーチンA、B及びCは即時にコールされない。即ち、サブルーチンA及びBは16ms毎に実行され、サブルーチンCは8ms毎に実行される。
<触媒温度推定・触媒過昇温判定>
一方、点火遅角要求フラグXRTDの値が「0」から「1」に変化した直後である場合、CPU71はステップ410にて「Yes」と判定してステップ420に進み、「触媒温度推定・触媒過昇温判定ルーチン」(サブルーチンA、即ち、「過昇温判定処理」)を実行するようになっている。従って、CPU71はステップ500を経由してステップ510に進み、現時点が機関10の始動直後であるか否かを判定する。現時点が機関10の始動直後である場合、CPU71は、ステップ510にて「Yes」と判定してステップ520に進む。
CPU71は、ステップ520にて、「始動時冷却水温THWSと触媒温度TCEとの関係」を予め定めた始動時触媒温度推定関数f(THWS)に、現時点における冷却水温THWSを適用することにより、現時点における触媒の温度TCEを取得(推定)する。始動時触媒温度推定関数f(THWS)において、触媒の温度TCEは、始動時冷却水温THWSが増大するにつれて増大するように定められている。
次いで、CPU71はステップ530に進む。CPU71は、ステップ530にて、「筒内吸入空気量Mcと、機関回転速度NEと、排気ガス温度Texと、の関係」を予め定めた排気ガス温度TexについてのルックアップテーブルMapTex(Mc,NE)に現時点における筒内吸入空気量Mc及び機関回転速度NEを適用することにより、現時点における排気ガス温度Texを取得(推定)する。
次いで、CPU71はステップ540に進む。CPU71は、ステップ540にて下記(1)式に従って推定触媒温度TCEを更新・取得する。下記(1)式において、αは「0」よりも大きく且つ「1」よりも小さい定数を、TCE(k)は更新される前の推定触媒温度TCEを、TCE(k+1)は更新された後の推定触媒温度TCEを表す。

