JP2009004075A - 温度センサー及びこれを用いる半導体メモリ装置 - Google Patents

温度センサー及びこれを用いる半導体メモリ装置 Download PDF

Info

Publication number
JP2009004075A
JP2009004075A JP2008153369A JP2008153369A JP2009004075A JP 2009004075 A JP2009004075 A JP 2009004075A JP 2008153369 A JP2008153369 A JP 2008153369A JP 2008153369 A JP2008153369 A JP 2008153369A JP 2009004075 A JP2009004075 A JP 2009004075A
Authority
JP
Japan
Prior art keywords
signal
temperature
pulse signal
temperature sensor
enable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008153369A
Other languages
English (en)
Inventor
Young Chul Sohn
ユン チュル ソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hynix Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hynix Semiconductor Inc filed Critical Hynix Semiconductor Inc
Publication of JP2009004075A publication Critical patent/JP2009004075A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/04Arrangements for writing information into, or reading information out from, a digital store with means for avoiding disturbances due to temperature effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/01Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using semiconducting elements having PN junctions
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40615Internal triggering or timing of refresh, e.g. hidden refresh, self refresh, pseudo-SRAMs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40626Temperature related aspects of refresh operations
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4072Circuits for initialization, powering up or down, clearing memory or presetting
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4074Power supply or voltage generation circuits, e.g. bias voltage generators, substrate voltage generators, back-up power, power control circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dram (AREA)

Abstract

【課題】温度センサー及びこれを用いる半導体メモリ装置を提供する。
【解決手段】温度特性を持つ基準電圧によってイネーブル区間幅が調節される第1パルス信号を生成するパルス信号生成部と、前記第1パルス信号のイネーブル区間の間に所定周期の第2パルス信号を生成するオシレータと、前記第2パルス信号に応答してカウンティング動作を行って少なくとも一つの温度信号を生成するカウンタと、を備える。
【選択図】図2

Description

本発明は、半導体メモリ装置に係り、より詳細には、トランジスタの特性変化に安定しており、且つ、様々な半導体メモリ装置に用いることができる温度センサーに関する。
周知の如く、DRAMなどの半導体メモリ装置は、内部温度によって内部回路の動作を制御するために温度センサーを備える。図1に示すように、従来技術に係る温度センサーは、ノードnd10の信号と基準電圧VREFとを比較する比較器A10と、比較器A10の出力信号に応じてノードnd10をプルアップ駆動するPMOSトランジスタP10,P12と、比較器A10の出力信号によってノードnd10をプルダウン駆動するNMOSトランジスタN10,N12,N14を備える。このように構成された温度センサーは、内部温度によって温度特性が変化するPMOSトランジスタP10,P12とNMOSトランジスタN10,N12,N14によって温度情報を含む温度信号temposcを生成する。
本出願と関連のある技術が、特許文献1に開示されている。
米国特許第2004/0199354A1
本発明の目的は、トランジスタの特性変化に安定しており、且つ、様々な半導体メモリ装置に用いることができる温度センサーを提供することにある。
本発明の他の目的は、上記の温度センサーを用いる半導体メモリ装置を提供することにある。
本発明の一実施様態において、上記の目的を達成する温度センサーは、温度特性を持つ基準電圧によってイネーブル区間幅が調節される第1パルス信号を生成するパルス信号生成部と、前記第1パルス信号のイネーブル区間の間に所定周期の第2パルス信号を生成するオシレータと、前記第2パルス信号に応答してカウンティング動作を行って少なくとも一つの温度信号を生成するカウンタと、を備える構成とした。
好ましくは、前記基準電圧は、温度が上昇するほどレベルが減少する温度特性を持つ。
好ましくは、前記第1パルス信号のイネーブル区間幅は、前記基準電圧のレベルが減少するほど増加する。
上記本発明の温度センサーは、既設定された区間の間にイネーブルされる周期信号であるイネーブル信号を生成するイネーブル信号生成部をさらに備えることができる。
また、前記パルス信号生成部は、前記基準電圧に応答して駆動力の調節される少なくとも一つのバッファーで構成され、前記イネーブル信号を所定区間遅延させる遅延部と、前記イネーブル信号及び前記遅延部の出力信号を受信して論理演算し、前記第1パルス信号を生成する論理部と、を備えることができる。
また、前記バッファーは、電源電圧と出力ノードとの間に連結され、入力ノードの信号に応答して出力ノードをプルアップ駆動するプルアップ素子と、前記出力ノードと接地端との間に連結され、前記入力ノードの信号に応答して前記出力ノードをプルダウン駆動するプルダウン素子と、前記出力ノードと接地端との間に前記プルダウン素子と直列に連結され、前記基準電圧に応答して前記プルダウン素子の駆動能力を調節する駆動調節素子と、を備えることができる。
前記プルアップ素子は、PMOSトランジスタであり、前記プルダウン素子及び前記駆動調節素子は、NMOSトランジスタであることが好ましい。
また、前記オシレータは、前記第1パルス信号と出力ノードの信号を受信して論理演算を行う論理部と、前記論理部の出力信号を所定区間遅延させる遅延部と、を備えることができる。
なお、前記論理部は、否定論理積演算を行うと好ましい。
なお、前記遅延部は、インバータチェーンであると好ましい。
なお、前記カウンタは、前記第2パルス信号のパルス数によって順次にカウンティングされる温度信号を生成すると好ましい。
なお、前記カウンタは、前記第2パルス信号に応答して動作する直列連結された第1及び第2フリップフロップを備え、前記第1フリップフロップは前記第2フリップフロップの出力信号を反転させて受信すると好ましい。
なお、前記カウンタは、前記イネーブル信号に応答して前記第1及び第2フリップフロップの出力信号を伝達する伝達部と、前記伝達部の出力信号をラッチするラッチと、を備えることができる。
上記本発明の温度センサは、前記イネーブル信号に応答して駆動され、バンドギャップ(bandgap)を用いて前記基準電圧を生成する基準電圧生成部をさらに備えることができる。
前記基準電圧生成部は、前記イネーブル信号に応答して駆動電圧が供給されると好ましい。
また、前記温度信号は、デジタルコードからなると好ましい。
上記の他の目的を達成する本発明の半導体メモリ装置は、温度によってイネーブル区間幅が調節されるパルス信号を生成し、前記パルス信号のイネーブル区間幅によってカウンティングされる温度信号を生成する温度センサーと、前記温度信号を受信して内部温度に関する温度情報を抽出し、抽出された温度情報を用いて温度制御動作を行う温度制御部と、を備える構成とした。
ここで、前記温度制御部は、前記温度情報によってリフレッシュ周期を制御する温度制御動作を行うと好ましい。
また、前記温度制御部は、前記温度情報によって内部電圧のレベルを制御する温度制御動作を行うと好ましい。
本発明の温度センサーは、常に内部温度センシングを行うのではなく、イネーブル信号がハイレベルである場合にのみ温度センシングをするため、電流消耗を低減させることが可能になる。
また、本発明の温度センサーは、半導体メモリ素子の内部温度によって可変するイネーブル区間幅を持つパルス信号を用いて内部温度をセンシングするため、内部温度によるMOSトランジスタ特性変化にかかわらず、安定した温度センシングが図られる。
また、本発明の温度センサーは、アナログ方式の信号に比べてより保存し易いデジタルコード方式の温度信号を生成するため、半導体メモリに組み込まれた様々な内部回路に容易に用いることができる。
以下、本発明の好適な実施形態についてより詳細に説明する。ただし、これらの実施形態は本発明を例示するためのもので、本発明の権利保護範囲がこれらの実施形態によって制限されることはない。
図2は、本発明の一実施形態による温度センサーの構成を示すブロック図である。
図2に示すように、本実施形態による温度センサーは、イネーブル信号生成部20、基準電圧生成部22、パルス生成部24、オシレータ26及びカウンタ28で構成される。
イネーブル信号生成部20は、一定の周期を持つパルス信号を生成する一般のパルス生成回路で構成され、所定周期ごとに既設定された区間でイネーブルされるイネーブル信号T_enを生成する。
基準電圧生成部22は、一般のバンドギャップ基準電圧発生回路(Bandgap Reference Circuit)からなり、半導体メモリ素子の内部温度が増加するにつれてレベルが減少する、すなわち、内部温度に反比例するレベル特性を持つ基準電圧V_refを生成する。
パルス生成部24は、図3に示すように、遅延区間調節部30と、イネーブル信号T_enと遅延区間調節部30の出力信号を受信して論理積演算を行い、第1パルス信号T_outを生成する論理部32とで構成される。遅延区間調節部30は、イネーブル信号T_enを所定区間遅延させる複数のインバータIV3[0]、IV3[1]、…、IV3[N−1]、IV3[N]で構成されたインバータチェーン300と、インバータチェーン300の駆動力を調節するNMOSトランジスタN3[0]、N3[1]、…、N3[N−1]、N3[N]からなる駆動調節部302と、から構成される。インバータIV3[0]、IV3[1]、…、IV3[N−1]、IV3[N]はそれぞれ連結されたNMOSトランジスタN3[0]、N3[1]、…、N3[N−1]、N3[N]によって駆動力が調節される。図4は、インバータIV3[0]、IV3[1]、…、IV3[N−1]、IV3[N]とNMOSトランジスタN3[0]、N3[1]、…、N3[N−1]、N3[N]との連結関係をより具体的に説明するための詳細回路図である。図4に示すように、駆動調節素子であるNMOSトランジスタN44は、インバータ40のプルダウン素子であるNMOSトランジスタN42に直列連結され、基準電圧V_refのレベルによってプルダウン駆動能力を調節する。
オシレータ26は、図5に示すように、第1パルス信号T_outとノードnd50の信号を受信して否定論理積演算を行うNANDゲートND50と、NANDゲートND50の出力信号を所定区間遅延させて第2パルス信号T_refを生成するインバータチェーン50と、で構成される。オシレータ26は、このようなリングオシレータの外にも、実施形態に応じて様々なオシレータ回路とすることができる。
カウンタ28は、図6に示すように、直列連結されたN個のDフリップフロップDF6[0]、DF6[1]、…、DF6[N−1]、DF6[N]で構成されたフリップフロップ部60と、ハイレベルのイネーブル信号T_enに応答してフリップフロップ部60の出力信号をそれぞれ伝達する伝達ゲートT6[0]、T6[1]、…、T6[N−1]、T6[N]を含む伝達部62と、伝達部62を通して伝達された信号をラッチするラッチ部64と、ラッチ部64の出力信号をそれぞれ反転バッファリングして温度信号D[1]、D[2]、…、D[N−1]、D[N]を生成するインバータIV618、IV620、…、…、IV622、IV624と、で構成される。フリップフロップ部60のDフリップフロップDF6[0]、DF6[1]、…、DF6[N−1]、DF6[N]は、イネーブル信号T_enがローレベルの時にハイレベルのリセット信号を受信してリセットされ、データ出力端Qにローレベルを出力し、第2パルス信号T_refがハイレベルの時にデータ入力端Dに入力される信号をデータ出力端Qに出力する。
次に、このように構成された温度センサーの動作を、図7に示すタイミング図に基づいて具体的に説明する。
まず、図7に示すように、イネーブル信号生成部20は、Tpの周期を有し、Tdの間にイネーブルされる周期信号であるイネーブル信号T_enを生成する。イネーブル信号T_enは、基準電圧生成部22に電圧を供給するか否かを決定し、パルス生成部24とカウンタ28の動作を制御する。イネーブル信号T_enは周期信号であるから、温度センサーの内部温度センシング(sensing)は、イネーブル信号T_enの周期の間にTpによって調節されることができる。すなわち、本実施形態の温度センサーは、実施形態によって温度をセンシングする最適の周期Tpを決定することによって、余分に内部温度がセンシングされるのを防止し、センシングへの消耗電流を低減させている。
続いて、基準電圧生成部22は、図8に示すように、半導体メモリ素子の内部温度に反比例するレベル特性を持つ基準電圧V_refを生成する。
続いて、パルス生成部24は、イネーブル信号T_en及び基準電圧V_refを受信して第1パルス信号T_outを生成する。パルス生成部24は、イネーブル信号T_enがハイレベルである場合に限って一定のイネーブル区間幅を持つ第1パルス信号T_outを生成し、電流消耗を減少させる。イネーブル信号T_enがハイレベルである時、パルス生成部24の第1パルス信号T_outの生成動作について説明すると、下記の通りである。
図3を参照すると、インバータチェーン300は、奇数個のインバータで構成され、イネーブル信号T_enをTo区間分遅延させて反転させる。したがって、第1パルス信号T_outは、To区間分ハイレベルにイネーブルされ、イネーブル信号T_enと同じTpの周期を持つ信号とされる。この時、第1パルス信号T_outのイネーブル区間幅Toは、基準電圧V_refに応答して動作する駆動調節部302によって調節される。例えば、内部温度が上昇する場合、基準電圧V_refのレベルは減少し、駆動調節部302に備えられたNMOSトランジスタN3[0]、N3[1]、…、N3[N−1]、N3[N]に印加される。したがって、NMOSトランジスタN3[0]、N3[1]、…、N3[N−1]、N3[N]を通過する電流の量が減り、インバータIV3[0]、IV3[1]、…、IV3[N−1]、IV3[N]のプルダウン駆動能力は減少する。インバータIV3[0]、IV3[1]、…、IV3[N−1]、IV3[N]のプルダウン駆動能力の減少は、イネーブル信号T_enのインバータチェーン300の通過時間を増加させ、第1パルス信号T_outのイネーブル区間幅であるToを増加させる。要するに、内部温度が上昇すると、図9に示すように、第1パルス信号T_outのイネーブル区間幅Toは増加し、内部温度が減少すると、第1パルス信号T_outのイネーブル区間幅Toは減少する。
次に、オシレータ26は、第1パルス信号T_outを受信し、第1パルス信号T_outがハイレベルであるTo区間の間にTr区間幅を持つ第2パルス信号T_refを生成する。図5を参照すると、オシレータ26は、第1パルス信号T_outがハイレベルである場合、NANDゲートND50がインバータとして動作してオシレーティング動作を行い、第1パルス信号T_outがローレベルである場合、ハイレベルまたはローレベルの一定のレベルに設定される第2パルス信号T_refを生成しながらオシレーティング動作を中断する。したがって、オシレータ26は、第1パルス信号T_outがハイレベルであるTo区間の間にインバータとして動作するNANDゲートND50とインバータチェーン50によって決定されるパルス幅Trを持つ第2パルス信号T_refを生成する。このようにして生成された第2パルス信号T_refのパルス数、すなわち、ハイレベルにイネーブルされたパルスの個数は、第1パルス信号T_outのイネーブル区間幅Toが増加するほど多くなる。
続いて、カウンタ28は、第2パルス信号T_ref、イネーブル信号T_enを受信し、温度信号D[1]、D[2]、…、D[N−1]、D[N]を生成する。図6を参照すると、イネーブル信号T_enがローレベルである場合、DフリップフロップDF6[0]、DF6[2]、…、DF6[N−1]、DF6[N]はリセットされてローレベルを出力し、伝達ゲートT6[0]、T6[2]、…、T6[N−1]、T6[N]はいずれもターンオフされる。すなわち、カウンタ28のカウンティング動作が行われない。一方、イネーブル信号T_enがハイレベルに遷移すると、DフリップフロップDF6[0]、DF6[2]、…、DF6[N−1]、DF6[N]は、第2パルス信号T_refのパルス数によってカウンティングされた出力を生成する。例えば、第2パルス信号T_refのパルス数が2である場合、DフリップフロップDF6[0]、DF6[1]のデータ出力端Qを通した出力のみがハイレベルになり、残りのDフリップフロップDF6[3]、…、DF6[N]のデータ出力端Qを通した出力はローレベルになる。また、ハイレベルのイネーブル信号T_enによって伝達ゲートT6[0]、T6[2]、…、T6[N−1]、T6[N]は、いずれもターンオンされた状態であるから、フリップフロップ部60の出力信号は、ラッチ部64に伝達されて温度信号D[1]、D[2]、…、D[N−1]、D[N]として出力される。上記の例のように、第2パルス信号T_refのパルス数が2の場合、生成される温度信号D[1]、D[2]はハイレベルになり、残りの温度信号D[3]、…、D[N]はローレベルになる。要するに、カウンタ28は、イネーブル信号T_enがハイレベルである場合、カウンティング動作を行い、第2パルス信号T_refのパルス数によってカウンティングされて順次にハイレベルにイネーブルされる温度信号D[1]、D[2]、…、D[N−1]、D[N]を出力する。
以上のように、本実施形態に係る温度センサーは、常に内部温度センシングを行うのではなく、イネーブル信号T_enがハイレベルである場合にのみ温度センシングをするため、電流消耗を減少できる。すなわち、イネーブル信号T_enがハイレベルの場合にのみ基準電圧生成部22、パルス生成部24及びカウンタ28を動作させ、内部温度センシングに消耗される電流を低減させている。
また、本実施形態に係る温度センサーは、半導体メモリ素子の内部温度によって可変するイネーブル区間幅を持つ第1パルス信号T_outを用いて内部温度をセンシングする。したがって、内部温度によるMOSトランジスタ特性変化によって温度センシングが不安定になることなく、安定した温度センシングが図られる。
そして、本実施形態の温度センサーは、カウンタ28を備え、デジタルコード方式の温度信号D[1]、D[2]、…、D[N−1]、D[N]を生成する。デジタルコード方式の温度信号D[1]、D[2]、…、D[N−1]、D[N]は、アナログ方式の信号に比べて保存し易く、半導体メモリに組み込まれた様々な内部回路に容易に用いることができる。
以下、本実施形態の温度センサーを用いる半導体メモリ装置について、図10に基づいて具体的に説明する。
図10に示すように、本実施形態による半導体メモリ装置は、温度によってイネーブル区間幅が調節されるパルス信号を生成し、前記パルス信号のイネーブル区間幅によってカウンティングされるデジタルコード方式の温度信号を生成する温度センサー100と、温度信号D[1]、D[2]、…、D[N−1]、D[N]を受信して内部温度に関する温度情報を抽出し、抽出された温度情報を用いて温度制御動作を行う温度制御部101と、で構成される。
温度センサー100は、上記の図1乃至図9に基づいて具体的に説明されており、その詳細は省略する。
温度制御部101は、温度情報によってリフレッシュ周期を制御する温度制御動作を行うリフレッシュ周期調節部102と、温度情報によってコア電圧VCOREのレベルを調節するコア電圧(V_CORE)生成部104と、温度情報によってバックバイアス電圧VBBのレベルを調節するバックバイアス電圧(VBB)生成部106と、で構成される。温度制御部101は、多ビットで構成された温度信号D[1]、D[2]、…、D[N−1]、D[N]を受信して温度情報を抽出する。温度情報の抽出には、温度信号D[1]、D[2]、…、D[N−1]、D[N]をデコーディングして温度情報を抽出する方法などが用いられることができるが、本実施形態のように、温度信号D[1]、D[2]、…、D[N−1]、D[N]自体から温度情報を抽出する方法を使用することが好ましい。
例えば、温度信号(D[1]=‘1'、D[2]=‘0'、D[3]=‘0')は、第1温度区間(例えば、80〜82℃)に対応し、温度信号(D[1]=‘1'、D[2]=‘1'、D[3]=‘0')は、第2温度区間(例えば、82〜84℃)に対応し、温度信号(D[1]=‘1'、D[2]=‘1'、D[3]=‘1')は、第3温度区間(例えば、84〜86℃)に対応するように設定し、入力された温度信号D[1]、D[2]、D[3]によって内部温度に関する温度情報を抽出できるように具現できる。すなわち、温度制御部101は、入力された温度信号D[1]、D[2]、D[3]によって様々な温度制御動作を行うことができ、例えば、リフレッシュ周期調節部102は、温度信号(D[1]=‘1'、D[2]=‘1'、D[3]=‘0')が入力される第2温度区間(例えば、82〜84℃)に対応するリフレッシュ周期に調節されたリフレッシュ信号ref_Tを生成できる。また、コア電圧生成部VBBは、温度信号(D[1]=‘1'、D[2]=‘1'、D[3]=‘1')が入力される場合、第3温度区間(例えば、84〜86℃)に対応するレベルにコア電圧VCOREを生成できる。
なお、以上では本発明の温度センサーをリフラッシュ周期及び内部電圧レベル変更に用いられる場合に上げて説明してきたが、半導体メモリ装置の他に、温度情報を必要とするいずれの装置にも広く用いられることができる。
従来技術による温度センサーの回路図である。 本発明の一実施形態に温度センサーの構成を示すブロック図である。 図2の温度センサーに備えられたパルス生成部の回路図である。 図3のパルス生成部におけるインバータ及び駆動調節素子の詳細回路図である。 図2の温度センサーに備えられたオシレータの回路図である。 図2の温度センサーに備えられたカウンタの回路図である。 図2の温度センサーの動作を説明するためのタイミング図である。 図2で生成される基準電圧(V_ref)及び第1パルス信号(T_out)の温度による特性をそれぞれ示すグラフである。 図2で生成されるイネーブル区間幅(To)及び第1パルス信号(T_out)の温度による特性をそれぞれ示すグラフである。 本発明の一実施形態による温度センサーを用いる半導体メモリ装置の構成を示すブロック図である。
符号の説明
A10 比較器
P10,P12 PMOSトランジスタ
N10,N12,N14 NMOSトランジスタ
20 イネーブル信号生成部
22 基準電圧生成部
24 パルス生成部
26 オシレータ
28 カウンタ
30 遅延区間調節部
32 論理部
IV3[0]、IV3[1]、…、IV3[N−1]、IV3[N] インバータ
N3[0]、N3[1]、…、N3[N−1]、N3[N] NMOSトランジスタ
300 インバータチェーン
302 駆動調節部
N42、N44 NMOSトランジスタ
40 インバータ
50 インバータチェーン
ND50 NANDゲート
DF6[0]、DF6[1]、…、DF6[N−1]、DF6[N] Dフリップフロップ
60 フリップフロップ部
62 伝達部
64 ラッチ部
T6[0]、T6[1]、…、T6[N−1]、T6[N] 伝達ゲート
IV618、IV620、…、…、IV622、IV624 インバータ
100 温度センサー
101 温度制御部
102 リフレッシュ周期調節部
104 コア電圧(V_CORE)生成部
106 バックバイアス電圧(VBB)生成部

Claims (31)

  1. 温度特性を持つ基準電圧によってイネーブル区間幅が調節される第1パルス信号を生成するパルス信号生成部と、
    前記第1パルス信号のイネーブル区間の間に所定周期の第2パルス信号を生成するオシレータと、
    前記第2パルス信号に応答してカウンティング動作を行って少なくとも一つの温度信号を生成するカウンタと、
    を備えることを特徴とする温度センサー。
  2. 前記基準電圧は、温度が上昇するほどレベルが減少する温度特性を持つことを特徴とする請求項1に記載の温度センサー。
  3. 前記第1パルス信号のイネーブル区間幅は、前記基準電圧のレベルが減少するほど増加することを特徴とする請求項2に記載の温度センサー。
  4. 既設定された区間の間にイネーブルされる周期信号であるイネーブル信号を生成するイネーブル信号生成部をさらに備えることを特徴とする請求項1に記載の温度センサー。
  5. 前記パルス信号生成部は、
    前記基準電圧に応答して駆動力の調節される少なくとも一つのバッファーで構成され、
    前記イネーブル信号を所定区間遅延させる遅延部と、
    前記イネーブル信号及び前記遅延部の出力信号を受信して論理演算し、前記第1パルス信号を生成する論理部と、
    を備えることを特徴とする請求項4に記載の温度センサー。
  6. 前記バッファーは、
    電源電圧と出力ノードとの間に連結され、入力ノードの信号に応答して出力ノードをプルアップ駆動するプルアップ素子と、
    前記出力ノードと接地端との間に連結され、前記入力ノードの信号に応答して前記出力ノードをプルダウン駆動するプルダウン素子と、
    前記出力ノードと接地端との間に前記プルダウン素子と直列に連結され、前記基準電圧に応答して前記プルダウン素子の駆動能力を調節する駆動調節素子と、
    を備えることを特徴とする請求項5に記載の温度センサー。
  7. 前記プルアップ素子は、PMOSトランジスタであり、前記プルダウン素子及び前記駆動調節素子は、NMOSトランジスタであることを特徴とする請求項6に記載の温度センサー。
  8. 前記オシレータは、
    前記第1パルス信号と出力ノードの信号を受信して論理演算を行う論理部と、
    前記論理部の出力信号を所定区間遅延させる遅延部と、
    を備えることを特徴とする請求項1に記載の温度センサー。
  9. 前記論理部は、否定論理積演算を行うことを特徴とする請求項8に記載の温度センサー。
  10. 前記遅延部は、インバータチェーンであることを特徴とする請求項8に記載の温度センサー。
  11. 前記カウンタは、前記第2パルス信号のパルス数によって順次にカウンティングされる温度信号を生成することを特徴とする請求項1に記載の温度センサー。
  12. 前記カウンタは、前記第2パルス信号に応答して動作する直列連結された第1及び第2フリップフロップを備え、
    前記第1フリップフロップは、前記第2フリップフロップの出力信号を反転させて受信することを特徴とする請求項1に記載の温度センサー。
  13. 前記カウンタは、
    前記イネーブル信号に応答して前記第1及び第2フリップフロップの出力信号を伝達する伝達部と、
    前記伝達部の出力信号をラッチするラッチと、
    を備えることを特徴とする請求項12に記載の温度センサー。
  14. 前記イネーブル信号に応答して駆動され、バンドギャップ(bandgap)を用いて前記基準電圧を生成する基準電圧生成部をさらに備えることを特徴とする請求項4に記載の温度センサー。
  15. 前記基準電圧生成部は、前記イネーブル信号に応答して駆動電圧が供給されることを特徴とする請求項14に記載の温度センサー。
  16. 前記温度信号は、デジタルコードからなることを特徴とする請求項1に記載の温度センサー。
  17. 温度によってイネーブル区間幅が調節されるパルス信号を生成し、前記パルス信号のイネーブル区間幅によってカウンティングされる温度信号を生成する温度センサーと、
    前記温度信号を受信して内部温度に関する温度情報を抽出し、抽出された温度情報を用いて温度制御動作を行う温度制御部と、
    を備えることを特徴とする半導体メモリ装置。
  18. 前記温度制御部は、前記温度情報によってリフレッシュ周期を制御する温度制御動作を行うことを特徴とする請求項17に記載の半導体メモリ装置。
  19. 前記温度制御部は、前記温度情報によって内部電圧のレベルを制御する温度制御動作を行うことを特徴とする請求項18に記載の半導体メモリ装置。
  20. 前記温度センサーは、
    温度特性を持つ基準電圧によってイネーブル区間幅が調節される第1パルス信号を生成するパルス信号生成部と、
    前記第1パルス信号のイネーブル区間の間に所定周期の第2パルス信号を生成するオシレータと、
    前記第2パルス信号に応答してカウンティング動作を行って少なくとも一つの温度信号を生成するカウンタと、
    を備えることを特徴とする請求項17に記載の半導体メモリ装置。
  21. 前記基準電圧は、温度が上昇するほどレベルが減少する温度特性を持つことを特徴とする請求項20に記載の半導体メモリ装置。
  22. 前記第1パルス信号のイネーブル区間幅は、前記基準電圧のレベルが減少するほど増加することを特徴とする請求項21に記載の半導体メモリ装置。
  23. 既設定された区間の間にイネーブルされる周期信号であるイネーブル信号を生成するイネーブル信号生成部をさらに備えることを特徴とする請求項20に記載の半導体メモリ装置。
  24. 前記パルス信号生成部は、
    前記基準電圧に応答して駆動力が調節される少なくとも一つのバッファーで構成され、前記イネーブル信号を所定区間遅延させる遅延部と、
    前記イネーブル信号及び前記遅延部の出力信号を受信して論理演算し、前記第1パルス信号を生成する論理部と、
    を備えることを特徴とする請求項23に記載の半導体メモリ装置。
  25. 前記バッファーは、
    電源電圧と出力ノードとの間に連結され、入力ノードの信号に応答して出力ノードをプルアップ駆動するプルアップ素子と、
    前記出力ノードと接地端との間に連結され、前記入力ノードの信号に応答して前記出力ノードをプルダウン駆動するプルダウン素子と、
    前記出力ノードと接地端との間に前記プルダウン素子と直列に連結され、前記基準電圧に応答して前記プルダウン素子の駆動能力を調節する駆動調節素子と、
    を備えることを特徴とする請求項24に記載の半導体メモリ装置。
  26. 前記カウンタは、前記第2パルス信号のパルス数によって順次にカウンティングされる温度信号を生成することを特徴とする請求項20に記載の半導体メモリ装置。
  27. 前記カウンタは、前記第2パルス信号に応答して動作する直列連結された第1及び第2フリップフロップを備え、
    前記第1フリップフロップは、前記第2フリップフロップの出力信号を反転させて受信することを特徴とする請求項20に記載の半導体メモリ装置。
  28. 前記カウンタは、
    前記イネーブル信号に応答して前記第1及び第2フリップフロップの出力信号を伝達する伝達部と、
    前記伝達部の出力信号をラッチするラッチと、
    を備えることを特徴とする請求項27に記載の半導体メモリ装置。
  29. 前記イネーブル信号に応答して駆動され、バンドギャップ(bandgap)を用いて前記基準電圧を生成する基準電圧生成部をさらに備えることを特徴とする請求項23に記載の半導体メモリ装置。
  30. 前記基準電圧生成部は、前記イネーブル信号に応答して駆動電圧が供給されることを特徴とする請求項29に記載の半導体メモリ装置。
  31. 前記温度信号は、デジタルコードからなることを特徴とする請求項17に記載の半導体メモリ装置。
JP2008153369A 2007-06-25 2008-06-11 温度センサー及びこれを用いる半導体メモリ装置 Pending JP2009004075A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070062547A KR100861371B1 (ko) 2007-06-25 2007-06-25 온도센서 및 이를 이용한 반도체 메모리 장치

Publications (1)

Publication Number Publication Date
JP2009004075A true JP2009004075A (ja) 2009-01-08

Family

ID=40136446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008153369A Pending JP2009004075A (ja) 2007-06-25 2008-06-11 温度センサー及びこれを用いる半導体メモリ装置

Country Status (3)

Country Link
US (1) US7891868B2 (ja)
JP (1) JP2009004075A (ja)
KR (1) KR100861371B1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067753A (ja) * 1996-07-26 1998-03-10 Adir 新規ベンゾイミダゾール、ベンゾオキサゾール及びベンゾチアゾール化合物、その製造方法、並びにそれを含有する医薬組成物
JP2015059767A (ja) * 2013-09-17 2015-03-30 株式会社豊田中央研究所 温度センサ回路
KR102303926B1 (ko) * 2020-03-13 2021-09-23 윈본드 일렉트로닉스 코포레이션 온도 센싱 회로와 그 센싱 방법

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100861374B1 (ko) * 2007-06-27 2008-10-02 주식회사 하이닉스반도체 온도센서 및 이를 이용한 반도체 메모리 장치
US7771115B2 (en) 2007-08-16 2010-08-10 Micron Technology, Inc. Temperature sensor circuit, device, system, and method
KR101593603B1 (ko) * 2009-01-29 2016-02-15 삼성전자주식회사 반도체 장치의 온도 감지 회로
KR101069678B1 (ko) 2009-06-16 2011-10-05 주식회사 하이닉스반도체 반도체 메모리 장치의 온도 감지 회로
US8573842B2 (en) * 2010-03-26 2013-11-05 Ibiden Co., Ltd. Sensor control circuit and sensor
TWI422847B (zh) * 2010-09-01 2014-01-11 Univ Nat Chiao Tung 全晶片上寬工作電壓溫度製程電壓的感測系統
GB201102070D0 (en) * 2011-02-07 2011-03-23 Nordic Semiconductor Asa Semiconductor temperature sensors
KR20130015940A (ko) * 2011-08-05 2013-02-14 에스케이하이닉스 주식회사 온도센서 테스트회로를 포함하는 반도체메모리장치
US9322717B1 (en) * 2012-04-11 2016-04-26 Marvell International Ltd. Temperature sensor architecture
KR102059429B1 (ko) * 2013-04-04 2019-12-27 에스케이하이닉스 주식회사 집적회로
KR102111494B1 (ko) 2013-09-02 2020-06-09 삼성전자주식회사 온도에 따른 교정 기능을 가지는 온도 센서, 이의 동작 방법 및 상기 온도 센서를 포함하는 장치
KR102154191B1 (ko) * 2013-09-02 2020-09-10 삼성전자 주식회사 프로세서 내에 집적되는 온도 센서, 이의 동작 방법 및 상기 온도 센서를 포함하는 장치
JP6450184B2 (ja) * 2014-12-24 2019-01-09 エイブリック株式会社 過熱検出回路及び半導体装置
TWI557414B (zh) 2015-08-04 2016-11-11 財團法人工業技術研究院 電子電路監測系統及電子電路監測方法
KR20180042014A (ko) 2016-10-17 2018-04-25 삼성전자주식회사 배관 구조체 및 배관 구조체를 포함하는 반도체 모듈 테스트 장치
CN112583259B (zh) * 2019-09-27 2022-03-18 长鑫存储技术有限公司 电源模块和存储器
CN113470709B (zh) * 2020-03-31 2024-04-12 华邦电子股份有限公司 温度感测电路及其感测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266919A (ja) * 1987-04-24 1988-11-04 Hitachi Ltd 半導体集積回路装置
JPH0599756A (ja) * 1991-10-03 1993-04-23 Seikosha Co Ltd 温度検出回路
JPH08294229A (ja) * 1995-04-20 1996-11-05 Nec Corp 半導体集積回路装置
JP2000055742A (ja) * 1998-08-06 2000-02-25 Fujitsu Ltd 温度検出回路、温度検出回路の校正方法、及び、半導体記憶装置
JP2007024865A (ja) * 2005-06-17 2007-02-01 Renesas Technology Corp 半導体装置
KR100712545B1 (ko) * 2006-01-11 2007-05-02 삼성전자주식회사 구간별 온도에 따라 온도 코드를 발생하는 온도 센서 및구간별 온도 검출 방법
JP2007187659A (ja) * 2006-01-11 2007-07-26 Samsung Electronics Co Ltd 温度センサ及び温度検出方法
US20090323758A1 (en) * 2008-06-30 2009-12-31 Hynix Semiconductor, Inc. Analog-digital converter and temperature information output device having the same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3882384A (en) * 1971-08-20 1975-05-06 Westinghouse Electric Corp Energy conversion
NZ176879A (en) * 1975-03-10 1978-03-06 Inventions Dev Authority Integrating temperature gauge: modified input represents rate of food deterioration
US4030363A (en) * 1975-10-28 1977-06-21 Electromedics, Inc. Electronic thermometer
US4165642A (en) * 1978-03-22 1979-08-28 Lipp Robert J Monolithic CMOS digital temperature measurement circuit
JPS57148221A (en) * 1981-03-10 1982-09-13 Citizen Watch Co Ltd Temperature detecting device
US6115441A (en) * 1991-07-09 2000-09-05 Dallas Semiconductor Corporation Temperature detector systems and methods
JP2002215258A (ja) 2001-01-23 2002-07-31 Mitsubishi Electric Corp 半導体集積回路装置
US6695475B2 (en) * 2001-05-31 2004-02-24 Stmicroelectronics, Inc. Temperature sensing circuit and method
FR2845767B1 (fr) * 2002-10-09 2005-12-09 St Microelectronics Sa Capteur numerique de temperature integre
US6905242B2 (en) 2003-01-16 2005-06-14 Dwyer Instruments, Inc. Sensor temperature control in a thermal anemometer
US20050036380A1 (en) 2003-08-14 2005-02-17 Yuan-Mou Su Method and system of adjusting DRAM refresh interval
US7123105B2 (en) 2003-12-19 2006-10-17 Infineon Technologies North American Corporation Oscillator with temperature control
KR100673102B1 (ko) * 2004-09-24 2007-01-22 주식회사 하이닉스반도체 온도 보상 셀프 리프레쉬 회로
KR20080020920A (ko) * 2006-09-02 2008-03-06 삼성전자주식회사 온도에 따라 셀프 리프레시 주기를 제어하는 반도체 장치
KR100795026B1 (ko) * 2006-12-22 2008-01-16 주식회사 하이닉스반도체 반도체 집적 회로의 내부 전압 생성 장치 및 방법
US7637658B2 (en) * 2007-04-23 2009-12-29 Texas Instruments Incorporated Systems and methods for PWM clocking in a temperature measurement circuit
KR101520358B1 (ko) * 2008-12-09 2015-05-14 삼성전자주식회사 온도변화에 따른 출력특성을 보상한 온도감지기 및 온도보상방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266919A (ja) * 1987-04-24 1988-11-04 Hitachi Ltd 半導体集積回路装置
JPH0599756A (ja) * 1991-10-03 1993-04-23 Seikosha Co Ltd 温度検出回路
JPH08294229A (ja) * 1995-04-20 1996-11-05 Nec Corp 半導体集積回路装置
JP2000055742A (ja) * 1998-08-06 2000-02-25 Fujitsu Ltd 温度検出回路、温度検出回路の校正方法、及び、半導体記憶装置
JP2007024865A (ja) * 2005-06-17 2007-02-01 Renesas Technology Corp 半導体装置
KR100712545B1 (ko) * 2006-01-11 2007-05-02 삼성전자주식회사 구간별 온도에 따라 온도 코드를 발생하는 온도 센서 및구간별 온도 검출 방법
JP2007187659A (ja) * 2006-01-11 2007-07-26 Samsung Electronics Co Ltd 温度センサ及び温度検出方法
US20090323758A1 (en) * 2008-06-30 2009-12-31 Hynix Semiconductor, Inc. Analog-digital converter and temperature information output device having the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067753A (ja) * 1996-07-26 1998-03-10 Adir 新規ベンゾイミダゾール、ベンゾオキサゾール及びベンゾチアゾール化合物、その製造方法、並びにそれを含有する医薬組成物
JP2015059767A (ja) * 2013-09-17 2015-03-30 株式会社豊田中央研究所 温度センサ回路
KR102303926B1 (ko) * 2020-03-13 2021-09-23 윈본드 일렉트로닉스 코포레이션 온도 센싱 회로와 그 센싱 방법

Also Published As

Publication number Publication date
US7891868B2 (en) 2011-02-22
KR100861371B1 (ko) 2008-10-01
US20080317097A1 (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP2009004075A (ja) 温度センサー及びこれを用いる半導体メモリ装置
JP5084118B2 (ja) 半導体装置のクロック発振器
JP4916699B2 (ja) Zqキャリブレーション回路及びこれを備えた半導体装置
US7477097B2 (en) Internal voltage generating circuit
US6198327B1 (en) Pulse generator with improved high speed performance for generating a constant pulse width
KR100915816B1 (ko) 내부 전압 생성 회로
JP2004080772A (ja) パワーオンリセット回路とその方法
KR101211045B1 (ko) 듀티 사이클 보정 회로
JP2007242236A (ja) 半導体メモリ装置及びその動作方法
JP2007213773A (ja) 半導体記憶装置のデータ出力回路及び方法
JP2009065633A (ja) 半導体装置及びその駆動方法
KR20180026957A (ko) 듀티 보정장치 및 이를 포함하는 반도체 장치
JP2010157986A (ja) 位相混合回路及びそれを備える遅延固定ループ回路
US7030707B2 (en) Oscillator circuits and methods that change frequency in inverse proportion to power source voltage
US6175221B1 (en) Frequency sensing NMOS voltage regulator
JP2011174917A (ja) 温度センサ
KR101047004B1 (ko) 입력버퍼
US6473468B1 (en) Data transmission device
KR100350766B1 (ko) 펄스 발생기
JP2004364313A (ja) 遅延回路
KR100968150B1 (ko) 클럭제어회로 및 이를 이용한 반도체 메모리 장치
JP2005218095A (ja) デジタル回路
KR100904739B1 (ko) 온도코드 전송회로 및 이를 이용한 반도체 메모리 장치
KR960006382B1 (ko) 어드레스 천이 검출회로
US20070211558A1 (en) Circuit and method for detecting synchronous mode in a semiconductor memory apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130611