CN108352782A - 自适应谷模式开关 - Google Patents

自适应谷模式开关 Download PDF

Info

Publication number
CN108352782A
CN108352782A CN201580084175.8A CN201580084175A CN108352782A CN 108352782 A CN108352782 A CN 108352782A CN 201580084175 A CN201580084175 A CN 201580084175A CN 108352782 A CN108352782 A CN 108352782A
Authority
CN
China
Prior art keywords
paddy
power switch
turn
time
switching power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580084175.8A
Other languages
English (en)
Other versions
CN108352782B (zh
Inventor
孔鹏举
H·布伊
D·多恩
C·郑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dialog Semiconductor Inc
Original Assignee
Dialog Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dialog Semiconductor Inc filed Critical Dialog Semiconductor Inc
Publication of CN108352782A publication Critical patent/CN108352782A/zh
Application granted granted Critical
Publication of CN108352782B publication Critical patent/CN108352782B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dc-Dc Converters (AREA)

Abstract

提供自适应谷模式开关功率变换器,其在功率开关的谐振电压振荡的谷时期内接通功率开关。每个谷时期相对于谷阈值电压来确定。

Description

自适应谷模式开关
技术领域
该申请涉及开关功率变换器,并且更特定地涉及具有自适应谷模式开关的开关功率变换器。
背景技术
如与线性调节器相比,开关功率变换器提供更高效率。尽管线性调节器相对便宜,但它们通过简单地将差异当作热来消耗而从较高输入电压调节较低输出电压。因此,线性调节器典型地消耗比实际供应给负载的功率更多的功率。相比之下,开关功率变换器通过功率开关的循环来传输相对小的能量增量来调节它的输出电压。开关模式设备中的功率开关关断或导通,使得效率如与线性调节器相比显著提高。然而,功率开关晶体管在它从关断转变到导通和从导通转变到关断时耗散能量。该能量耗散与通过晶体管来开关的电流和电压成比例。另外,对于通过功率开关的电压和电流的大变化率给设备加压并且引起明显的电磁干扰(EMI)。
为了减少开关损耗、设备应力和EMI,常见的是利用在功率开关晶体管循环关断时在其两端出现的谐振电压振铃。谐振电压振铃导致开关电压循环通过指示为电压谷的局部最小值。在这些局部最小值处接通功率开关的开关方案从而被指示为谷模式开关方案。对于例如配置成实现谷模式开关的开关功率变换器的所得电压波形在图2A至2C中示出。图1A示出功率开关S1的导通和关断期,该功率开关在时间t1循环导通并且在时间t2循环关断。用于功率开关S1的对应漏极电压在图1B中示出。当功率开关S1在时间t1接通时,漏极电压接地,但当功率开关在时间t2被再次断开时,漏极电压反弹。对应的第二绕组电流在图1C中示出。在时间t2,二次电流从零达到最大值。然后存储的能量随二次电流在随后的变压器复位时间(trst)斜降到零而被传输给负载。在该点处,在用于功率开关S1的漏极电压上开始谐振振荡。谐振振荡在时间t3、t4、t5和t6具有局部最小值。然后用于功率开关S1的对应控制器选择这些最小值中的一个用于后续接通时间。例如,功率开关S1可以在时间t6再次循环导通,因为该时间也是谷最小值。