TCE(k+1)=α・TCE(k)+(1−α)・Tex …(1)
ステップ540の処理を実行した後、CPU71はステップ550に進んで、推定触媒温度TCEが過昇温判定温度TCth以上であるか否かを判定する。推定触媒温度TCEが過昇温判定温度TCth以上である場合、CPU71はステップ550にて「Yes」と判定してステップ560に進み、触媒過昇温フラグXCOTの値を「1」に設定してステップ595に進み、図4のステップ430に進む。一方、推定触媒温度TCEが過昇温判定温度TCth未満である場合、CPU71はステップ550にて「No」と判定してステップ570に進み、触媒過昇温フラグXCOTの値を「0」に設定してステップ595に進み、図4のステップ430に進む。
これに対し、現時点が機関10の始動直後ではない場合、CPU71はステップ510にて「No」と判定してステップ530に直接進む。よって、機関10が始動されてから十分な時間が経過すると、CPU71はステップ520の処理を行うことなく触媒の温度TCEを取得することになる。
<燃料増量値(増量係数)算出>
CPU71はステップ430に進むと、図6にフローチャートにより示した「燃料増量値(増量係数)算出ルーチン」(サブルーチンB、即ち、「所定の燃料増量値」の算出処理)を実行するようになっている。従って、CPU71はステップ600を経由してステップ610に進み、触媒過昇温フラグXCOTの値が「1」であるか否かを判定する。
触媒過昇温フラグXCOTの値が「1」である場合、CPU71はステップ610にて「Yes」と判定してステップ620に進み、点火遅角量Ad及びアクセル操作量Accpを取得する。
次いで、CPU71はステップ630に進むと、ROM72に格納された「点火遅角量Adと、アクセル操作量Accpと、燃料噴射量についての増量係数Kaと、の関係を規定するルックアップテーブルMapKa(Ad,Accp)」に、ステップ620にて取得した点火遅角量Adと、アクセルペダル操作量Accpとを適用することにより、増量係数Ka(所定の燃料増量値)を算出する。このテーブルによれば、増量係数Kaは「1」以上の値であり、点火遅角量Adが大きいほど大きくなり、アクセルペダル操作量Accpが大きいほど大きくなるように求められる。次いで、CPU71はステップ695に進み、図4のステップ440に進む。
これに対し、触媒過昇温フラグXCOTの値が「0」である場合、CPU71はステップ610にて「No」と判定してステップ640に進み、増量係数Kaを「1」に設定してステップ695に進み、図4のステップ440に進む。
<燃料噴射量算出>
CPU71はステップ440に進むと、図7にフローチャートにより示した「燃料噴射量算出ルーチン」(サブルーチンC、即ち、「基本燃料噴射量決定処理」及び「燃料噴射量補正処理」)を実行するようになっている。従って、CPU71はステップ700を経由してステップ710に進み、クランクポジションセンサ64からの出力信号により得られる機関回転速度NEと、エアフローメータ61により計測された吸入空気量Gaと、ルックアップテーブルMapMc(NE,Ga)と、に基づいて、今回吸気行程を迎える気筒(以下、「燃料噴射気筒」とも称呼する。)に吸入される吸入空気量(筒内吸入空気量)Mc(k)を算出する。
なお、筒内吸入空気量Mc(k)は機関10の吸気通路における空気の挙動をモデル化した周知の空気量推定モデル(空気モデル)を用いて求められてもよい。筒内吸入空気量Mc(k)は算出される毎に機関10の絶対クランク角度に対応付けされながらRAM73に格納されていく。
次いで、CPU71はステップ720に進み、目標空燃比abyfrに理論空燃比stoich(例えば、14.7)を設定する。
次いで、CPU71はステップ730に進み、筒内吸入空気量Mc(k)を目標空燃比abyfr(この場合、理論空燃比stoich)により除することによって、基本燃料噴射量Fbaseを求める。この基本燃料噴射量Fbaseは、機関10の空燃比を目標空燃比abyfrに一致させるためのフィードフォワード量である。
次いで、CPU71はステップ740に進み、ステップ630にて算出した増量係数Kaが「1」より大きいか否かを判定する。増量係数Kaが「1」より大きい場合、CPU71はステップ740にて「Yes」と判定してステップ750に進み、フィードバック補正量DFiを「0」に設定してステップ760に進む。一方、増量係数Kaが「1」以下である場合、CPUは「No」と判定してステップ760に直接進む。
CPU71は、ステップ760にて基本燃料噴射量Fbaseに別途実行されるルーチンによって算出されるフィードバック補正量DFiを加えるとともに、増量係数Kaを乗ずることにより最終燃料噴射量(最終燃料供給量)Fiを求める。次いで、CPU71はステップ770に進み、最終燃料噴射量Fiの燃料を噴射するための噴射指示信号を燃料噴射気筒に対して設けられている燃料噴射弁38に対して送出してステップ795に進み、図4のステップ495に進んで本ルーチンを一旦終了する。
以上、説明したように、本制御装置は、点火時期の遅角要求が発生したとき(ステップ325:Yes、ステップ330)、触媒過昇温判定手段に第1時間(例えば、16ms)が経過する前であっても直ちに「過昇温判定処理」を実行させ(図5のルーチン)且つ燃料噴射量算出手段に第2時間(例えば、8ms)が経過する前であっても直ちに「燃料噴射量補正処理」を実行させる(ステップ760)ように構成される。これによれば、点火遅角要求時点から、増量された燃料噴射量が実際の燃料噴射に反映されるまでの時間を従来装置より短縮することができる。その結果、点火遅角後の排気ガス温度の上昇による急激な触媒の過昇温を抑え、触媒の溶損を回避することができる。
<その他の実施形態>
本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。
上記実施形態においては、点火遅角時の燃料増量に際し、燃料の増量係数Kaを算出し、基本燃料噴射量Fbaseに増量係数Kaを乗ずることにより、燃料噴射量を算出したが、これに代えて、燃料増量に際し、目標空燃比を理論空燃比stoichよりも小さく(リッチに)することにより、燃料を増量してもよい。
この場合、CPU71は、図8(A)に示したように、ROM72に格納された「点火遅角量Adと、機関回転速度NEと、理論空燃比stoichにて機関10を運転しているときに点火遅角量Adにて点火遅角させたときの温度上昇量ΔTと、の関係を規定するルックアップテーブルMapΔT(Ad,NE)」に、要求された点火遅角量Adと、取得された機関回転速度NEとを適用して、理論空燃比stoichにて機関10を運転しているときの温度上昇量ΔTを算出する。このテーブルによれば、温度上昇量ΔTは、点火遅角量Adが大きいほど大きくなり、機関回転速度NEが高いほど大きくなるように求められる。
次いで、CPU71は、図8(B)に示したように、ROM72に格納された「温度上昇量ΔTと、機関回転速度NEと、温度上昇量ΔTを補償する(キャンセルする)ことを可能とする目標空燃比abyfrと、の関係を規定するルックアップテーブルMapabyfr(ΔT,NE)」に、算出された温度上昇量ΔTと、取得された機関回転速度NEとを適用して、目標空燃比abyfrを算出する。このテーブルによれば、目標空燃比abyfrは、温度上昇量ΔTが大きいほど小さくなり、機関回転速度NEが高いほど小さくなるように求められる。
そして、算出された目標空燃比abyfrを図7のルーチン(ステップ720)に適用するとともにステップ740の増量係数Kaを「1」に設定することにより、点火遅角制御時の燃料噴射量Fiを算出することができる。
上記実施形態においては、触媒温度推定に際し、ステップ530にて「筒内吸入空気量Mcと、機関回転速度NEと、排気ガス温度Texと、の関係」を予め定めた排気ガス温度TexについてのルックアップテーブルMapTex(Mc,NE)を用いて排気ガス温度Texを取得(推定)していた。
そこで、更に点火遅角量Adを考慮して、点火遅角量Adとの関係を予め定めた排気ガス温度TexについてのルックアップテーブルMapTex(Mc,NE,Ad)に現時点における筒内吸入空気量Mc、機関回転速度NE及び点火遅角量Adを適用することにより、現時点における排気ガス温度Texを取得(推定)してもよい。これによれば、点火時期の遅角による排気ガスの温度上昇をより正確に反映させることができる。
10…内燃機関、20…シリンダブロック部、21…シリンダ、22…ピストン、24…クランクシャフト、25…燃焼室、30…シリンダヘッド部、31…吸気ポート、32…吸気弁、34…排気ポート、35…排気弁、37…点火装置、38…燃料噴射弁、41…吸気管、42…スロットルバルブ、52…排気管、53…上流側触媒、61…エアフローメータ、62…スロットルポジションセンサ、64…クランクシャフトセンサ、65…水温センサ、66…空燃比センサ、67…アクセル開度センサ、70…電子制御装置(ECU)、71…CPU、72…ROM。

