JP2009008928A - 撮像装置及び画像信号処理プログラム - Google Patents

撮像装置及び画像信号処理プログラム Download PDF

Info

Publication number
JP2009008928A
JP2009008928A JP2007170833A JP2007170833A JP2009008928A JP 2009008928 A JP2009008928 A JP 2009008928A JP 2007170833 A JP2007170833 A JP 2007170833A JP 2007170833 A JP2007170833 A JP 2007170833A JP 2009008928 A JP2009008928 A JP 2009008928A
Authority
JP
Japan
Prior art keywords
image signal
unit
imaging
correction
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007170833A
Other languages
English (en)
Other versions
JP4979482B2 (ja
Inventor
Hideya Aragaki
英哉 新垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2007170833A priority Critical patent/JP4979482B2/ja
Priority to PCT/JP2008/061662 priority patent/WO2009001903A1/ja
Publication of JP2009008928A publication Critical patent/JP2009008928A/ja
Priority to US12/644,353 priority patent/US8269861B2/en
Application granted granted Critical
Publication of JP4979482B2 publication Critical patent/JP4979482B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B19/00Cameras
    • G03B19/02Still-picture cameras
    • G03B19/12Reflex cameras with single objective and a movable reflector or a partly-transmitting mirror
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/702SSIS architectures characterised by non-identical, non-equidistant or non-planar pixel layout
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2101/00Still video cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/843Demosaicing, e.g. interpolating colour pixel values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements

Abstract

【課題】新たな機構や光学系を追加することなく、低コスト且つ省スペースで、且つ、正確な焦点調節を可能ならしめると共に、画質の劣化を防止すること。
【解決手段】撮像装置は、撮影光学系12と、上記撮影光学系12を介して被写体を撮像する撮像素子22と、上記撮像素子22の素子面上の領域に対して、上記撮影光学系12を通過する被写体像光の光束を瞳分割するマイクロレンズアレイ20と、上記撮像素子22の素子面上の上記領域を特定するための座標情報を記録し、上記撮像素子22による撮像によって得られた画像信号に対し、上記座標情報に基づいて、上記領域に対応した上記マイクロレンズアレイ20の光学特性及び上記撮像素子22の素子特性に基づく補正処理を行う信号処理部54と、上記信号処理部54による上記補正処理前の画像信号または上記補正処理後の画像信号に基づいて、焦点検出を行う焦点検出演算部46と、を備える。
【選択図】図1