在具有相对恒定的脉冲重复频率的控制环中,控制器将倾向于在每个开关周期中以大致相同的速率打开功率开关S1。结果是EMI开关噪声在主开关频率200和它的谐波201和202处集中,如在图2中示出的。为了使这些峰值处的EMI的幅度减少,常见的是使谷模式开关抖动。例如,假设控制器的期望的脉冲导通时间落在图2B中的时间t4与t5的谷最小值之间。具有频率抖动的控制器然后将跳过谷并且在时间t6在后续的谷处打开功率开关S1。该谷跳过将以随机的方式执行,使得EMI噪声跨频谱扩展,如对图2中的抖动频谱205示出的。尽管这样的抖动对于降低峰值EMI幅度是有效的,但存在例如在频谱的某些段中需要非常低的噪声发射的智能电话和平板计算机的触屏中的电容感测等应用。
因此,现有领域中需要有EMI峰值幅度减少同时保留实际上没有EMI的频带的改进谷模式开关技术。
发明内容
提供自适应谷模式开关方案,其中提供控制器,其确定用于功率开关端子的每个谐振振荡周期的谷时期。用于每个谐振振荡周期的每个谷时期在功率开关端子电压降到谷阈值电压以下时出现。本文公开的自适应谷模式开关方案自适应谷接通时间接通功率开关,而不是如在谷模式开关方案中常见的在谷最小值处接通功率开关,所述自适应谷接通时间在所选择的谷时期中的一个里随机变化。采用该方式,在开关频率和它的谐波处所得的EMI幅度下降,而没有由于在常规谷模式开关方案中跳过谷最小值引起的噪声入侵相邻频带。相反,控制器确定期望的开关打开时间并且还确定对应的谷时期。然后控制器在对应的谷时期里随机抖动来选择自适应谷模式接通时间,功率开关在该自适应谷模式接通时间循环导通。
这些有利特征可以通过考虑下文的详细描述而被更好意识到。
附图说明
图1A是常规开关功率变换器中的功率开关的接通时间的波形。
图1B是图1A的功率开关的端子的电压波形。
图1C是图1A的开关功率变换器中的二次绕组的电流波形。
图2示出使用具有频率抖动和没有频率抖动的谷模式开关的常规开关功率变换器的EMI噪声谱。
图3示出配置成实践自适应谷模式开关的反激变换器。
图4是配置成实践自适应谷模式开关的开关模式功率控制器的电路图。
图5示出用于图3的反激变换器的开关端子电压和对应谷阈值电压的谐振振荡的波形。
图6示出配置成实践自适应谷模式开关的DC到DC开关功率变换器。
本公开的实施例及它们的优势通过参考接着的详细描述而最好理解。应意识到类似的参考数字用于标识一个或多个图中示出的类似元件。
具体实施方式
为了使峰值EMI噪声幅度减少同时确保EMI噪声仍局限在截然不同的频带以便使余下的频谱大致没有EMI,公开了自适应谷模式开关方案。因为抖动适应于特定谷,因此它被称作自适应的。特别地,提供开关功率变换器控制器,其检测对于谷阈值电压,何时开始用于谐振电压振荡的电流局部最小值。也就是说,控制器认为当开关端子电压下降到谷阈值电压以下时电流谷开始。基于谐振振荡的频率,开关端子电压将上升越过谷阈值电压。开关端子电压小于谷阈值电压的时间段在本文指示为谷时期(t(tvalley))。频率抖动在本文被认为是“自适应的”,因为它适应于在谷时期内。
为自适应谷模式开关配置的示例开关功率变换器在图3中示出为反激变换器300。然而,将意识到本文公开的自适应谷模式开关系统和技术广泛地能适用于任何适合的开关功率变换器,例如降压或升压变换器。在反激变换器300中,当控制器310(U1)使NMOS功率开关晶体管S1循环导通时,整流输入电压V输入(Vin)驱使磁化电流进入变压器305的一次绕组T1的第一端子。功率开关晶体管S1的源极耦合于接地,而它的漏极耦合于一次绕组T1的余下的第二端子。功率开关晶体管S1关闭时在变压器305中积聚的所得磁能促使变压器305的第二绕组T2使输出二极管D1正向偏置并且对滤波电容器C1充电,从而提供跨负载输出电压V输出(Vout)。控制器310接收反馈电压VFB(其代表输出电压)来控制功率开关S1的循环,以便在期望值调节输出电压。例如,变压器305可以包括辅助绕组(未图示),如在仅一次反馈领域内已知的从该辅助绕组得到反馈电压。备选地,控制器U1可以通过例如光隔离器而间接地从负载接收反馈电压。控制器310可以使用反馈电压以使用控制算法(如在开关功率变换器领域中已知的比例-积分(PI)或比例-积分-微分(PID))来调节输出电压。
不管控制器U1实现的特定控制算法如何,它将相应地确定期望接通时间。例如,对于功率开关晶体管S1的每个开关周期,期望接通时间可以响应于时钟信号来确定。该期望接通时间与功率开关晶体管S1的漏极电压的谐振振荡没有关系,所述谐振振荡在磁化电流流过一次绕组T1并且功率开关晶体管S1随后断开之后出现。为了降低所得的EMI峰值幅度而不将所得EMI频谱过多地扩展到邻近开关频率(和它的谐波)的频带内,控制器U1被配置成实现自适应谷模式开关。
例如,控制器310可以包括如在图4中示出的谷模式比较器400,其被配置成响应于功率开关晶体管S1(图3)的漏极电压(V漏极(Vdrain))410小于谷阈值电压405,断言(assert)输出信号降低到接地。对于漏极电压410的谐振振荡的谷A和连续的谷B在图5中示出。在每个谷中,漏极电压410在谷时期(T(Tvalley))下降到谷阈值电压405以下。再次参考图4,计数器415关于时钟420的周期来对谷时期的持续时间计数以产生计数(Tvalley计数),其代表时钟420的时钟周期中谷时期Tvalley的持续时间。脉冲发生器425响应于比较器400的输出信号被断言到低电平而产生脉冲(脉冲1)。注意在备选实施例中可以使用逻辑高断言。此外,比较器400可以是数字或模拟比较器。
参考图5,从而在用于谷A和谷B两者的谷时期Tvalley开始时触发脉冲1。另外,脉冲发生器425对于代表谷最小值时间(谷时期Tvalley的中点)的每个谷产生第二脉冲(脉冲2)。例如,比较器400的输出信号可以在延迟电路430中延迟了Tvalley计数的1/2。脉冲发生器425响应于被来自计数器430的断言输出所触发,产生每个脉冲2。谷模式逻辑电路435接收功率开关晶体管期望接通时间。如之前论述的,该期望接通时间来自于由控制器310实现的控制环,并因此独立于漏极电压410的谐振振荡。
谷模式逻辑电路将期望打开时间与脉冲1和2比较,以响应于来自随机(或伪随机)数发生器440的抖动计数,确定自适应谷模式接通命令。抖动计数是范围在零与Tvalley计数的1/2之间的随机数。例如,如果Tvalley计数是20个时钟周期,则抖动计数可以在0到10个时钟周期之间随机变化。还相对于时钟420的周期定义控制器期望打开时间。为了使自适应谷模式接通时间保持在合适的谷时期内,谷模式逻辑将期望接通时间与用于指定谐振振荡期的脉冲1和2被断言的的时间进行比较。每个脉冲被认为在时钟420的某一周期出现。例如,在谷A的脉冲1之前出现的第一期望接通时间T1在图5中示出。谷模式逻辑电路435然后将抖动计数添加到谷A的脉冲1的时钟时间,来形成自适应谷模式接通命令,其范围是从谷A的谷时期的开始直到谷时期的中点。
另一个示例期望接通时间T2在谷A的脉冲1之后但在谷A的脉冲2之时或之前出现。通过将抖动计数添加到谷A的脉冲2的时钟时间,谷模式逻辑电路435对该确定作出响应。采用该方式,谷模式逻辑电路435相对于谷时期的开始或谷时期的中点进行抖动。在任一情况下,保证所得的抖动在对应谷时期内并且从而适应于该谷时期。另一方面,假设期望接通时间T3在谷A的脉冲2之后但在谷B的脉冲1之前出现,如在图4中示出的。通过相对于谷B的谷时期的脉冲1进行抖动,谷模式逻辑电路435对期望接通时间的这种时序作出响应。
将意识到由谷模式逻辑电路实现的所得时序逻辑用于确定期望接通时间是否落在当前谷时期的脉冲2之后。如果是这样的话,如果期望接通时间落在之前的脉冲2和随后的脉冲1之间,则抖动应用到该随后的脉冲1。另一方面,如果期望接通时间落在随后的脉冲1随后的脉冲2之间,则抖动应用到随后的脉冲2。将意识到可以向脉冲1和2应用备选时序逻辑限制,来确保抖动导通时间落在合适的谷时期内。选择谷阈值电压405使得随谷时期的导通在足够低的电压处,以便提供可接受的设备应变和噪声级。
如早些指出的,本文公开的自适应谷模式开关原理不限于反激架构。例如,如在图6中示出的降压-升压功率变换器600可以包括控制器610,其被配置成实现NMOS功率开关晶体管S2的自适应谷模式开关。在降压-升压变换器600中,在感应器L1和电阻器R1的第一端子处接收经整流的输入电压V_输入(V_IN)。例如,桥式整流器(未图示)或其他适合的AC到DC整流器可以对来自AC干线的AC输入电压进行整流以提供经整流的输入电压,通过切相式调光开关(未图示)处理所述经整流的输入电压以产生经整流的输入电压V_IN。
降压-升压变换器600包括共源共栅晶体管S1(例如,NMOS晶体管),其栅极在节点605处耦合于电阻器R1的第二端子。共源共栅晶体管S3的源极耦合功率开关晶体管S2的漏极(具有由控制器610控制的栅极电压。共源共栅晶体管使功率开关S2与用于经整流的输入电压V_IN的相对高的电压隔离。输出二极管D1和输出电容器C2对从感应器L1向负载(例如LED1)的电力传输进行滤波。
所得到的自适应谷模式开关是十分有利的,因为它降低了峰值EMI噪声幅度而EMI频谱不过多扩展到邻近开关频率的频带和它的谐波内。再次参考图2,示出示例的自适应谷模式开关EMI频谱210。注意邻近峰值EMI幅度200、201和202的低噪声区域实际上没有EMI噪声存在,因为自适应谷模式变换器中的抖动被限制在如早些论述的谷时期,而没有发生于常规谷跳过的过多扩展。
如本领域内技术人员目前为止将意识到的并且根据当前特定应用,可以在本公开的设备的使用的材料、装置、配置和方法中以及对它们做出许多修改、替换和变动而不偏离其范围。鉴于此,本公开的范围不应限制为本文图示和描述的特定实施例的范围,因为它们仅被当做其一些示例,而相反,应与下文所附的权利要求以及它们的功能等同物的范围完全相称。

Claims (17)

1.一种开关功率变换器,所述开关功率变换器包括:
功率开关,其中,所述开关功率变换器被配置成在所述功率开关被循环关断时在所述功率开关的端子处产生谐振电压振荡,以及
控制器,所述控制器被配置成使所述功率开关循环导通和关断来调节输出电压,所述控制器进一步确定对于所述功率开关的指定周期的期望功率开关导通时间,其中,所述控制器包括:
比较器,所述比较器被配置成将所述功率开关的端子电压与谷阈值电压进行比较,以确定对于端子电压的每个谐振循环的谷时间段,在所述谷时间段内所述端子电压小于所述谷阈值电压;以及
谷模式逻辑电路,所述谷模式逻辑电路被配置成使期望功率开关导通时间适应于跨对应的谷时间段抖动的自适应谷模式接通时间。
2.如权利要求1所述的开关功率变换器,其中,所述比较器进一步包括计数器,所述计数器被配置成在所述功率开关的每个周期的至少一个谷时间段对时钟周期的谷时期计数来进行计数。
3.如权利要求2所述的开关功率变换器,其中,所述比较器进一步包括随机数发生器,所述随机数发生器被配置成对所述功率开关的每个周期产生从零到不超过所述谷时期计数的一半的随机数。
4.如权利要求1所述的开关功率变换器,其中,所述比较器进一步包括至少一个脉冲发生器,所述至少一个脉冲发生器被配置成响应于对应谷时期的开始来使第一脉冲脉动并且响应于对应谷时期的中点来使第二脉冲脉动,并且其中,所述谷模式逻辑电路被配置成当期望接通时间在第一脉冲时间之前出现时,相对于所述第一脉冲抖动。
5.如权利要求4所述的开关功率变换器,其中,所述脉冲发生器进一步被配置成当期望接通时间在所述第一脉冲之后且在所述第二脉冲之前出现时,相对于所述第二脉冲抖动。
6.如权利要求1所述的开关功率变换器,其中,所述开关功率变换器包括反激变换器。
7.如权利要求1所述的开关功率变换器,其中,所述开关功率变换器包括DC-DC开关功率变换器。
8.如权利要求7所述的开关功率变换器,其中,所述DC-DC开关功率变换器是降压-升压变换器。
9.如权利要求4所述的开关功率变换器,其中,所述至少一个脉冲发生器包括单脉冲发生器。
10.一种开关功率变换器方法,所述开关功率变换器方法包括:
使功率开关循环导通和关断来调节输出电压并且响应于所述功率开关被关断而在所述功率开关的端子处产生谐振电压振荡,其中,每个谐振电压振荡包括谷时期,在所述谷时期中所述端子电压降到谷阈值电压以下;
对于在指定所述谷时期中的一个之后且在随后的所述谷时期中的一个之前出现的功率开关的指定周期,确定期望接通时间;
使所述期望接通时间抖动成自适应谷模式接通时间,所述自适应谷模式接通时间在随后的所述谷时期中的一个里随机变化;其中,所述功率开关的循环包括在所述功率开关的指定周期使所述功率开关在所述期望开关处循环导通。
11.如权利要求10所述的开关功率变换器方法,其中,所述期望接通时间的抖动未跳入紧接着随后的所述谷时期中的一个的另一个谷时期中。
12.如权利要求10所述的开关功率变换器,进一步包括:
确定对于所述功率开关的附加周期的附加期望接通时间;
对于每个附加期望接通时间:
确定对应于所述期望接通时间的谷时期,并且使附加接通时间抖动成附加自适应谷模式接通时间,所述附加自适应谷模式接通时间在所确定的谷时期里随机变化;以及
其中,使所述功率开关循环进一步包括使所述功率开关在对于所述功率开关的附加周期的附加自适应谷模式接通时间循环导通。
13.如权利要求10所述的开关功率变换器方法,其中,使所述功率开关循环包括使反激变换器的NMOS功率开关晶体管循环。
14.如权利要求10所述的开关功率变换器方法,其中,使所述功率开关循环包括使DC到DC变换器的NMOS功率开关晶体管循环。
15.如权利要求14所述的开关功率变换器方法,其中,使所述DC到DC变换器的功率开关循环包括使降压-升压变换器的NMOS功率开关晶体管循环。
16.如权利要求10所述的开关功率变换器方法,进一步包括对每个谷时期里的时钟周期的总数量进行计数。
17.如权利要求10所述的开关功率变换器方法,进一步包括在每个谷时期开始处和在每个谷时期的中点处产生脉冲。
CN201580084175.8A 2015-10-26 2015-10-26 自适应谷模式开关 Active CN108352782B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2015/057428 WO2017074305A1 (en) 2015-10-26 2015-10-26 Adaptive valley mode switching

Publications (2)

Publication Number Publication Date
CN108352782A true CN108352782A (zh) 2018-07-31
CN108352782B CN108352782B (zh) 2019-04-05

Family

ID=54427895

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580084175.8A Active CN108352782B (zh) 2015-10-26 2015-10-26 自适应谷模式开关

Country Status (3)

Country Link
US (1) US10084382B2 (zh)
CN (1) CN108352782B (zh)
WO (1) WO2017074305A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792202B (zh) 2016-10-11 2021-05-18 阿帕尔斯电力股份有限公司 开关模式电源控制器
AT16163U1 (de) * 2017-09-29 2019-03-15 Tridonic Gmbh & Co Kg Lampenbetriebsgerät
US10461627B2 (en) 2018-02-14 2019-10-29 Silanna Asia Pte Ltd Fractional valley switching controller
DE102018105055A1 (de) 2018-03-06 2019-09-12 Infineon Technologies Austria Ag Steuern eines QR-Sperrwandlers
US10218284B1 (en) * 2018-05-24 2019-02-26 Astec International Limited DC-DC power converters including a valley skipping mode and methods of operating DC-DC power converters
US10224828B1 (en) * 2018-05-24 2019-03-05 Astec International Limited DC-DC power converters and methods of operating DC-DC power converters
US11005361B2 (en) * 2019-06-19 2021-05-11 Stmicroelectronics S.R.L. Control circuit and method of a switching power supply
US10811978B1 (en) * 2019-06-24 2020-10-20 Dialog Semiconductor Inc. Multi-mode control for multi-output voltage power converter
US11005364B1 (en) 2019-12-18 2021-05-11 Silanna Asia Pte Ltd Frequency jitter utilizing a fractional valley switching controller
US11557960B1 (en) * 2021-09-30 2023-01-17 Nxp Usa, Inc. Adaptive enable and disable for valley switching in a power factor correction boost converter
CN114977741B (zh) * 2022-06-06 2023-05-26 北京芯格诺微电子有限公司 应用于开关电源的开关周期自适应控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100315838A1 (en) * 2009-06-10 2010-12-16 Ming Ping Mao System and Method for Emissions Suppression in a Switch-Mode Power Supply
CN102273057A (zh) * 2008-12-30 2011-12-07 艾沃特有限公司 用于切换功率转换器的谷模式切换方案
CN102684460A (zh) * 2012-05-24 2012-09-19 佛山市南海赛威科技技术有限公司 用于准谐振开关电源的频率软钳位系统及方法
CN103117655A (zh) * 2011-11-16 2013-05-22 艾沃特有限公司 用于开关功率变换器的emi频率扩展方法
CN103414350A (zh) * 2013-08-29 2013-11-27 昂宝电子(上海)有限公司 基于负载条件调节频率和电流的系统和方法
CN104869693A (zh) * 2014-02-26 2015-08-26 英飞凌科技奥地利有限公司 用于驱动器的准谐振模式的波谷到波谷切换

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101236955B1 (ko) * 2006-07-19 2013-02-25 페어차일드코리아반도체 주식회사 스위칭 모드 파워 서플라이 및 그 구동 방법
EP2269291A1 (en) * 2008-04-16 2011-01-05 Nxp B.V. Self-oscillating switched mode converter with valley detection
US7876085B2 (en) * 2009-06-10 2011-01-25 Grenergy Opto, Inc. Quasi-resonant valley voltage detecting method and apparatus
US20120320632A1 (en) * 2011-06-20 2012-12-20 Shamrock Micro Devices Corp. Power switch controllers and methods used therein for improving conversion effeciency of power converters
US9042127B2 (en) * 2013-03-15 2015-05-26 Infineon Technologies Austria Ag LED power supply
US9948188B2 (en) * 2014-11-04 2018-04-17 Stmicroelectronics S.R.L. Control device for a quasi-resonant switching converter, and corresponding control method
TWI565212B (zh) * 2015-07-09 2017-01-01 力林科技股份有限公司 以反馳式架構為基礎的電源轉換裝置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102273057A (zh) * 2008-12-30 2011-12-07 艾沃特有限公司 用于切换功率转换器的谷模式切换方案
US20100315838A1 (en) * 2009-06-10 2010-12-16 Ming Ping Mao System and Method for Emissions Suppression in a Switch-Mode Power Supply
CN103117655A (zh) * 2011-11-16 2013-05-22 艾沃特有限公司 用于开关功率变换器的emi频率扩展方法
CN102684460A (zh) * 2012-05-24 2012-09-19 佛山市南海赛威科技技术有限公司 用于准谐振开关电源的频率软钳位系统及方法
CN103414350A (zh) * 2013-08-29 2013-11-27 昂宝电子(上海)有限公司 基于负载条件调节频率和电流的系统和方法
CN104869693A (zh) * 2014-02-26 2015-08-26 英飞凌科技奥地利有限公司 用于驱动器的准谐振模式的波谷到波谷切换

Also Published As

Publication number Publication date
CN108352782B (zh) 2019-04-05
WO2017074305A1 (en) 2017-05-04
US20180083538A1 (en) 2018-03-22
US10084382B2 (en) 2018-09-25

Similar Documents

Publication Publication Date Title
CN108352782B (zh) 自适应谷模式开关
US10361633B2 (en) Control method and device for switching power supplies having more than one control mode
US11005361B2 (en) Control circuit and method of a switching power supply
US9787202B2 (en) Method for regulating an output voltage using a converter configured to operate in a critical conduction mode and a frequency fold-back mode and structure
US9287792B2 (en) Control method to reduce switching loss on MOSFET
US8335097B2 (en) Semiconductor device that converts input direct current voltage to regulated output voltage by intermittently switching on and off the input direct current voltage
US7738266B2 (en) Forward power converter controllers
US8270185B2 (en) Switching mode power supply with a spectrum shaping circuit
CN107026573B (zh) 用于同步整流的自适应关断触发消隐
US8115460B2 (en) Power conversion with zero voltage switching
US9887634B2 (en) Circuits and methods for synchronous rectification in resonant converters
JP2017017767A (ja) 高効率力率改善回路およびスイッチング電源装置
JP2009142085A (ja) エネルギー伝達装置およびエネルギー伝達制御用半導体装置
US10615700B1 (en) Synchronous rectifier control for switched mode power supplies and method therefor
KR100681689B1 (ko) 스위칭 전원장치
US11722068B2 (en) Isolated switching converter with secondary side modulation and control method thereof
KR20120080908A (ko) 블리드 스위치의 제어 장치, 전원 장치 및 구동 방법
US7138791B2 (en) Logic controlled high voltage resonant switching power supply
US9698671B2 (en) Single-stage AC-to-DC converter with variable duty cycle
CN109067206B (zh) 一种ac-dc电源及其同步整流管的控制电路
CN110994997A (zh) 开关电源装置的控制装置
CN107078634B (zh) 零电压切换检测装置和方法
KR20150077763A (ko) 전원 공급 장치 및 그에 포함되는 게이트 드라이버
TWI675541B (zh) 多輸出整流器及其操作方法
Mamat et al. A Low Cost Self-Driven Synchronous Rectification Converter for 20V Portable Instrument

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant