JP2008235997A - スイッチング回路 - Google Patents

スイッチング回路 Download PDF

Info

Publication number
JP2008235997A
JP2008235997A JP2007068637A JP2007068637A JP2008235997A JP 2008235997 A JP2008235997 A JP 2008235997A JP 2007068637 A JP2007068637 A JP 2007068637A JP 2007068637 A JP2007068637 A JP 2007068637A JP 2008235997 A JP2008235997 A JP 2008235997A
Authority
JP
Japan
Prior art keywords
switching element
pulse signal
current
inductor
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007068637A
Other languages
English (en)
Inventor
Shuhei Nakada
修平 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007068637A priority Critical patent/JP2008235997A/ja
Publication of JP2008235997A publication Critical patent/JP2008235997A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Abstract

【課題】スイッチング回路の電流供給能力を増加させることなく、スイッチング素子の高速動作を可能とするスイッチング回路を提供する。
【解決手段】スイッチング素子1のゲートには、インダクタ6およびゲート抵抗8を介してパルス信号源7の正出力からパルス信号が与えられる構成となっており、パルス信号源7の負出力は、基準電位VGに接続されている。インダクタ6は、スイッチング素子1のドレインと誘導性負荷2とを接続する電流経路L1の周囲に配設され、電流経路L1に流れる電流による電磁誘導によって、当該電流に比例した電圧を出力する直流電源として機能する構成となっている。インダクタ6は、端子部11がスイッチング素子1のゲートに接続され、端子部12がゲート抵抗8に接続され、電流経路L1に流れるスイッチング素子1のドレイン電流によって誘起された電圧が、スイッチング素子1のゲートに与えられる。
【選択図】図1

Description

本発明はスイッチング回路に関し、特にスイッチング素子の高速動作を可能とするスイッチング回路に関する。
スイッチング回路では、スイッチング素子のゲートに加える電圧のオン、オフ制御によりスイッチングの制御を行っている。この場合、スイッチング時間を決定する要因は、ドレイン−ゲート間容量、いわゆる帰還容量に費やす充放電時間であった。
帰還容量の充放電は、スイッチング回路からゲートに流れ込む電流値によって規定されている。この充電時間を短縮するためには、流れ込む電流値を増やせば良い。そのような技術としては、例えば特許文献1に開示されている技術が挙げられ、その図1には、スイッチング素子のゲートに与えるオン電圧を、強制的に電源電圧に近づける構成が開示されている。
特開2006−25071号公報
以上説明したように、従来のスイッチング回路においては、ゲートから帰還容量に流れ込む電流値を増やすことでスイッチング動作の高速化を図っていた。また、ゲートに接続されている抵抗値を小さくすることで、ゲート電圧は同一ながらも、実質的な電流値の増加を図るという技術も開発されている。何れの方法を採る場合でも、スイッチング回路の電流供給能力を増加しなければならないという問題を有していた。
本発明は、上記のような問題点を解決するためになされたものであり、スイッチング回路の電流供給能力を増加させることなく、スイッチング素子の高速動作を可能とするスイッチング回路を提供することを目的とする。
本発明に係るスイッチング回路は、パルス信号によってオン、オフ制御されるスイッチング素子と、前記パルス信号を出力するパルス信号源と、前記スイッチング素子の主電流が流れる電流経路の周囲に配設されたインダクタと、を備え、前記インダクタは、第1の端子部が、前記スイッチング素子のゲートに接続され、第2の端子部に、前記パルス信号源からの前記パルス信号を受ける。
本発明に係るスイッチング回路によれば、インダクタによって、スイッチング素子に流れる主電流に対応した電圧をパルス信号に重畳させることができるので、帰還容量に流れる電流値を増加して帰還容量を速やかに充電でき、スイッチング素子の高速動作が可能となる。
<実施の形態>
<装置構成>
図1は本発明に係る実施の形態のスイッチング回路100の構成を等価回路を用いて説明する図である。スイッチング回路100は、Nチャネル型のMOSFET(MOS field effect transistor)をスイッチング素子1として駆動する例を示している。
スイッチング素子1は、ドレインが電流経路L1を介して誘導性負荷2の一端と還流用ダイオード3のアノードとに接続されている。誘導性負荷2の他端および還流用ダイオード3のカソードは、共通して直流電源4の正電極に接続されている。
直流電源4は、スイッチング回路100、スイッチング素子1および誘導性負荷2の主電源となる電源であり、一般的に、交流電源を、整流して直流化する構成が採用され、平滑化のために直流電源4に並列するように、平滑コンデンサー5が接続されている。スイッチング素子1のソースは基準電位VGに接続され、当該基準電位VGには、直流電源4の負電極も接続されている。
スイッチング素子1のゲートには、インダクタ6およびゲート抵抗8を介してパルス信号源7の正出力からパルス信号が与えられる構成となっており、パルス信号源7の負出力は、基準電位VGに接続されている。
インダクタ6は、スイッチング素子1のドレインと誘導性負荷2とを接続する電流経路L1の周囲に配設され、電流経路L1に流れる電流による電磁誘導によって、当該電流に比例した電圧を出力する電源として機能する。
インダクタ6は、端子部11がスイッチング素子1のゲートに接続され、端子部12は、パルス信号源7からパルス信号を受ける。電流経路L1に流れるスイッチング素子1のドレイン電流によって誘起された電圧は、スイッチング素子1のゲートに与えられる。スイッチング素子1と、インダクタ6とパルス信号源7とでスイッチング回路100が構成されている。
インダクタ6は、例えば、図2に示すトロイダルコイル30で構成すれば良い。トロイダルコイル30は、リング状のフェライトコア10に、コイル材20がトロイダル方向に巻き付けられた構成を有しており、コイル材の両端を端子部11および12とする。スイッチング素子1のドレイン端子14と負荷3とを接続する電流経路は、フェライトコア10の開口部を通過するように配設され、端子部11と端子部12との間に、ドレイン電流の時間変化に応じた端子間電圧が誘起される。
<装置動作>
次に、図1を参照しつつ、図3〜図10を用いて、スイッチング回路100の動作について説明する。なお、動作の説明においては、インダクタ6として、図2を用いて説明したトロイダルコイルを使用し、以下の条件に基づいてシミュレーションした結果を用いる。
スイッチング回路100においては、誘導性負荷2のインダクタンスは1mHを設定しており、直流電源4の電圧は600V、平滑コンデンサー5の容量は1mFとしている。
パルス信号源7の出力は、−11Vをバイアス電位として30Vのパルスを重畳するものとし、ピーク電圧は、19Vとなっている。ゲート抵抗8は30Ωであり、インダクタ6のインダクタンスは10nHとなっている。スイッチング素子1のゲート入力容量は3nF、ドレイン−ソース間容量は3.6nFとしており、帰還容量は500pFである。
パルス信号源7は、スイッチング素子1の制御信号となるパルス信号を生成し、当該パルス信号は、ゲート抵抗8およびインダクタ6を介してスイッチング素子1のゲートに印加される。この場合、制御信号として閾値電圧以上の電圧がスイッチング素子1に与えられるとスイッチング素子1がオン状態となり、ソース−ドレイン間に電流(ドレイン電流)が流れることになる。
ドレイン電流は時間的に変化するが、その変化に比例するようにインダクタ6の端子間に電磁誘導により電圧が誘起される。この誘起された電圧は、制御信号としてパルス信号源7が出力するパルス信号に重畳されることとなり、結果的に、スイッチング素子1のゲートには、パルス信号にインダクタ6の端子間電圧が重畳された電圧が印加される。
図3〜図10を用いて、スイッチング回路100を用いてスイッチング素子1をスイッチングさせた場合の電流電圧特性について説明する。ドレイン電流と、その変化に比例して発生するインダクタ6の端子間電圧との比例係数を結合係数とし、図3〜図10においては、結合係数の異なる複数のインダクタ6を用いた場合の特性の違いを示している。
図3は、ドレイン電圧の時間変化を示す図であり、横軸に経過時間(×10-7s)を、縦軸にドレイン電圧(V)をとり、結合係数0.01、1、2および4のインダクタを用いた場合についての変化特性を示している。結合係数が大きくなるに従って、ドレイン電圧の立ち下がりのタイミングが早くなる方向にシフトしていることが判る。
図4〜図7は、ゲート電圧の時間変化を示す図であり、横軸に経過時間(×10-7s)を、縦軸にゲート電圧(V)をとり、それぞれ結合係数0.01、1、2および4のインダクタを用いた場合についての変化特性を示している。結合係数が大きくなっても、全体的な傾向は大きく変化しないが、局所的には、1×10-7s〜2×10-7sの時間帯で見られる変動が、結合係数が大きくなるに従って大きくなることが判る。
図8は、ゲート電流の時間変化を示す図であり、横軸に経過時間(×10-7s)を、縦軸にゲート電流(A)をとり、結合係数0.01、1、2および4のインダクタを用いた場合についての変化特性を示している。結合係数が大きくなっても、全体的な傾向は大きく変化しないが、局所的には、1×10-7s〜2×10-7sの時間帯で見られる変動が、結合係数が大きくなるに従って大きくなることが判る。
図9は、ドレイン電流の時間変化を示す図であり、横軸に経過時間(×10-7s)を、縦軸にドレイン電流(A)をとり、結合係数0.01、1、2および4のインダクタを用いた場合についての変化特性を示している。結合係数が大きくなるに従って、ドレイン電流の立ち上がり時間が短縮され、スイッチング動作が速くなっていることが判る。
以上説明した特性に基づいて、スイッチング時の過渡的な領域における電力損失(スイッチング損失)の評価を行った結果を図10に示す。ここでの、スイッチング損失はドレイン電流と、ドレイン−ソース(本例では基準電位)間の電圧の積を時間積分することで求めている。結合係数が大きくなるに従ってスイッチング損失が低減しており、結合係数を4程度にすることによりスイッチング損失を10%程度改善できることが判る。
結合係数は、図2に示したトロイダルコイルの例では、フェライトコア10に巻き付けられているコイル材の巻き数を増やすと大きくなる。インダクタ6としてはトロイダルコイルに限定されるものではなく、空心コイル、ソレノイドコイル等であっても良い。
<効果>
以上説明したように、スイッチング回路100においては、スイッチング素子1のドレインと誘導性負荷2とを接続する電流経路L1に流れる電流による電磁誘導によって、当該電流に比例した電圧を出力する電源としてインダクタ6を配設し、電流経路L1に流れるスイッチング素子1のドレイン電流によってインダクタ6に誘起される電圧を、スイッチング素子1のゲートの制御信号に重畳する構成を採る。
このため、スイッチング素子1のゲートには、制御信号として、パルス信号源7が出力するパルス信号にインダクタ6で発生した電圧が重畳された電圧が印加されることになり、帰還容量に流れる電流値を増加して帰還容量を速やかに充電でき、スイッチング素子1の高速動作を可能とすることができる。なお、上記効果を得るために、スイッチング回路の電流供給能力を増加するという必要もない。
<変形例>
以上説明した実施の形態においては、図2に示したトロイダルコイルでインダクタ6を構成する例を示した。トロイダルコイルを用いる場合、フェライトコア10の飽和特性を有効に利用すれば、スイッチング素子1の動作特性を、より改善することができる。
フェライトコア10(図2)は電流の形成する磁界に対して飽和特性を持っている。ここでは、スイッチング素子1の定格電流値以上の電流領域で飽和するようにフェライトコア10を設計する。より具体的には、ドレイン電流によって生じる磁界により、フェライトコア10中に発生する磁束が、フェライトコア10の固有の飽和磁束密度(材質により異なる)と等しい磁束密度を有するようにフェライトコア10の各寸法を決定すれば良い。
図11は、スイッチング素子1の定格電流値の近傍で飽和するように、フェライトコア10の寸法(ここでは断面積)を種々変更した場合の飽和特性を示す図である。横軸にドレイン電流I(A)を、縦軸に磁束密度B(T)をとっており、スイッチング素子1の定格電流値をIRとして示している。フェライトコア10の断面積を大きくすると、飽和領域が狭くなるとともに、飽和磁束密度が大きくなることが判る。
図3〜図10用いて説明した動作特性は、ドレイン電流の全領域において、飽和が発生しないように設計したインダクタ6を使用して得られた。これに対し、本変形例では、飽和特性を利用するように設計したインダクタ6を使用する。
飽和特性を利用するように設計したインダクタ6を使用した場合の、スイッチング素子1の動作特性を説明する。スイッチング素子1がオン状態になった直後で、ドレイン電流が比較的小さい場合は、フェライトコア10内の磁束は飽和していないため、インダクタ6の端子間電圧、すなわち端子部11および12(図2)の間には、ドレイン電流に比例する電圧が誘起される。この電圧をスイッチング素子1のゲートの制御信号に重畳することで、スイッチング素子1のドレイン電流の早い立ち上がりを実現することができる。
ドレイン電流が大きくなると、図11に示すようにフェライトコア10の飽和領域に入り、インダクタ6の端子間電圧も飽和状態となって、結合係数が低下する。この結果、スイッチング素子1のドレイン電流が電流ピーク、すなわち定格電流近傍にある場合は、インダクタ6で発生する電圧が低下する。ゲートに重畳される電圧が低下するので、オーバーシュートや、浮遊のインダクタンスに起因するリンギングが低減される。
図12は、ドレイン電流の時間変化を示す図であり、横軸に経過時間(×10-7s)を、縦軸にドレイン電流(A)をとっている。破線は、図9を用いて説明した結合係数4のインダクタ6を用いる場合の特性を示し、実線は、フェライトコア10が飽和特性を有するように設計した結合係数4のインダクタ6を用いる場合の特性を示している。ドレイン電流が比較的小さい領域では、どちらの特性もドレイン電流の速い立ち上がりを示すが、ドレイン電流が大きい領域では、フェライトコア10の飽和特性を利用した場合にはリンギングが低減することが判る。
このように、インダクタ6としてトロイダルコイルを用いる場合は、フェライトコア10の飽和特性を利用することで、結合係数を高くした場合であっても、ドレイン電流が大きい領域でもオーバーシュートやリンギングを防止することが可能となる。
<本発明の技術思想>
実施の形態およびその変形例で説明した本発明を言い換えると、スイッチング素子1のドレインと誘導性負荷2とを接続する電流経路L1に流れる電流をインダクタ6によって検出し、検出結果に基づいてスイッチング素子1のゲートの制御電圧を調整するという技術思想に立脚する発明であると言える。本発明の技術思想をより直接的に表現すると、図13に示すような構成を有するスイッチング回路100Aとなる。図1に示したスイッチング回路100と同一の構成には同一の符号を付し、重複する説明は省略する。
図13において、スイッチング素子1のドレインと誘導性負荷2とを接続する電流経路L1にドレイン電流を検出する電流検出器16が介挿され、電流検出器16からは、検出した電流値に対応する電圧信号が出力される。スイッチング素子1のゲートは、可変直流電源9およびゲート抵抗8を介してパルス信号源7の正出力に接続され、可変直流電源9の正電極からゲートの制御電圧が与えられる。可変直流電源9は、電流検出器16から出力される電圧信号を受けて、当該電圧信号に比例した電圧を出力する。
制御信号としてパルス信号源7が出力するパルス信号には、可変直流電源9の出力電圧が重畳されるので、スイッチング素子1のゲートには、パルス信号に可変直流電源9の出力電圧が重畳された電圧が印加される。
実施の形態においては、電流検出器16および可変直流電源9の機能を兼備したインダクタ6を用いることで本発明を実現する例を示したが、上記のように、電流検出器16と可変直流電源9とを別個に設けた構成であっても、本発明を実現することは可能である。
本発明に係る実施の形態のスイッチング回路の構成を示す等価回路図である。 トロイダルコイルの構成を説明する図である。 ドレイン電圧の時間変化を示す図である。 ゲート電圧の時間変化を示す図である。 ゲート電圧の時間変化を示す図である。 ゲート電圧の時間変化を示す図である。 ゲート電圧の時間変化を示す図である。 ゲート電流の時間変化を示す図である。 ドレイン電流の時間変化を示す図である。 スイッチング時の電力損失と結合係数との関係を示す図である。 フェライトコアの飽和特性を示す図である。 フェライトコアが飽和特性を有する場合のドレイン電流の時間変化を示す図である。 本発明の技術思想を説明する図である。
符号の説明
1 スイッチング素子、6 インダクタ、7 パルス信号源、10 フェライトコア、11,12 端子部、13 ゲート、L1 電流経路。

Claims (4)

  1. パルス信号によってオン、オフ制御されるスイッチング素子と、
    前記パルス信号を出力するパルス信号源と、
    前記スイッチング素子の主電流が流れる電流経路の周囲に配設されたインダクタと、を備え、
    前記インダクタは、
    第1の端子部が、前記スイッチング素子のゲートに接続され、第2の端子部に、前記パルス信号源からの前記パルス信号を受ける、スイッチング回路。
  2. 前記インダクタは、
    リング状のフェライトコアと、該フェライトコアにトロイダル方向に巻き付けられたコイルを有し、
    前記電流経路が、前記フェライトコアの開口部を通過する、請求項1記載のスイッチング回路。
  3. 前記インダクタは、
    前記スイッチング素子の定格電流値以上の電流領域で磁束が飽和する、請求項2記載のスイッチング回路。
  4. パルス信号によってオン、オフ制御されるスイッチング素子と、
    前記スイッチング素子の主電流を検出する電流検出器と、
    前記パルス信号を出力するパルス信号源と、
    一方の電極が前記スイッチング素子のゲートに接続され、他方の電極に前記パルス信号源からの前記パルス信号を受け、前記電流検出器の出力に対応した電圧を発生する電源と、を備える、スイッチング回路。
JP2007068637A 2007-03-16 2007-03-16 スイッチング回路 Pending JP2008235997A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007068637A JP2008235997A (ja) 2007-03-16 2007-03-16 スイッチング回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007068637A JP2008235997A (ja) 2007-03-16 2007-03-16 スイッチング回路

Publications (1)

Publication Number Publication Date
JP2008235997A true JP2008235997A (ja) 2008-10-02

Family

ID=39908318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007068637A Pending JP2008235997A (ja) 2007-03-16 2007-03-16 スイッチング回路

Country Status (1)

Country Link
JP (1) JP2008235997A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199841A (ja) * 2009-02-24 2010-09-09 Fujitsu Semiconductor Ltd アナログスイッチ回路
JP2011041401A (ja) * 2009-08-11 2011-02-24 Fuji Electric Holdings Co Ltd ゲート駆動回路
WO2013076916A1 (ja) * 2011-11-24 2013-05-30 株式会社デンソー スイッチング素子の駆動回路
EP2742594A1 (en) * 2011-08-12 2014-06-18 E2V Technologies (UK) Limited Drive circuit and method for a gated semiconductor switching device
JP2014230138A (ja) * 2013-05-23 2014-12-08 株式会社デンソー 半導体モジュールおよびスイッチング素子の駆動装置
JP2015053604A (ja) * 2013-09-06 2015-03-19 株式会社オートネットワーク技術研究所 負荷駆動回路
JP2016103887A (ja) * 2014-11-27 2016-06-02 日立オートモティブシステムズ株式会社 パワー半導体モジュール
EP2982038A4 (en) * 2013-04-04 2016-11-23 Tm4 Inc COMMUTATION CELL AND COMPENSATION CIRCUIT FOR THIS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0947882A (ja) * 1995-08-02 1997-02-18 Miyachi Technos Corp インバータ式抵抗溶接制御方法及び装置
JP2000134075A (ja) * 1998-08-18 2000-05-12 Pop Denshi Kk スイッチ装置
JP2004265102A (ja) * 2003-02-28 2004-09-24 Tokiko Techno Kk 電圧安定化装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0947882A (ja) * 1995-08-02 1997-02-18 Miyachi Technos Corp インバータ式抵抗溶接制御方法及び装置
JP2000134075A (ja) * 1998-08-18 2000-05-12 Pop Denshi Kk スイッチ装置
JP2004265102A (ja) * 2003-02-28 2004-09-24 Tokiko Techno Kk 電圧安定化装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199841A (ja) * 2009-02-24 2010-09-09 Fujitsu Semiconductor Ltd アナログスイッチ回路
JP2011041401A (ja) * 2009-08-11 2011-02-24 Fuji Electric Holdings Co Ltd ゲート駆動回路
EP2742594A1 (en) * 2011-08-12 2014-06-18 E2V Technologies (UK) Limited Drive circuit and method for a gated semiconductor switching device
GB2493562B (en) * 2011-08-12 2018-10-17 E2V Tech Uk Limited Drive circuit and method for a gated semiconductor switching device
WO2013076916A1 (ja) * 2011-11-24 2013-05-30 株式会社デンソー スイッチング素子の駆動回路
JP2013110684A (ja) * 2011-11-24 2013-06-06 Denso Corp スイッチング素子の駆動回路
US9203399B2 (en) 2011-11-24 2015-12-01 Denso Corporation Drive circuit for switching element
US10587257B2 (en) 2013-04-04 2020-03-10 Tm4 Inc. Commutation cell and compensation circuit therefor
EP2982038A4 (en) * 2013-04-04 2016-11-23 Tm4 Inc COMMUTATION CELL AND COMPENSATION CIRCUIT FOR THIS
US9373570B2 (en) 2013-05-23 2016-06-21 Denso Corporation Semiconductor module and driving device for switching element
JP2014230138A (ja) * 2013-05-23 2014-12-08 株式会社デンソー 半導体モジュールおよびスイッチング素子の駆動装置
JP2015053604A (ja) * 2013-09-06 2015-03-19 株式会社オートネットワーク技術研究所 負荷駆動回路
JP2016103887A (ja) * 2014-11-27 2016-06-02 日立オートモティブシステムズ株式会社 パワー半導体モジュール

Similar Documents

Publication Publication Date Title
CN104980050B (zh) 用于开关模式电源的系统和方法
JP2008235997A (ja) スイッチング回路
JP4613100B2 (ja) フライフォワード変換器の動作範囲を拡大するための方法及び装置
US10199942B2 (en) Controller and power supply
TWI580161B (zh) 離線功率轉換器及適用於其中的積體電路
US10886854B2 (en) Control circuit and related integrated circuit and switching-type converter
EP1215808A1 (en) A power supply circuit and method thereof to detect demagnitization of the power supply
TWI430544B (zh) 功率轉換器及功率轉換之方法
US20160226238A1 (en) Inrush current inhibiting circuit
JP4155211B2 (ja) スイッチング電源装置
KR20130132546A (ko) 플라이백 컨버터 설계에서 전압 스트레스 감소
CN108352782A (zh) 自适应谷模式开关
EP2099054A2 (en) Voltage control, apparatus, power supply apparatus, electron tube and high-frequency circuit system
JP2009290932A (ja) スイッチング電源装置
US20070070664A1 (en) Bi-directional current sensing circuit
JP4454530B2 (ja) 力率改善回路
US7791910B2 (en) Flyback converter with synchronous rectifier capable of reducing power loss
JP6908849B2 (ja) 同期整流回路及びスイッチング電源装置
JP6951631B2 (ja) 同期整流回路及びスイッチング電源装置
CN112152432A (zh) 用于驱动电力转换器中的电子开关的方法及控制电路
JP2005185084A (ja) コンデンサ充電器の制御装置及び方法
WO2007123098A1 (ja) スイッチング電源回路及びその制御方法
JP2004201436A (ja) Dc−dcコンバータにおける出力電流の逆流抑制回路、dc−dcコンバータの自励発振時保護回路、及びdc−dcコンバータの自励発振保護回路
JP5369987B2 (ja) ゲート駆動回路
CN113224932A (zh) 开关控制电路以及电源电路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101