Description

本発明は、焦点検出機能を有し、電子的な撮像素子を用いて撮影を行う撮像装置及びその画像信号処理プログラムに係わり、特に、ノイズ特性を考慮した正確な焦点検出及び撮影画質の劣化防止に関する。
従来より、電子的な撮像素子を使用して、被写体像を電子的に撮像する撮像装置に関する種々の技術が開示されている。
例えば、特許文献1では、TTL位相差検出装置に関する技術が開示されている。これは、フライレンズ方式と呼ばれる方式であり、レンズアレイを通過した光束を、ラインセンサを成す一対の受光素子で受光し、ラインセンサの信号を処理して像ずれ量、即ち位相差量を計算し、フォーカシングレンズの繰り出し量にフィードバックして焦点調節を行うものである。
また、特許文献2では、再結像方式を採用したTTL位相差検出装置に関する技術が開示されている。
更に、特許文献3では、撮影レンズを通過する光束を瞳分割する微小レンズ群と、上記微小レンズの瞳分割光束をそれぞれ受光する対をなす受光素子群とを、撮像素子上に部分的に形成して焦点検出領域を構成し、この焦点検出領域において位相差検出方式による焦点検出を行なう技術が開示されている。
特公昭57−49841号公報 特開平10−274562号公報 特開2000−305010号公報
上記特許文献1により開示された焦点検出装置では、撮影レンズを通過した被写体からの光束の一部を分割して導かねばならず、光学的な制約やスペース的な制約を受けるといった問題が生じる。
また、上記特許文献2により開示された焦点検出装置は、上記光路分割の問題の他に再結像光学系が必要であり、更にスペース的な制約が大きくなるといった問題を有している。
そこで、上記特許文献3では、位相差検出のための瞳分割を行うことを目的とした微小レンズ群、及び受光素子群を撮像素子上に形成することで、省スペースを実現している。しかしながら、分割した光束を受ける受光素子対を焦点検出領域に限定して形成する必要があるためコストがかかるという問題がある。更には、焦点検出領域に属する画素信号に関しては、焦点検出領域外の画素信号の補間により生成しており、光学特性や撮像素子のノイズ特性を考慮しておらず、焦点検出領域における画質が劣化するという問題がある。
本発明は、上記の点に鑑みてなされたもので、新たな機構や光学系を追加することなく、低コスト且つ省スペースで、且つ、正確な焦点調節を可能ならしめると共に、画質の劣化を防止する焦点検出機能を有する撮像装置及びその画像信号処理プログラムを提供することを目的とする。
本発明の撮像装置の一態様は、
撮影光学系と、
上記撮影光学系を介して被写体を撮像する撮像素子と、
上記撮像素子の素子面上の領域に対して、上記撮影光学系を通過する被写体像光の光束を瞳分割する瞳分割レンズ群と、
上記撮像素子の素子面上の上記領域を特定するための座標情報を記録する座標記録手段と、
上記撮像素子による撮像によって得られた画像信号に対し、上記座標記録手段に記録された上記座標情報に基づいて、上記領域に対応した上記瞳分割レンズ群の光学特性及び上記撮像素子の素子特性に基づく補正処理を行う補正手段と、
上記補正手段による上記補正処理前の画像信号または上記補正処理後の画像信号に基づいて、焦点検出を行う焦点検出手段と、
を具備することを特徴とする。
また、本発明の画像信号処理プログラムの一態様は、
コンピュータを、
撮影光学系を介して被写体を撮像する撮像素子の素子面上の領域に対して、上記撮影光学系を通過する被写体像光の光束を瞳分割する瞳分割レンズ群の光学特性及び上記撮影光学系の撮影情報を、上記撮像素子による撮像によって得られた画像信号と共に読み込む読み込み手段、
予め記録された上記撮像素子の素子面上の上記領域を特定するための座標情報に基づいて、上記読み込んだ画像信号に対し、上記領域に対応した上記瞳分割レンズ群の光学特性及び予め記録された上記撮像素子の素子特性に基づく補正処理を行う補正手段、
上記補正手段による上記補正処理前の画像信号または上記補正処理後の画像信号に基づいて、焦点検出を行う焦点検出手段、
として機能させるためのものであることを特徴とする。
本発明によれば、新たな機構や光学系を追加することなく、低コスト且つ省スペースで、且つ、正確な焦点調節を可能ならしめると共に、画質の劣化を防止する焦点検出機能を有する撮像装置及びその画像信号処理プログラムを提供することができる。
以下、本発明を実施するための最良の形態を図面を参照して説明する。
[第1実施形態]
図1(A)は、本発明の第1実施形態に係る撮像装置の光学系の構成図である。
同図に示されるように、本実施形態に係る撮像装置は、一眼レフレックスカメラであり、カメラ筐体10と、該カメラ筐体10に対して交換可能な又は固定された撮影光学系12とから成る。
撮影光学系12は、フォーカシングレンズ14と絞り16等により構成されるもので、被写体光の入射を受けるフォーカシングレンズ14が所定位置に配置され、その光軸上に絞り16が配置されている。なお、絞り16は、所定の絞り開口を保持することが可能であると共に、シャッタ機能を有しており、完全に遮光する機能も有している。
カメラ筐体10内には、上記撮影光学系12を介した被写体光の光路上に、ビームスプリッタ18が配置されている。そして、当該ビームスプリッタ18で反射された光の光路上には、マイクロレンズアレイ20、撮像素子22が設けられている。また、上記ビームスプリッタ18を透過した光の光路上には、ミラー24、ペンタプリズム26、及び接眼レンズ28からなるファインダ光学系が設けられている。
このような構成において、撮影光学系12を通過した被写体光束の一部は、ビームスプリッタ18により下方に反射され、撮像素子22で撮像されることになる。また、上記ビームスプリッタ18を透過した被写体光束の一部は、ミラー24で反射された後、ペンタプリズム26、接眼レンズ28等から構成されるファインダ光学系に導かれ、撮影者により観察される。
図1(B)は、第1実施形態に係る撮像装置の信号処理系の構成図である。
同図に示されるように、本撮像装置は、システムコントローラ30を備え、該システムコントローラ30は、全体の制御を司る中央演算処理部(CPU)32と、リードオンリメモリ(ROM)34、ランダムアクセスメモリ(RAM)36、アナログ/デジタル変換器(ADC)38、不揮発性メモリたるEEPROM40を少なくとも有している。
さらに、上記システムコントローラ30は、レンズ駆動部42、表示部44、焦点検出演算部46、ファーストレリーズスイッチ(以下、1RSWと記す)48、セカンドレリーズスイッチ(以下、2RSWと記す)50、エリア選択SW52と双方向に接続されている。
そして、上記撮像素子22の出力は、信号処理部54の入力に接続されている。信号処理部54の出力は、出力部56、表示部44、焦点検出演算部46の入力にそれぞれ接続されている。
このような構成において、上記システムコントローラ30は、その内部のROM34に格納されたシーケンスプログラムに従って一連の動作を行う。また、上記システムコントローラ30の内部のEEPROM40には、焦点調節、測光・露出演算、AWB(オートホワイトバランス)等に関する補正データが撮像装置毎に記憶されている。
上記撮像素子22は、撮影光学系12により形成される被写体像を撮像して電気信号に変換する。上記信号処理部54は、撮像素子22からの画素信号である電気信号を処理して画像信号を作成する。この信号処理部54の詳細な構成は後述する。
焦点検出演算部46は、上記信号処理部54において処理された画像信号に基づいて焦点検出演算を行う。この焦点検出演算の結果、合焦の判定データやフォーカシングレンズ14の駆動量等をシステムコントローラ30に送信する。
表示部44は、システムコントローラ30の制御の下、撮像素子22により撮像された映像やカメラ内部の情報を液晶表示素子(LCD)等により表示する。また、出力部56は、特に図示はしていないが、圧縮伸張回路、記録媒体で構成されており、撮像素子22により撮像された映像を圧縮処理して記録媒体に記録する。
上記1RSW48及び2RSW50は、図示しないレリーズボタンに連動したスイッチであり、該レリーズボタンの第1段階の押し下げにより1RSW48がオンし、引き続いて第2段階の押し下げで2RSW50がオンするように構成されている。エリア選択SW52は、AFエリアを選択するためのスイッチであり、オンする毎に予め決められたAFエリアを移動選択する。システムコントローラ30は、1RSW48のオンで焦点検出、AF動作を行い、2RSW50のオンで画像撮影、記録動作を行う。
以上の他、レンズ駆動部42は、システムコントローラ30からの司令に基づいて、フォーカシングレンズ14、絞り16等を駆動し、焦点距離、絞り径等、撮影光学系12の状態を制御する。
なお、図1(B)及び以下に説明する各図において、各処理ユニット間の実線の矢印は撮影された画像の信号の流れを表し、破線の矢印は制御信号の流れを表す。
図2(A)は、上記マイクロレンズアレイ20と上記撮像素子22の配置構成を示す図であり、図2(B)は、焦点検出領域(後述する)におけるマイクロレンズアレイ20及び撮像素子22の断面構成を示す図である。
図2(B)に示すように、受光素子たるフォトダイオード58の前面には、それぞれマイクロレンズ60が構成されている。撮像素子22の光感度を向上させる技術としては、各フォトダイオード58に対応した位置にマイクロレンズ60を設けることにより、入射光を効率よくフォトダイオード58の受光部62に集光する、所謂オンチップマイクロレンズと呼ばれる技術が確立されている。撮像素子22の表面において、マイクロレンズ60は、上記のように光感度を最適にするように設定されている。
上述の集光用のマイクロレンズ60とは別に、図2(A)に示すように、撮像素子22の素子面上の所定の領域上において、焦点検出のためのマイクロレンズアレイ20が配置されている。
ここでは、マイクロレンズアレイ20で覆われる受光素子を含む領域をマイクロレンズアレイ領域64と呼称し、マイクロレンズアレイ領域64のうち、マイクロレンズアレイ20を通過する光束のみが結像する領域に関しては、焦点検出用の画像信号を生成するための焦点検出領域66と呼称する。
また、マイクロレンズアレイ領域64のうち、焦点検出領域66周辺に位置し、撮影光学系12を通過した後マイクロレンズアレイ20による回折が作用し、マイクロレンズアレイ20を通過せずに、マイクロレンズアレイ20の外側からマイクロレンズアレイ20下へ回り込む光束が結像する領域を回折領域68と呼称する。
更に、撮影光学系12のみを通過し、マイクロレンズアレイ20の影響を全く受けない領域を撮像領域70と呼称する。
本実施形態では、3つのマイクロレンズアレイ領域64が設けられており、撮像素子22の素子面上において、1つの焦点検出領域66が光軸上に配置され、他の2つの焦点検出領域66は上記光軸上に配置された焦点検出領域に対して垂直な方向に且つ光軸外に配置されるように、各マイクロレンズアレイ20が構成されている。
この場合、これら領域の位置を撮像素子22の素子面上における画素の座標値に対応させる。マイクロレンズアレイ領域64及び撮像領域70は、撮像素子22に対するマイクロレンズアレイ20の相対的な位置関係から容易に座標値に対応させることができ、焦点検出領域66及び回折領域68は、実測や光線追跡などのシミュレーションにより対応させることができる。
撮像素子22は、焦点検出領域66の部分では、図2(B)に示すように、シリコンからなる半導体基板72内において、拡散層等により受光部62を構成するフォトダイオード58、受光部62上に形成される色フィルタ74、色フィルタ74の上に形成され、受光部62に一対一に対応する所定の曲率、焦点距離の球面をもつマイクロレンズ60にて構成されている。
また、上記焦点検出領域66において配置されるマイクロレンズアレイ20は、透明層76をコンデンサーレンズ78と再結像レンズ80とで挟む構成となっており、コンデンサーレンズ78表面の各レンズ間には視野マスク82、再結像レンズ80表面の各レンズ間にはクロストーク防止のためのマスク84が形成されている。再結像レンズ80は、隣り合うコンデンサーレンズ78から等距離にある軸上を再結像レンズ80の光軸が通るように形成されており、マイクロレンズアレイ20は、再結像レンズ80が撮像素子22の素子面上の隣り合う2つのフォトダイオード58上に被さるように配置される。
ここで、マイクロレンズアレイ20のほぼ焦点面に一対の受光素子であるフォトダイオード58A,58Bが配置されているとすると、マイクロレンズアレイ20は、図2(B)に示すように撮影光学系12を通過する光束を瞳分割して、各分割光束86を一対のフォトダイオード58A,58Bにそれぞれ入射するように作用する。
なお、撮像素子22の撮像領域70の部分の断面構成は、図2(B)からマイクロレンズアレイ20を取り除いた構成となっている。
図2(C)は、撮像素子22上の受光素子たるフォトダイオード58、コンデンサーレンズ78、再結像レンズ80の光軸方向から見た場合の配列を示す図である。
なお、焦点検出原理については、前述の特許文献1に開示の位相差検出方式と同様である為、ここでは詳細な説明は省略する。
次に、図3には上記焦点検出演算部46における合焦、前ピン、後ピンの各例を示し説明する。なお、実際には、マイクロレンズアレイLn群、受光素子An,Bn群は固定されており、撮影光学系12の位置が移動するのであるが、ここでは、説明の便宜上、撮影光学系12の位置を固定として相対位置関係を説明する。
マイクロレンズアレイLnの焦点距離はf2であり、マイクロレンズアレイLnと受光素子(フォトダイオード58)An,Bn間の距離に略等しい。
先ず、合焦時は、同一の被写体からの光束であり異なる射出瞳を通過した光線R1〜R12は、各マイクロレンズアレイLnの光軸を中心に隣り合う受光素子AnとBnが受ける受光量が一致する。例えば、光線R3,R8に対してマイクロレンズアレイL3、L4と受光素子A3,B3が対応する。
前ピンの場合は、異なるマイクロレンズアレイを通った光の受光素子A,Bの受光量、即ち隣り合わない受光素子A,Bの受光量が一致する。例えば、同一被写体からの光線R3,R8に対してはマイクロレンズアレイL5と受光素子B5、マイクロレンズアレイL2と受光素子A1がそれぞれ対応するので、像が4ピッチ分ずれる。
一方、後ピンの場合は、受光量が一致している検出素子は隣り合っているが、それら隣り合っている受光素子に入射する光は異なるマイクロレンズアレイを通った光となる。例えば、同一被写体からの光線R3,R8に対してマイクロレンズアレイL1と受光素子B1、マイクロレンズアレイL6と受光素子A5がそれぞれ対応するので、前ピン時とは逆方向に4ピッチ分だけ像がずれる。
このようにピントずれ量に応じて像ずれが発生する。実際には、上記1ピッチ単位の像ずれ量(位相差量)では焦点検出精度が低下するので、公知の補間演算等の処理を行って1ピッチ分以下の焦点検出を行う。このように像ずれ量を検出することで、撮影レンズのピントずれ量を求めることができる。
また、複数の焦点検出領域66について焦点検出を行い、そのうちの例えば最も近い被写体を自動的に選択する等の公知のアルゴリズムによる処理が可能となる。撮影者はエリア選択SW52によりAFエリアを選択して、そのエリアについて合焦させる事が可能である。
図4は、上記信号処理部54の構成を示すブロック図であり、該信号処理部54は、撮像信号処理部88、A/D90、バッファ92、領域特性記録部94、ゲイン算出部96、ノイズ推定部98、ノイズ低減部100、WB調整部102、色補間部104、鮮鋭化部106、階調変換部108、及び回折領域補正部110から成る。
ここで、上記レンズ駆動部42は、領域特性記録部94に接続されている。
また、上記撮像素子22は、撮像信号処理部88に接続されている。撮像信号処理部88は、A/D90を介してバッファ92に接続されている。領域特性記録部94は、ゲイン算出部96、WB調整部102、色補間部104、及び鮮鋭化部106に双方向に接続されている。バッファ92は、ゲイン算出部96、ノイズ推定部98、及びノイズ低減部100に接続されている。ゲイン算出部96は、ノイズ推定部98及び階調変換部108に接続されている。ノイズ低減部100は、上記焦点検出演算部46及びWB調整部102に接続されている。WB調整部102は、色補間部104に接続されている。色補間部104は、鮮鋭化部106に接続されている。鮮鋭化部106は、階調変換部108に接続されている。階調変換部108は、回折領域補正部110に接続されている。回折領域補正部110は、上記表示部44及び上記出力部56に接続されている。
図4において、信号の流れを説明する。
撮像素子22は、ベイヤ(Bayer)型原色フィルタを全面に配置した単板CCDを想定している。図5(A)は、ベイヤ型の色フィルタの構成を示す図である。ベイヤ型は2×2画素を基本単位とし、赤(R),青(B)フィルタが1画素ずつ、緑(G)フィルタが2画素配置されるものである。本実施形態においては、G画素に関してR画素の上下、B画素の上下に位置するものをそれぞれGr、Gb画素としている。
焦点検出領域66における結像に関しては、マイクロレンズアレイ20の影響を受けるため撮影光学系12とのトータルでの光学系を考慮した場合、撮影光学系12のみが作用する撮像領域70への結像と比較して、焦点距離、F値、レンズ解像力(以下、解像度MTFと称する)、レンズ透過率、等の光学特性が異なる。本実施形態においては、これら領域毎の結像条件の違いを考慮し、焦点検出領域66内に属する画像信号に対し、撮影光学系12、マイクロレンズアレイ20の特性データを用いた補正を行い、回折領域68内に属する画像信号に対しては、焦点検出領域66内と撮像領域70内に属する画像信号から補間処理により生成する。
本実施形態においては、上記特性データとして、撮影光学系12及びマイクロレンズアレイ20に関連するF値、解像度MTF、WB係数を記録する。これらの光学系の特性データは、実測や光線追跡などのシミュレーションにより予め求め、焦点検出領域66、回折領域68の位置(座標)データと共に領域特性記録部94に記録されており、撮影に際してはそれらが参照されるようになっている。特性データ、及び領域特性記録部94の詳細は後述する。
即ち、撮影に際しては、はじめにレリーズボタンの第1段階の押し下げにより1RSW48をオンすることで、焦点検出、AF動作を行うプリ撮像モードに入る。プリ撮像モードにおいて、信号処理部54では焦点検出演算を目的とした画像信号を生成し、焦点検出演算部46へ転送する。
まず、撮像素子22を介して撮影された信号は、撮像信号処理部88へ送信され、CDS(Correlated Double Sampling)/差動サンプリング、アナログゲインの調整等が行われた後、A/D90でデジタル信号に変換され、バッファ92へ転送される。このバッファ92内の画像信号は、ノイズ推定部98及びノイズ低減部100に転送される。プリ撮像モードにおいては、バッファ92からゲイン算出部96への転送は行われない。
ノイズ推定部98では、撮像素子22のノイズ特性に基づき、各画素の信号値に対応するノイズ量を推定する。プリ撮像モードにおいては、推定したノイズ量はノイズ低減部100へ転送される。ノイズ低減部100では、バッファ92からの信号に対し、ノイズ推定部98で推定したノイズ量に基づき、コアリング処理を行うことにより、ノイズ低減処理を行う。これらノイズ量推定及びノイズ低減処理の詳細については後述する。
そして、ノイズ低減後の画像信号は、ノイズ低減部100から上記焦点検出演算部46に送信され、焦点検出領域66に属する画像信号に基づき位相差を算出し、焦点検出を行う。なお、本実施形態では、ベイヤの緑(G)信号に基づいて位相差を算出しているが、公知の色補間処理により三板のRGB画像に変換した後、輝度信号を生成し、輝度信号に基づく焦点検出を行っても良い。
また、処理速度向上のため、ノイズ低減処理後の画像信号に基づく焦点検出を行わず、バッファ92から直接、画像信号を焦点検出演算部46に転送し、焦点検出を行っても良い。
撮影者は、このようなプリ撮影モードにおいて、随時、エリア選択SW52によるAFエリアの移動選択により、任意の被写体にフォーカスを合わせたり、撮影情報(光学系の焦点距離、絞り)の変更を行うことで、最適な撮像条件となるよう調整を行う。
引き続いて、レリーズボタンの第2段階の押し下げで2RSW50をオンすることにより本撮影を開始する。上記プリ撮像モードと同様に、撮像素子22を介して撮影された画像信号は、撮像信号処理部88、A/D90を介してデジタル信号へ変換され、バッファ92へ転送される。このバッファ92内の画像信号は、ゲイン算出部96、ノイズ低減部100、及びノイズ推定部98へ転送される。
ゲイン算出部96では、後段の階調変換処理における画素毎の信号レベルの増幅率をゲインとして予め算出する。マイクロレンズアレイ20の影響で、焦点検出領域66と撮像領域70に作用する光学系のF値が異なり、同一の信号レベルに対しても、異なるゲインが発生する。そのため、焦点検出領域66に属する画素については焦点検出領域66及び撮像領域70に対するF値を領域特性記録部94より取得し、信号レベルと共にF値に基づきゲインを算出する。また、撮像領域70に属する画素については、信号レベルに基づきゲインを算出する。算出したゲインは、ノイズ推定部98及び階調変換部108へ転送する。このゲイン算出に関する詳細は後述する。
ノイズ推定部98では、図5(A)に示されるような色別に注目画素P11(P:R,Gr,Gb,B各画素)を包含する3×3画素サイズの注目領域Pijを順次抽出する。その後、特開2005−175718号公報に開示されるように、信号レベルに応じた撮像素子特性に基づくノイズのモデルから注目画素P11に関するノイズ量Nを推定する。ところで、ノイズ低減部100においては、ノイズ量Nに基づくコアリング処理によりノイズ低減効果を調整しているが、正確なノイズ量の推定は現実的には難しいため、ノイズ低減後においてもノイズが残留する。残留したノイズは、後段の階調変換部108におけるゲインの乗算により増幅されるため、ノイズの残留を前提とした場合、ゲインが大きい領域ではノイズ量が多めに見積もられるよう補正することで、ノイズ低減効果を調整するといった手法が有効である。ここでは、信号レベルに基づくノイズ量算出後、重み付けしたゲインを乗算することで補正し、ノイズ低減部100へ転送している。このノイズ量算出の詳細は後述する。
ノイズ低減部100では、ノイズ推定部98で推定したノイズ量Nに基づき、コアリング処理による平滑化処理を行う。そして、ノイズ低減後の画像信号は、WB調整部102へ転送される。
WB調整部102では、色信号毎に所定のホワイトバランス係数を乗算する。
ここで、マイクロレンズアレイ20の分光特性が撮影光学系12と異なる場合を想定しており、この時、ホワイトバランス係数は、焦点検出領域66と撮像領域70とで異なる。そこで、本実施形態においては、焦点検出領域66及び撮像領域70に対し、実測や光線追跡などのシミュレーション等の手法により予め算出したホワイトバランス係数を、領域特性記録部94に記録しておく。
そして、WB調整部102は、注目画素の座標値を領域特性記録部94に転送し、領域特性記録部94は、座標値に基づき領域を判定した後、所属する領域に対応するホワイトバランス係数をWB調整部102に転送する。WB調整部102は、注目画素の信号値に、この転送されてきたホワイトバランス係数を乗算することでWB調整を行う。
WB調整後の画像信号は、色補間部104へ転送され、公知の補間処理によりR,G,Bの三板からなる画像信号が生成された後、鮮鋭化部106へ転送される。
鮮鋭化部106では、フィルタ処理によりエッジ信号を抽出した後、元の信号にエッジ信号を加算することで鮮鋭化処理を行う。ここで、焦点検出領域66と撮像領域70では、マイクロレンズアレイ20の影響により、各領域で解像度MTFが異なるため、解像力の低い領域においてはエッジ信号を強調して加算することで、領域毎の解像感のバランスをとる必要がある。そこで、本実施形態においては、まず、マイクロレンズアレイ20が影響する焦点検出領域66と、撮像領域70において、領域別に実測や光線追跡などのシミュレーション等の手法により解像度MTFを算出し、領域特性記録部94に記録しておく。
そして、鮮鋭化部106から注目画素の座標値を領域特性記録部94に転送し、領域情報を参照することで、注目画素が属する領域を特定する。注目画素が焦点検出領域66に属する場合には、焦点検出領域66及び撮像領域70に対応する解像度MTFを取得する。鮮鋭化部106では、取得した解像度MTFの比を所定の係数と共にエッジ信号に乗算したものを、元の信号に加算することで、鮮鋭化を行う。この鮮鋭化処理の詳細は後述する。
鮮鋭化処理後の画像信号は、階調変換部108へ転送される。階調変換部108では、前述のゲイン算出部96において算出された各画素に対応するゲインを各色信号に乗算することで、階調変換処理を行い、変換後の画像信号を回折領域補正部110へ転送する。
なお、以上に説明した階調変換部108までの処理のうち、回折領域68に属する画素に関する処理は、全てスキップされる。
回折領域補正部110では、回折領域68に属する画素値に関し、回折領域68周辺の焦点検出領域66、撮像領域70に属する画素値に基づいて、公知の補間処理により補間する。
図5(B)は、回折領域68内のG信号の補間に関する一例を示すもので、例えばG11に関しては上下の画素値(G10,G13)を用いて、以下の(1)式に基づき線形補間により補間する。
G11=0.75*G10+0.25*G13 …(1)
こうして画像信号の回折領域68内に属する各色信号の画素値について補間した後、画像信号は、上記出力部56及び上記表示部44へ転送される。
上記出力部56では、階調変換部108からの画像信号に対して圧縮伸張回路により圧縮処理を施した後、画像信号(静止画データ)を記録媒体に記録する。
次に、上記信号処理部54を構成する各処理ユニットの詳細を説明する。
図6は、領域特性記録部94の構成の一例を示すブロック図であり、該領域特性記録部94は、撮像条件特定部112、領域特性特定部114、パラメータ選択部116、パラメータ用ROM118、補間部120、及び補正部122から成る。
ここで、上記レンズ駆動部42は、撮像条件特定部112に接続されている。また、上記ゲイン算出部96、上記WB調整部102、及び上記鮮鋭化部106は、領域特性特定部114に接続されている。撮像条件特定部112、領域特性特定部114、及びパラメータ用ROM118は、パラメータ選択部116に接続されている。パラメータ選択部116は、補間部120に接続されている。補間部120は、補正部122に接続されている。補正部122は、上記ゲイン算出部96、上記WB調整部102、及び上記鮮鋭化部106へ接続されている。
この領域特性記録部94は、上記撮影光学系12及び上記マイクロレンズアレイ20に関する特性データを保持し、外部に接続される上記ゲイン算出部96、上記WB調整部102、及び上記鮮鋭化部106といった処理ユニットへ、それらが必要とする特性データを供給するものである。
特性データとしては、撮像領域70の結像に影響する撮影光学系12と、焦点検出領域66の結像に影響する撮影光学系12及びマイクロレンズアレイ20を合成した光学系との光学特性を表す、F値、解像度MTF、及びレンズの分光特性、及び、撮像素子22の分光感度に関連したWB係数が、焦点検出領域66の座標データと共に格納されている。
従って、領域特性記録部94は、処理ユニットから入力された注目画素の座標値から領域を特定し、処理ユニットが要求する撮像領域70、焦点検出領域66の何れかの領域に対応する特性データを出力する。
即ち、まず、撮像条件特定部112において、プリ撮影モードで設定された撮影情報(撮影光学系12の焦点距離、絞り径等)が上記レンズ駆動部42より転送され記録される。この撮影情報は、本撮影が終了するまでの間、保持される。
領域特性特定部114には、焦点検出領域66、撮像領域70、及び回折領域68を示す座標情報が予め記録されており、処理ユニットから入力される座標値に基づき、当該座標が焦点検出領域66、撮像領域70、及び回折領域68の何れに属するかの判定を行う。また、上記座標値の出力元の処理ユニットを表すフラグが設定されるようになっている。
領域特性記録部94は、この領域特性特定部114のフラグに応じて必要な特性データを特定、算出し、対応する処理ユニットへ供給する。本実施形態においては、例えば、ゲイン算出部96のフラグが立っている場合はF値を、WB調整部102のフラグが立っている場合はWB係数を、鮮鋭化部106のフラグが立っている場合は解像度MTFを、それらの処理ユニットへ供給する。
即ち、処理ユニットから入力された座標値が焦点検出領域66に属し、フラグがゲイン算出部96を示す場合、領域特性記録部94は、撮像領域70に対するF値Fa及び焦点検出領域66に対するF値Fbを算出し、ゲイン算出部96へ供給する。F値は、焦点距離、有効口径に依存して変化する。レンズの明るさはレンズ透過率にも影響を受けるが、簡略化のため、撮影光学系12とマイクロレンズアレイ20のレンズ透過率は同一と想定し、ここでは考慮しない。また、有効口径と絞り径が一致するものと仮定している。
図7(A)乃至(C)は、このF値の算出に関する説明図である。
図7(A)は、一例として絞り径が2.0mm,4.0mm,8.0mmの場合に対応する、ある焦点検出領域66における、F値をプロットしている。ここで図7(A)に示すように、複数の絞り径に対応したそれぞれのモデルを記録し、その都度、演算によりF値を算出することは処理的に煩雑である。このため、図7(B)に示すようなモデルの簡略化を行い、パラメータ用ROM118に記録しておく。
図7(B)においては、最大のF値を与えるモデルを基準F値モデルとして選択し、これを所定数の折れ線で近似する。折れ線の変曲点は、焦点距離fとF値からなる座標データ(f,F)で表す。ここで、nは変曲点の数を示す。また、上記基準F値モデルから他のF値モデルを導出するための係数kも用意される。係数kは、各F値モデルと基準F値モデル間から最小自乗法により算出される。基準F値モデルから他のF値モデルを導出するには、上記係数kを乗算することで行われる。
図7(C)は、図7(B)に示す簡易化されたF値モデルからF値を算出する方法を示す。例えば、与えられた焦点距離fth、絞り径Sに対応するF値を求めることを想定する。まず、焦点距離fthが基準F値モデルのどの区間に属するかを探索する。ここでは、(f,F)と(fn+1,Fn+1)間の区間に属するとする。基準F値モデルにおける基準F値(Fth)を、以下の(2)式に示す線形補間にて求める。
th=(Fn+1−F)/(fn+1−f)×(fth−f)+F …(2)
次に、絞り径Sに対応する係数kを、以下の(3)式に示すように乗算することで、F値を求める。
F=k・Fth …(3)
パラメータ選択部116は、領域特性特定部114に設定されたゲイン算出部96を示すフラグに従い、撮像条件特定部112から焦点距離fth、絞り径Sを読み込む。次に、焦点距離fが属する区間の座標データ(f,F)と(fn+1,Fn+1)をパラメータ用ROM118から探索し、これを補間部120へ転送する。さらに、絞り径Sに対応する係数kをパラメータ用ROM118から探索し、これを補正部122へ転送する。補間部120は、パラメータ選択部116からの焦点距離fth及び区間の座標データ(f,F)と(fn+1,Fn+1)から上記(2)式に基づき基準F値モデルにおける基準F値Fthを算出し、補正部122へ転送する。
補正部122は、パラメータ選択部116からの係数k及び補間部120からの基準F値Fthから、上記(3)式に基づきF値を算出し、注目画素P(P:R,Gr,Gb,B各画素)のF値として、ゲイン算出部96へ供給する。
なお、この場合、パラメータ用ROM118には、撮影光学系12とマイクロレンズアレイ20との合成光学系に対する基準F値モデルと、撮影光学系12のみに対する基準F値モデルとの2種類の基準F値モデルが記録されており、それぞれに関して処理を行うことで、上記注目画素Pに対しては、撮像領域70に対するF値Faと焦点検出領域66に対するF値Fbとが算出されて、ゲイン算出部96へ供給されることとなる。
また、処理ユニットから入力された座標値が焦点検出領域66に属し、フラグが鮮鋭化部106を示す場合には、領域特性記録部94は、焦点検出領域66及び撮像領域70に対する解像度MTFを算出し、鮮鋭化部106へ出力する。解像度MTFは、焦点距離、有効口径に依存して変化する。解像度MTFは一般に、撮影光学系12の光軸を中心とした像高に応じても変化するが、ここでは簡略化のため、焦点検出領域66の重心における値を代表値とし、焦点検出領域66に属する座標に対する解像度MTFは焦点検出領域66重心における解像度MTFで表すものとしている。また、有効口径と絞り径が一致するものと仮定している。解像度MTFは、実測、または光線追跡等のシミュレーションにより、焦点検出領域66及び撮像領域70に対しそれぞれ算出し、予めパラメータ用ROM118に記録しておく。
図8(A)乃至(C)は、解像度MTFの算出に関する説明図である。
図8(A)は、一例としてある焦点検出領域66の重心座標上における、絞り径が2.0mm,4.0mm,8.0mmの場合に対応する解像度MTFをプロットしている。
ここで、図8(A)に示すように、絞り径に対応した複数のモデルを記録し、その都度演算により解像度MTFを算出することは処理的に煩雑である。このため、図8(B)に示すようなモデルの簡略化を行い、パラメータ用ROM118に記録しておく。
図8(B)においては、最大の解像度MTFを与えるモデルを基準MTFモデルとして選択し、これを所定数の折れ線で近似する。折れ線の変曲点は、焦点距離(f)と解像度MTFからなる座標データ(f,MTF)で表す。ここで、nは変曲点の数を示す。また、上記基準MTFモデルから他のMTFモデルを導出するための係数kも用意される。係数kは、各MTFモデルと基準MTFモデル間から最小自乗法により算出される。基準MTFモデルから他のMTFモデルを導出するには、上記係数kを乗算することで行われる。
図8(C)は、図8(B)に示す簡易化されたMTFモデルから解像度MTFを算出する方法を示す。例えば、与えられた焦点距離fth、絞り値Sに対応する解像度MTFを求めることを想定する。まず、焦点距離fthが基準MTFモデルのどの区間に属するかを探索する。ここでは、(f,MTF)と(fn+1,MTFn+1)間の区間に属するとする。基準MTFモデルにおける基準解像度MTFthを、以下の(4)式に示す線形補間にて求める。
MTFth=(MTFn+1−MTF)/(fn+1−f)×(fth−f)+MTF …(4)
次に、係数kfSを、以下の(5)式に示すように乗算することで、解像度MTFを求める。
MTF=k・MTFth …(5)
パラメータ選択部116は、領域特性特定部114に設定された鮮鋭化部106を示すフラグに従い、撮像条件特定部112から焦点距離fth、絞り径Sを読み込んだ後、焦点距離fthが属する区間の座標データ(f,MTF)と(fn+1,MTFn+1)をパラメータ用ROM118から探索し、これを補間部120へ転送する。さらに、絞り径Sに対応する係数kをパラメータ用ROM118から探索し、これを補正部122へ転送する。補間部120は、パラメータ選択部116からの焦点距離fth及び区間の座標データ(f,MTF)と(fn+1,MTFn+1)から、上記(4)式に基づき基準MTFモデルにおける基準レンズ解像度MTFthを算出し、補正部122へ転送する。
補正部122は、パラメータ選択部116からの係数k及び補間部120からの基準解像度MTFthから、上記(5)式に基づき解像度MTFを算出し、注目画素P(P:R,Gr,Gb,B各画素)の解像度MTFとして、鮮鋭化部106へ供給する。
なお、この場合、パラメータ用ROM118には、焦点検出領域66に対する基準MTFモデルと、撮像領域70に対する基準MTFモデルとの2種類の基準MTFモデルが記録されており、それぞれに関して処理を行うことで、上記注目画素Pに対しては、撮像領域70に対する解像度MTFaと焦点検出領域66に対する解像度MTFbとが算出されて、鮮鋭化部106へ供給されることとなる。
また、処理ユニットから入力されたフラグがWB調整部102を示す場合には、同様に、領域特性記録部94は、入力された座標値をもとに撮像領域70、焦点検出領域66の何れに属するかを判定した後、判定された領域に対応するWB係数をWB調整部102へ出力する。WB係数は、撮像素子22の分光感度、撮影光学系12とマイクロレンズアレイ20の分光特性に基づき、実測、または光線追跡等のシミュレーションにより算出し、予めパラメータ用ROM118に記録しておく。
次に、上記ゲイン算出部96について説明する。
図9は、このゲイン算出部96の構成の一例を示すブロック図であり、該ゲイン算出部96は、階調変換ゲイン算出部124、階調変換曲線ROM126、及び補正部128から成る。ここで、上記バッファ92及び階調変換曲線ROM126は、階調変換ゲイン算出部124に接続されている。階調変換ゲイン算出部124及び上記領域特性記録部94は、補正部128に接続されている。補正部128は、上記ノイズ推定部98及び上記階調変換部108に接続されている。
本実施形態における階調変換処理では、基本的に、撮像領域70における画像信号を基準とした固定の標準的な階調変換曲線に基づく画素値の変換を行うこととし、焦点検出領域66に属する画素に関するゲインについては、さらに光学系の明るさ、F値に基づき補正処理を行う。
そのため、階調変換ゲイン算出部124は、上記バッファ92から取得した画像信号に対し、階調変換曲線ROM126から取得した階調変換曲線及び画素の信号レベルに基づき、画素毎にゲインを算出する。階調変換処理におけるゲインgainの定義を、以下の(6)式に示す。但し、以下の(6)式において、t()は階調変換曲線、AVcは入力信号レベルである。
gain=t(AVc)/AVc …(6)
階調変換処理は、画像信号の各画素の信号レベルに基づきゲインgainを算出し、各画素値にその算出したゲインgainを乗算することで処理がなされる。
ところで、焦点検出領域66面と撮像領域70面に照射される単位面積あたりの光量は、前者がマイクロレンズアレイ20の影響を受け、撮影光学系12とのトータルな光学性能(F値)が異なるため、領域毎に明るさが均一でない。そのため、焦点検出領域66と撮像領域70とで信号レベルが同一となるよう、焦点検出領域66における画像信号にかかるゲインgainを補正する。
まず、注目画素の座標値を領域特性記録部94に転送し、上述のように、領域情報を参照することで注目画素が属する領域を特定する。焦点検出領域66に属する場合は、上述のようにして撮影光学系12のF値Fa、及び撮影光学系12とマイクロレンズアレイ20との合成光学系としてのF値Fbを取得する。
撮像領域70、焦点検出領域66における単位面積当たりの光量La、Lbは、以下の(7)式のように定義可能である。但し、ここで、Kfは所定の係数である。
La=Kf/(Fa)^2, Lb=Kf/(Fb)^2 …(7)
従って、焦点検出領域66における、撮像領域70に対する光量比Labは、以下の(8)式で示される。
Lab=Lb/La=(Fa/Fb)^2 …(8)
即ち、焦点検出領域66における画像信号に対しては、以下の(9)式に従いゲインgainを補正することで、階調変換処理において撮像領域70と焦点検出領域66における信号レベルが均一となるよう補正する。
gain’=gain*(Fa/Fb)^2 …(9)
なお、撮像領域70に属する画素に対する補正は行わない。
以上のように算出したゲインは、ノイズ推定部98及び階調変換部108へ転送される。
次に、上記ノイズ推定部98について説明する。
図10は、このノイズ推定部98の構成の一例を示すブロック図であり、該ノイズ推定部98は、平均算出部130、パラメータ選択部132、パラメータ用ROM134、補間部136、及び補正部138からなる。
ここで、上記バッファ92は平均算出部130へ接続しており、平均算出部130及びパラメータ用ROM134はパラメータ選択部132へ接続している。上記ゲイン算出部96は、補正部138に接続されている。パラメータ選択部132は補間部136へ接続しており、補間部136及び上記ゲイン算出部96は補正部138へ接続している。補正部138は、上記ノイズ低減部100へ接続している。
ノイズ推定部98では、撮像素子22の信号レベルに対するノイズ量をモデル化したノイズモデルからノイズ量の推定を行う。また、後段のゲイン乗算に基づく階調変換処理におけるノイズの増幅を考慮し、ゲインに応じたノイズ量の補正を行う。
平均算出部130は、図5(A)に示される局所領域Pij(i=0〜2,j=0〜2,P:R,Gr,Gb,B各画素)を抽出し、以下の(10)式に示すように局所領域Pijの平均値AV11を算出して、パラメータ選択部132へ転送する。
AV11=ΣPij/9 …(10)
単板状態の色信号については、色信号ごとに局所領域を形成した後、平均算出部130へ転送する。以降のノイズ量の推定、ならびにノイズ低減処理は、色信号ごとに実施される。平均算出部130では、局所領域の平均値を算出しパラメータ選択部132へ転送する。
図11(A)乃至(C)は、ノイズ量の推定に関する説明図である。
図11(A)は、信号レベルが中間輝度領域において、ノイズ量の最大値をプロットしている。
信号レベルをVとした場合、ノイズ量Nを2次関数でモデル化すると、以下の(11)式が得られる。但し、ここで、α,β,γは定数項である。
N=αV2+βV+γ …(11)
ノイズ量の分布は、処理系の組み合わせにより傾向が異なる。ここでは、2次の多項式によりモデル化したが、ノイズ量分布傾向に合せて、以下の(12)式のような1次関数、または以下の(13)式のようなLog関数によるモデル化も可能である。これら(12)式及び(13)式は、上記(11)式と容易に置換可能であるため、その説明は省略する。
N=αV+β …(12)
N=αlogV …(13)
ここで、ノイズ量算出の演算処理の負荷を軽減するため、図11(B)に示すようなモデルの簡略化を行う。
図11(B)において、gain=1.0における基準のノイズモデル(以降、基準ノイズモデル)を所定数の折れ線で近似する。折れ線の変曲点は、信号レベルVとノイズ量Nからなる座標データ(V,N)で表す。ここで、nは変曲点の数を示す。
図11(C)は、図11(B)に示す簡易化されたノイズモデルからノイズ量を算出する方法を示す。例えば、与えられた信号レベルVth、gain=Kに対応するノイズ量Nを求めることを想定する。まず、信号レベルVthが基準ノイズモデルのどの区間に属するかを探索する。ここでは、(V,N)と(Vn+1,Nn+1)間の区間に属するとする。基準ノイズモデルにおける基準ノイズ量Nthを、以下の(14)式に示す線形補間にて求める。
th=(Nn+1−N)/(Vn+1−V)×(Vth−V)+N …(14)
次に、ゲインgain=Kを、以下の(15)式に示すように所定の係数Kと共に基準ノイズ量Nthに乗算することで、ノイズ量Nを求める。
N=K・K・Nth …(15)
具体的な処理手順は、以下の通りである。
即ち、パラメータ選択部132は、平均算出部130からの局所領域の平均値AV11から信号レベルVthを設定する。次に、信号レベルVthが属する区間の座標データ(V,N)と(Vn+1,Nn+1)をパラメータ用ROM134から探索し、これを補間部136へ転送する。
補間部136は、パラメータ選択部132からの信号レベルVth及び区間の座標データ(V,N)と(Vn+1,Nn+1)から、上記(14)式に基づき基準ノイズモデルにおける基準ノイズ量Nthを算出し、補正部138へ転送する。
補正部138は、上記ゲイン算出部96からゲインgain=K及び所定の重み係数K、また、補間部136からの基準ノイズ量Nthに基づき、上記(15)式からノイズ量Nを算出し、注目画素P11のノイズ量N11とする。
こうして推定されたノイズ量N11及び平均値AV11は、上記ノイズ低減部100へ転送される。
次に、上記ノイズ低減部100について説明する。
図12は、このノイズ低減部100の構成の一例を示すブロック図であり、該ノイズ低減部100は、切換部140、範囲設定部142、第1スムージング部144、及び第2スムージング部146からなる。
ここで、上記バッファ92は、切換部140に接続している。また、上記ノイズ推定部98は、範囲設定部142へ接続しており、切換部140と範囲設定部142は第1スムージング部144及び第2スムージング部146へ接続している。第1スムージング部144及び第2スムージング部146は、上記焦点検出演算部46及び上記WB調整部102へ接続している。
上記ノイズ推定部98は、上述したように、局所領域Pijの平均値AV11及び注目画素P11のノイズ量N11を、範囲設定部142へ転送する。
範囲設定部142は、ノイズ量に関する許容範囲として上限Up及び下限Lowを、以下の(16)式及び(17)式のように設定する。
Up=AV11+(N11/2) …(16)
Low=AV11−(N11/2) …(17)
上記許容範囲Up,Lowは、切換部140へ転送される。また、範囲設定部142は、平均値AV11及びノイズ量N11を第1スムージング部144及び第2スムージング部146へ転送する。
切換部140は、バッファ92からの注目画素P11を読み込み、上記許容範囲に属するか否かの判断を行う。判断は、「ノイズ範囲に属している」、「ノイズ範囲を上回っている」、「ノイズ範囲を下回っている」の三通りである。切換部140は、「ノイズ範囲に属している」場合は第1スムージング部144へ、それ以外は第2スムージング部146へ、注目画素P11を転送する。
第1スムージング部144は、切換部140からの注目画素P11に、範囲設定部142からの平均値AV11を、以下の(18)式のように代入する処理を行う。
P’11=AV11 …(18)
第2スムージング部146は、切換部140からの注目画素P11に、範囲設定部142からの平均値AV11とノイズ量N11を用いて補正する処理を行う。まず、「ノイズ範囲を上回っている」場合は、以下の(19)式のように補正する。
P’11=AV11−N11/2 …(19)
また、「ノイズ範囲を下回っている」場合は、以下の(20)式のように補正する。
P’11=AV11+N11/2 …(20)
上記(18)式、(19)式または(20)式のノイズ低減処理がなされた注目画素P’11及びノイズ量N11は、上記焦点検出演算部46及び上記WB調整部102へ転送される。
次に、上記鮮鋭化部106について説明する。
図13は、この鮮鋭化部106の構成の一例を示すブロック図であり、該鮮鋭化部106は、Y/C分離部148、フィルタ用ROM150、フィルタ処理部152、エッジ補正部154、エッジ強調部156、Y/C合成部158よりなる。
ここで、上記色補間部104は、Y/C分離部148に接続されている。Y/C分離部148は、フィルタ処理部152及びエッジ強調部156に接続されている。フィルタ用ROM150は、フィルタ処理部152に接続されている。上記領域特性記録部94及びフィルタ処理部152は、エッジ補正部154に接続されている。エッジ補正部154は、エッジ強調部156に接続されている。エッジ強調部156は、Y/C合成部158に接続されている。Y/C合成部158は、上記階調変換部108に接続されている。
Y/C分離部148は、上記色補間部104からの画像信号を画素単位で読み出し、以下の(21)式に従い輝度信号Yと色差信号Cに分離し、輝度信号Yをフィルタ処理部152に、輝度信号Y及び色差信号Cをエッジ強調部156へ転送する。
Y=0.29900R+0.58700G+0.11400B
Cb=−0.16874R−0.33126G+0.50000B …(21)
Cr=0.50000R−0.41869G−0.08131B
フィルタ処理部152では、始めにフィルタ用ROM150から公知のエッジ成分抽出−フィルタ処理に必要なフィルタ係数を読み出す。例えば、5×5画素サイズのフィルタである場合は、Y/C分離部148からの画像信号から5×5画素単位の局所領域を読み込み、上記フィルタ係数を用いてエッジ信号Egを求め、これをエッジ補正部154へ転送する。
エッジ補正部154では、マイクロレンズアレイ20の影響により、焦点検出領域66と撮像領域70の間で異なる解像感となるので、バランスをとるため、焦点検出領域66に属する画素に対しては各領域のMTFに基づき、エッジ信号Egの補正を行う。まず、上述したように、注目画素の座標値を領域特性記録部94に転送し、領域情報を参照することで注目画素が属する領域を特定する。焦点検出領域66に属する場合は、撮像領域70及び焦点検出領域66に対応する各解像度MTF(MTFa,MTFb)を取得する。本実施形態においては、以下の(22)式に示すように各領域のMTF比の逆数に基づき、補正を行っている。但し、ここで、Eg’は補正後のエッジ信号、Keは所定の係数である。
Eg’=Eg*Ke/(MTFb/MTFa) …(22)
エッジ強調部156は、Y/C分離部148において上記(21)式に従い変換された輝度信号Yから所定サイズの局所領域を抽出し、輝度信号Yに対してフィルタ処理部152からのエッジ信号Eg、またはEg’を加算することにより鮮鋭化処理を行う。
鮮鋭化後の輝度信号Y及び色差信号Cは、Y/C合成部158へ転送される。そして、Y/C合成部158において、以下の(23)式に従い輝度信号Y及び色差信号CをRGB画像信号に変換した後、画像信号は上記階調変換部108へ転送される。
R=Y+1.40200Cr
G=Y−0.34414Cb−0.71414Cr …(23)
B=Y+1.77200Cb
なお、本実施形態においては、回折領域68内に属する画素に関しては、回折領域68内画素周辺の焦点検出領域66及び撮像領域70内に属する画像信号から補間しているが、解析領域内画素に関して撮像領域70内画素と同様の処理を施した後、周辺に位置する焦点検出領域66及び撮像領域70内画素に基づき、例えば平均を取るなどの補正処理を行う構成としても良い。
また、図6に示す領域特性記録部94には、焦点検出領域66、撮像領域70、回折領域68を表す座標情報が記録されており、座標値に基づき座標の属する領域が特定可能であるが、回折領域68のみの座標情報を記録しておき、領域の特定に際しては、回折領域68内に属する座標値に関しては撮像領域70、回折領域外側に属する座標値に関しては撮像領域70とする判定手段を設ける構成としても良い。
逆に、焦点検出領域66及び撮像領域70のみを記録しておき、各領域に属さない座標値を回折領域68とする判定手段を設ける構成としても良い。
また、回折領域68を焦点検出領域66、または撮像領域70のいずれかの領域と併合し、回折領域68に関する処理(回折領域補正部等)を削除する構成としても良い。
さらに、上記実施形態では、ハードウェアによる処理を前提としていたが、このような構成に限定される必要は無い。
例えば、撮像素子22からの信号を未処理のままRAWデータとして、レンズ特性、撮影情報をヘッダ情報として付加して出力し、別途ソフトウェアにて処理する構成も可能である。
図14は、そのような信号処理のソフトウェア処理に関するフローチャートを示す図である。
まず、画像信号、ヘッダ情報を読み込む(ステップS10)。また、撮影光学系12、マイクロレンズアレイ20に関連する光学特性データを読み込み、メモリ等に記録すると共に(ステップS12)、撮影時の撮影光学系12の焦点距離、絞り径などの撮影情報を読み込み、メモリ等に記録する(ステップS14)。
次に、階調変換処理におけるゲインを算出する(ステップS16)。そして、各画素について、焦点検出領域66に属する画素か否かの判定を行い(ステップS18)、焦点検出領域66に属する画素に関しては、焦点検出領域66及び撮像領域70のF値に基づきゲインの補正処理を行う(ステップS20)。
こうして全画素についてゲインが決定したならば、次に、各画素のノイズ量を推定する(ステップS22)。そして、各画素について、焦点検出領域66に属する画素か否かの判定を行い(ステップS24)、焦点検出領域66に属する画素に関しては、ゲインに基づきノイズ量の補正処理を行う(ステップS26)。こうして、全画素についてノイズ量が決定したならば、そのノイズ量に基づきノイズ低減処理を行う(ステップS28)。
その後、各領域に対応するWB係数に基づきWB調整処理を行う(ステップS30)。そして、この単板のRAW画像より公知の色補間処理を用いて三板RGB画像を生成する(ステップS32)。
次に、該RGB画像をY/C信号に変換した後、Y信号よりエッジ信号を抽出する(ステップS34)。そして、各画素について、焦点検出領域66に属する画素か否かの判定を行い(ステップS36)、焦点検出領域66に属する画素に関しては、各領域のMTF比に基づきエッジ信号の補正処理を行う(ステップS38)。
こうして全画素についてエッジ信号が得られたならば、次に、そのエッジ信号は元のY信号に加算した後、Y/C合成処理によりRGB信号に変換する(ステップS40)。そして、上記ステップS16乃至S20で算出したゲインに基づき階調変換処理を行う(ステップS42)。
その後、各画素について、回折領域68に属する画素か否かの判定を行い(ステップS44)、回折領域68に属する画素に関しては、当該回折領域68内画素周辺に位置する焦点検出領域66、撮像領域70内画素値に基づいて、該回折領域68内画素値の補正処理を行う(ステップS46)。そして、得られた画像信号を出力する(ステップS48)。
なお、このフローチャートは、レリーズボタンの第2段階の押し下げで2RSW50をオンすることにより行われる本撮影についての処理を示したものである。
レリーズボタンの第1段階の押し下げにより1RSW48をオンすることで、焦点検出、AF動作を行うプリ撮像モードについては、上記ステップS10乃至S14、S22乃至S28を実施して、ノイズ低減後の画像信号を上記焦点検出演算部46に送信することで、焦点検出領域66に属する画像信号に基づき位相差を算出し、焦点検出を行うことは言うまでもない。
以上のように、本第1実施形態によれば、マイクロレンズアレイ20が配置された領域に属する画像信号に基づき焦点検出を行い、フォーカスを制御するようにしているので、新たな機構や光学系を追加することなく、低コスト且つ省スペースで、且つ、高精度な焦点検出、フォーカス制御が可能となる。
また、撮像素子22で撮像した画像信号に対して、マイクロレンズアレイ20の影響を受ける領域に属する画像信号を特定し、領域内の画像信号に対してノイズ低減、WB調整、鮮鋭化、階調変換等の各種信号処理を行う際に、マイクロレンズアレイ20等の光学特性、及び撮像素子特性に基づいた補正を行うようにしているので、高画質化が可能となる。
[第2実施形態]
次に、上記第1実施形態の変形例に相当する第2実施形態について説明する。
以下、上記第1実施形態と同一の構成には同一の名称と参照符号を割り当て、異なる部分のみを説明する。
本第2実施形態に係る撮像装置の光学系の構成、及び信号処理系の構成は、図1(A)及び(B)に示される第1実施形態における構成のうち、信号処理部のみ異なる構成となっており、第1実施形態における信号処理部54が図15に示される信号処理部160に置換された構成となっている。焦点検出手法、レンズ駆動方法等は同様の手法となっている。
図15に示すように、本実施形態における信号処理部160においては、レンズ駆動部42は、領域特性記録部94に接続されている。撮像素子22は、撮像信号処理部88に接続されている。撮像信号処理部88は、A/D90を介してバッファ92に接続されている。領域特性記録部94は、ゲイン算出部96、WB調整部102、色補間部104、及び鮮鋭化部106に双方向に接続されている。バッファ92は、WB調整部102に接続されている。WB調整部102は、色補間部104に接続されている。色補間部104は、鮮鋭化部106に接続されている。鮮鋭化部106は、階調変換部108及びゲイン算出部96に接続されている。ゲイン算出部96は、ノイズ推定部162及び階調変換部108に接続されている。階調変換部108は、焦点検出部、ノイズ推定部162、及びノイズ低減部100に接続されている。ノイズ推定部162は、ノイズ低減部100に接続されている。ノイズ低減部100は、回折領域補正部110に接続されている。回折領域補正部110は、表示部44及び出力部56に接続されている。
図15において、信号の流れを説明する。
はじめにレリーズボタンの第1段階の押し下げにより1RSW48をオンすることで、焦点検出、AF動作を行うプリ撮像モードに入る。プリ撮像モードにおいて、信号処理部54では、焦点検出演算を目的とした画像信号を生成し、焦点検出演算部46へ転送する。
即ち、まず、撮像素子22を介して撮影された信号は、撮像信号処理部88へ送信され、CDS/差動サンプリング、アナログゲインの調整等が行われた後、A/D90でデジタル信号に変換され、バッファ92へ転送される。このバッファ92内の画像信号は、WB調整部102、色補間部104及び鮮鋭化部106において、上記第1実施形態と同様の手法によりWB調整、色補間及び鮮鋭化が行われる。鮮鋭化後の画像信号は、階調変換部108及びゲイン算出部96に転送される。
ゲイン算出部96においては、階調変換ゲイン算出部124で標準の階調変換曲線に基づいてゲインを求めた後、補正部128をスルーして階調変換部108に転送する。階調変換部108では、このゲインに基づき画像信号に対し階調変換処理を行う。そして、この階調変換処理後の画像信号は、焦点検出演算部46に送信され、焦点検出領域66に属する画像信号に基づき位相差を算出し、焦点検出を行う。なお、本実施形態では、RGB画像から輝度信号を生成し、輝度信号に基づく焦点検出を行っている。
引き続いて、レリーズボタンの第2段階の押し下げで2RSW50をオンすることにより、本撮影を開始する。上記プリ撮像モードと同様に、撮像素子22を介して撮影された画像信号は、撮像信号処理部88及びA/D90を介してデジタル信号へ変換され、バッファ92へ転送される。バッファ92内の画像信号は、WB調整部102、色補間部104、及び鮮鋭化部106を介して、上記第1実施形態と同様の手法により、WB調整、色補間、及び鮮鋭化が行われる。鮮鋭化後の画像信号は、階調変換部108及びゲイン算出部96に転送される。
ゲイン算出部96では、後段の階調変換処理における画素毎の信号レベルの増幅率をゲインとして予め算出する。マイクロレンズアレイ20の影響で焦点検出領域66と撮像領域70に作用する光学系のF値が異なり、同一の信号レベルに対しても、異なるゲインが発生する。そのため、焦点検出領域66に属する画素については、焦点検出領域66及び撮像領域70に対するF値を領域特性記録部94より取得し、信号レベルと共にF値に基づきゲインを算出する。撮像領域70に属する画素については、信号レベルに基づきゲインを算出する。算出したゲインは、ノイズ推定部162及び階調変換部108へ転送する。階調変換部108では、ゲインに基づき階調変換処理を行い、階調変換後の画像信号を、ノイズ低減部100及びノイズ推定部162に転送する。
ノイズ推定部162では、注目画素P11(P:R,Gr,Gb,B各画素)を包含する3×3画素サイズの注目領域Pij(i=0〜2P,j=0〜2)を順次抽出する。その後、信号レベルに応じた撮像素子特性に基づくノイズのモデルから注目画素P11に関するノイズ量Nを推定する。本第2実施形態におけるノイズモデルは、階調変換部108におけるゲイン乗算の影響により、上記第1実施形態における信号レベルに対応したノイズ量の分布傾向とは異なる形となる。ノイズモデル及びノイズ推定部98についての詳細は後述する。推定したノイズ量は、ノイズ低減部100へ転送される。
ノイズ低減部100では、ノイズ推定部98で推定したノイズ量Nに基づき、コアリング処理による平滑化処理を行う。ノイズ低減後の画像信号は、回折領域補正部110へ転送される。回折領域補正部110では、上記第1実施形態と同様の手法により、回折領域68に属する画素の信号値を補正し、補正後の画像信号は、出力部56及び表示部44へ転送される。出力部56は、圧縮伸張回路、記録媒体で構成されており、階調変換部108からの画像信号は、その圧縮伸張回路により圧縮処理が施された後、画像信号(静止画データ)として記録媒体に記録される。
次に、本第2実施形態におけるノイズ推定部162について説明する。
図16は、このノイズ推定部162の構成の一例を示すブロック図であり、該ノイズ推定部162は、上記第1実施形態におけるノイズ推定部98からパラメータ用ROM134をパラメータ用ROM164に置換したものとなっている。
ここで、階調変換部108は、平均算出部130へ接続しており、平均算出部130及びパラメータ用ROM164は、パラメータ選択部132へ接続している。このノイズ推定部162では、撮像素子22の特性に基づく信号レベルに対するノイズ量をモデル化したノイズモデルからノイズ量の推定を行う。
この場合、階調変換部108からは、色信号ごとに局所領域を形成した後、平均算出部130へ転送する。以降のノイズ量の推定、ならびにノイズ低減処理は、色信号ごとに実施される。平均算出部130は、図5(A)に示される局所領域Pijを抽出し、上記(10)式に従って該局所領域Pijの平均値AV11を算出して、パラメータ選択部132へ転送する。
図17(A)乃至(C)は、本第2実施形態におけるノイズ量の推定に関する説明図であり、図11(A)乃至(C)に示す第1実施形態におけるノイズ量算出に関するノイズモデルとは、階調変換曲線に基づくゲイン乗算の影響により信号レベルに対するノイズ量の分布傾向が異なる。図17(A)は、信号レベルが中間輝度領域において、ノイズ量の最大値をプロットしている。
信号レベルをVとした場合、ノイズ量Nを4次関数でモデル化すると、以下の(24)式が得られる。但し、ここで、α,β,γ,δ,εは定数項である。
N=α*(V^4)+β*(V^3)+γ*(V^2)+δ*V+ε …(24)
ここで、ノイズ量算出の演算処理の負荷を軽減するため、図17(B)に示すようなモデルの簡略化を行う。
図17(B)において、gain=1.0における基準ノイズモデルを所定数の折れ線で近似する。折れ線の変曲点は、信号レベルVとノイズ量Nからなる座標データ(V,N)で表す。ここで、nは変曲点の数を示す。
図17(C)は、図17(B)に示す簡易化されたノイズモデルからノイズ量を算出する方法を示す。例えば、与えられた信号レベルVth、gain=Kに対応するノイズ量Nを求めることを想定する。まず、信号レベルVthが基準ノイズモデルのどの区間に属するかを探索する。ここでは、(V,N)と(Vn+1,Nn+1)間の区間に属するとする。基準ノイズモデルにおける基準ノイズ量Nthを、上記(14)式に示す線形補間にて求める。
次に、gain=Kを、上記(15)式に示すように所定の係数Kと共に基準ノイズ量Nthに乗算することで、ノイズ量Nを求める。
具体的な処理手順は、以下の通りである。
即ち、パラメータ選択部132は、平均算出部130からの局所領域の平均値AV11から信号レベルVthを設定する。次に、信号レベルVthが属する区間の座標データ(V,N)と(Vn+1,Nn+1)をパラメータ用ROM164から探索し、これを補間部136へ転送する。
補間部136は、パラメータ選択部132からの信号レベルVth及び区間の座標データ(V,N)と(Vn+1,Nn+1)から、上記(14)式に基づき基準ノイズモデルにおける基準ノイズ量Nthを算出し、補正部138へ転送する。
補正部138は、上記ゲイン算出部96からゲインgain=K及び所定の重み係数K、また、補間部136からの基準ノイズ量Nthに基づき、上記(15)式からノイズ量Nを算出し、注目画素P11のノイズ量N11とする。
こうして推定されたノイズ量N11及び平均値AV11は、上記ノイズ低減部100へ転送される。
このように、本第2実施形態によれば、上記第1実施形態と同様の効果が得られると共に、更に、領域情報に基づき階調変換処理後の画像信号に対し、ノイズ低減処理を行うようにしているので、階調変換処理に対するノイズ低減処理の影響を抑え、領域毎に異なる明るさ(F値)を考慮した高精度な階調変換処理が可能となる。
なお、本第2実施形態の説明も、ハードウェアによる処理を前提としていたが、このような構成に限定される必要は無い。
例えば、撮像素子22からの信号を未処理のままRAWデータとして、レンズ特性、撮影情報をヘッダ情報として付加して出力し、別途ソフトウェアにて処理する構成も可能である。
図18は、そのような信号処理のソフトウェア処理に関するフローチャートを示す図である。なお、上記第1実施形態における信号処理のフローチャートと同一な処理に関しては同一な参照符号を割り当てている。
まず、画像信号、ヘッダ情報を読み込む(ステップS10)。また、撮影光学系12、マイクロレンズアレイ20に関連する光学特性データを読み込み、メモリ等に記録すると共に(ステップS12)、撮影時の撮影光学系12の焦点距離、絞り径などの撮影情報を読み込み、メモリ等に記録する(ステップS14)。
その後、各領域に対応するWB係数に基づきWB調整処理を行う(ステップS30)。そして、この単板のRAW画像より公知の色補間処理を用いて三板RGB画像を生成する(ステップS32)。
次に、該RGB画像をY/C信号に変換した後、Y信号よりエッジ信号を抽出する(ステップS34)。そして、各画素について、焦点検出領域66に属する画素か否かの判定を行い(ステップS36)、焦点検出領域66に属する画素に関しては、各領域のMTF比に基づきエッジ信号の補正処理を行う(ステップS38)。
こうして全画素についてエッジ信号が得られたならば、次に、そのエッジ信号は元のY信号に加算した後、Y/C合成処理によりRGB信号に変換する(ステップS40)。次に、階調変換処理におけるゲインを算出する(ステップS16)。その後、各画素について、焦点検出領域66に属する画素か否かの判定を行い(ステップS18)、焦点検出領域66に属する画素に関しては、焦点検出領域66及び撮像領域70のF値に基づきゲインの補正処理を行う(ステップS20)。そして、それらゲインに基づき階調変換処理を行う(ステップS42)。
次に、各画素のノイズ量を推定する(ステップS50)。そして、各画素について、焦点検出領域66に属する画素か否かの判定を行い(ステップS24)、焦点検出領域66に属する画素に関しては、ゲインに基づきノイズ量の補正処理を行う(ステップS52)。こうして、全画素についてノイズ量が決定したならば、そのノイズ量に基づきノイズ低減処理を行う(ステップS28)。
その後、各画素について、回折領域68に属する画素か否かの判定を行い(ステップS44)、回折領域68に属する画素に関しては、当該回折領域68内画素周辺に位置する焦点検出領域66、撮像領域70内画素値に基づいて、該回折領域68内画素値の補正処理を行う(ステップS46)。そして、得られた画像信号を出力する(ステップS48)。
なお、このフローチャートは、レリーズボタンの第2段階の押し下げで2RSW50をオンすることにより行われる本撮影についての処理を示したものである。
レリーズボタンの第1段階の押し下げにより1RSW48をオンすることで、焦点検出、AF動作を行うプリ撮像モードについては、上記ステップS10乃至S42を実施して、階調変換処理後の画像信号を上記焦点検出演算部46に送信することで、焦点検出領域66に属する画像信号に基づき位相差を算出し、焦点検出を行うことは言うまでもない。
以上実施形態に基づいて本発明を説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形や応用が可能なことは勿論である。
(付記)
前記の具体的実施形態から、以下のような構成の発明を抽出することができる。
(1) 撮影光学系と、
上記撮影光学系を介して被写体を撮像する撮像素子と、
上記撮像素子の素子面上の領域に対して、上記撮影光学系を通過する被写体像光の光束を瞳分割する瞳分割レンズ群と、
上記撮像素子の素子面上の上記領域を特定するための座標情報を記録する座標記録手段と、
上記撮像素子による撮像によって得られた画像信号に対し、上記座標記録手段に記録された上記座標情報に基づいて、上記領域に対応した上記瞳分割レンズ群の光学特性及び上記撮像素子の素子特性に基づく補正処理を行う補正手段と、
上記補正手段による上記補正処理前の画像信号または上記補正処理後の画像信号に基づいて、焦点検出を行う焦点検出手段と、
を具備することを特徴とする撮像装置。
(対応する実施形態)
この(1)に記載の撮像装置に関する実施形態は、図1(A)乃至図13に示される第1実施形態及び図15乃至図17に示される第2実施形態が対応する。
それらの実施形態において、撮影光学系12が上記撮影光学系に、撮像素子22が上記撮像素子に、マイクロレンズアレイ領域64が上記撮像素子の素子面上の領域に、マイクロレンズアレイ20が上記瞳分割レンズ群に、領域特性記録部94が上記座標記録手段に、信号処理部54が上記補正手段に、焦点検出演算部46が上記焦点検出手段に、それぞれ対応する。
(作用効果)
この(1)に記載の撮像装置は、撮像素子で撮像した画像信号に対して、瞳分割レンズ群の影響を受ける領域に属する画像信号を特定し、該領域内の画像信号に対してノイズ低減、WB調整、鮮鋭化、階調変換等の各種信号処理を行う際に、瞳分割レンズ群の光学特性及び撮像素子の素子特性に基づいた補正を行うと共に、補正前または補正後の画像信号を用いて焦点検出を行う。
従って、この(1)に記載の撮像装置によれば、瞳分割レンズ群の影響により画質の劣化した画像信号に対し、領域に応じた光学特性、撮像素子の素子特性に基づく補正処理を行うことで、高画質化が可能となる。
また、瞳分割レンズ群が配置された領域に属する画像信号に基づき焦点検出を行い、フォーカスを制御することができるので、新たな機構や光学系を追加することなく、低コスト且つ省スペースで、且つ、高精度な焦点検出、フォーカス制御ができるようになる。
(2) 上記補正手段は、上記座標記録手段に記録された上記座標情報に基づいて、上記瞳分割レンズ群を通過した光束の影響を受ける上記撮像素子からの画像信号に対して、上記補正処理を行うことを特徴とする(1)に記載の撮像装置。
(対応する実施形態)
この(2)に記載の撮像装置に関する実施形態は、図1(A)乃至図13に示される第1実施形態及び図15乃至図17に示される第2実施形態が対応する。
それらの実施形態において、ノイズ低減部100、WB調整部102、鮮鋭化部106、階調変換部108、回折領域補正部110が上記補正手段に対応する。
(作用効果)
この(2)に記載の撮像装置は、座標記録手段に記録された、瞳分割レンズ群を通過した光束の影響を受ける領域(例えば焦点検出領域66)の情報と、瞳分割レンズ群を通過した光束以外の光束の影響を受ける領域(例えば回折領域68)の情報に基づき領域(例えばマイクロレンズアレイ領域64)に属する画像信号を特定し、領域内の画像信号に対し補正処理を行う。
従って、この(2)に記載の撮像装置によれば、瞳分割レンズ群を通過した光束の影響を受ける領域を正確に特定することで、領域に応じた精度の高い補正が可能となる。
(3) 上記補正手段は、上記座標記録手段に記録された上記座標情報に基づいて、上記瞳分割レンズ群を通過した光束のみが結像する上記撮像素子からの画像信号に対して、上記補正処理を行うことを特徴とする(1)に記載の撮像装置。
(対応する実施形態)
この(3)に記載の撮像装置に関する実施形態は、図1(A)乃至図13に示される第1実施形態及び図15乃至図17に示される第2実施形態が対応する。
(作用効果)
この(3)に記載の撮像装置は、座標記録手段に記録された瞳分割レンズ群を通過した光束のみが結像する領域(例えば焦点検出領域66)の情報に基づき領域(例えばマイクロレンズアレイ領域64)に属する画像信号を特定し、領域内の画像信号に対し補正処理を行う。
従って、この(3)に記載の撮像装置によれば、瞳分割レンズ群を通過した光束のみが結像する領域を正確に特定することで、領域に応じた精度の高い補正が可能となる。
(4) 上記補正手段は、上記座標記録手段に記録された上記座標情報に基づいて、上記瞳分割レンズ群を通過した光束のみが結像する上記撮像素子の領域と、上記瞳分割レンズ群を通過した光束以外の光束の影響を受ける上記撮像素子の領域とで、区別した補正処理を行うことを特徴とする(1)に記載の撮像装置。
(対応する実施形態)
この(4)に記載の撮像装置に関する実施形態は、図1(A)乃至図13に示される第1実施形態及び図15乃至図17に示される第2実施形態が対応する。
それらの実施形態において、ノイズ低減部100、WB調整部102、鮮鋭化部106、階調変換部108、回折領域補正部110が上記補正手段に対応する。
(作用効果)
この(4)に記載の撮像装置は、座標記録手段に記録された、瞳分割レンズ群を通過した光束のみが結像する領域(例えば焦点検出領域66)の情報と、瞳分割レンズ群を通過した光束以外の光束の影響を受ける領域(例えば回折領域68)の情報に基づき領域(例えばマイクロレンズアレイ領域64)に属する画像信号を特定し、領域内の画像信号に対し補正処理を行う。
従って、この(4)に記載の撮像装置によれば、瞳分割レンズ群を通過した光束及び瞳分割レンズ群を通過しない光束の影響を受ける領域を正確に特定することで、領域に応じた精度の高い補正が可能となる。
(5) 上記座標記録手段は、上記座標情報として、
上記領域内に位置し、上記瞳分割レンズ群を通過する光束のみが結像する座標の情報、
上記領域外に位置し、上記瞳分割レンズ群を通過する光束の影響を受けない座標の情報、
上記領域境界上に位置し、上記瞳分割レンズ群を通過する光束の影響を受ける座標の情報、
のうちの少なくとも一つを記録することを特徴とする(1)に記載の撮像装置。
(対応する実施形態)
この(5)に記載の撮像装置に関する実施形態は、図1(A)乃至図13に示される第1実施形態及び図15乃至図17に示される第2実施形態が対応する。
それらの実施形態において、焦点検出領域66が上記瞳分割レンズ群を通過する光束のみが結像する座標に、撮像領域70が上記瞳分割レンズ群を通過する光束の影響を受けない座標に、回折領域68が上記瞳分割レンズ群を通過する光束の影響を受ける座標に、それぞれ対応する。
(作用効果)
この(5)に記載の撮像装置は、座標記録手段に瞳分割レンズ群を通過する光束のみが結像する座標の情報、瞳分割レンズ群を通過する光束の影響を受けない座標の情報、瞳分割レンズ群を通過する光束とそれ以外の光束の影響を受ける座標の情報のうち、少なくとも一つ記録し、領域に属する画像信号の特定を行う。
従って、この(5)に記載の撮像装置によれば、画像信号が上記領域の少なくとも一つに属するかを特定できるため、特定した領域に応じた高精度な処理が可能となる。
(6) 上記補正手段は、
上記撮像素子からの画像信号に対して、上記座標記録手段に記録された上記座標情報に基づいてノイズ低減処理を行うノイズ低減手段と、
上記ノイズ低減手段による上記ノイズ低減処理後の画像信号に対して、上記座標記録手段に記録された上記座標情報に基づいて階調変換処理を行う階調変換手段と、
を更に有することを特徴とする(1)乃至(5)の何れかに記載の撮像装置。
(対応する実施形態)
この(6)に記載の撮像装置に関する実施形態は、図1(A)乃至図13に示される第1実施形態が対応する。
その実施形態において、ノイズ推定部98、ノイズ低減部100が上記ノイズ低減手段に、階調変換部108が上記階調変換手段に、それぞれ対応する。
(作用効果)
この(6)に記載の撮像装置は、座標情報に基づき、ノイズ低減処理を行った後の画像信号に対し、階調変換処理を行う。
従って、この(6)に記載の撮像装置によれば、ノイズ成分に対する階調変換処理の影響を抑えると共に、撮像直後の画像信号に含まれるノイズに対して高精度なノイズ低減処理が可能となる。
(7) 上記補正手段は、
上記撮像素子からの画像信号に対して、上記座標記録手段に記録された上記座標情報に基づいて階調変換処理を行う階調変換手段と、
上記階調変換手段による上記階調変換処理後の画像信号に対して、上記座標記録手段に記録された上記座標情報に基づいてノイズ低減処理を行うノイズ低減手段と、
を更に有することを特徴とする(1)乃至(5)の何れかに記載の撮像装置。
(対応する実施形態)
この(7)に記載の撮像装置に関する実施形態は、図15乃至図17に示される第2実施形態が対応する。
その実施形態において、階調変換部108が上記階調変換手段に、ノイズ推定部162、ノイズ低減部100が上記ノイズ低減手段に、それぞれ対応する。
(作用効果)
この(7)に記載の撮像装置は、座標情報に基づき、階調変換処理後の画像信号に対し、ノイズ低減処理を行う。
従って、この(7)に記載の撮像装置によれば、階調変換処理に対するノイズ低減処理の影響を抑え、領域毎に異なる明るさ(F値)を考慮した高精度な階調変換処理が可能となる。
(8) 上記階調変換手段は、上記撮影光学系の明るさ(F値)と上記座標記録手段に記録された上記座標情報とに基づいて階調変換係数を設定し、該階調変換係数に基づいて上記階調変換処理を行うことを特徴とする(6)又は(7)に記載の撮像装置。
(対応する実施形態)
この(8)に記載の撮像装置に関する実施形態は、図1(A)乃至図13に示される第1実施形態及び図15乃至図17に示される第2実施形態が対応する。
それらの実施形態において、ゲイン算出部96、階調変換部108が上記階調変換手段に、ゲインが上記階調変換係数に、それぞれ対応する。
(作用効果)
この(8)に記載の撮像装置は、撮影光学系及び瞳分割レンズ群のF値に基づいた階調変換処理を行う。
従って、この(8)に記載の撮像装置によれば、撮影光学系及び瞳分割レンズ群のF値に基づき領域毎に最適な階調変換処理を行うことで、瞳分割レンズ群の影響による領域毎の明るさの違いを補正することができる。
(9) 上記ノイズ低減手段は、
上記画像信号に関してノイズ量を推定するノイズ量推定手段と、
上記ノイズ量推定手段によって推定したノイズ量に基づき平滑化処理を行う平滑化手段と、
を有することを特徴とする(6)乃至(8)の何れかに記載の撮像装置。
(対応する実施形態)
この(9)に記載の撮像装置に関する実施形態は、図1(A)乃至図13に示される第1実施形態及び図15乃至図17に示される第2実施形態が対応する。
それらの実施形態において、ノイズ推定部98、ノイズ推定部162が上記ノイズ量推定手段に、ノイズ低減部100が上記平滑化手段に、それぞれ対応する。
(作用効果)
この(9)に記載の撮像装置は、画像信号に含まれるノイズ量を、予め測定したノイズ量のモデルに基づいて推定し、推定したノイズ量に基づいて画像信号の平滑化効果を調整する。
従って、この(9)に記載の撮像装置によれば、画像信号に含まれるノイズ量を高精度に推定することが可能となり、ノイズ量に基づき高精度なノイズ低減処理が可能となる。
(10) 上記ノイズ低減手段は、
上記画像信号に関してノイズ量を推定するノイズ量推定手段と、
上記ノイズ量推定手段によって推定したノイズ量に基づき平滑化処理を行う平滑化手段と、
を有し、
上記ノイズ量推定手段は、上記階調変換手段が設定した上記階調変換係数に基づいて上記ノイズ量を補正するノイズ量補正手段を有することを特徴とする(8)に記載の撮像装置。
(対応する実施形態)
この(10)に記載の撮像装置に関する実施形態は、図1(A)乃至図13に示される第1実施形態及び図15乃至図17に示される第2実施形態が対応する。
それらの実施形態において、ノイズ推定部98、ノイズ推定部162が上記ノイズ量推定手段に、ノイズ低減部100が上記平滑化手段に、補正部138が上記ノイズ量補正手段に、それぞれ対応する。
(作用効果)
この(10)に記載の撮像装置は、画像信号に含まれるノイズ量を、予め測定したノイズ量のモデルに基づいて推定した後、階調変換手段が設定した階調変換係数に基づきノイズ量を補正し、補正したノイズ量に基づきノイズ低減処理を行う。
従って、この(10)に記載の撮像装置によれば、画像信号に含まれるノイズ量を予め測定したノイズモデルに基づき推定する際に、階調変換係数によるノイズ量の増幅を考慮した補正を更に行うことで、高精度な推定が可能となると共に、補正したノイズ量に基づき高精度なノイズ低減処理が可能となる。
(11) 上記補正手段は、
上記画像信号に対して上記撮影光学系の解像度(MTF)と上記座標記録手段に記録された上記座標情報に基づいて鮮鋭化処理を行う鮮鋭化手段と、
上記座標記録手段に記録された上記座標情報に基づいてホワイトバランス調整処理を行うWB調整手段と、
のうちの少なくとも一つを有することを特徴とする(1)乃至(10)の何れかに記載の撮像装置。
(対応する実施形態)
この(11)に記載の撮像装置に関する実施形態は、図1(A)乃至図13に示される第1実施形態及び図15乃至図17に示される第2実施形態が対応する。
それらの実施形態において、鮮鋭化部106が上記鮮鋭化手段に、WB調整部102が上記WB調整手段に、それぞれ対応する。
(作用効果)
この(11)に記載の撮像装置は、瞳分割レンズ群の光学特性の影響により領域毎に異なる解像度MTF、WB係数を算出または設定し、解像度MTFに基づいて鮮鋭化処理を行い、WB係数に基づいてWB調整処理を行う。
従って、この(11)に記載の撮像装置によれば、瞳分割レンズ群の光学特性の影響により領域毎に異なる解像度MTF、WB係数に基づき、領域に応じた鮮鋭化処理、WB調整処理を行うことで、領域毎に異なる鮮鋭感、ホワイトバランス(RGB比)を均一に保つことが可能となる。
(12) 上記焦点検出手段により検出された焦点に基づき、上記撮影光学系のフォーカスを制御する制御手段を更に具備することを特徴とする(1)乃至(11)の何れかに記載の撮像装置。
(対応する実施形態)
この(12)に記載の撮像装置に関する実施形態は、図1(A)乃至図13に示される第1実施形態及び図15乃至図17に示される第2実施形態が対応する。
それらの実施形態において、レンズ駆動部42が上記制御手段に対応する。
(作用効果)
この(12)に記載の撮像装置は、瞳分割レンズ群が配置された領域に属する画像信号に基づき焦点検出を行い、フォーカスを制御する。
従って、この(12)に記載の撮像装置によれば、瞳分割レンズ群が配置された領域に属する画像信号に基づく高精度な焦点検出、フォーカス制御が可能となる。
(13) コンピュータを、
撮影光学系を介して被写体を撮像する撮像素子の素子面上の領域に対して、上記撮影光学系を通過する被写体像光の光束を瞳分割する瞳分割レンズ群の光学特性及び上記撮影光学系の撮影情報を、上記撮像素子による撮像によって得られた画像信号と共に読み込む読み込み手段、
予め記録された上記撮像素子の素子面上の上記領域を特定するための座標情報に基づいて、上記読み込んだ画像信号に対し、上記領域に対応した上記瞳分割レンズ群の光学特性及び予め記録された上記撮像素子の素子特性に基づく補正処理を行う補正手段、
上記補正手段による上記補正処理前の画像信号または上記補正処理後の画像信号に基づいて、焦点検出を行う焦点検出手段、
として機能させるための画像信号処理プログラム。
(対応する実施形態)
この(13)に記載の画像信号処理プログラムに関する実施形態は、図14に示される第1実施形態及び図18に示される第2実施形態が対応する。
(作用効果)
この(13)に記載の画像信号処理プログラムは、撮像素子で撮像した画像信号に対して、瞳分割レンズ群の影響を受ける領域に属する画像信号を特定し、該領域内の画像信号に対してノイズ低減、WB調整、鮮鋭化、階調変換等の各種信号処理を行う際に、瞳分割レンズ群の光学特性及び撮像素子の素子特性に基づいた補正を行うと共に、補正前または補正後の画像信号を用いて焦点検出を行う。
従って、この(13)に記載の画像信号処理プログラムによれば、瞳分割レンズ群の影響により画質の劣化した画像信号に対し、領域に応じた光学特性、撮像素子の素子特性に基づく補正処理を行うことで、高画質化が可能となる。
また、瞳分割レンズ群が配置された領域に属する画像信号に基づき焦点検出を行い、フォーカスを制御することができるので、新たな機構や光学系を追加することなく、低コスト且つ省スペースで、且つ、高精度な焦点検出、フォーカス制御ができるようになる。
(14) 上記補正処理は、上記予め記録された上記座標情報に基づいて、上記瞳分割レンズ群を通過した光束の影響を受ける上記撮像素子からの画像信号に対して行うことを特徴とする(13)に記載の画像信号処理プログラム。
(対応する実施形態)
この(14)に記載の画像信号処理プログラムに関する実施形態は、図14に示される第1実施形態及び図18に示される第2実施形態が対応する。
(作用効果)
この(14)に記載の画像信号処理プログラムは、予め記録された、瞳分割レンズ群を通過した光束の影響を受ける領域(例えば焦点検出領域66)の情報と、瞳分割レンズ群を通過した光束以外の光束の影響を受ける領域(例えば回折領域68)の情報に基づき領域(例えばマイクロレンズアレイ領域64)に属する画像信号を特定し、領域内の画像信号に対し補正処理を行う。
従って、この(14)に記載の画像信号処理プログラムによれば、瞳分割レンズ群を通過した光束の影響を受ける領域を正確に特定することで、領域に応じた精度の高い補正が可能となる。
(15) 上記補正処理は、上記予め記録された上記座標情報に基づいて、上記瞳分割レンズ群を通過した光束のみが結像する上記撮像素子からの画像信号に対して行うことを特徴とする(13)に記載の画像信号処理プログラム。
(対応する実施形態)
この(15)に記載の画像信号処理プログラムに関する実施形態は、図14に示される第1実施形態及び図18に示される第2実施形態が対応する。
(作用効果)
この(15)に記載の画像信号処理プログラムは、予め記録された瞳分割レンズ群を通過した光束のみが結像する領域(例えば焦点検出領域66)の情報に基づき領域(例えばマイクロレンズアレイ領域64)に属する画像信号を特定し、領域内の画像信号に対し補正処理を行う。
従って、この(15)に記載の画像信号処理プログラムによれば、瞳分割レンズ群を通過した光束のみが結像する領域を正確に特定することで、領域に応じた精度の高い補正が可能となる。
(16) 上記補正処理として、上記予め記録された上記座標情報に基づいて、上記瞳分割レンズ群を通過した光束のみが結像する上記撮像素子の領域と、上記瞳分割レンズ群を通過した光束以外の光束の影響を受ける上記撮像素子の領域とで、区別した補正処理を行うことを特徴とする(13)に記載の画像信号処理プログラム。
(対応する実施形態)
この(16)に記載の画像信号処理プログラムに関する実施形態は、図14に示される第1実施形態及び図18に示される第2実施形態が対応する。
(作用効果)
この(16)に記載の画像信号処理プログラムは、予め記録された、瞳分割レンズ群を通過した光束のみが結像する領域(例えば焦点検出領域66)の情報と、瞳分割レンズ群を通過した光束以外の光束の影響を受ける領域(例えば回折領域68)の情報に基づき領域(例えばマイクロレンズアレイ領域64)に属する画像信号を特定し、領域内の画像信号に対し補正処理を行う。
従って、この(16)に記載の画像信号処理プログラムによれば、瞳分割レンズ群を通過した光束及び瞳分割レンズ群を通過しない光束の影響を受ける領域を正確に特定することで、領域に応じた精度の高い補正が可能となる。
(17) 上記予め記録された上記座標情報は、
上記領域内に位置し、上記瞳分割レンズ群を通過する光束のみが結像する座標の情報、
上記領域外に位置し、上記瞳分割レンズ群を通過する光束の影響を受けない座標の情報、
上記領域境界上に位置し、上記瞳分割レンズ群を通過する光束の影響を受ける座標の情報、
のうちの少なくとも一つであることを特徴とする(13)に記載の画像信号処理プログラム。
(対応する実施形態)
この(17)に記載の画像信号処理プログラムに関する実施形態は、図14に示される第1実施形態及び図18に示される第2実施形態が対応する。
(作用効果)
この(17)に記載の画像信号処理プログラムは、瞳分割レンズ群を通過する光束のみが結像する座標の情報、瞳分割レンズ群を通過する光束の影響を受けない座標の情報、瞳分割レンズ群を通過する光束とそれ以外の光束の影響を受ける座標の情報のうち、少なくとも一つを予め記録し、領域に属する画像信号の特定を行う。
従って、この(17)に記載の画像信号処理プログラムによれば、画像信号が上記領域の少なくとも一つに属するかを特定できるため、特定した領域に応じた高精度な処理が可能となる。
(18) 上記補正処理は、
上記撮像素子からの画像信号に対して、上記予め記録された上記座標情報に基づいて行われるノイズ低減処理と、
上記ノイズ低減処理後の画像信号に対して、上記予め記録された上記座標情報に基づいて行われる階調変換処理と、
を更に有することを特徴とする(13)乃至(17)の何れかに記載の画像信号処理プログラム。
(対応する実施形態)
この(18)に記載の画像信号処理プログラムに関する実施形態は、図14に示される第1実施形態が対応する。
(作用効果)
この(18)に記載の画像信号処理プログラムは、座標情報に基づき、ノイズ低減処理を行った後の画像信号に対し、階調変換処理を行う。
従って、この(18)に記載の画像信号処理プログラムによれば、ノイズ成分に対する階調変換処理の影響を抑えると共に、撮像直後の画像信号に含まれるノイズに対して高精度なノイズ低減処理が可能となる。
(19) 上記補正手処理、
上記撮像素子からの画像信号に対して、上記予め記録された上記座標情報に基づいて行われる階調変換処理と、
上記階調変換処理後の画像信号に対して、上記予めに記録された上記座標情報に基づいて行われるノイズ低減処理と、
を更に有することを特徴とする(13)乃至(17)の何れかに記載の画像信号処理プログラム。
(対応する実施形態)
この(19)に記載の画像信号処理プログラムに関する実施形態は、図18に示される第2実施形態が対応する。
(作用効果)
この(19)に記載の画像信号処理プログラムは、座標情報に基づき、階調変換処理後の画像信号に対し、ノイズ低減処理を行う。
従って、この(19)に記載の画像信号処理プログラムによれば、階調変換処理に対するノイズ低減処理の影響を抑え、領域毎に異なる明るさ(F値)を考慮した高精度な階調変換処理が可能となる。
(20) 上記階調変換処理は、上記撮影光学系の明るさ(F値)と上記予め記録された上記座標情報とに基づいて階調変換係数を設定し、該階調変換係数に基づいて行うことを特徴とする(18)又は(19)に記載の画像信号処理プログラム。
(対応する実施形態)
この(20)に記載の画像信号処理プログラムに関する実施形態は、図14に示される第1実施形態及び図18に示される第2実施形態が対応する。
(作用効果)
この(20)に記載の画像信号処理プログラムは、撮影光学系及び瞳分割レンズ群のF値に基づいた階調変換処理を行う。
従って、この(20)に記載の画像信号処理プログラムによれば、撮影光学系及び瞳分割レンズ群のF値に基づき領域毎に最適な階調変換処理を行うことで、瞳分割レンズ群の影響による領域毎の明るさの違いを補正することができる。
(21) 上記ノイズ低減処理は、
上記画像信号に関してノイズ量を推定するノイズ量推定処理と、
上記ノイズ量推定処理によって推定したノイズ量に基づいて行う平滑化処理と、
を有することを特徴とする(18)乃至(20)の何れかに記載の画像信号処理プログラム。
(対応する実施形態)
この(21)に記載の画像信号処理プログラムに関する実施形態は、図14に示される第1実施形態及び図18に示される第2実施形態が対応する。
(作用効果)
この(21)に記載の画像信号処理プログラムは、画像信号に含まれるノイズ量を、予め測定したノイズ量のモデルに基づいて推定し、推定したノイズ量に基づいて画像信号の平滑化効果を調整する。
従って、この(21)に記載の画像信号処理プログラムによれば、画像信号に含まれるノイズ量を高精度に推定することが可能となり、ノイズ量に基づき高精度なノイズ低減処理が可能となる。
(22) 上記ノイズ低減処理は、
上記画像信号に関してノイズ量を推定するノイズ量推定処理と、
上記ノイズ量推定処理によって推定したノイズ量に基づいて行う平滑化処理と、
を有し、
上記ノイズ量推定処理は、上記階調変換処理で設定した上記階調変換係数に基づいて上記ノイズ量を補正するノイズ量補正処理を有することを特徴とする(20)に記載の画像信号処理プログラム。
(対応する実施形態)
この(22)に記載の画像信号処理プログラムに関する実施形態は、図14に示される第1実施形態及び図18に示される第2実施形態が対応する。
(作用効果)
この(22)に記載の画像信号処理プログラムは、画像信号に含まれるノイズ量を、予め測定したノイズ量のモデルに基づいて推定した後、階調変換処理で設定した階調変換係数に基づきノイズ量を補正し、補正したノイズ量に基づきノイズ低減処理を行う。
従って、この(22)に記載の画像信号処理プログラムによれば、画像信号に含まれるノイズ量を予め測定したノイズモデルに基づき推定する際に、階調変換係数によるノイズ量の増幅を考慮した補正を更に行うことで、高精度な推定が可能となると共に、補正したノイズ量に基づき高精度なノイズ低減処理が可能となる。
(23) 上記補正処理は、
上記画像信号に対して上記撮影光学系の解像度(MTF)と上記予め記録された上記座標情報に基づいて行う鮮鋭化処理と、
上記予め記録された上記座標情報に基づいて行うホワイトバランス調整処理と、
のうちの少なくとも一つを有することを特徴とする(13)乃至(22)の何れかに記載の画像信号処理プログラム。
(対応する実施形態)
この(23)に記載の画像信号処理プログラムに関する実施形態は、図14に示される第1実施形態及び図18に示される第2実施形態が対応する。
(作用効果)
この(23)に記載の画像信号処理プログラムは、瞳分割レンズ群の光学特性の影響により領域毎に異なる解像度MTF、WB係数を算出または設定し、解像度MTFに基づいて鮮鋭化処理を行い、WB係数に基づいてWB調整処理を行う。
従って、この(23)に記載の画像信号処理プログラムによれば、瞳分割レンズ群の光学特性の影響により領域毎に異なる解像度MTF、WB係数に基づき、領域に応じた鮮鋭化処理、WB調整処理を行うことで、領域毎に異なる鮮鋭感、ホワイトバランス(RGB比)を均一に保つことが可能となる。
(24) コンピュータを更に、上記焦点検出手段により検出された焦点に基づき上記撮影光学系のフォーカスを制御する制御手段として機能させることを特徴とする(13)乃至(23)の何れかに記載の画像信号処理プログラム。
(対応する実施形態)
この(24)に記載の画像信号処理プログラムに関する実施形態は、図14に示される第1実施形態及び図18に示される第2実施形態が対応する。
(作用効果)
この(24)に記載の画像信号処理プログラムは、瞳分割レンズ群が配置された領域に属する画像信号に基づき焦点検出を行い、フォーカスを制御する。
従って、この(24)に記載の画像信号処理プログラムによれば、瞳分割レンズ群が配置された領域に属する画像信号に基づく高精度な焦点検出、フォーカス制御が可能となる。
図1(A)は、本発明の第1実施形態に係る撮像装置の光学系の構成図であり、図1(B)は、第1実施形態に係る撮像装置の信号処理系の構成図である。 図2(A)は、マイクロレンズアレイと撮像素子の配置構成を示す図であり、図2(B)は、焦点検出領域におけるマイクロレンズアレイ及び撮像素子の断面構成を示す図であり、図2(C)は、撮像素子上の受光素子たるフォトダイオード、コンデンサーレンズ、再結像レンズの光軸方向から見た場合の配列を示す図である。 図3は、合焦、前ピン、後ピンにおけるマイクロレンズアレイ群及び受光素子群と撮影光学系との相対位置関係を説明するための図である。 図4は、信号処理部の構成を示すブロック図である。 図5(A)は、ベイヤ型の色フィルタの構成を示す図であり、図5(B)は、回折領域内のG信号の補間に関する一例を説明するための図である。 図6は、領域特性記録部の構成の一例を示すブロック図である。 図7は、F値の算出に関する説明図である。 図8は、解像度MTFの算出に関する説明図である。 図9は、ゲイン算出部の構成の一例を示すブロック図である。 図10は、ノイズ推定部の構成の一例を示すブロック図である。 図11は、ノイズ量の推定に関する説明図である。 図12は、ノイズ低減部の構成の一例を示すブロック図である。 図13は、鮮鋭化部の構成の一例を示すブロック図である。 図14は、信号処理のソフトウェア処理に関するフローチャートを示す図である。 図15は、本発明の第2実施形態に係る撮像装置における信号処理部の構成を示すブロック図である。 図16は、第2実施形態におけるノイズ推定部の構成の一例を示すブロック図である。 図17は、第2実施形態におけるノイズ量の推定に関する説明図である。 図18は、第2実施形態における信号処理のソフトウェア処理に関するフローチャートを示す図である。
符号の説明
10…カメラ筐体、 12…撮影光学系、 14…フォーカシングレンズ、 16…絞り、 18…ビームスプリッタ、 20…マイクロレンズアレイ、 22…撮像素子、 24…ミラー、 26…ペンタプリズム、 28…接眼レンズ、 30…システムコントローラ、 32…中央演算処理部、 34…リードオンリメモリ(ROM)、 36…ランダムアクセスメモリ(RAM)、 38…アナログ/デジタル変換器(ADC)、 40…EEPROM、 42…レンズ駆動部、 44…表示部、 46…焦点検出演算部、 48…ファーストレリーズスイッチ(1RSW)、 50…セカンドレリーズスイッチ(2RSW)、 52…エリア選択SW、 54,160…信号処理部、 56…出力部、 58,58A,58B…フォトダイオード、 60…マイクロレンズ、 62…受光部、 64…マイクロレンズアレイ領域、 66…焦点検出領域、 68…回折領域、 70…撮像領域、 72…半導体基板、 74…色フィルタ、 76…透明層、 78…コンデンサーレンズ、 80…再結像レンズ、 82…視野マスク、 84…マスク、 86…分割光束、 88…撮像信号処理部、 90…A/D、 92…バッファ、 94…領域特性記録部、 96…ゲイン算出部、 98,162…ノイズ推定部、 100…ノイズ低減部、 102…WB調整部、 104…色補間部、 106…鮮鋭化部、 108…階調変換部、 110…回折領域補正部、 112…撮像条件特定部、 114…領域特性特定部、 116,132…パラメータ選択部、 118,134,164…パラメータ用ROM、 120,136…補間部、 122,128,138…補正部、 124…階調変換ゲイン算出部、 126…階調変換曲線ROM、 130…平均算出部、 140…切換部、 142…範囲設定部、 144…第1スムージング部、 146…第2スムージング部、 148…Y/C分離部、 150…フィルタ用ROM、 152…フィルタ処理部、 154…エッジ補正部、 156…エッジ強調部、 158…Y/C合成部。

Claims (24)

  1. 撮影光学系と、
    上記撮影光学系を介して被写体を撮像する撮像素子と、
    上記撮像素子の素子面上の領域に対して、上記撮影光学系を通過する被写体像光の光束を瞳分割する瞳分割レンズ群と、
    上記撮像素子の素子面上の上記領域を特定するための座標情報を記録する座標記録手段と、
    上記撮像素子による撮像によって得られた画像信号に対し、上記座標記録手段に記録された上記座標情報に基づいて、上記領域に対応した上記瞳分割レンズ群の光学特性及び上記撮像素子の素子特性に基づく補正処理を行う補正手段と、
    上記補正手段による上記補正処理前の画像信号または上記補正処理後の画像信号に基づいて、焦点検出を行う焦点検出手段と、
    を具備することを特徴とする撮像装置。
  2. 上記補正手段は、上記座標記録手段に記録された上記座標情報に基づいて、上記瞳分割レンズ群を通過した光束の影響を受ける上記撮像素子からの画像信号に対して、上記補正処理を行うことを特徴とする請求項1に記載の撮像装置。
  3. 上記補正手段は、上記座標記録手段に記録された上記座標情報に基づいて、上記瞳分割レンズ群を通過した光束のみが結像する上記撮像素子からの画像信号に対して、上記補正処理を行うことを特徴とする請求項1に記載の撮像装置。
  4. 上記補正手段は、上記座標記録手段に記録された上記座標情報に基づいて、上記瞳分割レンズ群を通過した光束のみが結像する上記撮像素子の領域と、上記瞳分割レンズ群を通過した光束以外の光束の影響を受ける上記撮像素子の領域とで、区別した補正処理を行うことを特徴とする請求項1に記載の撮像装置。
  5. 上記座標記録手段は、上記座標情報として、
    上記領域内に位置し、上記瞳分割レンズ群を通過する光束のみが結像する座標の情報、
    上記領域外に位置し、上記瞳分割レンズ群を通過する光束の影響を受けない座標の情報、
    上記領域境界上に位置し、上記瞳分割レンズ群を通過する光束の影響を受ける座標の情報、
    のうちの少なくとも一つを記録することを特徴とする請求項1に記載の撮像装置。
  6. 上記補正手段は、
    上記撮像素子からの画像信号に対して、上記座標記録手段に記録された上記座標情報に基づいてノイズ低減処理を行うノイズ低減手段と、
    上記ノイズ低減手段による上記ノイズ低減処理後の画像信号に対して、上記座標記録手段に記録された上記座標情報に基づいて階調変換処理を行う階調変換手段と、
    を更に有することを特徴とする請求項1乃至5の何れかに記載の撮像装置。
  7. 上記補正手段は、
    上記撮像素子からの画像信号に対して、上記座標記録手段に記録された上記座標情報に基づいて階調変換処理を行う階調変換手段と、
    上記階調変換手段による上記階調変換処理後の画像信号に対して、上記座標記録手段に記録された上記座標情報に基づいてノイズ低減処理を行うノイズ低減手段と、
    を更に有することを特徴とする請求項1乃至5の何れかに記載の撮像装置。
  8. 上記階調変換手段は、上記撮影光学系の明るさと上記座標記録手段に記録された上記座標情報とに基づいて階調変換係数を設定し、該階調変換係数に基づいて上記階調変換処理を行うことを特徴とする請求項6又は7に記載の撮像装置。
  9. 上記ノイズ低減手段は、
    上記画像信号に関してノイズ量を推定するノイズ量推定手段と、
    上記ノイズ量推定手段によって推定したノイズ量に基づき平滑化処理を行う平滑化手段と、
    を有することを特徴とする請求項6乃至8の何れかに記載の撮像装置。
  10. 上記ノイズ低減手段は、
    上記画像信号に関してノイズ量を推定するノイズ量推定手段と、
    上記ノイズ量推定手段によって推定したノイズ量に基づき平滑化処理を行う平滑化手段と、
    を有し、
    上記ノイズ量推定手段は、上記階調変換手段が設定した上記階調変換係数に基づいて上記ノイズ量を補正するノイズ量補正手段を有することを特徴とする請求項8に記載の撮像装置。
  11. 上記補正手段は、
    上記画像信号に対して上記撮影光学系の解像度と上記座標記録手段に記録された上記座標情報に基づいて鮮鋭化処理を行う鮮鋭化手段と、
    上記座標記録手段に記録された上記座標情報に基づいてホワイトバランス調整処理を行うWB調整手段と、
    のうちの少なくとも一つを有することを特徴とする請求項1乃至10の何れかに記載の撮像装置。
  12. 上記焦点検出手段により検出された焦点に基づき、上記撮影光学系のフォーカスを制御する制御手段を更に具備することを特徴とする請求項1乃至11の何れかに記載の撮像装置。
  13. コンピュータを、
    撮影光学系を介して被写体を撮像する撮像素子の素子面上の領域に対して、上記撮影光学系を通過する被写体像光の光束を瞳分割する瞳分割レンズ群の光学特性及び上記撮影光学系の撮影情報を、上記撮像素子による撮像によって得られた画像信号と共に読み込む読み込み手段、
    予め記録された上記撮像素子の素子面上の上記領域を特定するための座標情報に基づいて、上記読み込んだ画像信号に対し、上記領域に対応した上記瞳分割レンズ群の光学特性及び予め記録された上記撮像素子の素子特性に基づく補正処理を行う補正手段、
    上記補正手段による上記補正処理前の画像信号または上記補正処理後の画像信号に基づいて、焦点検出を行う焦点検出手段、
    として機能させるための画像信号処理プログラム。
  14. 上記補正処理は、上記予め記録された上記座標情報に基づいて、上記瞳分割レンズ群を通過した光束の影響を受ける上記撮像素子からの画像信号に対して行うことを特徴とする請求項13に記載の画像信号処理プログラム。
  15. 上記補正処理は、上記予め記録された上記座標情報に基づいて、上記瞳分割レンズ群を通過した光束のみが結像する上記撮像素子からの画像信号に対して行うことを特徴とする請求項13に記載の画像信号処理プログラム。
  16. 上記補正処理として、上記予め記録された上記座標情報に基づいて、上記瞳分割レンズ群を通過した光束のみが結像する上記撮像素子の領域と、上記瞳分割レンズ群を通過した光束以外の光束の影響を受ける上記撮像素子の領域とで、区別した補正処理を行うことを特徴とする請求項13に記載の画像信号処理プログラム。
  17. 上記予め記録された上記座標情報は、
    上記領域内に位置し、上記瞳分割レンズ群を通過する光束のみが結像する座標の情報、
    上記領域外に位置し、上記瞳分割レンズ群を通過する光束の影響を受けない座標の情報、
    上記領域境界上に位置し、上記瞳分割レンズ群を通過する光束の影響を受ける座標の情報、
    のうちの少なくとも一つであることを特徴とする請求項13に記載の画像信号処理プログラム。
  18. 上記補正処理は、
    上記撮像素子からの画像信号に対して、上記予め記録された上記座標情報に基づいて行われるノイズ低減処理と、
    上記ノイズ低減処理後の画像信号に対して、上記予め記録された上記座標情報に基づいて行われる階調変換処理と、
    を更に有することを特徴とする請求項13乃至17の何れかに記載の画像信号処理プログラム。
  19. 上記補正手処理、
    上記撮像素子からの画像信号に対して、上記予め記録された上記座標情報に基づいて行われる階調変換処理と、
    上記階調変換処理後の画像信号に対して、上記予めに記録された上記座標情報に基づいて行われるノイズ低減処理と、
    を更に有することを特徴とする請求項13乃至17の何れかに記載の画像信号処理プログラム。
  20. 上記階調変換処理は、上記撮影光学系の明るさと上記予め記録された上記座標情報とに基づいて階調変換係数を設定し、該階調変換係数に基づいて行うことを特徴とする請求項18又は19に記載の画像信号処理プログラム。
  21. 上記ノイズ低減処理は、
    上記画像信号に関してノイズ量を推定するノイズ量推定処理と、
    上記ノイズ量推定処理によって推定したノイズ量に基づいて行う平滑化処理と、
    を有することを特徴とする請求項18乃至20の何れかに記載の画像信号処理プログラム。
  22. 上記ノイズ低減処理は、
    上記画像信号に関してノイズ量を推定するノイズ量推定処理と、
    上記ノイズ量推定処理によって推定したノイズ量に基づいて行う平滑化処理と、
    を有し、
    上記ノイズ量推定処理は、上記階調変換処理で設定した上記階調変換係数に基づいて上記ノイズ量を補正するノイズ量補正処理を有することを特徴とする請求項20に記載の画像信号処理プログラム。
  23. 上記補正処理は、
    上記画像信号に対して上記撮影光学系の解像度と上記予め記録された上記座標情報に基づいて行う鮮鋭化処理と、
    上記予め記録された上記座標情報に基づいて行うホワイトバランス調整処理と、
    のうちの少なくとも一つを有することを特徴とする請求項13乃至22の何れかに記載の画像信号処理プログラム。
  24. コンピュータを更に、上記焦点検出手段により検出された焦点に基づき上記撮影光学系のフォーカスを制御する制御手段として機能させることを特徴とする請求項13乃至23の何れかに記載の画像信号処理プログラム。
JP2007170833A 2007-06-28 2007-06-28 撮像装置及び画像信号処理プログラム Expired - Fee Related JP4979482B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007170833A JP4979482B2 (ja) 2007-06-28 2007-06-28 撮像装置及び画像信号処理プログラム
PCT/JP2008/061662 WO2009001903A1 (ja) 2007-06-28 2008-06-26 撮像装置及び画像信号処理プログラム
US12/644,353 US8269861B2 (en) 2007-06-28 2009-12-22 Image acquisition apparatus which has a focus detection function and program recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007170833A JP4979482B2 (ja) 2007-06-28 2007-06-28 撮像装置及び画像信号処理プログラム

Publications (2)

Publication Number Publication Date
JP2009008928A true JP2009008928A (ja) 2009-01-15
JP4979482B2 JP4979482B2 (ja) 2012-07-18

Family

ID=40185716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007170833A Expired - Fee Related JP4979482B2 (ja) 2007-06-28 2007-06-28 撮像装置及び画像信号処理プログラム

Country Status (3)

Country Link
US (1) US8269861B2 (ja)
JP (1) JP4979482B2 (ja)
WO (1) WO2009001903A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093757A (ja) * 2008-10-10 2010-04-22 Canon Inc 撮像装置、その制御方法及びプログラム
JP2011109310A (ja) * 2009-11-16 2011-06-02 Nikon Corp 画像合成装置および撮像装置
JP2011259089A (ja) * 2010-06-07 2011-12-22 Sony Corp 画像表示装置、電子機器、画像表示システム、画像取得方法、プログラム
JP2012003455A (ja) * 2010-06-16 2012-01-05 Canon Inc 画像処理装置、撮像装置および画像処理プログラム
JP2012003454A (ja) * 2010-06-16 2012-01-05 Canon Inc 画像処理装置、撮像装置および画像処理プログラム
US8339542B2 (en) 2009-06-26 2012-12-25 3M Innovative Properties Company Passive and hybrid daylight-coupled N-stack and collapsible backlights for sunlight viewable displays
JP2013034194A (ja) * 2011-06-30 2013-02-14 Nikon Corp 撮像装置、画像処理装置及び画像処理プログラム
JP2013235054A (ja) * 2012-05-07 2013-11-21 Canon Inc 焦点検出装置及び撮像装置
WO2014091854A1 (ja) * 2012-12-11 2014-06-19 富士フイルム株式会社 画像処理装置、撮像装置、画像処理方法、及び画像処理プログラム
WO2014141561A1 (ja) * 2013-03-13 2014-09-18 富士フイルム株式会社 撮像装置、信号処理方法、信号処理プログラム
WO2017057267A1 (ja) * 2015-09-30 2017-04-06 株式会社ニコン 撮像装置、および焦点検出装置
JP2017173374A (ja) * 2016-03-18 2017-09-28 キヤノン株式会社 焦点検出装置および方法、および撮像装置
WO2021059430A1 (ja) * 2019-09-26 2021-04-01 オリンパス株式会社 画像処理装置、撮像装置、画像処理方法、プログラム、及び記録媒体

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011221253A (ja) * 2010-04-08 2011-11-04 Sony Corp 撮像装置、固体撮像素子、撮像方法およびプログラム
JP5778931B2 (ja) * 2011-01-25 2015-09-16 キヤノン株式会社 撮像装置及びその制御方法
JP5701640B2 (ja) * 2011-02-18 2015-04-15 株式会社東芝 画像処理装置
CN103905713B (zh) * 2012-12-26 2018-02-27 联想(北京)有限公司 控制方法、控制装置和电子设备
KR102251440B1 (ko) * 2014-11-05 2021-05-14 삼성전자주식회사 로컬 톤 맵핑 회로와 이를 포함하는 모바일 컴퓨팅 장치
JP6584149B2 (ja) * 2015-05-29 2019-10-02 キヤノン株式会社 撮像装置
KR20200145898A (ko) 2019-06-19 2020-12-31 삼성전자주식회사 이미지 센서 및 이미지 센서를 포함하는 전자 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292686A (ja) * 1999-04-06 2000-10-20 Olympus Optical Co Ltd 撮像装置
JP2000305010A (ja) * 1999-04-20 2000-11-02 Olympus Optical Co Ltd 撮像装置
JP2007316521A (ja) * 2006-05-29 2007-12-06 Nikon Corp 光電検出装置、光学特性検出装置、および撮像装置
JP2008242182A (ja) * 2007-03-28 2008-10-09 Nikon Corp 焦点検出装置、焦点検出方法および撮像装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4185191A (en) 1978-06-05 1980-01-22 Honeywell Inc. Range determination system
JPH10274562A (ja) 1997-03-31 1998-10-13 Olympus Optical Co Ltd 光電変換装置
JP3592147B2 (ja) * 1998-08-20 2004-11-24 キヤノン株式会社 固体撮像装置
US6819360B1 (en) 1999-04-01 2004-11-16 Olympus Corporation Image pickup element and apparatus for focusing
US6766112B2 (en) * 2000-04-03 2004-07-20 Nikon Corporation Focal point detection apparatus and focal point detection module
JP4708970B2 (ja) * 2005-11-16 2011-06-22 キヤノン株式会社 焦点検出装置及び当該焦点検出装置を有する撮像装置
JP5066893B2 (ja) * 2006-05-17 2012-11-07 株式会社ニコン 相関演算方法、相関演算装置、焦点検出装置および撮像装置
US7586588B2 (en) 2006-05-17 2009-09-08 Nikon Corporation Correlation operation method, correlation operation device, focus detection device and imaging device
JP2008286816A (ja) * 2007-05-15 2008-11-27 Olympus Imaging Corp 焦点検出光学系及びそれを用いた撮像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292686A (ja) * 1999-04-06 2000-10-20 Olympus Optical Co Ltd 撮像装置
JP2000305010A (ja) * 1999-04-20 2000-11-02 Olympus Optical Co Ltd 撮像装置
JP2007316521A (ja) * 2006-05-29 2007-12-06 Nikon Corp 光電検出装置、光学特性検出装置、および撮像装置
JP2008242182A (ja) * 2007-03-28 2008-10-09 Nikon Corp 焦点検出装置、焦点検出方法および撮像装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093757A (ja) * 2008-10-10 2010-04-22 Canon Inc 撮像装置、その制御方法及びプログラム
US8339542B2 (en) 2009-06-26 2012-12-25 3M Innovative Properties Company Passive and hybrid daylight-coupled N-stack and collapsible backlights for sunlight viewable displays
JP2011109310A (ja) * 2009-11-16 2011-06-02 Nikon Corp 画像合成装置および撮像装置
JP2011259089A (ja) * 2010-06-07 2011-12-22 Sony Corp 画像表示装置、電子機器、画像表示システム、画像取得方法、プログラム
JP2012003455A (ja) * 2010-06-16 2012-01-05 Canon Inc 画像処理装置、撮像装置および画像処理プログラム
JP2012003454A (ja) * 2010-06-16 2012-01-05 Canon Inc 画像処理装置、撮像装置および画像処理プログラム
US9338339B2 (en) 2010-06-16 2016-05-10 Canon Kabushiki Kaisha Image processing apparatus and image pickup apparatus
JP2013034194A (ja) * 2011-06-30 2013-02-14 Nikon Corp 撮像装置、画像処理装置及び画像処理プログラム
JP2013235054A (ja) * 2012-05-07 2013-11-21 Canon Inc 焦点検出装置及び撮像装置
CN104813648A (zh) * 2012-12-11 2015-07-29 富士胶片株式会社 图像处理装置、摄像装置、图像处理方法及图像处理程序
WO2014091854A1 (ja) * 2012-12-11 2014-06-19 富士フイルム株式会社 画像処理装置、撮像装置、画像処理方法、及び画像処理プログラム
CN104813648B (zh) * 2012-12-11 2018-06-05 富士胶片株式会社 图像处理装置、摄像装置、及图像处理方法
WO2014141561A1 (ja) * 2013-03-13 2014-09-18 富士フイルム株式会社 撮像装置、信号処理方法、信号処理プログラム
JP5866478B2 (ja) * 2013-03-13 2016-02-17 富士フイルム株式会社 撮像装置、信号処理方法、信号処理プログラム
US9491352B2 (en) 2013-03-13 2016-11-08 Fujifilm Corporation Imaging device, signal processing method, and signal processing program
WO2017057267A1 (ja) * 2015-09-30 2017-04-06 株式会社ニコン 撮像装置、および焦点検出装置
JPWO2017057267A1 (ja) * 2015-09-30 2018-08-16 株式会社ニコン 撮像装置、および焦点検出装置
JP2017173374A (ja) * 2016-03-18 2017-09-28 キヤノン株式会社 焦点検出装置および方法、および撮像装置
US10455142B2 (en) 2016-03-18 2019-10-22 Canon Kabushiki Kaisha Focus detection apparatus and method, and image capturing apparatus
WO2021059430A1 (ja) * 2019-09-26 2021-04-01 オリンパス株式会社 画像処理装置、撮像装置、画像処理方法、プログラム、及び記録媒体

Also Published As

Publication number Publication date
JP4979482B2 (ja) 2012-07-18
WO2009001903A1 (ja) 2008-12-31
US20100097503A1 (en) 2010-04-22
US8269861B2 (en) 2012-09-18

Similar Documents

Publication Publication Date Title
JP4979482B2 (ja) 撮像装置及び画像信号処理プログラム
JP5000413B2 (ja) 撮像システム及び画像信号処理プログラム
JP5173954B2 (ja) 画像処理装置及び画像処理方法
JP5183715B2 (ja) 画像処理装置及び画像処理方法
JP5478935B2 (ja) 撮像装置
US8890972B2 (en) Image capturing apparatus and image processing method
JP6555863B2 (ja) 撮像装置及び撮像装置の制御方法
JP2018107727A (ja) 画像処理装置および画像処理方法、撮像装置、プログラム
JP6227084B2 (ja) 画像処理装置、撮像装置及び画像処理方法
JP2007282108A (ja) 撮像装置、カメラおよび画像処理方法
JP2002218298A (ja) 撮像装置、シェーディング補正方法、及び記憶媒体
US20120099006A1 (en) Image pickup apparatus
JP6234058B2 (ja) 焦点調節装置およびその制御方法
JP2005278004A (ja) 色シェーディング補正方法および固体撮像装置
WO2019188934A1 (ja) 撮像装置、撮像方法、及びプログラム
JP6576114B2 (ja) 撮像装置および撮像装置の制御方法
JP4967826B2 (ja) 焦点検出装置および撮像装置
JP6395790B2 (ja) 撮像装置、撮像装置の制御方法およびフォーカス制御プログラム
JP5352003B2 (ja) 画像処理装置及び画像処理方法
JP5793210B2 (ja) 撮像装置
JP5597273B2 (ja) 撮像装置及び画像処理方法
JP7238896B2 (ja) 焦点検出装置、撮像装置、及び、交換レンズ
JP6660036B2 (ja) 焦点検出装置及び撮像装置
JP6365568B2 (ja) 撮像素子および撮像装置
JP2015060004A (ja) 撮像装置及びその制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4979482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20121030

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees