JP2009079546A - 内燃機関の空燃比制御装置 - Google Patents

内燃機関の空燃比制御装置 Download PDF

Info

Publication number
JP2009079546A
JP2009079546A JP2007249501A JP2007249501A JP2009079546A JP 2009079546 A JP2009079546 A JP 2009079546A JP 2007249501 A JP2007249501 A JP 2007249501A JP 2007249501 A JP2007249501 A JP 2007249501A JP 2009079546 A JP2009079546 A JP 2009079546A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
sensor
feedback control
ratio feedback
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007249501A
Other languages
English (en)
Inventor
Hiroshi Kato
浩志 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007249501A priority Critical patent/JP2009079546A/ja
Publication of JP2009079546A publication Critical patent/JP2009079546A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】低温始動時に被水によるセンサ素子の損傷を防止しつつ、より早期に空燃比フィードバック制御を実行して排気エミッションを低減する。
【解決手段】低温始動時において(S1)、先ず下流側空燃比センサのヒータに対する通電を行って該下流側空燃比センサの出力に基づく第1空燃比フィードバック制御を実行し(S2〜S6)、その後、上流側空燃比センサのヒータに対する通電を行って前記第1空燃比フィードバック制御から前記上流側空燃比センサの出力に基づく第2空燃比フィードバック制御へと切り替える(S2、S7〜S9)。
【選択図】図3

Description

本発明は、内燃機関の空燃比制御装置に関し、より詳しくは、低温始動時において早期に空燃比フィードバック制御を行えるようにした内燃機関の空燃比制御装置に関する。
従来の内燃機関の空燃比制御装置として、例えば特許文献1に記載のものがある。特許文献1に記載の装置は、触媒の上流側に設けた空燃比センサ(A/Fセンサ)の出力信号に基づいて機関の空燃比を制御するメインフィードバック制御を実行すると共に、触媒の下流側に設けた酸素センサ(Oセンサ)の出力信号に基づいてA/Fセンサの出力信号を補正するサブフィードバック制御を実行するようにしている。
特開2006−307704号公報
ところで、排気規制の強化等に伴い、低温時から空燃比フィードバック制御を実行して排気を低減することが望まれている。この場合、非活性状態にあるA/Fセンサからは正常な出力を得られないので、センサ素子を加熱するヒータを設け、低温時にはこのヒータを動作させる(ONする)ことで空燃比センサの早期活性化を図ることが必要となる。
しかし、低温時には凝縮水(機関から排出される凝縮水と排気中の蒸気が冷却された凝縮水の両方を含む)によってA/Fセンサのセンサ素子が被水するおそれがあり、被水した状態でヒータをONするとセンサ素子に亀裂等の損傷が生じてしまうことになる。このため、低温始動時には早期に空燃比フィードバック制御を実行することができない、という問題がある。
ここで、A/Fセンサに耐被水性を向上させたプロテクタを使用することも考えられるが、そうするとA/Fセンサの空燃比応答性が悪くなって空燃比フィードバック制御自体の精度低下を招くことになり、暖機後の排気性能や運転性が悪化してしまうことになる。
本発明は、このような実情に着目してなされたものであり、特に低温始動時において、被水によるセンサ素子の損傷を防止しつつ、より早期に空燃比フィードバック制御を実行して排気エミッションの低減を図ることを目的とする。
低温始動時において、排気中の蒸気が冷却されて排気管内に滞留した凝縮水がなくなる(排出される)までの時間よりも、機関(排気ポート)から凝縮水が排出されなくなるまでの時間の方が長いことが確認されている。また、機関から排出された凝縮水は触媒を通過する際に分散(拡散)等されるため、下流側空燃比センサは上流側空燃比センサに比べて機関から排出される凝縮水によって被水する可能性が低い。
そこで、本発明に係る内燃機関の空燃比制御装置は、低温始動時に、先ず触媒下流側に配設される下流側空燃比センサのヒータへの通電を行って該下流側空燃比センサの出力に基づく第1空燃比フィードバック制御を実行し、その後、触媒上流側に配設される上流側空燃比センサのヒータへの通電を行って第1空燃比フィードバック制御から上流側空燃比センサの出力に基づく第2空燃比フィードバック制御に切り替えるようにしている。
本発明によると、低温始動時において、被水によるセンサ素子の損傷を防止しつつ、より早期に空燃比フィードバック制御を実行できるので、始動直後のHC排出量を大幅に低減することができる。また、上流側空燃比センサの活性化をあまり早める必要がなくなることから、特に機関から排出される凝縮水による上流側空燃比センサの被水が防止され、センサ素子の損傷の危険性が低減する。
以下、本発明の実施形態を図に基づいて説明する。
図1は、本発明の一実施形態に係る内燃機関のシステム構成を示している。図1において、機関1の各気筒の燃焼室2には、エアクリーナ3、吸気管4、電子制御式のスロットルバルブ5および吸気バルブ6を介して空気が吸入される。各気筒には燃焼室2内に燃料を直接噴射する電磁式の燃料噴射弁7が設けられている。この燃料噴射弁7は、後述するエンジンコントロールユニット(ECU)20から出力される噴射パルス信号によって開弁し、所定圧力に調圧された燃料を噴射する。燃料噴射弁7から噴射された燃料と上記吸入空気とによって燃焼室2内に混合気が形成される。
燃焼室2内に形成された混合気は点火栓8によって着火されて燃焼し、燃焼排気は排気バルブ9、排気管10を介して排出される。排気管10には排気浄化触媒(三元触媒)11が介装されている。この排気浄化触媒11の上流側には、排気中の酸素濃度(すなわち、空燃比)に応じてリニアに出力が変化するリニア空燃比センサ(本発明の「上流側空燃比センサ」に相当する)12が設けられている。また、排気浄化触媒11の下流側には、理論空燃比近傍で出力が急変する酸素濃度センサ(本発明の「下流側空燃比センサ」に相当する)13が設けられている。
リニア空燃比センサ12および酸素濃度センサ13は、検出部が排気管10内に突出して設けられる。両センサの構造は類似しており、図2にその要部を示すように、検出素子(センサ素子)100と、検出素子100の内側に配置されるヒータ101と、検出素子100の外側に配置されるプロテクタ102とを含んで構成される。なお、以下の説明では、リニア空燃比センサ12の構成要素ついては符号に「a」を付し、酸素濃度センサ13の構成要素については符号に「b」を付すことにする。
検出素子(センサ素子)100は、排気中の酸素濃度に感応して所定の出力を発生する。リニア空燃比センサ12の検出素子100aは、ジルコニア固体電解質の酸素ポンプ機能を利用するものであり、排気中の酸素濃度(排気空燃比)に応じてリニアに変化する出力を発生する。一方、酸素濃度センサ13の検出素子100bは、ジルコニア固体電解質の酸素濃淡電池機能を利用するものであり、排気空燃比が理論空燃比よりもリッチのときに起電力を発生するが、理論空燃比よりもリーンのときにはほとんど起電力を発生せず、理論空燃比を境にON・OFF的に切り替わる出力を発生する。
ヒータ101は、ECU20によって通電されて発熱し、検出素子100を加熱する。リニア空燃比センサ10のヒータ101aは、機関1の始動時に検出素子100aを加熱し、その温度を所定の作動温度(例えば700℃)まで昇温させて活性化させる。酸素濃度センサ11のヒータ101bは、機関1の始動時に検出素子100bを加熱し、その温度を所定の作動温度(例えば300℃)まで昇温させて活性化させる。
プロテクタ102は、検出素子100を取り囲むように設けられ、検出素子100の被毒や被水を低減(防止)して検出素子100を保護する。プロテクタ102には多数の通気孔103が形成され、この通気孔103を通過した排気が検出素子100に接触するようになっている。この通気孔103の孔径を小さくするほど、検出素子100の保護性能(耐被毒性、耐被水性)が高くなると言えるが、同時に、排気が内部に流入し難くなるため排気空燃比に対する応答性が悪くなる。
ここで、本実施形態においては、酸素濃度センサ13のプロテクタ102bに形成された通気孔103bの孔径を、リニア空燃比センサ12のプロテクタ102aに形成された通気孔103aの孔径よりも小さくしている。これは、酸素濃度センサ13がリニア空燃比センサ12ほど高い応答性を要求されないこと、後述するように低温始動時にリニア空燃比センサ12よりも先にヒータONすること、を考慮したものである。これにより、リニア空燃比センサ12よりも酸素濃度センサ13の方がその検出素子100が被水し難い構造となっている(耐被水性を向上させている)。
図1に戻って、ECU20は、各種センサから出力される検出信号を入力し、これら検出信号に基づいて所定の演算処理を実行し、スロットルバルブ5の開度、燃料噴射弁7による燃料噴射量(開弁期間)・燃料噴射時期(開弁時期)、点火栓8による点火時期等を制御する。また、機関1の始動時においては、リニア空燃比センサ12のヒータ101aおよび/または酸素濃度センサ13のヒータ101bに対して通電を行って、リニア空燃比センサ12及び酸素濃度センサ13の少なくとも一方の出力に基づく空燃比フィードバック制御の早期実施を図り、排気エミッションを低減する。したがって、本実施形態においては、ECU20が本発明の「ヒータ通電手段」および「空燃比制御手段」としての機能を有する。
なお、上記各種センサとして、リニア空燃比センサ12、酸素濃度センサ13の他に、機関1の回転速度Neを検出する回転速度センサ14、スロットルバルブ5の上流側で吸入空気量Qを検出するエアフローメータ15、アクセルペダルの踏込み量APSを検出するアクセルセンサ16、スロットルバルブ5の開度TVOを検出するスロットルセンサ17、機関1の冷却水温度Twを検出する水温センサ18、排気浄化触媒11の温度Tcを検出する触媒温度センサ19などが設けられている。
次に、本実施形態に係る機関始動時の制御について、図3のフローチャートにしたがって説明する。本フローは機関の始動により開始する。
図3において、S1では、低温条件(低温始動)であるか否かを判定する。低温条件であると判定した場合はS2に進み、そうでない場合はS7に進む。具体的には、エンジン冷却水温度Twを読込み、この読込んだエンジン冷却水温度Twがあらかじめ設定した温度Tsよりも低いときに低温条件であると判定する。
S2では、機関1から水分(機関1内部の凝縮水(液体))が排出されている状態であるか否かを判定する。機関1から凝縮水が排出されている状態であると判定した場合はS3に進み、そうでない場合はS7に進む。具体的には、上記低温条件において始動後に機関1から凝縮水が排出されなくなるまでの時間をあらかじめ計測しておき、この計測時間(100〜150(s)程度であることが確認されており、本発明の「第2所定時間」に相当する)taよりも機関始動からの経過時間tの方が小さい場合には、機関1から凝縮水が排出されている状態であると判定する。
S3では、酸素濃度センサ13の上流側に位置する排気系部品(本実施形態では、排気管10および排気浄化触媒11)の温度が水分蒸発温度(通常は100℃)以上となったか否かを判定する。上記排気系部品の温度が水分蒸発温度以上となったと判定した場合にはS4に進む。具体的には、上記低温条件において始動から排気管10の温度が100℃に達するまでの時間をあらかじめ計測しておき、この計測時間(15〜30(s)程度であることが確認されており、本発明の第1所定時間に相当する)tb(<ta)よりも機関始動からの経過時間tの方が大きい場合に上記排気系部品の温度が水分蒸発温度以上となったと判定する。もちろん、触媒温度センサ19からの出力に基づいて排気浄化触媒11の温度が水分蒸発温度以上となったことを判定してもよい。この判定は、排気浄化触媒11を加熱するヒータ等を備える場合に特に有効である。
一方、上記排気系部品の温度が水分蒸発温度に達していないと判定した場合には本フローを終了する。この場合、空燃比フィードバック制御は実行されず、例えば排気空燃比をオープン制御によって目標空燃比(理論空燃比または目標リーン空燃比)へと制御する。
S4では、酸素濃度センサ13のヒータ101bへと通電を開始する。これにより、低温始動時においては、先ず酸素濃度センサ13の検出素子100bが加熱される。なお、排気系部品の温度が水分蒸発温度以上となっていることから、凝縮水によって酸素濃度センサ13の検出素子100bが被水することはなく、素子割れのおそれはない。
S5では、酸素濃度センサ13の検出素子100bの温度が所定の作動温度(例えば300℃)まで上昇したか否か(すなわち、酸素濃度センサ13が活性化したか否か)を判定する。そして、検出素子100bの温度がその作動温度まで上昇したと判定した場合にS6に進む。具体的には、ヒータ101bへの通電開始から検出素子100aがその作動温度に上昇するまでの時間はあらかじめ分かっているので、ヒータ101bへの通電開始からの経過時間に基づいて作動温度まで上昇したか否かを判定する。もちろん、検出素子100bの温度を検出し、この検出温度が作動温度となったらS6に進むようにしてもよい。
S6では、酸素濃度センサ13が活性化したので、該酸素濃度センサ13の出力に基づく空燃比フィードバック制御(本発明の「第1空燃比フィードバック制御」に相当する)を実行する。この酸素濃度センサ13の出力に基づく空燃比フィードバック制御については後述する(図4参照)。
一方、S1で低温条件(低温始動)でないと判定した場合、S2で機関1から水分(凝縮水)が排出されない状態である(状態となった)と判定した場合には、S7において、リニア空燃比センサ12のヒータ101aへの通電を開始する。これにより、リニア空燃比センサ12の検出素子100aが加熱される。すでに機関1から水分が排出されないので、凝縮水によってリニア空燃比センサ12の検出素子100aが被水することはなく、素子割れ等のおそれはない。
S8では、検出素子100aが所定の作動温度(例えば700℃)まで上昇したか否か(すなわち、リニア空燃比センサ12が活性化したか否か)を判定する。検出素子100aがその作動温度まで上昇していると判定した場合はS9に進み、そうでない場合はS6に進む。かかる判定も、S5における判定と同様、ヒータ101aへの通電開始からの経過時間に基づいて作動温度まで上昇したか否かを判定すればよい。これにより、リニア空燃比センサ12が活性化するまでの間は、すでに実行され、または、先に活性化する酸素濃度センサ13の出力に基づく空燃比フィードバック制御が継続(実行)されることになる。
S9では、リニア空燃比センサ12が活性化したので、該リニア空燃比センサ12の出力に基づく空燃比フィードバック制御(本発明の「第2空燃比フィードバック制御」に相当する)を実行する。なお、すでに酸素濃度センサ13の出力に基づく空燃比フィードバック制御が実行されていた場合には、該酸素濃度センサ13の出力に基づく空燃比フィードバック制御からリニア空燃比センサ12の出力に基づく空燃比フィードバック制御へと切り替えられることになる。そして、これ以降は、リニア空燃比センサ12の出力に基づく空燃比フィードバック制御が実行される。このリニア空燃比センサ12の出力に基づく空燃比フィードバック制御については後述する(図5参照)。
図4は、酸素濃度センサ13の出力に基づく空燃比フィードバック制御(第1空燃比フィードバック制御)のフローチャートであり、図3のS6で実行される。
この酸素濃度センサ13の出力に基づく空燃比フィードバック制御では、酸素濃度センサ13の出力と基準値(理論空燃比相当の値)との比較結果に応じて、比例項及び積分項を用いて空燃比フィードバック補正係数(本発明の「第1空燃比フィードバック補正係数」に相当する)αO2を算出し、この空燃比フィードバック補正係数αO2を用いて燃料噴射量(燃料噴射パルス幅Ti)を算出する。これにより、排気浄化触媒11の下流側の排気空燃比が理論空燃比近傍を維持するように制御される。
図4において、S11では、吸入空気量Q、機関回転速度Neを読込む。
S12では、基本燃料噴射量(基本燃料噴射パルス幅)Tpを、次式により算出する。Tp=K・Q/Ne(K:定数)
S13では、空燃比フィードバック補正係数αO2を算出する。すなわち、酸素濃度センサ13の出力に基づき、排気空燃比がリッチ/リーン反転した直後であるときは比例分(Pα)を付加し、その後、排気空燃比が再びリッチ/リーン反転するまでの間は積分分(Iα)を付加することによって、空燃比フィードバック補正係数「αO2=比例項(Pα)+積分項(Σ(Iα))」を算出する。具体的には、排気空燃比がリーンからリッチに反転したときは比例分(Pα)を減算し、その後、排気空燃比がリッチからリーンに反転するまでの間(すなわち、リッチ継続時)は積分分(Iα)を減算する。一方、排気空燃比がリッチからリーンに反転したときは比例分(Pα)を加算し、その後、排気空燃比がリーンからリッチに反転するまでの間(すなわち、リーン継続時)は積分分(Iα)を加算する。
S14では、上記空燃比フィードバック補正係数αO2を用いて、燃料噴射弁7に出力する噴射パルス信号(燃料噴射パルス幅Ti)を次式により算出する。
Ti=Tp×TFBYA×αO2×COEF+Ts
但し、TFBYAは目標燃空比(目標空気過剰率λの逆数であって、理論空燃比では1.0、リーン空燃比では1より小さな値となる。ここでは、TFBYA=1.0である。)、COEFは各種補正係数、Tsは無効パルス幅である。
図5は、リニア空燃比センサ12の出力に基づく空燃比フィードバック制御(第2空燃比フィードバック制御)のフローチャートであり、図3のS9で実行される。
このリニア空燃比センサ12の出力に基づく空燃比フィードバック制御では、目標空気過剰率(目標空燃比)λtgとリニア空燃比センサ12によって検出された実空気過剰率(実空燃比)λとの偏差(λtg−λ)に基づき、比例項、積分項及び微分項を用いて空燃比フィードバック補正係数(本発明の「第2空燃比フィードバック補正係数」に相当する)αA/Fを算出し、この空燃比フィードバック補正係数αA/Fを用いて燃料噴射量(燃料噴射パルス幅Ti)を算出する。これにより、排気浄化触媒11の上流側の排気空燃比が理論空燃比へと制御される。
図5において、S21では、図4のS11と同様に、吸入空気量Q、機関回転速度Neを読込む。
S22では、図4のS12と同様、基本燃料噴射量(基本燃料噴射パルス幅)Tp(=K・Q/Ne)を算出する。
S23では、空燃比フィードバック制御の切り替え直後であるか否かを判定する。すなわち、酸素濃度センサ13の出力に基づく空燃比フィードバック制御からリニア空燃比センサ12の出力に基づく空燃比フィードバック制御に切り替えられた直後であるか否かを判定する。直前に酸素濃度センサ13の出力に基づく空燃比フィードバック制御が実行されていた場合にはS24に進み、それ以外はS27に進む。
S24では、切り替え時用のフィードバックゲインを設定する。本実施形態におけるフィードバックゲインは、空燃比フィードバック補正係数αA/Fの比例項を求めるための比例ゲインK、積分項を求めるための積分ゲインKおよび微分項を求めるための微分ゲインKである。ここでは、比例ゲインK=K1、積分ゲインK=K1、微分ゲインK=K1とする。後述するように、本ステップで設定される、切り替え時用の比例ゲインK1、積分ゲインK1および微分ゲインK1は、それぞれ通常時用の比例ゲインK2、積分ゲインK2および微分K2よりも小さくなっている。
S25では、空燃比フィードバック制御の切り替えからの所定時間tcが経過しているか否かを判定する。そして、所定時間tcが経過していなければ(すなわち、切り替えからの経過時間が所定時間tc未満であれば)S26に進み、所定時間tcが経過していれば(すなわち、切り替えからの経過時間が所定時間tc以上であれば)S27に進む。この所定時間tcは、空燃比フィードバック制御の切り替え、すなわち、酸素濃度センサ13の出力に基づく空燃比フィードバック制御からリニア空燃比センサ13の出力に基づく空燃比フィードバック制御への切り替えによってハンチングが生じない程度の時間として設定されるものであり、あらかじめ実験等により求めておいたものである。
S26では、フィードバックゲインK1,K1,K1を用いて、切り替え時用の空燃比フィードバック補正係数αA/F1を次式により算出する。
αA/F1=K1・(λtg−λ)+K1・Σ(λtg−λ)+K1・{d(λtg−λ)/dt}
但し、λtgは目標空気過剰率(目標空燃比)であり(ここでは理論空燃比)、λはリニア空燃比センサ12によって検出された実空気過剰率(実空燃比)である。
ここで、本実施形態の特徴の1つとして、切り替え直前の空燃比フィードバック補正係数αO2の積分値(ΣIα)を、上記空燃比フィードバック補正係数αA/F1の積分値「Σ(λtg−λ)」の初期値として設定する。換言すれば、切り替え前の積分値を制御の切り替え直後の積分値としてそのまま引継ぐようにしている。これは、空燃比フィードバック制御の切り替えに伴う空燃比段差(トルク段差)を抑制するためである。
なお、通常は酸素濃度センサ13の出力に基づく空燃比フィードバック制御により実空燃比が目標空燃比(理論空燃比)近傍となっているため、空燃比段差の抑制という観点からは、上記積分値の引継ぎで十分であると考えられる。但し、より好ましくは、上記空燃比フィードバック補正係数αA/F1の比例項「K1・(λtg−λ)」を算出し、制御の切り替え直前の空燃比フィードバック補正係数αO2の積分値(ΣIα)から上記算出した比例項「K1・(λtg−λ)」を減算した値を、積分値「Σ(λtg−λ)」の初期値として設定する。このようにすれば、制御の切り替えに伴う空燃比段差(トルク段差)をより確実に抑制することができる。
一方、S23で空燃比フィードバック制御の切り替え直後ではないとき、または、S25で空燃比フィードバック制御の切り替えから所定時間tcが経過しているときは、S27において、通常時用のフィードバックゲインを設定する。すなわち、比例ゲインK=K2(>K1)、積分ゲインK=K2(>K1)、微分ゲインK=K2(>K1)とする。
S28では、フィードバックゲインK2,K2,K2を用いて、通常時用の空燃比フィードバック補正係数αA/F2を次式により算出する。
αA/F2=K2・(λtg−λ)+K2・Σ(λtg−λ)+K2・{d(λtg−λ)/dt}
そして、S29では、上記空燃比フィードバック補正係数αA/F(すなわち、αA/F1またはαA/F2)を用いて、図4のS14と同様、燃料噴射弁7に出力する噴射パルス信号(燃料噴射パルス幅Ti)を次式により算出する。
Ti=Tp×TFBYA×αA/F×COEF+Ts
図6は、本実施形態の機関始動時の制御タイミングチャートである。
低温始動時において、始動開始から所定時間(第1所定時間)tbが経過すると、排気系部品(排気管10又は排気浄化触媒11)の温度が水分蒸発温度に達したと判断し、酸素濃度センサ13のヒータ101bへの通電が開始される(tb)。これにより、酸素濃度センサ13が速やかに活性化し、活性化後に該酸素濃度センサ13の出力に基づく空燃比フィードバック制御が開始される(t1)。このときの空燃比フィードバック補正係数αO2は、上述したように、リッチ/リーン(リーン/リッチ)反転時に付加される比例分(Pα)と、リッチ(リーン)継続時に付加される積分分(Iα)とにより算出される。
その後、始動開始から所定時間(第2所定時間)taが経過すると、機関1から水分(凝縮水)が排出されなくなったと判断し、リニア空燃比センサ12のヒータ101aへの通電が開始される。これにより、リニア空燃比センサ12が速やかに活性化し、活性化後に該リニア空燃比センサ12の出力に基づく空燃比フィードバック制御が開始される(t2)。このときの空燃比フィードバック補正係数αA/Fは、上述したように、目標空気過剰率(目標空燃比)λtgと実空気過剰率(実空燃比)λとの偏差に基づいて算出される。ここで、リニア空燃比センサ12が活性化するまでの間は上記酸素濃度センサ13の出力に基づく空燃比フィードバック制御が継続される。
酸素濃度センサ13の出力に基づく空燃比フィードバック制御からリニア空燃比センサ12の出力に基づく空燃比フィードバック制御への切り替え時には、当該切り替え直前における空燃比フィードバック補正係数αO2における積分値(ΣIα)を引継ぎ(すなわち、αA/Fの積分値(Σ(λtg−λ))の初期値とし)、切り替えから所定時間tcが経過するまではフィードバックゲインを通常時よりも低下させる(K=K1,K=K1,K=K1)。そして、制御の切り替えから所定時間tcが経過すると、フィードバックゲインを通常時の値(K=K2,K=K2,K=K2)に戻す(t3)。
本実施形態によれば、次のような効果を有する。
低温始動時において、先ず排気浄化触媒11の下流側の酸素濃度センサ13のヒータ101bに対する通電を行って酸素濃度センサ13を活性化させ、該酸素濃度センサ13の出力に基づく空燃比フィードバック制御を実行するので、より早くかつ精度よく排気空燃比を理論空燃比へと制御することが可能となる。したがって、従来のようなオープン制御に比べて、低温始動時におけるHC排出量を大幅に低減することができる。
ここで、始動開始後に酸素濃度センサ13の上流側の排気系部品、具体的には、排気管10及び排気浄化触媒11の少なくとも一方の温度が水分蒸発温度に達してから酸素濃度センサ13のヒータ101bへの通電を開始するようにしており、酸素濃度センサ13の検出素子100bが被水して破損することが確実に防止される。
そして、上記排気系部品の温度が水分蒸発温度に達したか否かの判定は、始動開始からの経過時間と、あらかじめ求めておいた計測時間tbとを比較することで行われるので容易である。ただし、これに限るものではなく、上述したように、触媒温度センサ19の出力に基づいて判定してもよい。また、始動開始から総排出ガス量(総吸入空気量Qとしてもよい)があらかじめ設定した第1所定量を超えたときや始動開始からの燃焼回数(点火回数としてもよい)があらかじめ設定した第1所定回数を超えたときに、上記排気系部品の温度が水分蒸発温度に達したと判定し、酸素濃度センサ13のヒータ101bへの通電を開始するようにしてもよい。
ところで、本実施形態では、酸素濃度センサ13のプロテクタ102bに形成された通気孔103bの孔径を、リニア空燃比センサ12のプロテクタ102aに形成された通気孔103aの孔径よりも小さくしており、酸素濃度センサ13の耐被水性を向上させている。また、低温時に機関1から排出される水分(凝縮水)は、排気浄化触媒11を通過する際に分散等して酸素濃度センサ13には付着し難くなる。したがって、必ずしも上記排気系部品の温度が水分蒸発温度まで上昇するのを待つ必要はなく、始動開始からある程度の時間が経過した時点(例えば、排気浄化触媒11の下流側での水分量がある程度減少したと判断できる時点)で、酸素濃度センサ13のヒータ101bへの通電を開始するようにしてもよい。
そして、酸素濃度センサ13の出力に基づく空燃比フィードバック制御を実行した後に、リニア空燃比センサ12のヒータ102aへの通電を行ってリニア空燃比センサ12を活性化させ、該リニア空燃比センサ12の出力に基づく空燃比フィードバック制御に切り替える。これにより、低温始動時において、まず酸素濃度センサ13の出力に基づく空燃比フィードバック制御を実行して始動直後におけるHC排出量を低減し、その後は、リニア空燃比センサ12の出力に基づく高応答の空燃比フィードバック制御へと切り替えることができる。
ここで、機関1から凝縮水が排出されなくなってから、リニア空燃比センサ12のヒータ101aに対する通電を開始するようにしており、機関1から排出された凝縮水によってリニア空燃比センサ12の検出素子100aが被水して破損することが確実に防止される。
また、機関1から凝縮水が排出されなくなったか否かの判定は、上記排気系部品が水分蒸発温度に達したか否かの判定と同様に、始動開始からの経過時間と、あらかじめ求めておいた計測時間taとを比較することで行われるので容易である。ただし、これに限るものではなく、この場合においても始動開始からの総排出ガス量(総吸入空気量Qとしてもよい)があらかじめ設定した第2所定量(>第1所定量)を超えたときや始動開始からの燃焼回数(点火回数としてもよい)があらかじめ設定した第2所定回数(>第1所定回数)を超えたときに機関1から凝縮水が排出されなくなったと判定し、リニア空燃比センサ12のヒータ101aへの通電を開始するようにしてもよい。
また、酸素濃度センサ13の出力に基づく空燃比フィードバック補正からリニア空燃比センサ12の出力の基づく空燃比フィードバック制御へと切り替える際に、空燃比フィードバック補正係数の積分値を引継ぐと共に、該制御の切り替えからの所定期間はフィードバックゲインを低下させるようにしている。これにより、空燃比フィードバック制御の切り替えに伴うハンチングや空燃比段差(トルク段差)を抑制できる。
さらに、低温始動時にはまず酸素濃度センサ13の出力に基づく空燃比フィードバック制御が実行されることから、リニア空燃比センサ12の活性化を無理に早める必要がない。このため、リニア空燃比センサ12のプロテクタ102aの耐被水性を相対的に低下させることが可能となり、リニア空燃比センサ12の応答性を高くすることも可能である。この結果、その後の上流側空燃比センサの出力に基づく第2空燃比フィードバック制御の精度を向上できる。
なお、以上説明した実施形態では、排気浄化触媒11の上流側と下流側とで異なるセンサ(リニア空燃比センサ12、酸素濃度センサ13)を設けているが、両センサを同じもの(例えば、リニア空燃比センサ)としてもよい。この場合においても、本実施形態と同様、下流側センサのプロテクタに形成された孔径を上流側センサのプロテクタに形成された孔径よりも小さくする。
また、低温始動時において、先ず酸素濃度センサ13の出力に基づく空燃比フィードバック制御を実行し、その後、リニア空燃比センサ12の出力に基づく空燃比フィードバック制御を実行しているが、リニア空燃比センサ12の出力に基づく空燃比フィードバック制御に切り替えた後においては、これをメインフィードバック制御とし、酸素濃度センサ13の出力に基づいてリニア空燃比センサ12の出力を補正するフィードバック制御(サブフィードバック制御)を実行するようにしてもよい。
具体的には、リニア空燃比センサ12の出力に基づいて排気空燃比を理論空燃比へとフィードバック制御しているときに、次式によりリニア空燃比センサ12の出力値、すなわち、実空気過剰率(実空燃比)λを調整するための調整量HOSRAMBDAを算出し、リニア空燃比センサ12によって検出された実空気過剰率(実空燃比)λを上記調整量HOSRAMBDAで補正する(すなわち、「λ+HOSRAMBDA」を制御に用いる実空気過剰率とする)。
HOSRAMBDA=K3・ΔVO2+K3・Σ(ΔVO2)+K3・d(ΔVO2)/dt
但し、ΔVO2は、酸素濃度センサ13の基準値(理論空燃比相当の値)と、酸素濃度センサ13の出力との偏差であり、K3,K3,K3はあらかじめ設定された比例ゲイン、積分ゲイン、微分ゲインである。
このようにすると、リニア空燃比センサ12の出力特性のずれ等による空燃比フィードバック制御のずれが補正され、より高精度な空燃比制御が可能となる。
本発明の実施形態に係る内燃機関のシステム構成図である。 リニア空燃比センサ、酸素濃度センサの要部を示す図である。 本実施形態の機関始動時の制御フローチャートである。 酸素濃度センサの出力に基づく空燃比フィードバック制御のフローチャートである。 リニア空燃比センサの出力に基づく空燃比フィードバック制御のフローチャートである。 本実施形態の機関始動時の制御タイミングチャートである。
符号の説明
1…内燃機関、10…排気管、11…排気浄化触媒、12…リニア空燃比センサ(上流側空燃比センサ)、13…酸素濃度センサ(下流側空燃比センサ)、14…回転速度センサ、15…エアフローメータ、18…水温センサ、20…ECU(ヒータ通電手段)、100…検出(センサ)素子、101…ヒータ(素子加熱用ヒータ)、102…プロテクタ、103…通気孔

Claims (11)

  1. 排気管に介装された触媒と、
    前記触媒の上流側に配設され、素子加熱用のヒータを備えた上流側空燃比センサと、
    前記触媒の下流側に配設され、素子加熱用のヒータを備えた下流側空燃比センサと、
    前記上流側空燃比センサのヒータと前記下流側空燃比センサのヒータとのそれぞれに対して通電を行って発熱させるヒータ通電手段と、
    前記上流側空燃比センサ及び前記下流側センサの少なくとも一方の出力に基づいて排気空燃比を制御する空燃比制御手段と、を備え、
    低温始動時に、先ず前記下流側空燃比センサのヒータに対する通電を行って該下流側空燃比センサの出力に基づく第1空燃比フィードバック制御を実行し、その後、前記上流側空燃比センサのヒータに対する通電を行って前記第1空燃比フィードバック制御から前記上流側空燃比センサの出力に基づく第2空燃比フィードバック制御へと切り替えることを特徴とする内燃機関の空燃比制御装置。
  2. 前記排気管の温度又は前記触媒の温度が水分蒸発温度以上となってから、前記下流側空燃比センサのヒータに対する通電を開始することを特徴とする請求項1記載の内燃機関の空燃比制御装置。
  3. 始動からの経過時間が第1所定時間を超えたとき、始動からの機関の排出ガス量が第1所定量を超えたとき、または、始動からの機関の燃焼回数が第1所定回数を超えたときに、前記下流側空燃比センサのヒータに対する通電を開始することを特徴とする請求項1又は請求項2記載の内燃機関の空燃比制御装置。
  4. 機関から凝縮水が排出されなくなってから、前記上流側空燃比センサのヒータに対する通電を開始することを特徴とする請求項1〜3のいずれか1つに記載の内燃機関の空燃比制御装置。
  5. 始動からの経過時間が第2所定時間(>第1所定時間)を超えたとき、始動からの機関の排出ガス量が第2所定値(>第1所定値)を超えたとき、または、始動からの機関の燃焼回数が第2所定回数(>第1所定回数)を超えたときに、前記上流側空燃比センサのヒータに対する通電を開始することを特徴とする請求項3又は請求項4記載の内燃機関の空燃比制御装置。
  6. 前記上流側空燃比センサは、排気中の酸素濃度に応じた出力を発生するリニア空燃比センサであり、前記下流側空燃比センサは、理論空燃比近傍で出力が急変する酸素濃度センサであることを特徴とする請求項1〜5のいずれか1つに記載の内燃機関の空燃比制御装置。
  7. 前記第1空燃比フィードバック制御は、前記酸素濃度センサの出力と基準値との比較結果に応じて、比例項および積分項を用いて第1空燃比フィードバック補正係数を算出し、該第1空燃比フィードバック補正係数を用いて燃料噴射量を制御するものであり、
    前記第2空燃比フィードバック制御は、目標空燃比と前記リニア空燃比センサの検出空燃比との偏差に基づいて、比例項および積分項を用いて第2空燃比フィードバック補正係数を算出し、該第2空燃比フィードバック補正係数を用いて燃料噴射量を制御するものであって、
    前記第1空燃比フィードバック制御から前記第2空燃比フィードバック制御へと切り替える際に、該切り替え直前の前記第1空燃比フィードバック補正係数における積分値を前記第2空燃比フィードバック補正係数における積分値の初期値として設定することを特徴とする請求項6記載の内燃機関の空燃比制御装置。
  8. 前記第1空燃比フィードバック制御は、前記酸素濃度センサの出力と基準値との比較結果に応じて、比例項および積分項を用いて第1空燃比フィードバック補正係数を算出し、該第1空燃比フィードバック補正係数を用いて燃料噴射量を制御するものであり、
    前記第2空燃比フィードバック制御は、目標空燃比と前記リニア空燃比センサの検出空燃比との偏差に基づいて、比例項および積分項を用いて第2空燃比フィードバック補正係数を算出し、該第2空燃比フィードバック補正係数を用いて燃料噴射量を制御するものであって、
    前記第1空燃比フィードバック制御から前記第2空燃比フィードバック制御へと切り替える際に、前記第2空燃比フィードバック補正係数における比例項の値を算出し、該切り替え直前の前記第1空燃比フィードバック補正係数における積分値から前記算出した比例項の値を減算した値を該第2空燃比フィードバック補正係数における積分値の初期値として設定することを特徴とする請求項6記載の内燃機関の空燃比制御装置。
  9. 前記第1空燃比フィードバック制御から前記第2空燃比フィードバック制御に切り替わってからの所定期間、前記第2空燃比フィードバック補正係数を算出するためのフィードバックゲインを低下させることを特徴とする請求項7又は請求項8記載の内燃機関の空燃比制御装置。
  10. 前記上流側空燃比センサおよび前記下流側空燃比センサは、センサ素子を取り囲んで設けられ複数の通気孔が形成されたプロテクタをそれぞれ有し、
    前記下流側空燃比センサのプロテクタに形成された通気孔の孔径が、前記上流側空燃比センサのプロテクタに形成された流通孔の孔径よりも小さいことを特徴とする請求項1〜9のいずれか1つに記載の内燃機関の空燃比制御装置。
  11. 前記第1空燃比フィードバック制御から前記第2空燃比フィードバック制御に切り替わった後は、該第2空燃比フィードバック制御をメインフィードバック制御とし、これと併せて、前記下流側空燃比センサの出力に基づいて前記上流側空燃比センサの出力を補正するサブフィードバック制御を実行することを特徴とする請求項1〜10のいずれか1つに記載の内燃機関の空燃比制御装置。
JP2007249501A 2007-09-26 2007-09-26 内燃機関の空燃比制御装置 Pending JP2009079546A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007249501A JP2009079546A (ja) 2007-09-26 2007-09-26 内燃機関の空燃比制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007249501A JP2009079546A (ja) 2007-09-26 2007-09-26 内燃機関の空燃比制御装置

Publications (1)

Publication Number Publication Date
JP2009079546A true JP2009079546A (ja) 2009-04-16

Family

ID=40654480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007249501A Pending JP2009079546A (ja) 2007-09-26 2007-09-26 内燃機関の空燃比制御装置

Country Status (1)

Country Link
JP (1) JP2009079546A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134125A (ja) * 2013-01-09 2014-07-24 Ngk Spark Plug Co Ltd 空燃比制御装置
JP2017015036A (ja) * 2015-07-03 2017-01-19 トヨタ自動車株式会社 内燃機関の制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134125A (ja) * 2013-01-09 2014-07-24 Ngk Spark Plug Co Ltd 空燃比制御装置
US8943800B2 (en) 2013-01-09 2015-02-03 Ngk Spark Plug Co., Ltd. Air-fuel ratio control apparatus
JP2017015036A (ja) * 2015-07-03 2017-01-19 トヨタ自動車株式会社 内燃機関の制御装置

Similar Documents

Publication Publication Date Title
US8362405B2 (en) Heater controller of exhaust gas sensor
JP3265895B2 (ja) 空燃比センサのヒータ制御装置
JP2011074848A (ja) 内燃機関の空燃比学習制御装置
JP4706928B2 (ja) 排出ガスセンサのヒータ制御装置
US8000883B2 (en) Control apparatus and method for air-fuel ratio sensor
JP4621984B2 (ja) 排出ガスセンサのヒータ制御装置
US6973926B2 (en) Air-fuel ratio control apparatus for internal combustion engine and method thereof
JP2009079546A (ja) 内燃機関の空燃比制御装置
JP4315088B2 (ja) エンジンの空燃比制御装置
JP4371027B2 (ja) エンジンの空燃比制御装置
JP6349906B2 (ja) 排出ガスセンサのヒータ制御装置
JP2010077848A (ja) 内燃機関の空燃比制御装置
JP5041341B2 (ja) 排出ガスセンサのヒータ制御装置
US6976483B2 (en) Air-fuel ratio control apparatus for internal combustion engine and method thereof
JP2004197693A (ja) 内燃機関の空燃比制御装置
JPH09228824A (ja) 触媒劣化検出装置
JP4821703B2 (ja) ガスセンサ制御装置
JP4872793B2 (ja) 内燃機関の制御装置
JP2003172177A (ja) 空燃比センサのヒータ制御装置
JP2009168769A (ja) 排出ガスセンサのヒータ制御装置
JP6421864B2 (ja) 排出ガスセンサのヒータ制御装置
JP4371028B2 (ja) エンジンの空燃比制御装置
JP2009257242A (ja) 内燃機関の制御装置
JP2008121463A (ja) 酸素センサの故障診断装置
JP4726541B2 (ja) 内燃機関の空燃比制御装置