JP2004201436A - Dc−dcコンバータにおける出力電流の逆流抑制回路、dc−dcコンバータの自励発振時保護回路、及びdc−dcコンバータの自励発振保護回路 - Google Patents

Dc−dcコンバータにおける出力電流の逆流抑制回路、dc−dcコンバータの自励発振時保護回路、及びdc−dcコンバータの自励発振保護回路 Download PDF

Info

Publication number
JP2004201436A
JP2004201436A JP2002368334A JP2002368334A JP2004201436A JP 2004201436 A JP2004201436 A JP 2004201436A JP 2002368334 A JP2002368334 A JP 2002368334A JP 2002368334 A JP2002368334 A JP 2002368334A JP 2004201436 A JP2004201436 A JP 2004201436A
Authority
JP
Japan
Prior art keywords
voltage
switching element
current
winding
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002368334A
Other languages
English (en)
Inventor
Isamu Aoki
勇 青木
Katsuhiko Nishimura
勝彦 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Telecom Networks Ltd
Original Assignee
Fujitsu Telecom Networks Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Telecom Networks Ltd filed Critical Fujitsu Telecom Networks Ltd
Priority to JP2002368334A priority Critical patent/JP2004201436A/ja
Publication of JP2004201436A publication Critical patent/JP2004201436A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

【課題】DC−DCコンバータにおいて、できる限り出力側での電力損失を生じさせずに逆流電流を抑制する。
【解決手段】本発明のDC−DCコンバータにおける出力電流の逆流抑制回路は、デューティ比増加回路と、パルス幅変調信号生成回路とを有する。デューティ比増加回路は、1次巻線を流れる電流を検査電流として検出し、検査電流の値が第1の所定値より低くなった時、または、1次側スイッチング素子がスイッチングする1周期における検査電流の時間積分値が第2の所定値より低くなった時、1次側スイッチング素子のデューティ比を高めるように、デューティ比増加信号を出力する。パルス幅変調信号生成回路は、デューティ比増加信号を受けて、デューティ比増加信号に応じたパルス幅変調信号を生成し、1次側スイッチング素子のオンオフ制御端子に入力する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、DC−DCコンバータにおける出力電流の逆流抑制回路、自励発振時保護回路、及び自励発振保護回路に関する。
【0002】
【従来の技術】
従来より、電子機器等の負荷に対し、ほぼ一定の直流の電圧を供給する同期整流式DC−DCコンバータ(直流/直流変換装置)が知られている(例えば、特許文献1、2参照)。
図15は、従来の同期整流式DC−DCコンバータの一例を示している。図において、同期整流式DC−DCコンバータ10(以下、コンバータ10と略記)は、入力端子12と、コンデンサC1と、nチャネルエンハンスメント型のMOS型電界効果トランジスタQ1(以下、MOSトランジスタQ1と略記)と、1次側制御回路14と、トランスTと、2次側制御回路16と、MOSトランジスタQ2、Q3と、平滑用リアクトルLと、平滑用コンデンサC2と、電流検出用抵抗Rdと、出力端子18とで構成されている。
【0003】
なお、出力端子18には、負荷20が接続されている。また、MOSトランジスタQ1、Q2、Q3には、ソースとドレインとを接続し、ソースからドレインへ向かう方向を順方向とする寄生ダイオードP1、P2、P3がそれぞれ等価的に内在している。
トランスTは、1次巻線n1と、2次巻線n2とで構成されている。2次巻線n2の電圧をVtとする(図の矢印方向を正とする)。
【0004】
1次側制御回路14は、出力端子18間の電圧が目標値になるように、MOSトランジスタQ1のデューティ比を制御する。
2次側制御回路16は、2次巻線電圧Vtが正である期間、MOSトランジスタQ2をオンし、MOSトランジスタQ3をオフする。また、2次側制御回路16は、2次巻線電圧Vtが負である期間、MOSトランジスタQ2をオフし、MOSトランジスタQ3をオンする。
【0005】
入力端子12には、一定の正の電圧Vinが印加されている。また、出力端子18間(負荷20)を流れる出力電流をIoutとする。
以下、上述したコンバータ10の動作を説明する。
まず、MOSトランジスタQ1がオンして2次巻線電圧Vtが正になると、MOSトランジスタQ2はオンし、MOSトランジスタQ3はオフする。このため、2次巻線n2に生じる誘導電流は、電流検出用抵抗Rd、MOSトランジスタQ2、2次巻線n2、平滑用リアクトルL、負荷20からなる閉路を流れる。このとき、誘導電流は、平滑用リアクトルLにエネルギを蓄積させ、平滑用コンデンサC2を充電させる。従って、平滑された出力電流Ioutが負荷20に供給される。
【0006】
次に、MOSトランジスタQ1がオフして2次巻線電圧Vtが負になると、MOSトランジスタQ2はオフし、MOSトランジスタQ3はオンする。2次巻線電圧Vtが負になるため、平滑用リアクトルLは蓄積したエネルギを転流電流として解放する。従って、平滑用リアクトルL、負荷20、電流検出用抵抗Rd、MOSトランジスタQ3からなる閉路を、出力電流Ioutが流れる。
【0007】
次に、MOSトランジスタQ1が再びオンし、2次巻線電圧Vtが正になると、MOSトランジスタQ2がオンする。そして、上述した動作が繰り返される。このように、コンバータ10は、2次巻線電圧Vtの正から負への変化に同期してMOSトランジスタQ2、Q3を交互にオンさせ、一定の出力電流Ioutを供給する。
【0008】
ところで、2つの同一コンバータの出力端子を負荷の両端に並列に接続する場合などにおいて、これらコンバータの出力電圧は、完全に等しくなるとは限らない。例として、コンバータ10の出力端子18間に、コンバータ10の出力電圧より高い電圧(以下、外部印加電圧と記載)を、外部から印加し続けたとする。この場合、コンバータ10の2次側回路内で、出力電流Ioutは通常動作時と逆方向に流れる(逆流電流)。これは、コンバータ10の整流素子には、双方向に電流を流すことができるMOSトランジスタが使用されているためである。
【0009】
同時に、1次側制御回路14は、出力端子18間の電圧が目標値より高いと検出するため、MOSトランジスタQ1のデューティ比を小さくし、出力電圧を下げるように制御する。デューティ比を小さくしても、外部印加電圧を出力端子18間に受けているため、出力端子18間の電圧は下がらない。このため、1次側制御回路14は出力電圧を下げる制御を続け、デューティ比は0%まで下がる。
【0010】
この後、外部印加電圧により、2次巻線電圧Vtは継続して正になり、MOSトランジスタQ2はオンし続ける。そして、出力端子18、平滑用リアクトルL、2次巻線n2、MOSトランジスタQ2からなる経路を逆流電流が流れる。
この結果、2次巻線n2のインダクタンス及びMOSトランジスタQ2、Q3の容量により、自励発振が始まる。自励発振状態では、2次巻線電圧Vtは交互に反転し、MOSトランジスタQ2、Q3は交互にオンする。自励発振状態が長く続いた場合、各回路素子は、通常動作時より過大な電圧を受け続けて、破損するおそれがある。
【0011】
この自励発振を防止するため、上述したコンバータ10では、2次側制御回路16は、電流検出用抵抗Rdにより、出力電流Ioutを検出している。2次側制御回路16は、出力電流Ioutが所定値まで下がった時、MOSトランジスタQ2、Q3をオフさせる。これにより、2次側回路の整流は、寄生ダイオードP2、P3による整流に切り替わるため、電流は一定方向にしか流れない。従って、前記した逆流電流は制限され、自励発振は防止される。
【0012】
【特許文献1】
特開平11−136934号公報 (第5−8項、第1図、第2図)
【特許文献2】
特開平8−223906号公報 (第7−18項、第2−15図)
【0013】
【発明が解決しようとする課題】
上述したコンバータ10では、2次側回路内に電流検出用抵抗Rdを接続しているため、2次側(出力側)での電力損失が生じる。特に、低電圧大電流出力型のコンバータでは、この電力損失の割合が大きくなる。
【0014】
また、出力電流値に応じて、2次側回路を、MOSトランジスタを用いた整流から、ダイオード整流に切り替えている。このため、逆流電流の制限及び自励発振の防止を、2次側回路を制御することで行うものに限定されてしまう。従って、2次側での電力損失を避けるため、1次側電流が所定値まで下がった時点でダイオード整流に切り替えるようにしても、2次側制御回路16に1次側電流値を伝達する回路が必要になる。このため、1次側回路を制御することで、逆流電流を制限し、自励発振を防止する技術が要望されていた。
【0015】
本発明の目的は、DC−DCコンバータにおいて、できる限り2次側回路(出力側)での電力損失を生じさせずに、逆流電流を抑制し、自励発振を防止する技術を提供することである。
本発明の別の目的は、DC−DCコンバータにおいて、1次側回路を制御することで、逆流電流を抑制し、自励発振を防止する技術を提供することである。
【0016】
本発明の別の目的は、DC−DCコンバータにおいて、自励発振状態になった場合に回路素子を保護する技術を提供することである。
【0017】
【課題を解決するための手段】
請求項1〜請求項5記載の発明では、DC−DCコンバータは、トランスと、1次側スイッチング素子と、2次側整流用スイッチング素子と、2次側制御手段とを備えている。トランスは、1次巻線及び2次巻線を有し、1次巻線に直流電圧を受ける。1次側スイッチング素子は、パルス幅変調信号を受けるオンオフ制御端子を有し、パルス幅変調信号に応じてオンすることで、1次巻線に供給される直流電圧を周期的にスイッチングし、2次巻線に交流電圧を生じさせる。2次側整流用スイッチング素子は、2次巻線に生じる交流電圧を整流し、直流の出力電流(出力電圧)として供給させるためのものである。2次側制御手段は、2次巻線に生じる電圧に応じて2次側整流用スイッチング素子をオン及びオフする。
【0018】
請求項1記載のDC−DCコンバータにおける出力電流の逆流抑制回路は、デューティ比増加回路と、パルス幅変調信号生成回路とを備えていることを特徴とする。デューティ比増加回路は、1次巻線を流れる電流を検査電流として検出する。検査電流の値が第1の所定値より低くなった時、または、1次側スイッチング素子がスイッチングする1周期における検査電流の時間積分値が第2の所定値より低くなった時、デューティ比増加回路は、1次側スイッチング素子のデューティ比を高めるように、デューティ比増加信号を出力する。パルス幅変調信号生成回路は、デューティ比増加信号を受けて、デューティ比増加信号に応じたパルス幅変調信号を生成し、オンオフ制御端子に入力する。
【0019】
請求項2記載のDC−DCコンバータにおける出力電流の逆流抑制回路は、請求項1記載の発明において、デューティ比増加回路が、1次巻線を流れる電流の代わりに出力電流を検査電流として検出することを特徴とする。
請求項3記載のDC−DCコンバータにおける出力電流の逆流抑制回路は、デューティ比増加回路と、パルス幅変調信号生成回路とを備えていることを特徴とする。デューティ比増加回路は、出力電圧を検出し、出力電圧が所定値より高くなった時、1次側スイッチング素子のデューティ比を高めるように、デューティ比増加信号を出力する。パルス幅変調信号生成回路は、デューティ比増加信号を受けて、デューティ比増加信号に応じたパルス幅変調信号を生成し、オンオフ制御端子に入力する。
【0020】
請求項4記載のDC−DCコンバータにおける出力電流の逆流抑制回路は、トランスに磁気的に結合された3次巻線と、最小オン幅設定回路と、パルス幅変調信号生成回路とを備えていることを特徴とする。最小オン幅設定回路は、3次巻線の電圧の絶対値が第1の所定値より高くなった時、1次側スイッチング素子のデューティ比が第2の所定値以下にならないように、デューティ比制御信号を出力する。パルス幅変調信号生成回路は、デューティ比制御信号を受けて、デューティ比制御信号に応じたパルス幅変調信号を生成し、オンオフ制御端子に入力する。
【0021】
請求項5記載のDC−DCコンバータにおける出力電流の逆流抑制回路は、請求項4記載の発明において、第2の所定値を入力するための設定部を備えていることを特徴とする
請求項6記載の発明では、DC−DCコンバータは、トランスと、1次側スイッチング素子と、2次側整流用スイッチング素子と、リアクトルと、2次側転流用スイッチング素子と、2次側制御手段と、誘導電流及び転流電流を直流の出力電流として供給する手段とを備えている。トランスは、1次巻線及び2次巻線を有する。1次巻線には、励磁電流が供給される。1次側スイッチング素子は、1次巻線に供給される励磁電流を周期的にスイッチングする。2次側整流用スイッチング素子は、1次巻線に励磁電流が流れている時、オンすることで励磁電流により2次巻線に生じる誘導電流を通過させ、1次巻線に励磁電流が流れていない時、オフする。リアクトルは、1次巻線に励磁電流が流れている時、誘導電流を通過させると共にエネルギを蓄積し、2次側整流用スイッチング素子がオフしている時、蓄積したエネルギを転流電流として供給する。2次側転流用スイッチング素子は、2次側整流用スイッチング素子がオフしている時、オンして転流電流を通過させる。2次側制御手段は、2次巻線に生じる電圧に応じて、2次側整流用スイッチング素子及び2次側転流用スイッチング素子を交互にオンする。
【0022】
請求項6記載のDC−DCコンバータの自励発振時保護回路は、コンデンサと、充放電制御回路と、自励発振制御スイッチとを備えていることを特徴とする。コンデンサは、一方の電極に出力電流の一部を受けて充電される。充放電制御回路は、2次側転流用スイッチング素子のオン期間に、出力電流の一部をコンデンサの一方の電極に供給させて、コンデンサに電荷を蓄積させる。また、充放電制御回路は、2次側転流用スイッチング素子のオフ期間に、コンデンサに放電させる。自励発振制御スイッチは、コンデンサの一方の電極から電圧を受けるオンオフ制御端子を有している。コンデンサの一方の電極に蓄積された電荷量が、DC−DCコンバータの通常動作時には達しない所定値に達した時、自励発振制御スイッチは、オン状態になり2次側転流用スイッチング素子をオフする。
【0023】
請求項7〜請求項12記載の発明では、DC−DCコンバータは、トランスと、1次側スイッチング素子と、2次側整流用スイッチング素子と、2次側制御手段とを備えている。トランスは、1次巻線及び2次巻線を有し、1次巻線に直流電圧を受ける。1次側スイッチング素子は、1次巻線に供給される直流電圧を周期的にスイッチングし、2次巻線に交流電圧を生じさせる。2次側整流用スイッチング素子は、2次巻線に生じる交流電圧を整流し、直流の出力電流(出力電圧)として供給させるためのものである。2次側制御手段は、2次巻線に生じる電圧に応じて2次側整流用スイッチング素子をオン及びオフする。