Claims (1)

  1. 排気通路に触媒が配設され、燃焼室に供給される混合気に含まれる燃料を噴射する燃料噴射弁と、前記混合気を点火する点火装置と、を備える内燃機関に適用され、
    前記触媒の温度を前記機関の運転状態パラメータに基づいて推定するとともに、前記推定された触媒の温度が所定の閾値温度以上であるか否かを判定する過昇温判定処理を実行する触媒過昇温判定手段と、
    点火時期の遅角要求が発生した場合に前記機関の運転状態パラメータに基づいて決定される基本点火時期を所定の遅角量だけ遅角させた点火時期にて前記混合気の点火を行うように前記点火装置を制御する点火時期制御手段と、
    前記混合気の空燃比を理論空燃比に一致させるために必要な前記燃料噴射弁から噴射される燃料の量を前記機関の運転状態パラメータに基づいて基本燃料噴射量として決定する基本燃料噴射量決定手段と、
    前記過昇温判定処理によって前記推定された触媒の温度が前記閾値温度以上であると判定された場合、所定の燃料増量値によって前記基本燃料噴射量を増大させる燃料噴射量補正処理を行う燃料噴射量算出手段と、
    を備え、
    前記触媒過昇温判定手段は一定の第1時間が経過する毎に前記過昇温判定処理を実行し且つ前記燃料噴射量算出手段は一定の第2時間が経過する毎に前記燃料噴射量補正処理を実行する、
    内燃機関の制御装置において、
    前記点火時期の遅角要求が発生したとき、前記触媒過昇温判定手段に前記第1時間が経過する前であっても直ちに前記過昇温判定処理を実行させ且つ前記燃料噴射量算出手段に前記第2時間が経過する前であっても直ちに前記燃料噴射量補正処理を実行させる、
    内燃機関の制御装置。
JP2016084392A 2016-04-20 2016-04-20 内燃機関の制御装置 Pending JP2017194006A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016084392A JP2017194006A (ja) 2016-04-20 2016-04-20 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016084392A JP2017194006A (ja) 2016-04-20 2016-04-20 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2017194006A true JP2017194006A (ja) 2017-10-26

Family

ID=60154611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016084392A Pending JP2017194006A (ja) 2016-04-20 2016-04-20 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP2017194006A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021025410A (ja) * 2019-07-31 2021-02-22 ダイハツ工業株式会社 内燃機関の制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021025410A (ja) * 2019-07-31 2021-02-22 ダイハツ工業株式会社 内燃機関の制御装置
JP7345971B2 (ja) 2019-07-31 2023-09-19 ダイハツ工業株式会社 内燃機関の制御装置

Similar Documents

Publication Publication Date Title
JP5590151B2 (ja) 内燃エンジンの始動制御方法及び始動制御装置
EP2087230B1 (en) Ignition control system for internal combustion engines
US20100037860A1 (en) Internal combustion engine controlling apparatus
JP2008163848A (ja) 内燃機関の制御装置
JP4893499B2 (ja) 筒内直接噴射式火花点火内燃機関の制御装置及び制御方法
JP2009228588A (ja) 可変動弁機構の制御装置
JP2009019521A (ja) 内燃機関の制御装置
WO2016088649A1 (ja) エンジンの制御装置
JP2008267293A (ja) 内燃機関の制御システム
JP6551317B2 (ja) 内燃機関の排気温度推定装置
JP2010185433A (ja) 内燃機関の触媒暖機制御装置
JP2001012286A (ja) 筒内噴射式内燃機関の燃料噴射制御装置
JP4270246B2 (ja) エンジンの始動制御装置及び始動制御方法
JP2017194006A (ja) 内燃機関の制御装置
JP2008267294A (ja) 内燃機関の制御システム
JP6841119B2 (ja) エンジンの制御装置
JP5373827B2 (ja) 車載用エンジンの制御装置
JP2017186965A (ja) 内燃機関の制御装置
JP2021046828A (ja) 内燃機関の制御装置
WO2019069443A1 (ja) 内燃機関の制御方法及び内燃機関の制御装置
JP7363667B2 (ja) エンジン装置
JP5556387B2 (ja) 可変バルブシステムの制御装置
JP7428066B2 (ja) エンジン装置
JP2009138673A (ja) 内燃機関の点火制御システム
JP7144373B2 (ja) 内燃機関の燃料噴射制御装置