JP2010077848A - 内燃機関の空燃比制御装置 - Google Patents

内燃機関の空燃比制御装置 Download PDF

Info

Publication number
JP2010077848A
JP2010077848A JP2008245153A JP2008245153A JP2010077848A JP 2010077848 A JP2010077848 A JP 2010077848A JP 2008245153 A JP2008245153 A JP 2008245153A JP 2008245153 A JP2008245153 A JP 2008245153A JP 2010077848 A JP2010077848 A JP 2010077848A
Authority
JP
Japan
Prior art keywords
air
heater
fuel ratio
engine
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008245153A
Other languages
English (en)
Inventor
Masaki Yamashika
正貴 山鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2008245153A priority Critical patent/JP2010077848A/ja
Publication of JP2010077848A publication Critical patent/JP2010077848A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】 排気センサの素子割れを防止しつつ、エンジン始動後の可及的早期に排気センサを活性化して空燃比フィードバック制御を開始する。
【解決手段】 排気通路にはセンサ素子加熱用のヒータを有する排気センサ(酸素センサ)を備え、この酸素センサの出力に基づいて空燃比フィードバック制御を行う場合に、S11ではエンジン始動時の冷却水温Twを読込み、S12では冷却水温Twに基づいて基本ヒータ通電禁止期間Lsを算出する。S13ではエンジン運転停止時の冷却水温とエンジン始動時の冷却水温との温度差ΔTを算出する。S14では温度差ΔTに基づいて期間補正係数Hを算出する。S15では基本ヒータ通電禁止期間Lsに期間補正係数Hを乗じて、最終的なヒータ通電禁止期間Lを算出する。エンジン始動時からヒータ通電禁止期間Lを経過した後にヒータへの通電を開始して、空燃比フィードバック制御を行う。
【選択図】 図3

Description

本発明は、内燃機関の空燃比制御装置に関する。
特許文献1には、排気通路に排気浄化触媒と排気センサとを備え、この排気センサを用いて空燃比フィードバック制御を行う車両用内燃機関の空燃比制御装置において、燃費の向上を目的として、減速時であり、かつ、機関回転数が所定回転数以上である場合に、内燃機関へ供給する燃料をカットすることが記載されている。
特開2005−163747号公報
ところで、排気センサを用いて空燃比フィードバック制御を行う場合において、排気センサを早期に活性化するために、排気センサにヒータを設け、このヒータにより排気センサの素子を加熱する手法が用いられている。
しかしながら、上記手法では、機関始動時から加熱された排気センサの素子が排気中の凝縮水により被水した場合に、素子にて急激な温度変化が起こり、素子割れが発生する可能性がある。
この素子割れを防ぐための方策として、機関始動時からの所定期間(時間)は排気センサの素子を加熱しないようにヒータへの通電を制御することが考えられる。
ところが、この方策を用いた場合に、基本的には素子割れを防ぐように所定期間が設定されることから、安全サイドをみて、概して長めに所定期間が設定されることになり、機関始動後の空燃比フィードバック制御の開始が遅れてしまうという問題があった。
本発明は、このような問題点に鑑み、排気センサの素子割れを防止しつつ、機関始動後の可及的早期に排気センサを活性化して空燃比フィードバック制御を開始することを目的とする。
このため本発明では、排気通路にセンサ素子加熱用のヒータを有する排気センサを備え、この排気センサの出力に基づいて空燃比フィードバック制御を行う場合に、機関始動時からヒータへの通電を禁止する期間を設定し、設定したヒータ通電禁止期間の経過後にヒータへの通電を開始してヒータへの通電を制御する。
ここにおいて、ヒータ通電禁止期間は、機関始動時の内燃機関の冷却水温に応じて設定する。
本発明によれば、機関始動時の冷却水温に応じてヒータ通電禁止期間を設定することにより、例えば冷却水温が高いほどヒータ通電禁止期間を短く設定することが可能である。このため、安全サイドをみて、冷間時にも素子割れを生じないように、十分なヒータ通電禁止期間を一律に設定する場合に比し、実際の冷却水温に応じてヒータ通電禁止期間を設定することで、例えばホットリスタート時に早期にヒータへの通電を開始でき、排気センサの活性化を早めることができる。これにより、排気エミッション低減のために機関始動後の早期から空燃比フィードバック制御を行うことができる。
以下に本発明の実施の形態を図面に基づいて説明する。
図1は本発明の一実施形態を示す車両用の内燃機関(以下エンジンという)のシステム図である。
エンジン1の各気筒の燃焼室2には、エアクリーナ3から、吸気通路4によりスロットル弁5、マニホールド部6を経て空気が吸入される。マニホールド部6(又は燃焼室2)には、各気筒毎に燃料噴射弁7が設けられている。
燃料噴射弁7は、ソレノイドに通電されて開弁し、通電停止されて閉弁する電磁式燃料噴射弁(インジェクタ)であって、後述するエンジンコントロールユニット(以下ECUという)20からの駆動パルス信号により通電されて開弁し、図示しない燃料ポンプから圧送されてプレッシャレギュレータにより所定圧力に調整された燃料を噴射供給する。従って、駆動パルス信号のパルス幅により燃料噴射量が制御される。
エンジン1の各燃焼室2には点火栓8が設けられており、これにより火花点火して混合気を着火燃焼させる。
エンジン1の各燃焼室2からの排気は、排気通路9へ排出される。排気通路9には、排気浄化触媒として、マニホールド直下の位置にマニホールド触媒12が設けられている。マニホールド触媒12としては、排気中のCO、HCの酸化とNOxの還元とを行う三元触媒を用いる。更に下流側には、床下位置に、床下触媒13が設けられている。
ECU20は、CPU、ROM、RAM、A/D変換器及び入出力インターフェイス等を含んで構成されるマイクロコンピュータを備え、各種センサからの入力信号を受け、後述のごとく演算処理して(図6〜図9参照)、燃料噴射弁7の作動を制御する。
前記各種センサとしては、アクセルペダルの踏込み量(アクセル開度)APOを検出するアクセル開度センサ21、エンジン1のクランク軸又はカム軸回転よりクランク角度と共にエンジン回転数Neを検出可能なクランク角センサ22、吸気通路4にて吸入空気流量Qaを検出するエアフローメータ23、エンジン1の冷却水温Twを検出する水温センサ24が設けられている。
また、排気通路9のマニホールド触媒12の上流側及び下流側には、それぞれ、排気中の酸素濃度に感応して、排気空燃比のリッチ・リーンに応じた信号(リッチ側で高電圧、リーン側で低電圧)を出力する排気センサである酸素センサ25、26が設けられている。以下では、上流側酸素センサ25をフロントO2センサ、下流側酸素センサをリアO2センサという。ここで、フロントO2センサ25は、そのセンサの信号に基づいて空燃比が目標空燃比(ストイキ)になるように空燃比フィードバック制御を行うために設けられている。また、リアO2センサ26は、そのセンサの信号に基づいてフロントO2センサ25のばらつきや劣化による制御空燃比のシフトを補正するために設けられている。尚、空燃比フィードバック制御の詳細は、後述する。
尚、フロント及びリアO2センサ25、26としては、空燃比を広域でリニアに検出できるタイプのもの(LAFセンサ)でもよいし、ストイキを境として出力が変化するタイプのものでもよい。あるいは、フロントO2センサ25を空燃比を広域でリニアに検出できるタイプのもの(LAFセンサ)とし、リアO2センサ26をストイキを境として出力が変化するタイプのものとしてもよい。
フロント及びリアO2センサ25、26は、その温度が上昇して活性化するまで、酸素濃度の変化に対して出力がほぼ変化せず、活性温度に達すると、酸素濃度に応じて正確に出力をする。そこで、各センサにセンサ素子加熱用のヒータ25a、26aを内蔵させて、エンジン始動後の各センサの早期活性化を図るようにしている。
しかし、排気凝縮水が存在すると、その被水により素子割れを生じるおそれがある。特に下流側のリアO2センサ26は、エンジン1から遠く、排気通路壁が比較的低温であり、かつ、触媒上流側のフロントO2センサ25に比べ、触媒下流側で車両の床下等、比較的低所に配置されているため、排気中の水蒸気が結露しやすく、排気凝縮水が溜まりやすい。このため、リアO2センサ26は、フロントO2センサ25に比べて、素子割れを生じる可能性が高い。
そこで本実施形態では、フロントO2センサ25については、エンジン始動時からヒータ25aに通電して早期活性化を図り、フロントO2センサによる空燃比フィードバック制御(基本制御)の早期実施を可能とする。
その一方、リアO2センサ26については、排気凝縮水による素子割れのおそれがあるので、エンジン始動時から、ヒータ通電禁止期間の設定を含むヒータ26aへの通電制御を行って、素子割れを防止するのに適切な期間(排気凝縮水が気化するまでの期間)、ヒータ26aへの通電を禁止し、その期間の経過後に、ヒータ26aへの通電を開始し、リアO2センサ26を活性化させ、リアO2センサ26の出力による空燃比フィードバック制御により、更に正確な空燃比フィードバック制御を可能とする。
次に、エンジン始動時からのヒータ通電禁止期間の設定を含むヒータ26aへの通電制御について、図2〜図5に基づいて説明する。
図2はエンジン始動時からのヒータ通電禁止期間の設定を含むヒータ26aへの通電制御を示すフローチャートである。
S1では、エンジン1のスタータスイッチからの信号に基づいて、エンジン始動時であるか否かの判定を行う。スタータスイッチからの信号がONである場合はエンジン始動時であると判定してS2に進む。一方、スタータスイッチからの信号がOFFである場合は本フローを終了する。
S2では、後述する図3に示すヒータ通電禁止期間の設定ルーチン(サブルーチン)により、ヒータ通電禁止期間Lを設定する。ここにおいて、ヒータ通電禁止期間Lとは、エンジン始動時からヒータ26aへの通電開始時までの期間(時間)である。
S3では、水温センサ24からの信号により検出された冷却水温Twの温度変化率(時間当たりの温度変化量)dTwと、所定値dTsとを比較する。ここにおいて、所定値dTsとは、エンジン1の暖機が完了し、冷却水温Twが収束しているか否かを判定するための閾値である。dTw>dTsの場合は、冷却水温Twが収束しておらず、暖機途中であると判定してS4に進む。一方、dTw≦dTsの場合は、冷却水温Twが収束しており、暖機が完了していると判定してS5に進む。尚、ECU20にて行われる冷却系診断にてサーモスタットなどの異常を検出している場合は、S3の処理をパスすることが望ましい。これは、例えば、オーバークール状態で冷却水温Twが安定してしまう場合があるからである。また、S3の前段階にて、冷却水温Twと所定閾値とを比較し、冷却水温Twがこの所定閾値以上である場合にのみ、S3の処理を行うようにしてもよい。ここで所定閾値は、例えば、冷却系が正常であれば暖機の際に安定しないレベルの水温に設定される。
S4では、エンジン始動時からの経過期間tとヒータ通電禁止期間Lとを比較する。t>Lの場合はエンジン始動時からヒータ通電禁止期間Lを経過したと判定してS5に進む。一方、t≦Lの場合はエンジン始動時からヒータ通電禁止期間Lを経過していないと判定してS3に戻る。ここにおいて、エンジン始動時からの経過期間tは、例えば、ECU20に設けられ、エンジン始動時にカウントを開始するタイマーにより測定可能である。
S5では、リアO2センサ26の素子温度を活性温度に到達させるために、ヒータ26aへの通電を開始する。
S6では、リアO2センサ26の素子温度をセンサ素子の内部抵抗などから検出しつつ、予め定めた目標温度に制御すべく、ヒータ26aへの通電をデューティ制御して、本フローを終了する。このデューティ制御は、例えば、センサ素子の内部抵抗から推定される素子温度と目標温度とを比較し、推定された素子温度が目標温度以上であれば、素子温度を目標温度に収束させるべく、デューティを下げる一方、推定された素子温度が目標温度未満であれば、素子温度を目標温度に近づけるべく、デューティを上げる。
尚、S2によりヒータ通電禁止期間設定手段の機能が実現され、S5及びS6によりヒータ通電制御手段の機能が実現される。
図3はヒータ通電禁止期間Lの設定ルーチンを示すフローチャートである。
S11では、エンジン始動時に水温センサ24からの信号により検出された冷却水温Twを読込む。
S12では、後述する図4に示すマップを用い、S11にて読込まれたエンジン始動時の冷却水温Twに基づいて、基本ヒータ通電禁止期間Lsを算出する。ここにおいて、基本ヒータ通電禁止期間Lsとは、上記ヒータ通電禁止期間Lの基本値である。尚、エンジン始動時の冷却水温Twが約80℃でマニホールド触媒12中の温度も十分温まっているので(約600℃)、基準温度を80℃としてS11にて読込まれたエンジン始動時の冷却水温Twとの偏差を算出し、この偏差に基づいて基本ヒータ通電禁止期間Lsを算出してもよい。
図4はエンジン始動時の冷却水温Twと基本ヒータ通電禁止期間Lsとの関係を示しており、エンジン始動時の冷却水温Twが高いほど、基本ヒータ通電禁止期間Lsを短く設定している。
図3に戻り、S13では、エンジン運転停止時に水温センサ24からの信号により検出され、ECU20に設けられた記憶手段にて記憶された冷却水温Tw’と、S11にて読込まれたエンジン始動時の冷却水温Twと、の温度差ΔT(=Tw’−Tw)を算出する。
S14では、後述する図5に示すマップを用い、S13にて算出された温度差ΔTに基づいて、期間補正係数Hを算出する。ここにおいて、期間補正係数Hとは、外乱要因による影響を上記ヒータ通電禁止期間Lに反映するための補正値である。尚、外乱要因としては、例えば、以下のものが考えられる。
リアO2センサ26は、その設置箇所において、一般に冷却水とは直接接しておらず、また、リアO2センサ26が動作する定常状態では冷却水温よりもはるかに高い温度であるため、外気温、風量などにより冷却水温に対する温度の関係が変動する。また、リアO2センサ26は、装着された部材等との熱の授受もあり、これにより、冷却水温に対する温度の関係が変動する。これら変動の度合いを本実施形態では外乱要因による影響として考慮している。
図5は温度差ΔTと期間補正係数Hとの関係を示しており、温度差ΔTが大きいほど、安全サイドをみて、期間補正係数Hを大きく設定している。これは、温度差ΔTが大きいほど、エンジン運転停止時からエンジン始動時までの期間(時間)が長いことが推定されるので、外乱要因による影響の不確実性が増すからである。尚、本実施形態では温度差ΔTに基づいて期間補正係数Hを算出しているが、この他、エンジン運転停止時からエンジン始動時までの期間(時間)に基づいて期間補正係数Hを算出することも可能である。この場合は、上述したように、エンジン運転停止時からエンジン始動時までの期間が長いほど、外乱要因による影響の不確実性が増すので、エンジン運転停止時からエンジン始動時までの期間が長いほど、安全サイドをみて、期間補正係数Hを大きく設定する。
図3に戻り、S15では、S12にて算出された基本ヒータ通電禁止期間Lsに、S14にて算出された期間補正係数Hを乗じて、最終的なヒータ通電禁止期間Lを次式により算出する。
L=Ls×H
そして、算出されたヒータ通電禁止期間Lを設定して本ルーチンを終了し、上述のS3に戻る。
尚、S11〜S15によりヒータ通電禁止期間設定手段の機能が実現され、S13〜S15により補正手段の機能が実現される。
上述のS5にてヒータ26aへの通電が開始されて、リアO2センサ26が活性化した後の空燃比フィードバック制御について、以下に説明する。
この空燃比フィードバック制御において、ECU20は、上記各種センサからの信号を入力しつつ、後述する図6〜図8のフローチャートに従って、燃料噴射弁7による燃料噴射量を制御することで、空燃比を制御する。
図6は燃料噴射量(Ti)演算ルーチンを示し、所定時間毎に又はエンジン回転に同期して実行される。
S21では、エアフローメータ23からの信号によって検出された吸入空気流量Qaとクランク角センサ22からの信号によって算出されたエンジン回転数Neとに基づいて、単位回転当たりのシリンダ吸入空気量に対応するストイキ相当の基本燃料噴射量Tpを次式により演算する。
Tp=K×Qa/Ne 但し、Kは定数。
S22では、エンジン運転状態(エンジン回転数及び負荷)に基づいて、燃空比補正係数TFBYAを設定する。ここで、目標空燃比をストイキとする場合は、TFBYA=1に設定する。
S23では、空燃比フィードバック制御(λコントロール)条件にて、後述する図7の空燃比フィードバック補正係数(ALPHA)演算ルーチンにより演算されている空燃比フィードバック補正係数ALPHAを読込む。尚、空燃比フィードバック制御条件ではない場合は、ALPHA=1(又は前回値)に固定する。
S24では、基本燃料噴射量Tpに燃空比補正係数TFBYA及び空燃比フィードバック補正係数ALPHAを乗じて、最終的な燃料噴射量Tiを次式により演算する。
Ti=Tp×TFBYA×ALPHA
尚、実際には、水温補正、過渡補正、電圧補正など、各種補正が加わるが、ここでは省略した。
このようにして、燃料噴射量Tiが演算されると、エンジン回転同期の所定の燃料噴射タイミングにて、燃料噴射量Tiに対応するパルス幅をもつ駆動パルス信号が燃料噴射弁7に与えられて燃料噴射が行われる。
図7は空燃比フィードバック補正係数(ALPHA)演算ルーチンを示し、所定時間毎に実行される。
S31では、フロントO2センサ25の出力電圧VFを読込んで、ストイキ相当のスライスレベル電圧SLと比較し、VF<SLの場合は上流側リーンと判定してS32へ進み、VF>SLの場合は上流側リッチと判定してS36へ進む。
〔上流側リーンの場合〕
S32では、リッチからリーンへの反転直後か否かを判定し、反転直後の場合は比例制御(実際はステップ制御)のためS33へ進む。
S33では、後述する図8のステップ分補正値(PHOS)演算ルーチンにより演算されているステップ分補正値PHOSを読込む。
次のS34では、現在の空燃比フィードバック補正係数ALPHAに、所定のステップ分P、ここでは特にステップ分Pにステップ分補正値PHOSを加算補正した値(P+PHOS)を加算して、空燃比フィードバック補正係数ALPHAを次式のごとく増大側に更新し、本ルーチンを終了する。空燃比がリッチ側からリーン側へ変化したため、ステップ的にリッチ側に制御して、目標空燃比の応答性を向上させるためである。
ALPHA=ALPHA+(P+PHOS)
上流側リーンであるが、反転直後でない場合は、S32から、積分制御のためS35へ進む。
S35では、現在の空燃比フィードバック補正係数ALPHAに、所定の積分分I(<<P)を加算して、空燃比フィードバック補正係数ALPHAを微小量増大側に更新し(ALPHA=ALPHA+I)、本ルーチンを終了する。空燃比をわずかにリッチ側に制御して、目標空燃比に収束させるためである。
〔上流側リッチの場合〕
S36では、リーンからリッチへの反転直後か否かを判定し、反転直後の場合は比例制御(実際はステップ制御)のためS37へ進む。
S37では、後述する図8のステップ分補正値(PHOS)演算ルーチンにより演算されているステップ分補正値PHOSを読込む。
次のS38では、現在の空燃比フィードバック補正係数ALPHAから、所定のステップ分P、ここでは特にステップ分Pからステップ分補正値PHOSを減算補正した値(P−PHOS)を減算して、空燃比フィードバック補正係数ALPHAを次式のごとく減少側に更新し、本ルーチンを終了する。空燃比がリーン側からリッチ側へ変化したため、ステップ的にリーン側に制御して、目標空燃比の応答性を向上させるためである。
ALPHA=ALPHA−(P−PHOS)
上流側リッチであるが、反転直後でない場合は、S36から、積分制御のためS39へ進む。
S39では、現在の空燃比フィードバック補正係数ALPHAから、所定の積分分I(<<P)を減算して、空燃比フィードバック補正係数ALPHAを微小量減少側に更新し(ALPHA=ALPHA−I)、本ルーチンを終了する。空燃比をわずかにリーン側に制御して、目標空燃比に収束させるためである。
このようにして、図9に示すように、フロントO2センサ25の出力電圧VFの変化に従って、空燃比フィードバック補正係数ALPHAが増減設定され、リッチ時には空燃比フィードバック補正係数ALPHAが減少せしめられて、燃料噴射量Tiが減少側に補正され、逆にリーン時には空燃比フィードバック補正係数ALPHAが増大せしめられて、燃料噴射量Tiが増大側に補正されることで、目標空燃比(ストイキ)に制御される。
図8はステップ分補正値(PHOS)演算ルーチンを示し、所定時間毎に実行される。
S41では、リアO2センサ26の出力電圧VRを読込んで、ストイキ相当のスライスレベル電圧SLと比較し、VR<SLの場合は下流側リーンと判定してS42へ進み、VR>SLの場合は下流側リッチと判定してS45へ進む。
〔下流側リーンの場合〕
S42では、リッチからリーンへの反転直後か否かを判定し、反転直後の場合はステップ制御のためS43へ進む。
S43では、現在のステップ分補正値PHOSに所定のステップ分ΔPを加算して、ステップ分補正値PHOSを増大側に更新し(PHOS=PHOS+ΔP)、本ルーチンを終了する。空燃比のシフト方向がリッチ側からリーン側へ変化したため、ステップ分補正値PHOSをステップ的にリッチ側に大きくして、シフト補正の応答性を向上させるためである。
下流側リーンであるが、反転直後でない場合は、S42から、積分制御のためS44へ進む。
S44では、現在のステップ分補正値PHOSに、所定の積分分ΔI(<<ΔP)を加算して、ステップ分補正値PHOSを微小量増大側に更新し(PHOS=PHOS+ΔI)、本ルーチンを終了する。ステップ分補正値PHOSをわずかに変化させて、シフト補正を安定的に収めるためである。
従って、下流側リーンの場合、ステップ分補正値PHOSは次第に増大されて、プラスの値となり、図7のフローのS34での上流側リーン時の空燃比フィードバック補正係数ALPHAの増大側へ更新が増強される一方、S38での上流側リッチ時の空燃比フィードバック補正係数ALPHAの減少側への更新が抑制されることから、制御空燃比をリッチ側にシフトすることができる。
〔下流側リッチの場合〕
S45では、リーンからリッチへの反転直後か否かを判定し、反転直後の場合はステップ制御のためS46へ進む。
S46では、現在のステップ分補正値PHOSから所定のステップ分ΔPを減算して、ステップ分補正値PHOSを減少側に更新し(PHOS=PHOS−ΔP)、本ルーチンを終了する。空燃比のシフト方向がリーン側からリッチ側へ変化したため、ステップ分補正値PHOSをステップ的にリーン側に大きくして、シフト補正の応答性を向上させるためである。
下流側リッチであるが、反転直後でない場合は、S45から、積分制御のためS47へ進む。
S47では、現在のステップ分補正値PHOSから、所定の積分分ΔI(<<ΔP)を減算して、ステップ分補正値PHOSを微小量減少側に更新し(PHOS=PHOS−ΔI)、本ルーチンを終了する。ステップ分補正値PHOSをわずかに変化させて、シフト補正を安定的に収めるためである。
従って、下流側リッチの場合、ステップ分補正値PHOSは次第に減少されて、マイナスの値となり、図7のフローのS34での上流側リーン時の空燃比フィードバック補正係数ALPHAの増大側へ更新が抑制される一方、S38での上流側リッチ時の空燃比フィードバック補正係数ALPHAの減少側への更新が増強されることから、制御空燃比をリーン側にシフトすることができる。
このようにして、図9に示すように、リアO2センサ26の出力電圧VRの変化に従って、ステップ分補正値PHOSが増減設定され、空燃比フィードバック補正係数ALPHAの設定に反映されることで、フロントO2センサ25のばらつきや劣化による制御空燃比のシフトを修正することにより、空燃比が常に最適に維持される。
本実施形態によれば、エンジン始動時からヒータ26aへの通電を禁止する期間を設定するヒータ通電禁止期間設定手段(S2、S11〜S15)と、設定したヒータ通電禁止期間Lの経過後にヒータ26aへの通電を開始し、ヒータ26aへの通電を制御するヒータ通電制御手段(S5、S6)と、を備え、ヒータ通電禁止期間設定手段は、エンジン始動時の冷却水温Twが高いほど、ヒータ通電禁止期間Lを短く設定する。これにより、安全サイドをみて、冷間時にも素子割れを生じないように、十分なヒータ通電禁止期間を一律に設定する場合に比し、冷却水温Twに応じてヒータ通電禁止期間Lを設定することで、例えばホットリスタート時に早期にヒータ26aへの通電を開始でき、リアO2センサ26の活性化を早めることができるので、リアO2センサ26の出力に基づいた空燃比フィードバック制御を早期に開始させることができる。
また本実施形態によれば、ヒータ通電禁止期間設定手段(S2、S11〜S15)は、ヒータ通電禁止期間Lの補正を行う補正手段(S13〜S15)を備え、この補正手段は、エンジン運転停止時の冷却水温Tw’とエンジン始動時の冷却水温Twとの温度差ΔTが大きいほど、ヒータ通電禁止期間Lを長くする補正を行う(期間補正係数Hを大きく設定する)。これにより、温度差ΔTが大きい場合は、外乱要因による影響の不確実性が増すので、安全サイドをみて、ヒータ通電禁止期間Lを長く設定することで、素子割れを確実に防止することができる。また、温度差ΔTが小さい場合は、外乱要因による影響の不確実性が減るので、ヒータ通電禁止期間Lを短く設定して、リアO2センサ26の出力に基づいた空燃比フィードバック制御の開始時期を早めることができる。
また本実施形態によれば、ヒータ通電禁止期間L内であっても、冷却水温Twが収束した場合に(温度変化率dTwが所定値dTs以下になった場合に)、ヒータ26aへの通電を開始するので、エンジン1の暖機が早期に完了している場合には、早期に、リアO2センサ26の出力に基づいた空燃比フィードバック制御を開始することができる。
また本実施形態によれば、マニホールド触媒12の下流側に備えられたリアO2センサ26について、エンジン始動時から、通電禁止期間Lの設定を含むヒータ26aへの通電制御を行うことにより、排気凝縮水を被水する可能性が高いリアO2センサ26での素子割れを防止しつつ、エンジン始動後の早期にリアO2センサ26を活性化して、リアO2センサ26の出力に基づいた空燃比フィードバック制御を開始させることができる。但し、エンジン始動時にエンジン1から排出される排気が低温の排気管壁に当たって凝縮水が生じることが想定され、フロントO2センサ25にて素子割れが発生するおそれがある場合は、フロントO2センサ25についても同様の制御を行うようにしてもよい。
また、本実施形態の変形例として、空燃比フィードバック制御において、燃費向上のために、エンジン運転状態に応じて燃料カットを行う場合には、以下のような効果を得ることも可能である。この効果について、図10及び図11を用いて説明する。
図10はエンジン運転状態に応じて燃料カットを行う空燃比制御におけるタイムチャート、図11は活性化した触媒中の空燃比と触媒のNOx転化率との関係を示す図である。
図10に示すような車両の増減速時及び定速時において、燃費向上のために燃料カットを行う場合には、燃料カット後に、マニホールド触媒12中の空燃比が一時的にリーン雰囲気になる。このため、マニホールド触媒12が活性化した状態であっても、マニホールド触媒12から排出されるNOx排出量が増加してしまう。これは、図11に示すように、触媒中の空燃比がストイキよりリーン側になるほど、触媒のNOx転化率が急激に悪化し、触媒からのNOx排出量が急激に増加することによるものである。このため、触媒中の空燃比がストイキから一時的にリーン化して再びストイキに戻る場合には(図11のA→B→Cを参照)、触媒のNOx転化率が一時的に急激に悪化するので、触媒からのNOx排出量が一時的に増加してしまう。
この対策として、図10に示すように、燃料カット開始時からの特定期間にて目標空燃比をリッチ側に設定して空燃比制御を行うことにより、燃料カット後の一時的なリーン化を抑えることが考えられる。ここにおいて、特定期間とは、燃料カットにより触媒中の空燃比がリーン側になってから再びストイキに戻るまでの期間(時間)であり、燃料カット時からリアO2センサ26の出力がリーンからリッチへ反転を開始するときまでの期間(時間)である。
しかしながら、この対策は、ヒータ26aへの通電が開始されてリアO2センサ26の素子が活性化していることが前提であり、エンジン始動時からヒータ26aへの通電が開始されるまでの期間には用いることができない。
そこで本発明では、エンジン始動時から、ヒータ通電禁止期間Lの設定を含むヒータ26aへの通電制御を行うことにより、ホットリスタート時において、素子割れを防止しつつ、ヒータ26aへの通電が早期に開始されるようにしている。
これにより、本発明では、ホットリスタート後に燃料カットが行われる場合であっても、上記特定期間にて目標空燃比をリッチ側に設定する空燃比制御を早期に開始することが可能であるので、ホットリスタート後のNOxの排出を抑制することが可能である。
本発明の一実施形態を示すエンジンのシステム図 エンジン始動時からのヒータ通電禁止期間の設定を含むヒータへの通電制御のフローチャート ヒータ通電禁止期間の設定ルーチンのフローチャート エンジン始動時の冷却水温Twと基本ヒータ通電禁止期間Lsとの関係を示す図 温度差ΔTと期間補正係数Hとの関係を示す図 Ti演算ルーチンのフローチャート ALPHA演算ルーチンのフローチャート PHOS演算ルーチンのフローチャート ALPHA及びPHOSのタイムチャート エンジン運転状態に応じて燃料カットを行う空燃比制御におけるタイムチャート 活性化した触媒中の空燃比と触媒のNOx転化率との関係を示す図
符号の説明
1 エンジン
4 吸気通路
7 燃料噴射弁
9 排気通路
12 マニホールド触媒
13 床下触媒
20 エンジンコントロールユニット(ECU)
24 水温センサ
25 フロントO2センサ
25a ヒータ
26 リアO2センサ
26a ヒータ

Claims (6)

  1. 排気通路にセンサ素子加熱用のヒータを有する排気センサを備え、この排気センサの出力に基づいて空燃比フィードバック制御を行う内燃機関の空燃比制御装置において、
    機関始動時から前記ヒータへの通電を禁止する期間を設定するヒータ通電禁止期間設定手段と、
    設定した前記ヒータ通電禁止期間の経過後に前記ヒータへの通電を開始し、前記ヒータへの通電を制御するヒータ通電制御手段と、を備え、
    前記ヒータ通電禁止期間設定手段は、機関始動時の内燃機関の冷却水温に応じて前記ヒータ通電禁止期間を設定することを特徴とする内燃機関の空燃比制御装置。
  2. 前記ヒータ通電禁止期間設定手段は、前記ヒータ通電禁止期間の補正を行う補正手段を備え、この補正手段は、機関運転停止時の前記冷却水温と機関始動時の前記冷却水温との温度差に応じて前記ヒータ通電禁止期間の補正を行うことを特徴とする請求項1記載の内燃機関の空燃比制御装置。
  3. 前記補正手段は、前記温度差が大きいほど、前記ヒータ通電禁止期間を長くする補正を行うことを特徴とする請求項2記載の内燃機関の空燃比制御装置。
  4. 前記ヒータ通電制御手段は、前記ヒータ通電禁止期間内であっても、前記冷却水温が収束した場合は、前記ヒータへの通電を開始することを特徴とする請求項1〜請求項3のいずれか1つに記載の内燃機関の空燃比制御装置。
  5. 前記ヒータ通電禁止期間設定手段は、機関始動時の前記冷却水温が高いほど、前記ヒータ通電禁止期間を短く設定することを特徴とする請求項1〜請求項4のいずれか1つに記載の内燃機関の空燃比制御装置。
  6. 前記排気センサは、排気通路に設けられた排気浄化触媒の下流側に備えられていることを特徴とする請求項1〜請求項5のいずれか1つに記載の内燃機関の空燃比制御装置。
JP2008245153A 2008-09-25 2008-09-25 内燃機関の空燃比制御装置 Pending JP2010077848A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008245153A JP2010077848A (ja) 2008-09-25 2008-09-25 内燃機関の空燃比制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008245153A JP2010077848A (ja) 2008-09-25 2008-09-25 内燃機関の空燃比制御装置

Publications (1)

Publication Number Publication Date
JP2010077848A true JP2010077848A (ja) 2010-04-08

Family

ID=42208556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008245153A Pending JP2010077848A (ja) 2008-09-25 2008-09-25 内燃機関の空燃比制御装置

Country Status (1)

Country Link
JP (1) JP2010077848A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252470A (ja) * 2010-06-04 2011-12-15 Mitsubishi Electric Corp 車載エンジン制御装置
CN110159441A (zh) * 2018-02-13 2019-08-23 丰田自动车株式会社 内燃机的控制装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252470A (ja) * 2010-06-04 2011-12-15 Mitsubishi Electric Corp 車載エンジン制御装置
CN110159441A (zh) * 2018-02-13 2019-08-23 丰田自动车株式会社 内燃机的控制装置

Similar Documents

Publication Publication Date Title
US8362405B2 (en) Heater controller of exhaust gas sensor
JP4706928B2 (ja) 排出ガスセンサのヒータ制御装置
US8000883B2 (en) Control apparatus and method for air-fuel ratio sensor
JP2010077848A (ja) 内燃機関の空燃比制御装置
US20050016513A1 (en) Air-fuel ratio control apparatus for internal combustion engine and method thereof
JP4315088B2 (ja) エンジンの空燃比制御装置
JP3627335B2 (ja) 触媒下流側空燃比センサのヒータ制御装置
JP4371027B2 (ja) エンジンの空燃比制御装置
JP4345629B2 (ja) エンジンの空燃比制御装置
JP5041341B2 (ja) 排出ガスセンサのヒータ制御装置
JP3812301B2 (ja) 直噴火花点火式内燃機関の制御装置
US6976483B2 (en) Air-fuel ratio control apparatus for internal combustion engine and method thereof
JP2009138620A (ja) 内燃機関の制御装置
US20200347795A1 (en) Internal-combustion-engine control device and control method
JP2009079546A (ja) 内燃機関の空燃比制御装置
JP2004197693A (ja) 内燃機関の空燃比制御装置
JP4371028B2 (ja) エンジンの空燃比制御装置
JP4254519B2 (ja) エンジンの空燃比制御装置
JP2009168769A (ja) 排出ガスセンサのヒータ制御装置
JP4872793B2 (ja) 内燃機関の制御装置
JP4415803B2 (ja) 内燃機関の制御装置
JP4412086B2 (ja) エンジンの空燃比制御装置
JP4061870B2 (ja) 直噴式火花点火機関の制御装置
JP2006097513A (ja) エンジンの空燃比制御装置
JP2010066053A (ja) 排出ガスセンサのヒータ制御装置