【0024】
請求項7記載のDC−DCコンバータの自励発振保護回路は、トランスに磁気的に結合された3次巻線と、オン状態において3次巻線の両端を互いに接続するスイッチと、強制オフ回路とを備えていることを特徴とする。強制オフ回路は、1次巻線を流れる電流を検査電流として検出する。検査電流の値が第1の所定値より低くなった時、または、1次側スイッチング素子がスイッチングする1周期における検査電流の時間積分値が第2の所定値より低くなった時、強制オフ回路は、スイッチをオンすると共に1次側スイッチング素子をオフする。
【0025】
請求項8記載のDC−DCコンバータの自励発振保護回路は、請求項6記載の発明において、強制オフ回路が、1次巻線を流れる電流の代わりに出力電流を検査電流として検出することを特徴とする。
請求項9記載のDC−DCコンバータの自励発振保護回路は、トランスに磁気的に結合された3次巻線と、オン状態において3次巻線の両端を互いに接続するスイッチと、強制オフ回路とを備えていることを特徴とする。この請求項の発明では、強制オフ回路は、出力電圧を検出し、出力電圧が所定値より高くなった時、スイッチをオンすると共に1次側スイッチング素子をオフする。
【0026】
請求項10記載のDC−DCコンバータの自励発振保護回路は、強制オフ回路を備えていることを特徴とする。この請求項の発明では、強制オフ回路は、1次巻線を流れる電流を検査電流として検出する。検査電流の値が第1の所定値より低くなった時、または、1次側スイッチング素子がスイッチングする1周期における検査電流の時間積分値が第2の所定値より低くなった時、強制オフ回路は、1次側スイッチング素子及び2次側整流用スイッチング素子をオフする。
【0027】
請求項11記載のDC−DCコンバータの自励発振保護回路は、請求項10記載発明において、強制オフ回路が、1次巻線を流れる電流の代わりに出力電流を検査電流として検出することを特徴とする。
請求項12記載のDC−DCコンバータの自励発振保護回路は、出力電圧を検出し、出力電圧が所定値より高くなった時、1次側スイッチング素子及び2次側整流用スイッチング素子をオフする強制オフ回路を備えていることを特徴とする。
【0028】
【発明の実施の形態】
以下、図面を用いて本発明の実施の形態を説明する。
図1は、本発明の第1の実施形態を示している(請求項1に対応)。図15に示した従来のコンバータ10と同一部分には同一符号を付し、その説明を省略する。図1において、同期整流式DC−DCコンバータ30A(以下、コンバータ30Aと略記)は、本発明の逆流抑制回路32A(請求項記載のDC−DCコンバータにおける出力電流の逆流抑制回路に対応)と、入力端子12と、コンデンサC1と、MOSトランジスタQ1と、トランスTaと、2次側制御回路34と、MOSトランジスタQ2、Q3と、平滑用リアクトルLと、平滑用コンデンサC2と、出力端子18とで構成されている。なお、MOSトランジスタQ1、Q2、Q3には、ソースとドレインとを接続し、ソースからドレインへ向かう方向を順方向とする寄生ダイオードがそれぞれ等価的に内在している(図示せず)。
【0029】
トランスTaは、互いに磁気的に結合された1次巻線n1、2次巻線n2、3次巻線n3を有している。1次巻線n1、2次巻線n2、3次巻線n3の磁気的結合は、同極性である。3次巻線n3は、後述する逆流抑制回路32A内に接続されている。以下、1次巻線n1、2次巻線n2、3次巻線n3の電圧を、それぞれ1次巻線電圧、2次巻線電圧、3次巻線電圧と略記する。2次巻線電圧は、図の矢印方向を正とする。
【0030】
なお、図示するように、1次巻線n1を流れる電流を1次側電流とし、2次巻線n2から図の上側の出力端子18に向けて流れる電流を出力電流(2次側電流)とする。コンバータ30Aの通常動作時において、1次側電流は、図示する方向に流れるものとし、この方向を正とする。また、入力端子12、コンデンサC1、後述する電流検出用抵抗Re、MOSトランジスタQ1、1次巻線n1で構成される回路を1次側回路とし、2次巻線n2、2次側制御回路34、MOSトランジスタQ2、Q3、平滑用リアクトルL、平滑用コンデンサC2、出力端子18で構成される回路を2次側回路とする。
【0031】
2次側制御回路34は、2次巻線電圧が正である期間、MOSトランジスタQ2をオンすると共に、MOSトランジスタQ3をオフする。また、2次側制御回路34は、2次巻線電圧が負である期間、MOSトランジスタQ2をオフすると共に、MOSトランジスタQ3をオンする。
逆流抑制回路32Aは、比較器36と、三角波生成回路38と、基準電圧源40と、オペアンプ42と、A点電位制御回路44と、電流検出用抵抗Reと、抵抗Rf、Rgと、平滑用コンデンサC3と、平滑用リアクトルL2と、ダイオードD3、D4と、3次巻線n3とで構成されている。抵抗Rfと抵抗Rgとの接続ノードをノードAとする。
【0032】
基準電圧源40は、一定の基準電圧Vrefを出力する。
オペアンプ42は、−側入力電圧(Vref)と+側入力電圧とが等しくなるように動作する。このため、コンバータ30Aの通常動作時において、ノードAの電圧はVrefに保たれている。
三角波生成回路38は、所定の周波数及び振幅の三角波を生成し、比較器36の+側入力端子に入力する。
【0033】
比較器36は、上述の三角波がオペアンプ42の出力より高い間、高レベルのパルス幅変調信号(PWM信号)を出力し、MOSトランジスタQ1をオンする。また、比較器36は、三角波がオペアンプ42の出力より低い間、低レベルのPWM信号を出力し、MOSトランジスタQ1をオフする。
【0034】
A点電位制御回路44は、電流検出用抵抗Reを流れる1次側電流を検出し、1次側電流値が所定値より低くなった時、ノードAの電圧を下げる。なお、A点電位制御回路44は、MOSトランジスタQ1がオンオフする1周期(即ち、三角波の1周期)で1次側電流値を時間積分し、この時間積分値が所定値より低くなった時、ノードAの電圧を下げる機能も有する。
【0035】
以下、請求項と本実施形態との対応関係を説明する。なお、ここでの対応関係は、参考のための一解釈であり、本発明を限定するものではない。
請求項記載の1次側スイッチング素子、オンオフ制御端子は、MOSトランジスタQ1、及びそのゲートに対応する。
請求項記載の2次側整流用スイッチング素子は、MOSトランジスタQ2、Q3に対応する。
【0036】
請求項記載の2次側制御手段は、2次側制御回路34に対応する。
請求項記載の検査電流は、A点電位制御回路44が検出する1次側電流に対応する。
請求項記載のデューティ比増加信号は、A点電位制御回路44により制御されるノードAの電圧(オペアンプ42の+側入力電圧)に対応する。
【0037】
請求項記載のデューティ比増加回路は、電流検出用抵抗Re、A点電位制御回路44に対応する。
請求項記載のパルス幅変調信号生成回路は、比較器36、三角波生成回路38、基準電圧源40、オペアンプ42に対応する。
請求項記載のパルス幅変調信号は、比較器36の出力に対応する。
【0038】
上述したコンバータ30Aの通常時の動作は、前記したコンバータ10と同様であるので、説明を省略する。逆流電流を抑制するための動作についてのみ説明する。
【0039】
まず、コンバータ30Aの入力端子12間に一定の正の電圧Vinを印加し、出力端子18間に正の電圧Voutを出力させる。この状態で、コンバータ30Aの出力端子18に、コンバータ30Aの出力電圧Voutより高い電圧(以下、外部印加電圧と記載)を印加すると、図示する方向に逆流電流が流れる。このため、2次側電流が通常動作時と逆方向に流れるので、トランスTaを介して1次側電流も通常動作時と逆方向(負方向)に流れる。即ち、1次側電流値は、低くなる。
【0040】
1次側電流が所定値(請求項記載の第1の所定値に対応し、例えば、0アンペア)より低くなると同時に、A点電位制御回路44は、ノードAの電圧を一時的に下げる。このため、オペアンプ42は、負の電圧を出力する。即ち、比較器36の−側入力電圧が下がるため、PWM信号における高レベルの期間は長くなる。従って、MOSトランジスタQ1のデューティ比が高くなるので、1次巻線電圧及び1次側電流が大きくなる。同時に、MOSトランジスタQ1のデューティ比が0%まで下がることが防止され、自励発振は防止される。
【0041】
また、1次巻線電圧の増加により、2次巻線電圧及び出力電流も大きくなる。このため、コンバータ30Aの出力電圧は大きくなり、外部印加電圧に近づく。従って、コンバータ30Aの出力電圧と、外部印加電圧との差は小さくなるので、逆流電流は抑制される。
2次巻線電圧の増加により、3次巻線電圧も大きくなり、ノードAの電圧は高くなる。オペアンプ42は−側入力電圧と+側入力電圧とが等しくなるように動作するため、ノードAの電圧はVrefまで増加する。
【0042】
以上、本実施形態の逆流抑制回路32Aは、1次側電流が所定値よりわずかに低くなった時点で、MOSトランジスタQ1のデューティ比を高め、コンバータ30Aの出力電圧を高めた。従って、コンバータ30Aの出力電圧と、外部印加電圧との差を小さくできる。この結果、逆流電流を抑制できる。
【0043】
また、MOSトランジスタQ1のデューティ比を高めるので、このデューティ比が0%になることを防止できる。従って、自励発振を防止できる。
このように、1次側回路(MOSトランジスタQ1)を制御することで、逆流電流を抑制でき、自励発振を防止できる。
電流検出用抵抗Reを、1次側回路内に接続することで、逆流電流の流入を検出した。従って、出力側(2次側回路)で直接電力を損失することなく、逆流電流を抑制でき、自励発振を防止できる。
【0044】
図2は、上記のようにコンバータ30Aの出力端子18間に外部印加電圧を印加した場合の、出力電流の変化(実験値)を示す一例である。この例では、まず、入力端子12間に48Vを印加し、出力端子18間に約3.6Vを出力させた。この状態で、外部印加電圧を出力端子18間に印加した。図2は、この外部印加電圧(横軸)を上げ、出力電流(縦軸)を減少させた様子を示している。
【0045】
本実施形態のコンバータ30Aでは、出力電流が約0Aまで下がった後、外部印加電圧をさらに高くしても、出力電流は急激には下がらない。これは、逆流抑制回路32Aが、コンバータ30Aの出力電圧を高めて外部印加電圧に近づけ、逆流電流を抑制するからである。
一方、逆流電流抑制の制御を行わない場合では、従来の技術で説明したように、逆流電流が流れ、MOSトランジスタQ1のデューティ比は0%まで下がる。また、外部印加電圧により、2次巻線電圧は正になり、MOSトランジスタQ2はオンする。この結果、出力端子18、平滑用リアクトルL、2次巻線n2、MOSトランジスタQ2からなる経路を逆流電流が流れる。従って、逆流電流抑制の制御を行わない場合、図中の破線に示したように、外部印加電圧を大きくすると出力電流は急峻に下がる。
【0046】
なお、第1の実施形態では、A点電位制御回路44に、1次側電流値が所定値より低くなった時、ノードAの電圧を下げさせた例を述べた。本発明は、かかる実施形態に限定されるものではない。A点電位制御回路44に、1次側電流値をMOSトランジスタQ1がオンオフする1周期で時間積分させ、この時間積分値が所定値(請求項記載の第2の所定値に対応し、例えば、0アンペア秒)より低くなった時、ノードAの電圧を下げさせてもよい。この場合も、上述したものと同様の効果を得ることができる。
【0047】
また、第1の実施形態では、1次側電流を検出することで、逆流電流の流入を検出した例を述べた。本発明は、かかる実施形態に限定されるものではない。例えば、図3に示すように、2次側回路内に電流検出用抵抗Reを接続し、出力電流値から逆流電流の流入を検出してもよい(請求項2に対応)。この場合、A点電位制御回路44bは、出力電流が所定値より低くなった時、またはMOSトランジスタQ1がオンオフする1周期における出力電流の時間積分値が所定値より低くなった時、ノードAの電圧を下げればよい。図3に示した回路でも、第1の実施形態と同様の効果を得ることができる。
【0048】
或いは、図4に示すように、出力端子18間の電圧(出力電圧)を検出することで、逆流電流の流入を検出してもよい(請求項3に対応)。この場合、出力端子18間の電圧が、(同期整流式DC−DCコンバータ30Cの出力電圧の目標値より高い)所定値より高くなった時、ノードAの電圧を下げればよい。図4に示した回路でも、第1の実施形態と同様の効果を得ることができる。
【0049】
図3、4に示した同期整流式DC−DCコンバータ30B、30C及び逆流抑制回路30B、30Cの動作は、上述したコンバータ30A及び逆流抑制回路30Aと同様である。
図5は、本発明の第2の実施形態を示している(請求項4、5に対応)。第1の実施形態と同一部分には同一符号を付し、その説明を省略する。図5において、同期整流式DC−DCコンバータ30D(以下、コンバータ30Dと略記)は、本発明の逆流抑制回路32D(請求項記載のDC−DCコンバータにおける出力電流の逆流抑制回路に対応)と、設定部48と、入力端子12と、コンデンサC1と、MOSトランジスタQ1と、トランスTaと、2次側制御回路34と、MOSトランジスタQ2、Q3と、平滑用リアクトルLと、平滑用コンデンサC2と、出力端子18とで構成されている。なお、第1の実施形態と同様に、1次巻線n1を流れる電流を1次側電流、2次巻線n2から図の上側の出力端子18に向けて流れる電流を出力電流(2次側電流)とする。
【0050】
逆流抑制回路32Dは、最小オン幅設定回路50と、比較器36と、三角波生成回路38dと、基準電圧源40と、オペアンプ42と、抵抗Rh、Ri、Rjと、平滑用コンデンサC3と、平滑用リアクトルL2と、ダイオードD3、D4と、3次巻線n3とで構成されている。比較器36の+側入力端子とオペアンプ42の出力端子との接続ノードをノードB、抵抗Rjと抵抗Riとの接続ノードをノードC、抵抗Riと抵抗Rhとの接続ノードをノードDとする。
【0051】
三角波生成回路38dは、所定の周波数及び振幅の三角波を生成し、比較器36の−側入力端子に入力する。
比較器36は、ノードBの電圧が上述の三角波より高い期間、高レベルのPWM信号を出力してMOSトランジスタQ1をオンし、ノードBの電圧が三角波より低い期間、低レベルのPWM信号を出力してMOSトランジスタQ1をオフする。
【0052】
最小オン幅設定回路50は、基準電圧源52と、オペアンプ54と、ダイオードD5とで構成されている。
基準電圧源52は、設定部46により定められる一定の基準電圧Vmを出力する。
オペアンプ54は、−側入力電圧(基準電圧Vm)と+側入力電圧(ノードBの電圧)とが等しくなるように動作する。なお、基準電圧Vmは、コンバータ30Dの通常動作時におけるノードBの電圧より十分低い。従って、コンバータ30Dの通常動作時において、オペアンプ54が出力する正の電圧によりダイオードD5はオフしており、最小オン幅設定回路50は動作しない。
【0053】
設定部48は、MOSトランジスタQ1のデューティ比の最小値(請求項記載の第2の所定値に対応)を入力するためのボタン群(図示せず)、及び演算機能を有している。設定部48は、入力されたデューティ比の最小値に基づいて、基準電圧Vmの電圧値及び基準電圧源40の電圧値Vrefを求め、これらを求めた値に設定する。
【0054】
以下、請求項と本実施形態との対応関係を説明する。なお、以下に示す対応関係は、参考のための一解釈であり、本発明を限定するものではない。
請求項記載の1次側スイッチング素子、オンオフ制御端子は、MOSトランジスタQ1、及びそのゲートに対応する。
請求項記載の2次側整流用スイッチング素子は、MOSトランジスタQ2、Q3に対応する。
【0055】
請求項記載の2次側制御手段は、2次側制御回路34に対応する。
請求項記載のデューティ比制御信号は、最小オン幅設定回路50により制御されるノードDの電圧に対応する。
請求項記載のパルス幅変調信号生成回路は、比較器36、三角波生成回路38、基準電圧源40、オペアンプ42、抵抗Ri、Rjに対応する。
【0056】
請求項記載のパルス幅変調信号は、比較器36の出力に対応する。
上述したコンバータ30Dの通常時の動作は、前記したコンバータ30Aと同様であるので、説明を省略する。逆流電流を抑制するための動作についてのみ説明する。
コンバータ30Dの通常動作時に、コンバータ30Dの出力電圧より高い電圧(以下、外部印加電圧と記載)を出力端子18に印加した場合、図示する方向に逆流電流が流れる。この逆流電流の絶対値は、コンバータ30Dの通常動作時における2次側電流の絶対値より大きい。このため、2次巻線電圧は大きくなるので、3次巻線電圧も大きくなる。
【0057】
従って、ノードCの電圧は上がり、オペアンプ42の出力電圧(ノードBの電圧)は下がる。3次巻線電圧が所定値(請求項記載の第1の所定値に対応)を超えると、ノードBの電圧が基準電圧Vmより低くなる。これにより、オペアンプ54は負の電圧を出力し、ダイオードD5はオンする。このため、ノードDからオペアンプ54の出力端子に向けて電流が流れ、ノードCの電圧は下がる。ノードCの電圧が下がると、オペアンプ42の出力電圧は、基準電圧Vmまで上がる。
【0058】
このように、最小オン幅設定回路50は、ノードBの電圧が基準電圧Vmより低くならないように動作する。このため、比較器36の出力であるPWM信号のデューティ比は所定値以上に保たれる。従って、MOSトランジスタQ1のデューティ比は所定値以上に保たれるので、自励発振は防止される。また、デューティ比が所定値以上に保たれるので、1次側電流は所定値以上に保たれる。この結果、トランスTaを介して2次側電流も所定値以上に保たれ、逆流電流は抑制される。
【0059】
以上、第2の実施形態においても、上述した第1の実施形態と同様の効果を得ることができる。さらに、本実施形態では、1次側電流を検出するための回路は不要である。従って、電力損失を生じさせることなく、逆流電流を抑制でき、自励発振を防止できる。
また、設定部48は、入力されたデューティ比の最小値に基づいて、基準電圧Vmの電圧値を求め、基準電圧Vmを求めた値に設定する。従って、ユーザは、MOSトランジスタQ1のデューティ比の最小値を、1次側電流及び出力電流の値に拘わらず、任意に設定できる。
【0060】
図6は、上記のようにコンバータ30Dの出力端子18に外部印加電圧を印加した場合の、出力電流の変化(実験値)を示す一例である。この例では、入力端子12間に48Vを印加し、出力端子18間に約3.5Vを出力させた。この状態で、外部印加電圧を出力端子18間に印加した。図6は、この外部印加電圧を上げて、出力電流を減少させた様子を示している。比較例として、図2に示した逆流電流抑制の制御を行わない場合の特性を、破線で示した。
【0061】
逆流電流抑制の制御を行わない場合、外部印加電圧を大きくすると出力電流は急峻に下がる。本実施形態のコンバータ30Dでは、外部印加電圧を高くしても、出力電流は、所定の値(この例では約−0.6A)からは殆ど下がらない。これは、逆流抑制回路32Dにより、MOSトランジスタQ1のデューティ比が所定値以上に保たれるからである。
【0062】
図7は、本発明の第3の実施形態を示している(請求項6に対応)。第1、第2の実施形態と同一部分には同一符号を付し、その説明を省略する。図7において、同期整流式DC−DCコンバータ30E(以下、コンバータ30Eと略記)は、本発明の自励発振時保護回路56と、1次側制御回路58eと、入力端子12と、コンデンサC1と、MOSトランジスタQ1と、トランスTeと、MOSトランジスタQ2、Q3、Q4と、平滑用リアクトルLと、平滑用コンデンサC2と、出力端子18とで構成されている。
【0063】
トランスTeは、互いに磁気的に結合された1次巻線n1、2次巻線n2、3次巻線n3、4次巻線n4、5次巻線n5を有している。これら1次巻線n1〜5次巻線n5の磁気的結合は、同極性である。なお、3次巻線n3は、1次側制御回路58内に接続されている。以下、1次巻線n1の電圧を1次巻線電圧と略記し、5次巻線n5の一端(ダイオードD6側)を基点とした、4次巻線n4の1端(2次巻線n2と反対側)までの電圧を、2次側巻線電圧と略記する。
【0064】
また、図示するように、1次巻線n1を流れる電流を1次側電流、2次巻線n2から図の上側の出力端子18に向けて流れる電流を出力電流(2次側電流)とする。
自励発振時保護回路56は、抵抗Rk、Rlと、コンデンサC4と、ダイオードD6と、MOSトランジスタQ5とで構成されている。自励発振時保護回路56は、後述するように、コンバータ30Eが自励発振状態になった時、自励発振の周波数を制御し、各回路素子を保護する。
【0065】
1次側制御回路58eは、比較器36と、三角波生成回路38dと、基準電圧源40と、オペアンプ42と、抵抗Rf、Rgと、平滑用コンデンサC3と、平滑用リアクトルL2と、ダイオードD3、D4と、3次巻線n3とで構成されている。1次側制御回路58eは、第2の実施形態の逆流抑制回路32Dと同様に、PWM信号を出力し、MOSトランジスタQ1のデューティ比を制御することで、出力端子18間の電圧が目標値になるように制御する。
【0066】
なお、MOSトランジスタQ1、Q2、Q3、Q4、Q5には、ソースとドレインとを接続し、ソースからドレインへ向かう方向を順方向とする寄生ダイオードがそれぞれ等価的に内在している。図では、パワーMOSトランジスタQ4に内在する寄生ダイオードP4のみを示した。また、MOSトランジスタQ5のゲートとコンデンサC4との接続ノードをノードEとする。
【0067】
以下、請求項と本実施形態との対応関係を説明する。なお、以下に示す対応関係は、参考のために示した一解釈であり、本発明を限定するものではない。
請求項記載の1次側スイッチング素子は、MOSトランジスタQ1に対応する。
請求項記載の2次側整流用スイッチング素子は、MOSトランジスタQ2に対応する。
【0068】
請求項記載の2次側転流用スイッチング素子は、MOSトランジスタQ3に対応する。
請求項記載の励磁電流は、1次巻線n1を流れる1次側電流に対応する。
請求項記載の誘導電流は、2次巻線n2を流れる2次側電流に対応する。
請求項記載のリアクトルは、平滑用リアクトルLに対応する。
【0069】
請求項記載の2次側制御手段は、4次巻線n4、5次巻線n5、MOSトランジスタQ4に対応する。
請求項記載の「誘導電流及び転流電流を直流の出力電流として供給する手段」は、出力端子18、平滑用コンデンサC2に対応する。
請求項記載のコンデンサは、コンデンサC4に対応する。
【0070】
請求項記載の充放電制御回路は、抵抗Rk、Rl、ダイオードD6に対応する。
請求項記載の自励発振制御スイッチ、オンオフ制御端子は、MOSトランジスタQ5及びそのゲートに対応する。
図8は、上述したコンバータ30Eの各部の電圧の時間変化を示している。図中、Vdsはドレイン−ソース間電圧、Vgsはゲート−ソース間電圧、VthはMOSトランジスタQ5のスレッショルド電圧を示している。2次巻線n2の電圧は、2次巻線n2と4次巻線n4との接続ノードの電圧を表し、5次巻線n5の電圧は、5次巻線n5とダイオードD6との接続ノードの電圧を表している。各部の電圧は、図の下側の出力端子18の電圧(横軸の破線)を基準として示されている。
【0071】
以下、図7、8を用いて、コンバータ30Eの通常時の動作を説明する。
まず、MOSトランジスタQ1がオンからオフに切り替わると、2次側巻線電圧が負になる。このため、MOSトランジスタQ2、Q4、ダイオードD6はオフする。このとき、MOSトランジスタQ3は、パワーMOSトランジスタQ4の寄生ダイオードP4を介してゲートに正の電圧を受け、オンする。
【0072】
このため、MOSトランジスタQ1のオン期間中に平滑用リアクトルLに蓄積されたエネルギ(後述する)は、(請求項記載の)転流電流として、図の下側の出力端子18、MOSトランジスタQ3、平滑用リアクトルL、図の上側の出力端子18からなる経路を流れる。また、ダイオードD6がオフしているため、この転流電流の一部は、抵抗Rkを介してコンデンサC4を充電する。従って、ノードEの電圧は、コンデンサC4の容量値と抵抗Rkの抵抗値により決まる充電時定数に従って、ほぼ指数関数的に上昇する。
【0073】
なお、コンバータ30Eの通常動作時におけるMOSトランジスタQ1のオフ期間に、コンデンサC4における抵抗Rl側の電極電圧がMOSトランジスタQ5のスレッショルド電圧に達しないように、コンデンサC4の容量は設定されている。従って、コンバータ30Eの通常動作時において、MOSトランジスタQ5は、オンしない。
【0074】
次に、MOSトランジスタQ1がオンして1次側電流が図示する方向に流れると、2次側巻線電圧は正になる。このため、MOSトランジスタQ2、Q4はオンするので、MOSトランジスタQ3はゲートを5次巻線n5の一端に接続されてオフする。また、ダイオードD6がオンするため、MOSトランジスタQ1のオフ期間中にコンデンサC4に蓄積された電荷は、抵抗Rl及びダイオードD6を介して放電する。従って、ノードEの電圧は、コンデンサC4の容量値、抵抗Rlの抵抗値、ダイオードD6のオン抵抗により決まる時定数に従って、ほぼ指数関数的に下がる。
【0075】
1次側電流により2次巻線n2に生じる誘導電流は、平滑用リアクトルLにエネルギを蓄積させながら、図の下側の出力端子18、2次巻線n2、MOSトランジスタQ2、平滑用リアクトルL、図の上側の出力端子18からなる経路を流れる。この後、MOSトランジスタQ1がオフすると、上述した動作が繰り返される。
【0076】
次に、コンバータ30Eの自励発振時の動作について説明する。
従来の技術で説明したように、自励発振は、コンバータ30Dの出力端子18に、コンバータ30Dの出力電圧より高い電圧(外部印加電圧)が印加され続けて生じる。即ち、自励発振時において、出力端子18間の電圧は、通常動作時より大きい。このため、自励発振時のダイオードD6のオフ期間(MOSトランジスタQ3のオン期間)において外部から抵抗Rkを介してコンデンサC4を充電する電圧は、通常動作時のダイオードD6のオフ期間にコンデンサC4を充電する電圧より大きい。
【0077】
従って、自励発振時において、ノードEの電圧はMOSトランジスタQ5のスレッショルド電圧に達する。このため、MOSトランジスタQ5はオンし、MOSトランジスタQ3のゲートとソースとが互いに接続され、MOSトランジスタQ3はオフする。
外部印加電圧が大きいほど、コンデンサC4が速く充電されるため、MOSトランジスタQ5がオフしてからオンするまでの期間が短くなる。従って、外部印加電圧が大きいほど、MOSトランジスタQ3のオン期間が短くなるため、逆流電流が抑制される。
【0078】
コンデンサC4が放電後にMOSトランジスタQ5のスレッショルド電圧まで充電されるには、出力端子18間の電圧に応じて所定の時間を要する。この充電時間は、コンデンサC4の容量値と抵抗Rkの抵抗値により決まる充電時定数に依存する。このため、MOSトランジスタQ3のオン期間は、(出力端子18間の電圧に応じた)所定の時間より短くならない。従って、自励発振の周波数が所定値より高くなることはない。
【0079】
以上、第3の実施形態では、コンバータ30Eの自励発振時において、2次側の転流用スイッチング素子であるMOSトランジスタQ3を、前記した充電時定数及び出力端子18間の電圧により決まる期間でオフさせた。従って、出力端子18間の電圧が大きいほど、MOSトランジスタQ3のオン期間も短くなるため、逆流電流を抑制できる。
【0080】
また、コンデンサC4の充電時定数(コンデンサC4の容量値と抵抗Rkの抵抗値)を適正に選ぶことで、自励発振時におけるMOSトランジスタQ3のオン期間が所定値より短くなることを防止できる。従って、容易な設定により、自励発振の周波数が所定値より高くなることを防止できる。即ち、自励発振の周波数を制御できる。この結果、自励発振時において、コンバータ30Eの回路素子を保護できる。
【0081】
自励発振時保護回路56は、出力電圧を制御する1次側制御回路58eとは独立したところに接続されている。このため、1次側制御回路58eは、出力電圧を安定に制御できる。
さらに、本実施形態においても、1次側または2次側電流を検出するための回路は不要である。従って、第2の実施形態と同様に、電力損失を生じさせることなく、逆流電流を抑制でき、自励発振から回路素子を保護できる。
【0082】
図9は、本発明の第4の実施形態を示している(請求項7に対応)。第1〜第3の実施形態と同一部分には同一符号を付し、その説明を省略する。図9において、同期整流式DC−DCコンバータ30F(以下、コンバータ30Fと略記)は、1次側制御回路58Fと、nMOSトランジスタTr6、Tr7と、スイッチング制御回路72fと、電流検出用抵抗Reと、入力端子12と、コンデンサC1と、MOSトランジスタQ1と、トランスTaと、2次側制御回路34と、MOSトランジスタQ2、Q3と、平滑用リアクトルLと、平滑用コンデンサC2と、出力端子18とで構成されている。第1の実施形態と同様に、1次巻線n1を流れる電流を1次側電流、図の上側の出力端子18に向けて流れる電流を出力電流、MOSトランジスタQ1及び1次巻線n1等で構成される回路を1次側回路、2次巻線n2及びMOSトランジスタQ2、Q3等で構成される回路を2次側回路とする。
【0083】
1次側制御回路58Fは、比較器36と、三角波生成回路38と、基準電圧源40と、オペアンプ42と、抵抗Rf、Rgと、平滑用コンデンサC3と、平滑用リアクトルL2と、ダイオードD3、D4と、3次巻線n3とで構成されている。1次側制御回路58Fは、第1の実施形態の逆流抑制回路32Aと同様に、PWM信号を出力し、MOSトランジスタQ1のデューティ比を制御することで、出力端子18間の電圧が目標値になるように制御する。
【0084】
本発明の自励発振保護回路70F(図示せず)は、電流検出用抵抗Reと、スイッチング制御回路72fと、nMOSトランジスタTr6、Tr7と、1次側制御回路58Fの3次巻線n3とに対応する。
スイッチング制御回路72fは、コンバータ30Fの通常動作時において、nMOSトランジスタTr6をオンさせ、nMOSトランジスタTr7をオフさせる。また、スイッチング制御回路72fは、電流検出用抵抗Reから1次側電流を検出し、1次側電流値が所定値より低くなった時、コンバータ30Fの回路動作を停止させる。
【0085】
なお、スイッチング制御回路72fは、1次側電流を、MOSトランジスタQ1がスイッチングする1周期(即ち、三角波生成回路38が出力する三角波の1周期)において時間積分し、この時間積分値が所定値より低くなった時、コンバータ30Fの回路動作を停止させる機能も有する。
以下、請求項と本実施形態との対応関係を説明する。なお、ここでの対応関係は、参考のための一解釈であり、本発明を限定するものではない。
【0086】
請求項記載の1次側スイッチング素子は、MOSトランジスタQ1に対応する。
請求項記載の2次側整流用スイッチング素子は、MOSトランジスタQ2、Q3に対応する。
請求項記載の2次側制御手段は、2次側制御回路34に対応する。
請求項記載のスイッチは、nMOSトランジスタTr7に対応する。
【0087】
請求項記載の検査電流は、スイッチング制御回路72f及び電流検出用抵抗Reにより検出される1次側電流に対応する。
請求項記載の強制オフ回路は、スイッチング制御回路72f、nMOSトランジスタTr6に対応する。
上述したコンバータ30Fの通常時の動作は、前記したコンバータ30Aと同様であるので、説明を省略する。自励発振を停止するための動作についてのみ説明する。
【0088】
従来の技術で説明したように、自励発振は、MOSトランジスタQ1のデューティ比が0%まで下がった後で生じる。
そこで、スイッチング制御回路72fは、1次側電流が所定値(請求項記載の第1の所定値に対応し、例えば、0A)より低くなった時、nMOSトランジスタTr6をオフさせると同時に、nMOSトランジスタTr7をオンさせる。このため、MOSトランジスタQ1はオフし、3次巻線n3の両端は短絡される。従って、2次巻線n2もショートし、MOSトランジスタQ2、Q3はオフする。この結果、コンバータ30Fの回路動作は停止し、逆流電流の2次側回路内への流入は遮断される。
【0089】
以上、第4の実施形態では、MOSトランジスタQ1のデューティ比が0%になる前に逆流電流の流入を検出し、3次巻線n3の両端を短絡すると同時に、MOSトランジスタQ1をオフさせた。従って、3次巻線n3の短絡により1次巻線n1がショートして過大な1次側電流が流れることはなく、コンバータ30Fの回路動作を安全に停止できる。即ち、MOSトランジスタQ1のデューティ比が0%になる前に回路動作を停止させるため、自励発振を未然に防止できる。
【0090】
また、2次側回路の全ての整流素子(MOSトランジスタQ2、Q3)をオフさせたので、逆流電流の2次側回路内への流入を遮断できる。
逆流電流の流入を検出するための電流検出用抵抗Reを、1次側回路内に接続した。従って、出力側で直接電力を損失することなく、自励発振を防止できる。
なお、第4の実施形態では、1次側電流が所定値より低くなった時、コンバータ30Fの回路動作を停止させた例を述べた。本発明は、かかる実施形態に限定されるものではない。前記したように、スイッチング制御回路72fに、MOSトランジスタQ1がスイッチングする1周期において1次側電流値を時間積分させ、この時間積分値が所定値(請求項記載の第2の所定値に対応し、例えば、0アンペア秒)より低くなった時、上述と同様にコンバータ30Fの回路動作を停止させてもよい。この場合も上述したものと同様の効果を得ることができる。
【0091】
図10は、本発明の第5の実施形態を示している(請求項8に対応)。第1〜第4の実施形態と同一部分には同一符号を付し、その説明を省略する。図10に示した同期整流式DC−DCコンバータ30G(以下、コンバータ30Gと略記)は、電流検出用抵抗Reが1次側回路内でなく、出力端子18に接続されていることと、スイッチング制御回路72gの機能がスイッチング制御回路72fとわずかに異なることを除いて、第4の実施形態のコンバータ30Fと同じである。
【0092】
スイッチング制御回路72gは、コンバータ30Gの通常動作時において、nMOSトランジスタTr6をオンさせ、nMOSトランジスタTr7をオフさせる。また、スイッチング制御回路72fは、電流検出用抵抗Reから出力電流を検出し、出力電流値が所定値(請求項記載の第1の所定値に対応し、例えば、0A)より低くなった時、第4の実施形態と同様にコンバータ30Gの回路動作を停止させる。
【0093】
なお、スイッチング制御回路72fは、出力電流を、MOSトランジスタQ1がスイッチングする1周期において時間積分し、この時間積分値が所定値(請求項記載の第2の所定値に対応し、例えば、0アンペア秒)より低くなった時、コンバータ30Gの回路動作を停止させる機能も有する。
スイッチング制御回路72gは、第4の実施形態と同様にコンバータ30Gの回路動作を停止させる。このため、コンバータ30Gが自励発振状態になる前であれば、コンバータ30Gの回路動作を安全かつ確実に停止でき、自励発振を未然に防止できる。また、コンバータ30Gが自励発振状態であれば、自励発振を安全かつ確実に停止できる。従って、本実施形態においても、第4の実施形態と同様の効果を得ることができる。なお、請求項と本実施形態との対応関係は、第4の実施形態と同様であるので、説明を省略する。
【0094】
図11は、本発明の第6の実施形態を示している(請求項9に対応)。第1〜第5の実施形態と同一部分には同一符号を付し、その説明を省略する。図11に示した同期整流式DC−DCコンバータ30H(以下、コンバータ30Hと略記)は、電流検出用抵抗Reがないことと、スイッチング制御回路72hの機能がスイッチング制御回路72fと異なることを除いて、第4の実施形態のコンバータ30Fと同じである。
【0095】
スイッチング制御回路72hは、コンバータ30Gの通常動作時において、nMOSトランジスタTr6をオンさせ、nMOSトランジスタTr7をオフさせる。また、スイッチング制御回路72hは、出力電圧を検出し、出力電圧が所定値(コンバータ30Hの通常動作時の出力電圧より高い値)より高くなった時、第4の実施形態と同様にコンバータ30Hの回路動作を停止させる。
【0096】
このため、コンバータ30Hが自励発振状態になる前であれば、コンバータ30Hの回路動作を安全かつ確実に停止でき、自励発振を未然に防止できる。また、コンバータ30Hが自励発振状態であれば、自励発振を安全かつ確実に停止できる。従って、本実施形態においても、第4の実施形態と同様の効果を得ることができる。自励発振が生じる前に回路動作を停止させるか、自励発振が生じた後に自励発振を停止させるかは、スイッチング制御回路72hが回路動作(自励発振)を停止させるときの出力電圧の所定値を適正に設定することで選択できる。なお、請求項と本実施形態との対応関係は、第4の実施形態と同様であるので、説明を省略する。
【0097】
図12は、本発明の第7の実施形態を示している(請求項10に対応)。第1〜第6の実施形態と同一部分には同一符号を付し、その説明を省略する。図12に示した同期整流式DC−DCコンバータ30I(以下、コンバータ30Iと略記)は、nMOSトランジスタTr7の代わりにnMOSトランジスタTr8及びTr9が2次側回路内にあることと、スイッチング制御回路72iの機能がスイッチング制御回路72fと若干異なることを除いて、第4の実施形態のコンバータ30Fと同じである。
【0098】
スイッチング制御回路72iは、コンバータ30の通常動作時において、nMOSトランジスタTr6をオンさせ、nMOSトランジスタTr8、9をオフさせる。スイッチング制御回路72iは、電流検出用抵抗Reから1次側電流を検出し、1次側電流値が所定値より低くなった時、コンバータ30Iの回路動作を停止させる。
【0099】
なお、スイッチング制御回路72iは、1次側電流値を、MOSトランジスタQ1がスイッチングする1周期において時間積分し、この時間積分値が所定値より低くなった時、コンバータ30Iの回路動作を停止させる機能も有する。
以下、請求項と本実施形態との対応関係を説明する。なお、ここでの対応関係は、参考のための一解釈であり、本発明を限定するものではない。
【0100】
請求項記載の1次側スイッチング素子は、MOSトランジスタQ1に対応する。
請求項記載の2次側整流用スイッチング素子は、MOSトランジスタQ2、Q3に対応する。
請求項記載の2次側制御手段は、2次側制御回路34に対応する。
請求項記載の検査電流は、スイッチング制御回路72i及び電流検出用抵抗Reにより検出される1次側電流に対応している。
【0101】
請求項記載の強制オフ回路は、電流検出用抵抗Re、スイッチング制御回路72i、nMOSトランジスタTr6、Tr8、Tr9に対応する。
以下、自励発振保護回路70Iの動作を説明する。
スイッチング制御回路72Iは、1次側電流が所定値(請求項記載の第1の所定値に対応し、例えば、0A)より低くなった時、nMOSトランジスタTr6をオフさせると同時に、nMOSトランジスタTr8、Tr9をオンさせる。このため、MOSトランジスタQ1、Q2、Q3はオフする。この結果、第4の実施形態で述べたものと同様の理由で、コンバータ30Iの回路動作は安全に停止し、逆流電流の2次側回路内への流入は遮断される。
【0102】
以上、第7の実施形態においても、上述した第4の実施形態と同様の効果を得ることができる。
なお、第7の実施形態では、1次側電流が所定値より低くなった時、コンバータ30Fの回路動作を停止させた例を述べた。本発明は、かかる実施形態に限定されるものではない。スイッチング制御回路72iに、MOSトランジスタQ1がスイッチングする1周期において1次側電流値を時間積分させ、この時間積分値が所定値(請求項記載の第2の所定値に対応し、例えば、0アンペア秒)より低くなった時、上述と同様にコンバータ30Iの回路動作を停止させてもよい。この場合も上述と同様の効果を得ることができる。
【0103】
或いは、スイッチング制御回路72iに、1次側電流値が変化しなくなった時、コンバータ30Iの回路動作を停止させてもよい。この場合、2次側回路で自励発振が生じている可能性があるときに、回路動作を停止させることになる。自励発振状態であったとしても、本実施形態のようにコンバータ30Iの回路動作を停止させれば、自励発振を安全かつ確実に停止できる。これは、1次側回路及び2次側回路の全ての整流素子(MOSトランジスタQ1、Q2、Q3)を同時にオフさせるからである。
【0104】
図13は、本発明の第8の実施形態を示している(請求項11に対応)。第1〜第7の実施形態と同一部分には同一符号を付し、その説明を省略する。図13において、同期整流式DC−DCコンバータ30J(以下、コンバータ30Jと略記)は、1次側制御回路58jと、nMOSトランジスタTr6と、入力端子12と、コンデンサC1と、MOSトランジスタQ1と、トランスTeと、Q2制御回路82と、nMOSトランジスタTr8、Tr9と、MOSトランジスタQ2、Q3と、Q3制御回路84と、平滑用リアクトルLと、平滑用コンデンサC2と、電流検出用抵抗Reと、スイッチング制御回路72jと、出力端子18とで構成されている。なお、5次巻線n5における図の下側の一端を基点とした、4次巻線n4の一端(Q2制御回路82側)までの電圧を、2次側巻線電圧と記載する。
【0105】
1次側制御回路58jは、3次巻線n3を含むトランスTeがトランスTaと異なることを除き、第7の実施形態の1次側制御回路58iと同じである。
Q2制御回路82は、2次側巻線電圧が正である期間、MOSトランジスタQ2をオンし、それ以外の期間、MOSトランジスタQ2をオフする。
Q3制御回路84は、2次側巻線電圧が負である期間、MOSトランジスタQ3をオンし、それ以外の期間、MOSトランジスタQ3をオフする。
【0106】
本実施形態では、自励発振保護回路70J(図示せず)は、nMOSトランジスタTr6と、電流検出用抵抗Reと、スイッチング制御回路72jと、nMOSトランジスタTr8、Tr9とに対応する。
スイッチング制御回路72jは、コンバータ30Jの通常動作時において、nMOSトランジスタTr6をオンさせ、nMOSトランジスタTr8、9をオフさせる。また、スイッチング制御回路72jは、電流検出用抵抗Reから出力電流を検出し、出力電流値が所定値(請求項記載の第1の所定値に対応し、例えば、0A)より低くなった時、第7の実施形態と同様にコンバータ30Jの回路動作を停止させる。
【0107】
なお、スイッチング制御回路72jは、出力電流を、MOSトランジスタQ1がスイッチングする1周期において時間積分し、この時間積分値が所定値(請求項記載の第2の所定値に対応し、例えば、0アンペア秒)より低くなった時、コンバータ30Jの回路動作を停止させる機能も有する。
スイッチング制御回路72jは、第7の実施形態と同様にコンバータ30Jの回路動作を停止させる。このため、コンバータ30Jが自励発振状態になる前であれば、コンバータ30Jの回路動作を安全かつ確実に停止でき、自励発振を未然に防止できる。また、コンバータ30Jが自励発振状態であれば、自励発振を安全かつ確実に停止できる。従って、本実施形態においても、第7の実施形態と同様の効果を得ることができる。なお、請求項と本実施形態との対応関係は、Q2制御回路82及びQ3制御回路84が請求項記載の2次側制御手段に対応することを除き、第7の実施形態と同様であるので、説明を省略する。
【0108】
図14は、本発明の第9の実施形態を示している(請求項12に対応)。第1〜第8の実施形態と同一部分には同一符号を付し、その説明を省略する。図14において、フライバック型コンバータ90(以下、コンバータ90と略記)は、1次側制御回路58kと、nMOSトランジスタTr6と、入力端子12と、コンデンサC1と、MOSトランジスタQ1と、トランスTkと、Q2制御回路92と、nMOSトランジスタTr8と、MOSトランジスタQ2と、平滑用コンデンサC2と、出力端子18と、スイッチング制御回路72kとで構成されている。
【0109】
トランスTkは、互いに磁気的に結合された1次巻線n1、2次巻線n2”、3次巻線n3、4次巻線n4”を有している。1次巻線n1と2次巻線n2”との磁気的結合は、逆極性である。2次巻線n2”と4次巻線n4”との磁気的結合は、同極性である。1次巻線n1と3次巻線n3との磁気的結合は、逆極性である。3次巻線n3は、後述する1次側制御回路58k内に接続されている。
【0110】
1次側制御回路58kは、3次巻線n3を含むトランスTkがトランスTaと異なることを除き、第7の実施形態の1次側制御回路58iと同様に動作する。Q2制御回路92は、2次巻線n2”の一端(図の下の出力端子18側)を基点として4次巻線n4”の一端に向けて正の電圧が生じている期間、MOSトランジスタQ2をオンし、それ以外の期間、MOSトランジスタQ2をオフする。
【0111】
本実施形態では、自励発振保護回路70K(図示せず)は、nMOSトランジスタTr6と、スイッチング制御回路72kと、nMOSトランジスタTr8とに対応する。スイッチング制御回路72kは、コンバータ90の通常動作時において、nMOSトランジスタTr6をオンさせ、nMOSトランジスタTr8をオフさせる。また、スイッチング制御回路72kは、コンバータ90の出力電圧を検出し、出力電圧が所定値より高くなった時、コンバータ90の回路動作を停止させる。
【0112】
以下、請求項と本実施形態との対応関係を説明する。なお、ここでの対応関係は、参考のための一解釈であり、本発明を限定するものではない。
請求項記載の1次側スイッチング素子、2次側整流用スイッチング素子は、MOSトランジスタQ1、Q2にそれぞれ対応している。
請求項記載の2次側制御手段は、Q2制御回路92に対応する。
【0113】
請求項記載の強制オフ回路は、スイッチング制御回路72k、nMOSトランジスタTr6、Tr8に対応する。
以下、上述したコンバータ90の通常時の動作を簡単に説明する。
まず、MOSトランジスタQ1がオンして2次巻線n2”の一端を基点として4次巻線n4”の一端に向けて負の電圧が生じると、MOSトランジスタQ2はオフする。従って、出力電流は流れず、トランスTkにエネルギが蓄積される。
【0114】
次に、MOSトランジスタQ1がオフすると、2次巻線n2”及び4次巻線n4”に正の電圧が生じ、MOSトランジスタQ2はオンする。トランスTkに蓄積されたエネルギは解放され、2次巻線n2”、MOSトランジスタQ2、出力端子18からなる閉路を出力電流が流れる。この後、MOSトランジスタQ1がオンすると、上述した動作が繰り返される。
【0115】
次に、自励発振保護回路70Kの動作を説明する。
スイッチング制御回路72kは、出力電圧が所定値(コンバータ90の通常動作時の出力電圧より高い値)より高くなった時、nMOSトランジスタTr6をオフすると同時に、nMOSトランジスタTr8をオンする。従って、コンバータ90の全ての整流素子(MOSトランジスタQ1、Q2)は同時にオフする。
【0116】
このため、コンバータ90が自励発振状態になる前であれば、コンバータ90の回路動作を安全かつ確実に停止でき、自励発振を未然に防止できる。また、コンバータ90が自励発振状態であれば、自励発振を安全かつ確実に停止できる。従って、本実施形態においても、第7の実施形態と同様の効果を得ることができる。自励発振が生じる前に回路動作を停止させるか、自励発振が生じた後に自励発振を停止させるかは、スイッチング制御回路72kが回路動作(自励発振)を停止させるときの出力電圧の所定値を適正に設定することで選択できる。
【0117】
なお、上述した第4〜第9の実施形態では、スイッチとしてnMOSトランジスタを用いた例を述べた。本発明は、かかる実施形態に限定されるものではない。例えば、pMOSトランジスタ、バイポーラトランジスタ、ホトカプラ、機械スイッチ等をスイッチに用いてもよい。
上述した第4〜第9の実施形態では、自励発振を停止させる場合、MOSトランジスタQ1のゲートをフローティング状態にすることで、MOSトランジスタQ1をオフさせた例を述べた。本発明は、かかる実施形態に限定されるものではない。例えば、スイッチング制御回路72f〜72kは、比較器36に用いられている電源(図示せず)の出力を停止させて比較器36の出力を停止させ、MOSトランジスタQ1をオフさせてもよい。
【0118】
上述した第7、第8の実施形態では、1次側のMOSトランジスタQ1をオフすると同時に、2次側のMOSトランジスタQ2、Q3をオフする例を述べた。本発明は、かかる実施形態に限定されるものではない。MOSトランジスタQ1をオフすると同時に、2次側のMOSトランジスタQ2、Q3のいずれかをオフさせてもよい。この場合でも、MOSトランジスタQ2、Q3が交互にオンすることがなくなるため、自励発振を停止できる。
【0119】
【発明の効果】
本発明のDC−DCコンバータにおける出力電流の逆流抑制回路は、2次側回路(出力側)で直接電力損失を生じさせずに、逆流電流を抑制でき、自励発振を防止できる。また、本発明のDC−DCコンバータにおける出力電流の逆流抑制回路は、1次側回路を制御することで、逆流電流を抑制でき、自励発振を防止できる。
【0120】
本発明のDC−DCコンバータの自励発振時保護回路は、コンバータが自励発振状態になった場合、自励発振の周波数を制御することで、コンバータの回路素子を保護できる。
本発明のDC−DCコンバータの自励発振保護回路は、自励発振が生じる前にコンバータの回路動作を安全に停止させることで、自励発振を防止できる。また、本発明のDC−DCコンバータの自励発振保護回路は、自励発振を安全に停止できる。
【図面の簡単な説明】
【図1】第1の実施形態による同期整流式DC−DCコンバータの回路図である。
【図2】図1の同期整流式DC−DCコンバータの出力端子に外部から電圧を印加した場合の、出力電流の変化を示す一例である。
【図3】出力電流を検出することで、図1の回路と同様に動作する同期整流式DC−DCコンバータの回路図である。
【図4】出力電圧を検出することで、図1の回路と同様に動作する同期整流式DC−DCコンバータの回路図である。
【図5】第2の実施形態による同期整流式DC−DCコンバータの回路図である。
【図6】図5の同期整流式DC−DCコンバータの出力端子に外部から電圧を印加した場合の、出力電流の変化を示す一例である。
【図7】第3の実施形態による同期整流式DC−DCコンバータの回路図である。
【図8】図7の回路の各部の電圧の時間変化を示すタイミング図である。
【図9】第4の実施形態による同期整流式DC−DCコンバータの回路図である。
【図10】第5の実施形態による同期整流式DC−DCコンバータの回路図である。
【図11】第6の実施形態による同期整流式DC−DCコンバータの回路図である。
【図12】第7の実施形態による同期整流式DC−DCコンバータの回路図である。
【図13】第8の実施形態による同期整流式DC−DCコンバータの回路図である。
【図14】第9の実施形態によるフライバック型コンバータの回路図である。
【図15】従来の同期整流式DC−DCコンバータの回路図である。
【符号の説明】
10 同期整流式DC−DCコンバータ
12 入力端子
14 1次側制御回路
16 2次側制御回路
18 出力端子
20 負荷
30A〜30J 同期整流式DC−DCコンバータ
32A〜32D 逆流抑制回路
34 2次側制御回路
36 比較器
38、38d 三角波生成回路
40 基準電圧源
42 オペアンプ
44、44b、44c A点電位制御回路
48 設定部
50 最小オン幅設定回路
52 基準電圧源
54 オペアンプ
56 自励発振時保護回路
58e〜58k 1次側制御回路
70F〜70K 自励発振保護回路
72f〜72k スイッチング制御回路
82 Q2制御回路
84 Q3制御回路
90 フライバック型コンバータ
92 Q2制御回路
C1、C4 コンデンサ
C2、C3 平滑用コンデンサ
D3、D4、D5、D6 ダイオード
L、L2 平滑用リアクトル
n1 1次巻線
n2、n2” 2次巻線
n3 3次巻線
n4、n4” 4次巻線
n5 5次巻線
P1、P2、P3、P4 寄生ダイオード
Q1〜Q5 MOSトランジスタ
Rd、Re 電流検出用抵抗
Rf、Rg、Rh、Ri、Rj、Rk、Rl 抵抗
T、Ta、Te、Tk トランス
Tr6〜Tr9 nMOSトランジスタ

Claims (12)

  1. 1次巻線及び2次巻線を有すると共に前記1次巻線に直流電圧を受けるトランスと、
    パルス幅変調信号を受けるオンオフ制御端子を有し、前記パルス幅変調信号に応じてオンすることで、前記1次巻線に供給される直流電圧を周期的にスイッチングし、前記2次巻線に交流電圧を生じさせる1次側スイッチング素子と、
    前記2次巻線に生じる交流電圧を整流し、直流の出力電流として供給させるための2次側整流用スイッチング素子と、
    前記2次巻線に生じる電圧に応じて前記2次側整流用スイッチング素子をオン及びオフする2次側制御手段とを備えたDC−DCコンバータにおける出力電流の逆流抑制回路において、
    前記1次巻線を流れる電流を検査電流として検出し、前記検査電流の値が第1の所定値より低くなった時、または、前記1次側スイッチング素子がスイッチングする1周期における前記検査電流の時間積分値が第2の所定値より低くなった時、前記1次側スイッチング素子のデューティ比を高めるように、デューティ比増加信号を出力するデューティ比増加回路と、
    前記デューティ比増加信号を受けて、前記デューティ比増加信号に応じた前記パルス幅変調信号を生成し、前記オンオフ制御端子に入力するパルス幅変調信号生成回路と
    を備えていることを特徴とするDC−DCコンバータにおける出力電流の逆流抑制回路。
  2. 請求項1記載のDC−DCコンバータにおける出力電流の逆流抑制回路において、
    前記デューティ比増加回路は、前記1次巻線を流れる電流の代わりに、前記出力電流を前記検査電流として検出する
    ことを特徴とするDC−DCコンバータにおける出力電流の逆流抑制回路。
  3. 1次巻線及び2次巻線を有すると共に前記1次巻線に直流電圧を受けるトランスと、
    パルス幅変調信号を受けるオンオフ制御端子を有し、前記パルス幅変調信号に応じてオンすることで、前記1次巻線に供給される直流電圧を周期的にスイッチングし、前記2次巻線に交流電圧を生じさせる1次側スイッチング素子と、
    前記2次巻線に生じる交流電圧を整流し、直流の出力電流及び出力電圧として供給させるための2次側整流用スイッチング素子と、
    前記2次巻線に生じる電圧に応じて前記2次側整流用スイッチング素子をオン及びオフする2次側制御手段とを備えたDC−DCコンバータにおける出力電流の逆流抑制回路において、
    前記出力電圧を検出し、前記出力電圧が所定値より高くなった時、前記1次側スイッチング素子のデューティ比を高めるように、デューティ比増加信号を出力するデューティ比増加回路と、
    前記デューティ比増加信号を受けて、前記デューティ比増加信号に応じた前記パルス幅変調信号を生成し、前記オンオフ制御端子に入力するパルス幅変調信号生成回路と
    を備えていることを特徴とするDC−DCコンバータにおける出力電流の逆流抑制回路。
  4. 1次巻線及び2次巻線を有すると共に前記1次巻線に直流電圧を受けるトランスと、
    パルス幅変調信号を受けるオンオフ制御端子を有し、前記パルス幅変調信号に応じてオンすることで、前記1次巻線に供給される直流電圧を周期的にスイッチングし、前記2次巻線に交流電圧を生じさせる1次側スイッチング素子と、
    前記2次巻線に生じる交流電圧を整流し、直流の出力電流として供給させるための2次側整流用スイッチング素子と、
    前記2次巻線に生じる電圧に応じて前記2次側整流用スイッチング素子をオン及びオフする2次側制御手段とを備えたDC−DCコンバータにおける出力電流の逆流抑制回路において、
    前記トランスに磁気的に結合された3次巻線と、
    前記3次巻線の電圧の絶対値が第1の所定値より高くなった時、前記1次側スイッチング素子のデューティ比が第2の所定値以下にならないように、デューティ比制御信号を出力する最小オン幅設定回路と、
    前記デューティ比制御信号を受けて、前記デューティ比制御信号に応じた前記パルス幅変調信号を生成し、前記オンオフ制御端子に入力するパルス幅変調信号生成回路と
    を備えていることを特徴とするDC−DCコンバータにおける出力電流の逆流抑制回路。
  5. 請求項4記載のDC−DCコンバータにおける出力電流の逆流抑制回路において、
    前記第2の所定値を入力するための設定部を備えている
    ことを特徴とするDC−DCコンバータにおける出力電流の逆流抑制回路。
  6. 1次巻線及び2次巻線を有すると共に、前記1次巻線に励磁電流が供給されるトランスと、
    前記1次巻線に供給される前記励磁電流を周期的にスイッチングする1次側スイッチング素子と、
    前記1次巻線に前記励磁電流が流れている時、オンすることで、前記励磁電流により前記2次巻線に生じる誘導電流を通過させ、前記1次巻線に前記励磁電流が流れていない時、オフする2次側整流用スイッチング素子と、
    前記1次巻線に前記励磁電流が流れている時、前記誘導電流を通過させると共にエネルギを蓄積し、前記2次側整流用スイッチング素子がオフしている時、前記蓄積したエネルギを転流電流として供給するリアクトルと、
    前記2次側整流用スイッチング素子がオフしている時、オンして前記転流電流を通過させる2次側転流用スイッチング素子と、
    前記2次巻線に生じる電圧に応じて、前記2次側整流用スイッチング素子及び前記2次側転流用スイッチング素子を交互にオンする2次側制御手段と、
    前記誘導電流及び前記転流電流を直流の出力電流として供給する手段とを備えたDC−DCコンバータの自励発振時保護回路において、
    一方の電極に前記出力電流の一部を受けて充電されるコンデンサと、
    前記2次側転流用スイッチング素子のオン期間に、前記出力電流の一部を前記一方の電極に供給させて前記一方の電極に電荷を蓄積させ、前記2次側転流用スイッチング素子のオフ期間に、前記コンデンサに放電させる充放電制御回路と、前記一方の電極から電圧を受けるオンオフ制御端子を有し、前記一方の電極に蓄積された電荷量が、前記DC−DCコンバータの通常動作時には達しない所定値に達した時、オン状態になり前記2次側転流用スイッチング素子をオフする自励発振制御スイッチと
    を備えていることを特徴とするDC−DCコンバータの自励発振時保護回路。
  7. 1次巻線及び2次巻線を有すると共に前記1次巻線に直流電圧を受けるトランスと、
    前記1次巻線に供給される直流電圧を周期的にスイッチングし、前記2次巻線に交流電圧を生じさせる1次側スイッチング素子と、
    前記2次巻線に生じる交流電圧を整流し、直流の出力電流として供給させるための2次側整流用スイッチング素子と、
    前記2次巻線に生じる電圧に応じて前記2次側整流用スイッチング素子をオン及びオフする2次側制御手段とを備えたDC−DCコンバータの自励発振保護回路において、
    前記トランスに磁気的に結合された3次巻線と、
    オン状態において前記3次巻線の両端を互いに接続するスイッチと、
    前記1次巻線を流れる電流を検査電流として検出し、前記検査電流の値が第1の所定値より低くなった時、または、前記1次側スイッチング素子がスイッチングする1周期における前記検査電流の時間積分値が第2の所定値より低くなった時、前記スイッチをオンすると共に前記1次側スイッチング素子をオフする強制オフ回路と
    を備えていることを特徴とするDC−DCコンバータの自励発振保護回路。
  8. 請求項7記載のDC−DCコンバータの自励発振保護回路において、
    前記強制オフ回路は、前記1次巻線を流れる電流の代わりに、前記出力電流を前記検査電流として検出する
    ことを特徴とするDC−DCコンバータの自励発振保護回路。
  9. 1次巻線及び2次巻線を有すると共に前記1次巻線に直流電圧を受けるトランスと、
    前記1次巻線に供給される直流電圧を周期的にスイッチングし、前記2次巻線に交流電圧を生じさせる1次側スイッチング素子と、
    前記2次巻線に生じる交流電圧を、整流して直流の出力電圧として供給させるための2次側整流用スイッチング素子と、
    前記2次巻線に生じる電圧に応じて前記2次側整流用スイッチング素子をオン及びオフする2次側制御手段とを備えたDC−DCコンバータの自励発振保護回路において、
    前記トランスに磁気的に結合された3次巻線と、
    オン状態において前記3次巻線の両端を互いに接続するスイッチと、
    前記出力電圧を検出し、前記出力電圧が所定値より高くなった時、前記スイッチをオンすると共に前記1次側スイッチング素子をオフする強制オフ回路と
    を備えていることを特徴とするDC−DCコンバータの自励発振保護回路。
  10. 1次巻線及び2次巻線を有すると共に前記1次巻線に直流電圧を受けるトランスと、
    前記1次巻線に供給される直流電圧を周期的にスイッチングし、前記2次巻線に交流電圧を生じさせる1次側スイッチング素子と、
    前記2次巻線に生じる交流電圧を整流し、直流の出力電流として供給させるための2次側整流用スイッチング素子と、
    前記2次巻線に生じる電圧に応じて前記2次側整流用スイッチング素子をオン及びオフする2次側制御手段とを備えたDC−DCコンバータの自励発振保護回路において、
    前記1次巻線を流れる電流を検査電流として検出し、前記検査電流の値が第1の所定値より低くなった時、または、前記1次側スイッチング素子がスイッチングする1周期における前記検査電流の時間積分値が第2の所定値より低くなった時、前記1次側スイッチング素子及び前記2次側整流用スイッチング素子をオフする強制オフ回路を備えていることを特徴とするDC−DCコンバータの自励発振保護回路。
  11. 請求項10記載のDC−DCコンバータの自励発振保護回路において、
    前記強制オフ回路は、前記1次巻線を流れる電流の代わりに、前記出力電流を前記検査電流として検出する
    ことを特徴とするDC−DCコンバータの自励発振保護回路。
  12. 1次巻線及び2次巻線を有すると共に前記1次巻線に直流電圧を受けるトランスと、
    前記1次巻線に供給される直流電圧を周期的にスイッチングし、前記2次巻線に交流電圧を生じさせる1次側スイッチング素子と、
    前記2次巻線に生じる交流電圧を整流し、直流の出力電圧として供給させるための2次側整流用スイッチング素子と、
    前記2次巻線に生じる電圧に応じて前記2次側整流用スイッチング素子をオン及びオフする2次側制御手段とを備えたDC−DCコンバータの自励発振保護回路において、
    前記出力電圧を検出し、前記出力電圧が所定値より高くなった時、前記1次側スイッチング素子及び前記2次側整流用スイッチング素子をオフする強制オフ回路を備えていることを特徴とするDC−DCコンバータの自励発振保護回路。
JP2002368334A 2002-12-19 2002-12-19 Dc−dcコンバータにおける出力電流の逆流抑制回路、dc−dcコンバータの自励発振時保護回路、及びdc−dcコンバータの自励発振保護回路 Pending JP2004201436A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002368334A JP2004201436A (ja) 2002-12-19 2002-12-19 Dc−dcコンバータにおける出力電流の逆流抑制回路、dc−dcコンバータの自励発振時保護回路、及びdc−dcコンバータの自励発振保護回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002368334A JP2004201436A (ja) 2002-12-19 2002-12-19 Dc−dcコンバータにおける出力電流の逆流抑制回路、dc−dcコンバータの自励発振時保護回路、及びdc−dcコンバータの自励発振保護回路

Publications (1)

Publication Number Publication Date
JP2004201436A true JP2004201436A (ja) 2004-07-15

Family

ID=32764932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002368334A Pending JP2004201436A (ja) 2002-12-19 2002-12-19 Dc−dcコンバータにおける出力電流の逆流抑制回路、dc−dcコンバータの自励発振時保護回路、及びdc−dcコンバータの自励発振保護回路

Country Status (1)

Country Link
JP (1) JP2004201436A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314162A (ja) * 2005-05-09 2006-11-16 Shindengen Electric Mfg Co Ltd 同期整流型コンバータ
JP2007318909A (ja) * 2006-05-25 2007-12-06 Nec Computertechno Ltd スイッチング電源及びその電源制御部
JP2008289298A (ja) * 2007-05-18 2008-11-27 Cosel Co Ltd スイッチング電源装置
JP2009148131A (ja) * 2007-12-18 2009-07-02 Shindengen Electric Mfg Co Ltd 同期整流コンバータ
WO2015016885A1 (en) * 2013-07-31 2015-02-05 Hewlett-Packard Development Company, L.P. Digital pulse width modulation control for load switch circuits
CN111555631A (zh) * 2020-05-22 2020-08-18 北京新雷能科技股份有限公司 一种dc/dc变换器及其预偏置控制方法和装置
CN111756246A (zh) * 2019-03-28 2020-10-09 Tdk株式会社 电源装置及医疗系统
TWI777340B (zh) * 2020-12-29 2022-09-11 建準電機工業股份有限公司 逆電流抑制電路

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314162A (ja) * 2005-05-09 2006-11-16 Shindengen Electric Mfg Co Ltd 同期整流型コンバータ
JP4683997B2 (ja) * 2005-05-09 2011-05-18 新電元工業株式会社 同期整流型コンバータ
JP2007318909A (ja) * 2006-05-25 2007-12-06 Nec Computertechno Ltd スイッチング電源及びその電源制御部
JP2008289298A (ja) * 2007-05-18 2008-11-27 Cosel Co Ltd スイッチング電源装置
JP2009148131A (ja) * 2007-12-18 2009-07-02 Shindengen Electric Mfg Co Ltd 同期整流コンバータ
WO2015016885A1 (en) * 2013-07-31 2015-02-05 Hewlett-Packard Development Company, L.P. Digital pulse width modulation control for load switch circuits
CN111756246A (zh) * 2019-03-28 2020-10-09 Tdk株式会社 电源装置及医疗系统
CN111555631A (zh) * 2020-05-22 2020-08-18 北京新雷能科技股份有限公司 一种dc/dc变换器及其预偏置控制方法和装置
CN111555631B (zh) * 2020-05-22 2022-05-31 北京新雷能科技股份有限公司 一种dc/dc变换器及其预偏置控制方法和装置
TWI777340B (zh) * 2020-12-29 2022-09-11 建準電機工業股份有限公司 逆電流抑制電路

Similar Documents

Publication Publication Date Title
US11848603B2 (en) Auxiliary power supply apparatus and method for isolated power converters
US7924579B2 (en) Fly-forward converter power supply
US7075799B2 (en) Self-driven synchronous rectifier circuit
US7738266B2 (en) Forward power converter controllers
KR100760085B1 (ko) 스위칭 전원 공급장치 및 스위칭 방법
US10270354B1 (en) Synchronous rectifier controller integrated circuits
US20110181261A1 (en) Power conversion with zero voltage switching
CN110932553B (zh) 电源控制设备
CN111835201A (zh) 反激式转换器的操作方法、对应控制电路和反激式转换器
KR100681689B1 (ko) 스위칭 전원장치
EP1229635A2 (en) Active gate clamp circuit for self driven synchronous rectifiers
JP6281748B2 (ja) Dc−dcコンバータ
CN212486401U (zh) 电源和用于电源的外围电路
Xiao An instantaneously triggered short-circuit protection architecture for boost switching DC/DC converters
JP2008067454A (ja) Dc/dcコンバータ
US6504735B2 (en) Regulated voltage reducing high-voltage isolated DC/DC converter system
JP2004201436A (ja) Dc−dcコンバータにおける出力電流の逆流抑制回路、dc−dcコンバータの自励発振時保護回路、及びdc−dcコンバータの自励発振保護回路
WO2004019472A1 (ja) 直流変換装置
JP2004350361A (ja) スイッチング電源装置
JP4465713B2 (ja) スイッチング電源装置及び同期整流回路
JP3602079B2 (ja) スイッチング電源回路
KR102537358B1 (ko) 절연형 스위칭 전원
JP4718773B2 (ja) コンバータ
JP2007267450A (ja) 多出力電源装置
WO2019117241A1 (ja) 絶縁型スイッチング電源