JP2008235427A - 可変抵抗素子及びその製造方法、並びにその駆動方法 - Google Patents

可変抵抗素子及びその製造方法、並びにその駆動方法 Download PDF

Info

Publication number
JP2008235427A
JP2008235427A JP2007070322A JP2007070322A JP2008235427A JP 2008235427 A JP2008235427 A JP 2008235427A JP 2007070322 A JP2007070322 A JP 2007070322A JP 2007070322 A JP2007070322 A JP 2007070322A JP 2008235427 A JP2008235427 A JP 2008235427A
Authority
JP
Japan
Prior art keywords
electrode
resistance element
conductive film
variable resistance
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007070322A
Other languages
English (en)
Other versions
JP4805865B2 (ja
Inventor
Tetsuya Onishi
哲也 大西
Yasunari Hosoi
康成 細井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007070322A priority Critical patent/JP4805865B2/ja
Publication of JP2008235427A publication Critical patent/JP2008235427A/ja
Application granted granted Critical
Publication of JP4805865B2 publication Critical patent/JP4805865B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

【課題】 LSIプロセス整合性が良く、更にフィラメントパスを形成しなくても抵抗スイッチング動作が可能で、かつ安定な抵抗値、保持特性を示す可変抵抗素子を提供する。
【解決手段】 第1電極2と第2電極3の間に可変抵抗体4が狭持され、第1電極2と第2電極3の間に電圧パルスが印加されることで両電極間の電気抵抗が変化する可変抵抗素子であって、可変抵抗体4が、遷移金属酸化物又は遷移金属酸窒化物で構成されており、第1電極2と接触する第1接触面から、第2電極3と接触する第2接触面に向けて、含有されている酸素濃度が低下する遷移金属酸化物又は遷移金属酸窒化物で構成されている。
【選択図】 図1

Description

本発明は、一方の電極と他方の電極と可変抵抗体とを備え、前記可変抵抗体が前記一方の電極と前記他方の電極とに挟持された領域に存し、両電極間に電圧パルスを印加することにより電気抵抗が変化する可変抵抗素子の製造方法に関する。
近年、フラッシュメモリに代わる高速動作可能な次世代不揮発性ランダムアクセスメモリ(NVRAM:Nonvolatile Random Access Memory)として、FeRAM(Ferroelectric RAM)、MRAM(Magnetic RAM)、PRAM(Phase Change RAM)などの様々なデバイス構造が提案され、高性能化、高信頼性化、低コスト化、及び、プロセス整合性という観点から、激しい開発競争が行われている。しかしながら、現状のこれらメモリデバイスには各々一長一短があり、SRAM、DRAM、フラッシュメモリの各利点を併せ持つ「ユニバーサルメモリ」の理想実現には未だ遠い。
これら既存技術に対して、電圧パルスを印加することによって可逆的に電気抵抗が変化する可変抵抗素子を用いた抵抗性不揮発性メモリRRAM(Resistive Random Access Memory)(登録商標)が提案されている。この構成を図20に示す。
図20に示されるように、可変抵抗素子は、2つの電極(第1電極2、及び第2電極3)の間に可変抵抗体4が狭持される構成となっており、図20では、特に可変抵抗体4がその上下層に形成されている両電極(2及び3)によって上下方向に狭持される場合について示されている。そして、これら両電極の間に電圧パルスを印加することにより、抵抗値を可逆的に変化させることができる性質を有する。この可逆的な抵抗変化動作(以下では「スイッチング動作」と称する)によって変化する抵抗値を読み出すことによって、新規な不揮発性半導体記憶装置が実現できる構成である。
この不揮発性半導体記憶装置は、可変抵抗素子を備える複数のメモリセル夫々を行方向及び列方向にマトリクス状に配列してメモリセルアレイを形成するとともに、このメモリセルアレイの各メモリセルに対するデータの書き込み、消去、及び読み出し動作を制御する周辺回路を配置して構成される。そして、このメモリセルとしては、その構成要素の違いから、1つのメモリセルが1つの選択トランジスタTと1つの可変抵抗素子Rとから構成される(「1T/1R型」と称される)メモリセルや、1つの可変抵抗素子Rのみから構成される(「1R型」と称される)メモリセルなどが存在する。
ところで、可変抵抗体4を構成する材料としては、米国ヒューストン大のShangquing LiuやAlex Ignatievなどによって、超巨大磁気抵抗効果で知られるペロブスカイト材料に電圧パルスを印加することによって可逆的に電気抵抗を変化させる方法が下記の特許文献1及び非特許文献1に開示されている。この方法は超巨大磁気抵抗効果で知られるペロブスカイト材料を用いながらも、磁場の印加なしに室温においても数桁にわたる抵抗変化が現れるという極めて画期的なものである。なお、特許文献1に例示する素子構造では、可変抵抗体の材料としてはペロブスカイト型酸化物である結晶性プラセオジウム・カルシウム・マンガン酸化物Pr1−XCaMnO(PCMO)膜が用いられている。
図21は、可変抵抗体4にPCMO膜91を用いて構成した場合の従来の可変抵抗素子の概略断面構造図である。図21に示される従来の可変抵抗素子90は、基板(例えばSi基板)11上に、下地絶縁膜12、第2電極3、PCMO膜91(可変抵抗体4に相当)、第1電極2、層間絶縁膜14、及び導電膜(メタル配線)23及び24が形成されている。なお、導電膜23及び24は、夫々、予め層間絶縁膜13に形成されていたコンタクトホール25及び26を充填するように形成されており、これによって第1電極2及び第2電極3夫々に対する電気的コンタクトがとられている。
このような構成の下、メタル配線23及び24に印加すべき電圧を適宜制御することで、第1電極2及び第2電極3に印加される電圧を制御し、これによって可変抵抗体4(PCMO膜91)の抵抗値を変化させることができ、可変抵抗素子としての機能が奏される。
又、このような可変抵抗体4の材料は、遷移金属の酸化物である、酸化チタン(TiO)膜、ニッケル酸化(NiO)膜、酸化亜鉛(ZnO)膜、酸化ニオブ(Nb)膜についても可逆的な抵抗変化を示すことが非特許文献2及び特許文献2等から知られている。特に酸化チタンや酸化ニッケルは可変抵抗素子に流れ込む電流による熱上昇によって、酸化物中に局所的に抵抗率が低下した領域(以下、適宜「フィラメントパス」と称する)が形成されたり、フィラメントパスが分解されたりすることによって、抵抗変化が発生していると考えられている。
更に、可変抵抗体4の材料としては、酸化チタン(TiO)膜、ニッケル酸化(NiO)膜、酸化亜鉛(ZnO)膜、酸化ニオブ(Nb)膜などの遷移金属元素の酸化物についても、可逆的な抵抗変化を示すことが非特許文献2及び特許文献2等から知られている。このうち、酸化チタンを用いたスイッチング動作の現象が非特許文献3〜6に、酸化ニッケルについては非特許文献7に詳細に報告されている。
米国特許第6204139号明細書 Liu,S.Q.ほか、"Electric−pulse−induced reversible Resistance change effect in magnetoresistive films",Applied Physics Letter, Vol.76,pp.2749−2751,2000年 H.Pagniaほか、"Bistable Switching in Electroformed Metal−Insulator−Metal Devices",Phys.Stat.Sol.(a),vol.108,pp.11−65,1988年 特表2002−537627号公報 G.Taylorほか、"RF Relaxation Oscllations in Polycrystalline TiO2 Thin Films",Solide−State Electrinics,1976,vol.19,pp.669−674 F.Argallほか、"Switching Phenomena in Titanium Oxide Thin Films",Solid−State Electronics,Pergamon Press 1968,vol.11,pp.535−541 Beamほか、Proc. IEEE, 52,300−1,1964 F.Argall, Solid State Electronicis Pergamon Press 1968, vol.11, pp.535 S.Seoほか、Applied Physics Letters 86,093509,2005
電圧パルスにより抵抗が変化する可変抵抗体4の材料として、上記ペロブスカイト型酸化物を用いた場合、結晶化温度が500℃〜700℃と高く、LSIの配線形成後に形成できない。又、ペロブスカイトの構成元素は、現在、LSIプロセスで用いられていない材料がほとんどであり、これらの元素がデバイス特性に影響を及ぼす可能性があるため、これらの元素の汚染の検証や対策が必要となる。
例えば、ペロブスカイト型酸化物としてPCMOを用いた場合、一方の極性の印加パルスで抵抗値を上げ、逆の極性のパルスで抵抗を下げることができるが、これとは全く逆の極性の組み合わせによっても抵抗が同様に変動できてしまう特性がある。このため、抵抗を下げる際に印加される極性パルスを可変抵抗素子に対して繰り返し印加すると、逆に抵抗が上昇してしまう場合がある。
これに対して、可変抵抗体4の材料として酸化チタンや酸化ニッケルを用いる場合、チタンやニッケル元素がLSIプロセスで広く用いられているため、デバイス特性に影響を及ぼす可能性はない。しかしながら、従来検討されてきた酸化チタンや酸化ニッケルの可変抵抗素子の抵抗変化は、電圧パルス印加条件によりフィラメントパスが形成されたり分解されたりして低抵抗や高抵抗となる現象に基づくものである。このスイッチング動作を得るためには、最初に特定の電圧を印加してフィラメントパスを形成する必要がある(以下では「フォーミングプロセス」と称する)。
又、スイッチング動作回数の増加によりフィラメントパスの径や、フィラメント密度が変化することによって抵抗値が変動したり、抵抗値がフィラメントで決まっているため低抵抗状態の素子には面積依存性が見られないなどの課題があり、デバイスとして実用化には至っていない。
本発明は、上記の問題に鑑みてなされたものであり、LSIプロセス整合性が良く、更にフィラメントパスを形成しなくても抵抗スイッチング動作が可能で、かつ安定な抵抗値、保持特性を示す可変抵抗素子を提供することを目的とする。
上記目的を達成するための本発明に係る可変抵抗素子は、第1電極と第2電極の間に可変抵抗体が狭持され、前記第1電極と前記第2電極の間に電圧パルスが印加されることで両電極間の電気抵抗が変化する可変抵抗素子であって、前記可変抵抗体が、遷移金属酸化物又は遷移金属酸窒化物で構成されており、前記第1電極と接触する第1接触面から、前記第2電極と接触する第2接触面に向けて、含有されている酸素濃度が低下する遷移金属酸化物又は遷移金属酸窒化物で構成されていることを第1の特徴とする。
本発明に係る可変抵抗素子の上記第1の特徴構成によれば、可変抵抗体を構成する材料に含有されている酸素が、第1電極と接触する第1接触面近傍領域において高い酸素濃度を示しており、第2電極と接触する第2接触面に向けてその濃度が低下するような構成である。従って、酸素濃度が高い第1接触面近傍においては酸素欠陥が少なく、第1接触面から第2接触面に向かって酸素欠陥が多くなる。酸素欠陥が存在しない又は少ない領域においては、酸素欠陥が多い領域と比較してキャリア(電子)の濃度が低いため、高抵抗状態となる。このため、パルス電圧が印加される前の初期状態において、酸素濃度が均一な可変抵抗体を有する従来の可変抵抗素子よりもある程度高抵抗状態を示すこととなる。
このとき、第2電極に対する第1電極の電圧が正極性となるようなパルス電圧が印加されると、酸素濃度の低い領域である第2接触面近傍領域に電子が注入され、この電子の一部が酸素原子の欠陥準位に捕獲される結果、酸素イオンが生成される。この酸素イオンは負極性であるため、正極性電圧が印加されている第1電極に引き寄せられた後、第1接触面近傍に存在する酸素欠陥に捕獲される。上記のとおり、第1接触面近傍は、初期状態において、ある程度酸素欠陥の量が少なく構成されているところ、前記のパルス電圧が印加されることによって更に酸素欠陥の量が減少するため、当該領域近傍において更に高抵抗化されることとなる。
逆に、第1電極に対する第2電極の電圧が正極性となるようなパルス電圧が印加されると、可変抵抗体内の酸素イオンが正極性電圧が印加されている第2電極側に移動することから、第1接触面近傍領域において酸素欠陥の量が増加し、当該領域近傍における抵抗特性が低抵抗化される。
ところで、可変抵抗体は、第1接触面近傍領域に形成されている領域と、それ以外の領域とが直列に接続されて構成されているものと見ることができるため、第1接触面近傍領域の抵抗特性が高抵抗状態であれば可変抵抗体全体としても高抵抗状態を示し、逆に、第1接触面近傍領域の抵抗特性が低抵抗状態であれば可変抵抗体全体としても低抵抗状態を示す。従って、上記のようにパルス電圧の極性の正負を反転させることで、抵抗特性のスイッチングが可能となる。
即ち、本構成によれば、電極との接触面近傍における酸素欠陥の量の制御することで抵抗特性を変化させるため、従来構成のようにフィラメントパスを形成する必要がない。従って、従来構成のように、スイッチング動作回数の増加による抵抗値の変動等の問題が発生することがなく、安定した抵抗値並びに保持特性を示す可変抵抗素子の実現が図られる。
又、本発明に係る可変抵抗素子は、上記第1の特徴構成に加えて、前記可変抵抗体を構成する前記遷移金属酸化物又は前記遷移金属酸窒化物が、前記第1接触面から前記第2接触面の方向に10nm進んだ位置において、含有されている酸素濃度を前記第1接触面と比較して15%以上低下させることを第2の特徴とする。
本発明に係る可変抵抗素子の上記第2の特徴構成によれば、フォーミングプロセスを行うことなく初期状態の可変抵抗素子に対する抵抗特性の遷移を確実に実現することができる。
又、本発明に係る可変抵抗素子は、上記第1又は第2の特徴構成に加えて、前記可変抵抗体を構成する前記遷移金属酸化物又は前記遷移金属酸窒化物が、前記第1接触面から前記第2接触面に向けて微結晶の体積密度を低下させることを第3の特徴とする。
一般的に、遷移金属酸化物又は繊維金属酸窒化物の微結晶の体積密度が高いほど酸素欠陥量は少なく、前記体積密度が低いほど酸素欠陥量は多くなる。従って、本発明に係る可変抵抗素子の上記第3の特徴構成によれば、第1接触面近傍領域において酸素欠陥量を少なくすることができるため、印加電圧の極性を変化させて当該領域近傍の酸素欠陥量の多寡を制御することで、フィラメントパスを形成することなく可変抵抗素子の抵抗特性を変化させることができる。
又、本発明に係る可変抵抗素子は、上記第1〜第3の何れか一の特徴構成に加えて、前記第2電極が前記第1電極の形成面に向かって突出する突出部を有し、前記可変抵抗体が、前記第1電極と連結するように前記第2電極の突出部の先端に形成される層状の遷移金属酸化物又は遷移金属酸窒化物の多結晶体であって、当該多結晶体の界面と前記第1接触面の界面とによって形成される角度が0°以上22°以下であることを第4の特徴とする。
又、本発明に係る可変抵抗素子は、上記第1〜第4の何れか一の特徴構成に加えて、前記可変抵抗体が、Ti又はNiの酸化物又は酸窒化物で構成されることを第5の特徴とする。
尚、当該可変抵抗体は、上記材料以外の遷移金属材料の酸化物又は酸窒化物、例えば、Cu、Nb、Zn、Co、W、V等で構成されるものとしても良い。
又、上記目的を達成するため、本発明に係る可変抵抗素子の製造方法は、上記第1の特徴構成を有する可変抵抗素子の製造方法であって、基板上に前記第2電極を形成する第1工程と、前記第1工程終了後、前記第2電極の一部を露出させる第2工程と、前記第2工程終了後、前記第2電極の露出面に接触するように前記可変抵抗体を形成する第3工程と、前記第3工程終了後、前記可変抵抗体と接触するように前記第1電極を形成する第4工程と、を有し、前記第3工程が、前記第2電極の露出面近傍から、所定の方向に向かって含有される酸素濃度が上昇又は低下するような条件下で前記可変抵抗体を形成する工程であることを第1の特徴とする
本発明に係る可変抵抗素子の製造方法の上記第1の特徴によれば、製造後の可変抵抗素子が備える可変抵抗体は、第1電極と接触する第1接触面近傍領域において高い酸素濃度を示しており、第2電極と接触する第2接触面に向けてその濃度が低下するような構成となる。従って、印加パルス電圧の正負極性を変更して第1接触面近傍領域に存在する酸素欠陥量の多寡を調整することで、フィラメントパスを形成することなく抵抗特性の変化が可能な可変抵抗素子を製造が可能となる。
又、本方法によれば、従来の半導体装置の製造プロセスを利用することができるため、新たな専用装置を別途必要とすることがなく、従来の製造装置を用いて安定的なスイッチング特性を示す可変抵抗素子の製造が可能となる。
又、本発明に係る可変抵抗素子の製造方法は、上記第1の特徴に加えて、前記第3工程が、前記第2電極の露出面から前記第2電極の内部方向に向かって前記可変抵抗体内部の酸素濃度が低下するような条件下での酸化処理であることを第2の特徴とする。
本発明に係る可変抵抗素子の製造方法の上記第2の特徴によれば、酸化時間や酸化時の温度条件を制御することにより、前記露出面近傍領域の酸素濃度と、前記露出面近傍領域から内部方向に進んだ位置における酸素濃度との濃淡の程度を容易に調整することができる。
又、本発明に係る可変抵抗素子の製造方法は、上記第2の特徴に加えて、前記第3工程が、反応温度を2段階以上変化させながら酸化処理を施す工程であることを第3の特徴とする。
本発明に係る可変抵抗素子の製造方法の上記第3の特徴によれば、複雑な制御を行うことなく、可変抵抗体内の位置に応じて含有される酸素濃度を調整することができる。
尚、当該第3工程に係る酸化処理としては、酸素又は酸素を含むガスをプラズマで励起することによって発生される酸素ラジカルによって酸化を行うプラズマ酸化処理や、オゾン雰囲気下で酸化を行うオゾン酸化処理、酸素或いは酸素を含むガスの雰囲気下で酸化を行う通常の熱酸化処理等を採用することができる。かかる場合も反応温度を2段階以上変化させながら行うことで、可変抵抗体内の位置に応じて含有される酸素濃度の調整が可能となる。
又、本発明に係る可変抵抗素子の製造方法は、上記第2又は第3の特徴に加えて、前記第1工程が、前記基板上に所定形状にパターニングされた第1導電膜を堆積する工程と、その後に、第1層間絶縁膜を堆積後、所定領域を開口して前記第1導電膜の一部上面を露出させる開口部を形成する工程と、その後に、前記開口部を完全には充填しない範囲の膜厚で、前記第1導電膜と接触するように前記開口部の底面及び内側側面を含む全面に第2導電膜を堆積する工程と、その後に、第2層間絶縁膜を堆積する工程と、を有し、前記第1導電膜と前記第2導電膜とが結合されることで前記第2電極を形成する工程であり、前記第2工程が、前記第1層間絶縁膜の上面が露出するまで前記第2層間絶縁膜及び前記第2導電膜を除去する工程であることを第4の特徴とする。
又、本発明に係る可変抵抗素子の製造方法は、上記第4の特徴に加えて、前記第3工程が、前記第2導電膜の結晶成長方向に対して68°以上90°以下の方向で前記第2導電膜に対して酸化処理を施す工程であることを第5の特徴とする。
本発明に係る可変抵抗素子の製造方法の上記第5の特徴によれば、低抵抗特性における抵抗値と高抵抗特性における抵抗値との抵抗比を大きくすることができるため、定常状態において抵抗特性が遷移するようなことがなく、安定したスイッチング特性の実現が可能な可変抵抗素子を製造することができる。
尚、例えば第2導電型がTiNである場合、前記結晶成長方向とは、NaCl型結晶構造の(1,1,1)優先配向面の法線方向を指すものとし、このとき、かかる方向に対して68°以上90°以下の方向で当該第2導電膜に対して酸化処理が施されることとなる。
又、本発明に係る可変抵抗素子の製造方法は、上記第2又は第3の特徴に加えて、前記第1工程が、前記基板上に第1導電膜と第1層間絶縁膜を堆積後、両者を所定形状にパターニングすることで、パターニングされた前記第1導電膜によって前記第2電極を形成する工程であり、前記第2工程が、前記第1工程においてパターニングされた前記第1導電膜の側壁部分を露出する工程であることを特徴とする第6の特徴とする。
又、本発明に係る可変抵抗素子の製造方法は、上記第6の特徴に加えて、前記第3工程が、前記第2工程において露出された前記第1導電膜の側壁部分に対し、当該第1導電膜の結晶成長方向に対して直交する方向で酸化処理を施す工程であることを第7の特徴とする。
本発明に係る可変抵抗素子の製造方法の上記第7の特徴によれば、低抵抗特性における抵抗値と高抵抗特性における抵抗値との抵抗比を大きくすることができるため、定常状態において抵抗特性が遷移するようなことがなく、安定したスイッチング特性の実現が可能な可変抵抗素子を製造することができる。
又、本発明に係る可変抵抗素子の製造方法は、上記第1の特徴に加えて、前記第1工程が、前記基板上に第1導電膜を堆積後、所定形状にパターニングすることで、パターニングされた前記第1導電膜によって前記第2電極を形成する工程であり、前記第2工程が、
第1層間絶縁膜を全面に堆積後、所定領域を開口して前記第2電極の一部上面を露出させる開口部を形成する工程であり、前記第3工程が、遷移金属酸化物又は遷移金属酸窒化物で構成される可変抵抗体膜を、前記開口部の底面に位置する前記第2電極の露出面近傍から上方へ向かって含有される酸素濃度が上昇するような条件下で、前記開口部を充填するように全面に堆積する工程であることを第8の特徴とする。
本発明に係る可変抵抗素子の製造方法の上記第8の特徴によれば、前記開口部内に堆積される可変抵抗体は、上面近傍領域における含有酸素濃度が高く、前記開口部底面に向かって含有酸素濃度が低下するような条件下で成膜される。従って、その後に当該可変抵抗体の上面に第1電極を堆積することで、第1電極との接触面近傍領域における酸素濃度を高くし、第2電極との接触面に向けて酸素濃度が低下するような可変抵抗体を実現することができるため、印加パルス電圧の正負極性を変更して第1接触面近傍領域に存在する酸素欠陥量の多寡を調整することで、フィラメントパスを形成することなく抵抗特性の変化が可能な可変抵抗素子を製造が可能となる。
又、本発明に係る可変抵抗素子の製造方法は、上記第8の特徴に加えて、前記第3工程が、酸素流量又は酸素分圧を2段階以上変化させながら前記可変抵抗体膜をALD法、CVD法、又は反応性スパッタリング法によって堆積する工程であることを第9の特徴とする。
本発明に係る可変抵抗素子の製造方法の上記第9の特徴によれば、複雑な制御を行うことなく、可変抵抗体内の位置に応じて含有される酸素濃度を調整することができる。
又、上記目的を達成するため、本発明に係る可変抵抗素子の駆動方法は、上記第1の特徴を有する可変抵抗素子の駆動方法であって、前記可変抵抗素子の抵抗特性を低抵抗状態から高抵抗状態に遷移させる場合には、前記第1電極が前記第2電極に対して正極性となるようなパルス電圧を両電極間に印加し、前記可変抵抗素子の抵抗特性を高抵抗状態から低抵抗状態に遷移させる場合には、前記第1電極が前記第2電極に対して負極性となるようなパルス電圧を両電極間に印加することを特徴とする。
本発明に係る可変抵抗素子の駆動方法の上記特徴によれば、可変抵抗体内の酸素欠陥量の多寡に応じた抵抗特性の遷移を行うことができる。即ち、初期状態における酸素濃度が高く酸素欠陥量が少ない第1電極側に正電圧が印加されることで、負極性電圧が印加されることで第2電極側の可変抵抗体内部で生成された酸素イオンが第1電極側に引き寄せられる結果、更に酸素欠陥量が減少されて第1電極近傍領域において高抵抗状態を実現することができ、可変抵抗素子全体としても高抵抗状態を実現することができる。逆に、第1電極側に負電圧が印加されることで、第1電極側の可変抵抗体内部で生成されて第2電極側に引き寄せされる結果、第1電極側近傍領域内の酸素欠陥量が増加し、第1電極近傍領域において低抵抗状態を実現することができ、可変抵抗素子全体としても低抵抗状態を実現することができる。
本発明の構成によれば、フィラメントパスを形成することなく抵抗スイッチング動作が可能となる。これにより、フィラメントパスの形成状態に基づいて抵抗特性が変化する従来構成と比較して、スイッチング後の抵抗特性を安定化することができる。従って、本発明に係る可変抵抗素子を備えることで、データの保持特性が良好な不揮発性半導体記憶装置の実現が可能となる。
以下において、本発明に係る可変抵抗素子(以下、適宜「本発明素子」と称する)、及びその製造方法、並びにその駆動方法(以下、適宜「本発明方法」と称する)の各実施形態について図面を参照して説明する。
[第1実施形態]
本発明素子及びその製造方法、並びに駆動方法の第1実施形態(以下、適宜「本実施形態」と称する)につき、以下の図1〜図11の各図を参照して説明する。
図1は、本実施形態に係る本発明素子の概略断面構造図である。本発明素子1は、基板下地絶縁膜12が形成された半導体基板11上に、導電性材料13及び16からなる第2電極3と、導電性材料21からなる第1電極2とを下からこの順に有し、第2電極3(を構成する導電性材料16)と第1電極2との間に可変抵抗体20が形成されている。又、導電性材料13と導電性材料21との間には第1層間絶縁膜14及び第2層間絶縁膜17が成膜されており、導電性材料21(第1電極2)は第3層間絶縁膜22で覆われている。そして、第1層間絶縁膜14及び第2層間絶縁膜22の所定領域にはコンタクトホールが形成され、当該コンタクトホール内を充填される導電性材料(メタル配線)23及び24によって第1電極2及び第2電極3に対する電気的接続が可能となっている。
以下に、図1及び図2〜図4の各図を参照して本発明素子1の製造工程について説明する。尚、以下の図2(a)〜(e)、図3(a)〜(d)の各図は、本発明素子1を製造する際の一過程における概略断面構造図である(紙面の都合上2図面に分かれている)。又、図4は本発明素子1の製造工程をフローチャートにしたものであり、以下の文中の各ステップは、図4に示されるフローチャートの一ステップを表すものとする。
尚、図1〜図3の各図に示される各概略断面構造図は、あくまで模式的に図示されたものであるため、実際の構造の寸法の縮尺と図面の縮尺とは必ずしも一致するものではない。又、各工程で堆積される各膜の膜厚並びに開口部の直径等の寸法の数値はあくまで一例であって、この値に限定されるものではない。以下の各実施形態においても同様とする。
まず、図2(a)に示すように、下地絶縁膜12が形成された半導体基板11上に、例えばスパッタリング法によって導電性材料である第1導電膜13(以下、TiN膜とする)を膜厚200nm程度で堆積する。その後、フォトリソグラフィ法及びエッチング法によって所定の形状にパターニングを施す(ステップ#1)。
次に、図2(b)に示すように、例えばCVD(Chemical Vapor Deposition)法によって絶縁性材料である第1層間絶縁膜14(以下、SiO膜とする)を膜厚500nm程度堆積する。その後、表面をCMP(Chemical Mechanical Polishing)法により平坦化する(ステップ#2)。なお、平坦化後の第1導電膜13の上部に形成されている第1層間絶縁膜14の膜厚は200nm程度である。
次に、図2(c)に示すように、フォトリソグラフィ法及びエッチング法によって第1導電膜13が下層に形成されている一部の領域内に、第1導電膜13の上面が露出するように第1層間絶縁膜14に直径400nm程度の開口部15を形成する(ステップ#3)。
次に、図2(d)に示すように、開口部15を完全には充填しない程度に、基板面全体に第2導電膜16をスパッタリング法により堆積させる(ステップ#4)。なお、第2導電膜16は第1導電膜13と同一の材料とし、ここではTiN膜とする。このとき、例えば、第2導電膜16の膜厚を50nm程度とすると、開口部15の外側側壁には膜厚20nm程度の第2導電膜16が堆積し、その内側は開口された状態のままとなる。
次に、図2(e)に示すように、ステップ#2と同様、例えばCVD法によって第2層間絶縁膜17(SiO膜とする)を膜厚400nm程度で堆積させる(ステップ#5)。
次に、図3(a)に示すように、第1層間絶縁膜14の上面が露出する程度にまで第2層間絶縁膜17及び第2導電膜16を除去し、ステップ#4において開口部15の外側側壁に沿って堆積された第2導電膜16の上面を露出させる(ステップ#6)。当該工程により、第2導電膜16の上面が環状に露出する。このとき、当該環状に露出されている第2導電膜16の内側はステップ#5で堆積された第2層間絶縁膜17が形成されており、環状に露出されている第2導電膜16の外側はステップ#2で堆積された第1層間絶縁膜14が形成されている。
次に、図3(b)に示すように、第2導電膜16に対し、露出面から第1導電膜13の方向に向かって酸化処理を施す(ステップ#7)。当該酸化処理によって、TiN膜で構成されていた第2導電膜16の一部がTiON等のチタン酸窒化物(以下、単に「TiON」と記載)に変化し、これによって可変抵抗体20が形成される。このとき、可変抵抗体20を構成するTiONに含まれる酸素濃度が、露出面近傍から第1導電膜13の形成位置方向(図面では下向き)に向けて低くなるような条件下でステップ#7に係る酸化処理を施す。
具体的には、例えば250℃程度のオゾン雰囲気下で第2導電膜16の露出面に対して酸化処理を施し、その後、連続的又は2段階以上の複数段階に分けて断続的に反応温度を上昇させながら酸化処理を施し、最終的には450℃程度まで上昇させるものとする。尚、この反応温度の値は一例であり、初期の段階では200℃〜300℃程度の温度条件下で酸化処理を行い、温度上昇を行いながら、最終的には250℃〜450℃程度の温度条件下で酸化処理を行うものとして良い。本ステップにより、可変抵抗体20を構成するTiONの微結晶の占める体積密度は、露出面近傍領域において高密度となり、第1導電膜13形成領域に向かって低下する構成となる。
次に、図3(c)に示すように、ステップ#7で形成された可変抵抗体20に接触するように、上面に第3導電膜21(ここでは第1導電膜13、第2導電膜16と同様にTiN膜とする)を堆積する(ステップ#8)。
本ステップ#8を経ることにより、可変抵抗体20は、第2導電膜16と第1導電膜13が一体化されることで構成される第2電極3と、第3導電膜21によって構成される第1電極2との間に狭持されることとなり、図20に示される概念構成図と同一の構成を示すこととなる。
次に、図3(d)に示すように、CVD法によって絶縁性材料である第3層間絶縁膜22(以下、SiO膜とする)を膜厚500nm程度堆積する(ステップ#9)。
その後、第3導電膜21の形成領域の上部に位置する第3層間絶縁膜22、並びに第1導電膜13の形成領域の上部に位置する第1層間絶縁膜14及び第3層間絶縁膜22に対してそれぞれ下部の導電膜の上面が露出するようにコンタクトホールを形成し、当該コンタクトホール内を導電性材料(例えば、膜厚400nmのAl−Si−Cu膜と膜厚50nmのTiN膜の積層構造)で充填することで、メタル配線23及び24を形成する(ステップ#10、図1参照)。これにより、メタル配線23を介して第2導電膜21(第1電極2)に対して電圧印加が可能となり、メタル配線24を介して第1導電膜13(第2電極3)に対して電圧印加が可能となる。
図5は、上述した本実施形態の製造方法に基づいて製造された本発明素子の抵抗特性を示すグラフである。比較のために、ステップ#7において、均一条件下で酸化処理を行う従来の酸化処理を施して製造された可変抵抗素子の抵抗特性を並べて表示している。図5(a)が、温度条件を変化させずに酸化処理を行った場合の抵抗特性を示すグラフであり、図5(b)が、温度条件を変化させながら酸化処理を行った場合の抵抗特性を示すグラフである。即ち、図5(a)は、可変抵抗体4内の酸素濃度が均一な可変抵抗素子についての抵抗特性であり、図5(b)は、可変抵抗体4内の酸素濃度が位置によって異なるように設定されている可変抵抗素子についての抵抗特性である。尚、図5(b)では、第1電極2と接触する第1接触面から第2電極3の方向に10nm進んだ位置において、含有されている酸素濃度が30%低下している可変抵抗素子を用いて測定を行った。
尚、図5(a)及び(b)では、横軸は印加されるパルス電圧の大きさを示し、縦軸は当該パルス電圧印加後に測定した可変抵抗素子の抵抗値を示しており、パルス電圧の正負は、第2電極3に対する第1電極2の極性の正負によって定義している。又、パルス電圧印加後の可変抵抗素子の抵抗特性の測定方法については後述する。
従来の方法に基づいて製造された可変抵抗素子の抵抗特性を初期状態から変化させるためには、上述したように所期のフィラメントパスを形成するためのフォーミングプロセスを行う必要がある。図5(a)では、初期状態A0から低抵抗状態A1に対して抵抗特性を変化させるために、絶対値の十分大きなパルス電圧(グラフでは−7V)の印加を行うことで当該フォーミングプロセスが実行されている。このフォーミングプロセスの実行によりフィラメントパスが形成された後は、フォーミングプロセス時に印加したパルス電圧よりも絶対値の小さい正負両極性の電圧を交互に印加することで、抵抗特性のスイッチングが実現できる。図5(a)では、+2.2Vのパルス電圧と−1.8Vのパルス電圧を交互に印加することで、高抵抗状態と低抵抗状態との間での遷移が可能となっている。
これに対し、本実施形態に基づく製造方法で製造された本発明素子の場合、図5(b)に示されるように、一度抵抗特性を変化させた後の可変抵抗素子の抵抗特性を変化させるために印加すべき電圧(抵抗特性をB1からB2に変化させるために必要な−1.8V程度の電圧、或いは、抵抗特性をB2からB3に変化させるために必要な+2.2V程度の電圧)の絶対値と同程度の電圧を初期状態B0において印加することで、抵抗特性の変化が実現できている。図5(b)では、一度抵抗特性を変化させた後の可変抵抗素子を高抵抗特性に遷移させるために必要なパルス電圧と同一のパルス電圧+2.2Vが印加されることで、初期状態から抵抗特性B1に遷移されていることが分かる。このことは、本実施形態に基づく製造方法で製造された本発明素子の抵抗特性を変化させる際には、従来必要であったフォーミングプロセスが不要となっていることを示唆するものと言える。以下、この理由について検討する。
上記ステップ#7において、反応温度を変化させながら酸化処理を行うことにより、第2導電膜16に対する酸化の進行程度が変化する。一定の処理時間の下では、反応温度が低い場合と比較して、反応温度が高いほど第2導電膜16の酸化が進行する。即ち、反応温度が低い場合と比較して反応温度が高いほど、同一時間内において第2導電膜16の露出面から第1導電膜13の形成位置方向に対して、より酸化が進行することとなる。
この結果、反応温度が低い状態でも酸化が可能な第2導電膜16の露出面近傍に対しては、長時間の酸化処理が施される一方、反応温度が低い状態では酸化が進行せず、反応温度が所定温度以上の下で酸化が行われる領域に対しては、前記の露出面近傍と比較して酸化が施される時間が少ない。従って、露出面近傍では、長時間に亘って第2導電膜16(TiN)が酸化される結果、酸化によって生成される可変抵抗体20(TiON等)に含有される酸素濃度が高くなる。逆に、露出面近傍から第1導電膜13の形成位置方向(内部方向)に進んだ領域においては、露出面近傍と比較して酸化処理が行われる時間が短いため、酸化によって生成される可変抵抗体20(TiON等)に含有される酸素濃度が低くなる。即ち、本ステップ#7において生成される可変抵抗体20は、露出面近傍において含有される酸素濃度が高く、露出面近傍から第1導電膜13の形成位置方向に向かってその酸素濃度が低下することとなる。
ところで、可変抵抗体20は、初期状態において酸素欠陥を有しており、この酸素欠陥の多寡は、含有される酸素濃度の影響を受ける。即ち、酸素濃度が高い露出面近傍、即ち、第2導電膜21(第1電極2)との接触面近傍においては酸素欠陥が少なく、第1接触面から第1導電膜13の形成位置方向に向かって酸素欠陥が多くなる。酸素欠陥が存在しない又は少ない領域においては、酸素欠陥が多い領域と比較してキャリア(電子)の濃度が低いため、高抵抗状態となる。
図6は、本発明素子に対してパルス電圧を印加したときの抵抗状態変化を説明するための模式図である。尚、以下では、説明の理解を容易にするため、図6を参照して説明を行う際には、図20で用いた符号と同一の符号を用いて説明を行う。
上述したように、可変抵抗体4(可変抵抗体20に対応)は、第1電極2(第3導電膜21に対応)との接触面近傍において酸素濃度が高く、第2電極3(第1導電膜13、未酸化状態の第2導電膜16)の方向に向かって酸素濃度が低下するように形成される(図6(a)参照)。
ここで、図6(b)に示すように、酸素濃度が低い第2電極3に対して酸素濃度が高い第1電極2側が正極性となるようなパルス電圧(又はパルス電流。以下では単に「パルス電圧」と記載)を印加する。このとき、当該印加パルスによって酸素濃度が低い領域である第2電極3側から可変抵抗体4に対して電子が注入される。この注入された電子の一部は、可変抵抗体4内に存在する酸素原子の欠陥準位に捕獲され、この酸素原子を酸素イオンにイオン化する。当該酸素イオンは負極性であるため、正極性電圧が印加されている第1電極2側に移動し、第1電極2側の可変抵抗体4内部に存在する酸素欠陥に捕獲される。この結果、第1電極2側では酸素欠陥の量が更に減少し、当該領域が高抵抗状態となる(図6(c)参照)。可変抵抗体4は、第1電極2側に形成されている領域と、それ以外の領域とが直列に接続されて構成されているものと見ることができるため、第1電極2側に形成されている領域が高抵抗状態となることにより、可変抵抗体4が全体として高抵抗状態を示すこととなる。
一方、図6(d)に示すように、前記とは逆極性のパルス電圧、即ち、酸素濃度が高い第1電極2に対して酸素濃度が低い第2電極3側が正極性となるようなパルス電圧を印加すると、可変抵抗体4内の酸素イオンは、正極性電圧が印加されている第2電極3側に移動する。この酸素イオンの移動により、酸素原子には酸素欠陥が発生する。酸素イオンは、高抵抗状態となる第1電極2側において多く存在するため、当該パルス電圧が印加されることで第1電極2側の領域には酸素欠陥が多く発生することとなる。この結果、第1電極2側の抵抗状態が低抵抗化されるため、可変抵抗体4が全体として低抵抗化されることとなる。
本実施形態では、ステップ#7において、温度を変化させながら酸化処理を行うことで、可変抵抗体4が有する酸素濃度を領域に応じて異ならせると共に、第1電極2と接触する領域近傍の可変抵抗体4に対しては十分に酸化可能な範囲内の温度条件下で酸化処理が施される。この結果、第1電極2と接触する領域近傍の可変抵抗体4の酸素濃度は高濃度状態となり、製造後の初期状態に係る酸素欠陥の量を減少させることができる。従って、図6(b)に示すような極性のパルス電圧を印加することで、第1電極2と接触する領域近傍に存在する酸素欠陥の量に対して十分な酸素イオンの補填が行われるため、容易に高抵抗領域を形成することができる。
又、本発明素子においては、上記可変抵抗体4の高抵抗化における酸素イオンの移動先となる第1電極2側近傍の可変抵抗体4の酸素濃度を高くしたので、高抵抗化された後の抵抗状態の遷移、即ち低抵抗化、に寄与する酸素イオンを第1電極2側に近いほど多く形成することができると共に、低抵抗化のための電圧が印加されるまでこれらの酸素イオンの移動が困難となるため、高抵抗状態を安定的に維持することができる。
又、本発明素子においては、可変抵抗体4の電気抵抗を高抵抗状態から低抵抗状態とする際に、他方の電極に対して負極性になるようにパルス電圧が印加される第1電極2側と接触する領域近傍の可変抵抗体4の酸素濃度を高くし、他方の電極である第2電極3側に向かって酸素濃度が低下するように構成したので、第2電極3側への酸素イオンの移動が容易になり、より効率的に酸素欠陥の生成による低抵抗化が可能となる。更に、第1電極2側と接触する領域近傍の可変抵抗体4の酸素濃度を低くして初期状態の酸素欠陥量を多くしたので、第2電極3側から移動してくる酸素イオンの補填による酸素欠陥量の低下を回避し、高抵抗状態に遷移させるためのパルス電圧が印加されるまでの間、低抵抗状態を安定的に維持することができる。
特に、図5を参照することにより、温度条件を変化させずに製造を行うことで酸素濃度が可変抵抗体4内全体において略均一である可変抵抗素子(図5(a))の場合は、フォーミングプロセスが必要となる一方、温度条件を変化させて製造することで、可変抵抗体4に含有されている酸素濃度が第1電極2と接触する第1接触面から第2電極3の方向に10nm進んだ位置において、含有されている酸素濃度が30%低下している可変抵抗素子(図5(b))の場合には、フォーミングプロセスが不要となっていることが分かる。温度条件を種々変更し、可変抵抗体に含有されている酸素濃度を変更させることにより、第1電極2と接触する第1接触面から第2電極3の方向に10nm進んだ位置において、含有されている酸素濃度が15%以上低下していればフォーミングプロセスが不要となることが確認された。
本発明は、パルス電圧によって抵抗値が変化する可変抵抗体を備える可変抵抗素子が示す抵抗値によって、情報記憶に活用することをその目的の一つとするものであるため、パルス電圧を印加後に決定される可変抵抗素子の抵抗値が、次のパルス電圧印加後まで安定的に保持されるかどうかという問題は重要である。この点について以下に図面を参照して検証する。
図7は、上記の方法によって製造された本発明素子に対し、スイッチング動作を数回行った後、可変抵抗素子を高温状態(150℃)に維持した状態で、10時間、100時間、1000時間後に適宜室温下で抵抗値を読み出した結果を示すグラフである。図7(a)は、可変抵抗素子を低抵抗状態で保持した場合を示しており、図7(b)は、可変抵抗素子を高抵抗状態で保持した場合を示している。
図7(a)及び(b)に示されるように、上記方法によって製造された本発明素子は、高温状態の下で1000時間経過した後においても、自己の抵抗状態が低抵抗状態であるか高抵抗状態であるかによらず、自己の抵抗状態を維持することが可能であることが確認された。
図7の測定結果は、本発明素子が高温状態においても良好な抵抗値を保持することが可能であり、安定的な抵抗特性を示すことを示唆するものである。即ち、本発明素子が電圧パルスの印加によってデータを繰り返し書き換え可能で、高温環境下でも良好なデータ保持特性を有する不揮発性記憶装置として適用することが可能であることを意味するものである。
尚、本発明素子1の低抵抗状態における抵抗値と高抵抗状態における抵抗値との比率(以下、適宜「本発明素子1の抵抗比」と略記する)を向上させることでスイッチング特性を良好にするためには、所定の角度条件の下でステップ#7における酸化処理を行うことも有用である。
図8及び図9は、ステップ#7に係る酸化処理において望ましい酸化条件を説明するための模式図である。図8は、ステップ#7に係る酸化処理の実行直前の状態における概念的模式図、図9は、ステップ#7に係る酸化処理終了後、第3導電膜21が堆積された状態(ステップ#8)における概念的模式図である。
図8に示すように、ステップ#7では、ステップ#4において堆積された第2導電膜16の露出面に対して上方から酸化を施す。ところで、第2導電膜16は、ステップ#4においてスパッタリング法によりTiNが堆積されることで形成されたものであるため、当該膜16は層状の多結晶体で構成されている。ステップ#7では、この第2導電膜16が構成する界面方向、即ち結晶成長方向に対して、68°以上90°以下の角度から当該露出面に対して酸化を行うのが好ましい。
このとき、ステップ#3における開口部15の形成工程の際、開口部15を所定の角度を有するテーパ形状とし、この角度を調整することで、第2導電膜16の結晶成長方向を調整することができるため、これによって、かかる結晶成長方向と酸化を行う方向とが形成する角度(以下、適宜「酸化角度」と記載)の調整を行う(前記の範囲内に収める)ことができる。
ステップ#3においてテーパ形状を有する開口部15を形成後、ステップ#4において第2導電膜16を堆積することで、開口部15内に充填される第2導電膜16はテーパ角に応じた界面方向(結晶成長方向)を示すこととなる。従って、その後ステップ#5及び#6を経た後、第2導電膜16の露出面の上方から酸化処理を施すことで、テーパ角に応じた酸化角度で第2導電膜16を酸化することができる。この酸化角度が前記68°以上90°以下の範囲内となるよう、予め定められたテーパ角を有するテーパ形状の開口部15をステップ#3において形成する。
このような角度条件の下で酸化処理が施されると、図9に示されるように、酸化処理によって形成された可変抵抗体20を構成するTiONの界面方向(結晶成長方向)と、ステップ#8において堆積される第3導電膜21を構成するTiNの接触界面とは0°以上22°以下の範囲となる。
図10は、ステップ#7における酸化角度と製造後の本発明素子1の抵抗比との関係を示すグラフであり、酸化角度を横軸に、縦軸に抵抗比を縦軸としてグラフ化したものである。
図10を参照すれば、TiNの結晶方向と酸化方向とが形成する角度が65°以下の範囲であれば、概ね抵抗比は40倍程度以下の値を示しているが、68°以上の範囲内であれば120倍以上の高い抵抗比が実現されている。抵抗比が高いほど、高抵抗状態と低抵抗状態との区別が顕著化されるため、定常状態において抵抗特性が遷移するようなことがなく、安定したスイッチング特性が実現できる。従って、68°以上90°以下の範囲内の角度で第2導電膜16に対して酸化を行うことで、更に安定したスイッチング特性の実現が図られる。
以下、図5或いは図7に示すような可変抵抗素子の抵抗特性を測定するための測定方法につき、説明する。
図11は、可変抵抗素子への電圧パルスの印加、及びI−V特性を測定するための測定装置の構成を示したものである。当該測定装置30は、測定対象となる可変抵抗素子R(本発明素子1)、パルスジェネレータ34、デジタルオシロスコープ31、パラメータアナライザ32、及び切替スイッチ33を備えて構成される。パラメータアナライザ32は、例えば、アジレントテクノロジー社製の型番4156Bを用い、電流電圧測定器として使用する。
測定の際には、可変抵抗素子Rの一方の端子をデジタルオシロスコープ31のグランドに接続し、他方の端子を切替スイッチ33の固定端に接続する。更に、デジタルオシロスコープ31の一端子とパルスジェネレータ34の一端子とを接続する。そして、切替スイッチ33の可動端の一方の端子と、デジタルオシロスコープ31の他端子及びパルスジェネレータ30の他端子とを接続して一方の回路を形成する。更に、切替スイッチの可動端の他方の端子とパラメータアナライザ32とを接続し他方の回路を形成する。このようにして切替スイッチ33の可動端の切替動作によって、双方の回路を切り替え可能に形成し、測定系とする。
そして、電圧パルス印加時には、切替スイッチ33を操作してパルスジェネレータ34と可変抵抗素子Rを電気的に接続して電圧パルスを印加する。この時発生させる電圧パルスをデジタルオシロスコープ31にて観測する。続いて、切替スイッチ33をパラメータアナライザ32に接続して(パルスジェネレータ34とは切断して)、可変抵抗素子RのI−V特性を測定する。
本発明素子1の抵抗特性を測定する際においては、まず本発明素子1の第1電極2側に+2.2V(電圧振幅2.2Vの正極性パルス)、パルス幅(パルス印加時間)50n秒で電圧が印加されるようにパルスジェネレータ34から電圧パルスを発生させ、印加後の抵抗値をパラメータアナライザ32でI−V特性を測定して求める。測定後は、本発明素子1の第1電極2側に−1.8V(電圧振幅1.8Vの負極性パルス)、パルス幅35n秒で電圧が印加されるようにパルスジェネレータ34から電圧パルスを発生させ、印加後の抵抗値をパラメータアナライザ32でI−V特性を測定して求める。
又、I−V特性の測定は、上記電圧パルスの印加毎に行い、+0.5Vの電圧印加時の電流値を測定する。その結果より、電圧パルス印加後の可変抵抗素子の抵抗値を導出する。尚、上述した本発明方法に基づいて製造された本発明素子1は、±2.0V程度の電圧パルスを印加することで抵抗値は変化するが、±0.5Vの比較的低い電圧を印加しても抵抗値が殆ど変化しないため、電圧パルス印加後の可変抵抗素子の抵抗値を、それ以後の電圧パルス印加に影響を与えずに測定できる。
尚、製造された本発明素子の抵抗特性を測定する測定方法については、後述する各実施形態においても本実施形態と同様とする。
又、上記において、ステップ#7では、オゾンを用いた酸化処理を行うものとしたが、酸素又は酸素を含むガスの雰囲気下で酸化処理を行うものとしても構わないし、酸素又は酸素を含むガスをプラズマで励起することにより、酸素ラジカルを発生させて、第2導電膜16を酸化するものとしても良い。
又、上記において、ステップ#7では、温度条件を適宜変化させながら酸化処理を行うことで、形成される可変抵抗体20に含有される酸素濃度を第2導電膜16の露出面近傍領域から第1導電膜13の形成位置に向かって低下させる構成としたが、酸素濃度に差異が生じるような条件下での酸化処理であれば、必ずしも温度条件の変化を伴う必要はない。例えば、反応律速状態の下では、同一温度下であっても露出面近傍領域から離れるほど酸素濃度に差異が生じるため、このような状況下で酸化処理を行った場合であっても、上述した本発明素子1と同様の効果を奏することができる。以下の各実施形態において、酸化処理を行う場合も同様とする。
又、上述した本発明素子1の製造方法においては、フォトリソグラフィ法を行う際に実行されるフォトレジストの塗布、露光、及び現像の各工程、或いは、エッチング後にフォトレジストを剥離する工程、エッチング後やレジスト除去後に行われる洗浄工程等の一般的な工程については省略している。以下の各実施形態においても同様とする。
[第2実施形態]
本発明素子及びその製造方法、並びに駆動方法の第2実施形態(以下、適宜「本実施形態」と称する)につき、以下の図12〜図15の各図を参照して説明する。
図12は、本実施形態に係る本発明素子の概略断面構造図である。本発明素子1aは、第1実施形態に係る本発明素子1と比較すると、本発明素子1においては可変抵抗体20が基板面に対して直交する方向に形成されているのに対し、本実施形態に係る本発明素子1aにおいては基板面に対して平行方向に可変抵抗体20が形成されている点が異なる。
図12に示される本発明素子1aは、基板下地絶縁膜12が形成された半導体基板11上に、導電性材料13からなる第2電極3と、導電性材料21からなる第1電極2とを下からこの順に有し、導電性材料13(第2電極3)と導電性材料21(第1電極2)との間に可変抵抗体20が形成されている。又、導電性材料13と導電性材料21との間には第1層間絶縁膜14が成膜されており、導電性材料21(第1電極2)は第3層間絶縁膜22で覆われている。そして、第1層間絶縁膜14及び第3層間絶縁膜22の所定領域にはコンタクトホールが形成され、当該コンタクトホール内を充填される導電性材料(メタル配線)23及び24によって第1電極2及び第2電極3に対する電気的接続が可能となっている。
以下に、図12〜図16の各図を参照して本発明素子1aの製造工程について説明する。尚、以下の図13(a)〜(e)の各図は、本発明素子1aを製造する際の一過程における概略断面構造図である。又、図14は本発明素子1aの製造工程をフローチャートにしたものであり、以下の文中の各ステップは、図14に示されるフローチャートの一ステップを表すものとする。
まず、図13(a)に示すように、下地絶縁膜12が形成された半導体基板11上に、例えばスパッタリング法によって導電性材料である第1導電膜13(以下、TiN膜とする)を膜厚40nm程度で堆積する(ステップ#21)。
次に、図13(b)に示すように、例えばCVD法によって絶縁性材料である第1層間絶縁膜14(以下、SiO膜とする)を膜厚500nm程度堆積する(ステップ#22)。
次に、図13(c)に示すように、フォトリソグラフィ法及びエッチング法によって、第1導電膜13及び第1層間絶縁膜14をパターニングし、第1導電膜13の側壁部分を露出する(ステップ#23)。このとき、第1導電膜13の上面は第1層間絶縁膜14に覆われている。
次に、図13(d)に示すように、第1導電膜13に対し、露出面から第1導電膜13の内部方向に向かって酸化処理を施す(ステップ#24)。当該酸化処理によって、TiN膜で構成されていた第1導電膜13の一部がTiON等のチタン酸窒化物(以下、単に「TiON」と記載)に変化し、これによって可変抵抗体20が形成される。このとき、可変抵抗体20を構成するTiONに含まれる酸素濃度が、露出面近傍から第1導電膜13の内部方向(図面では左向き)に向けて低くなるような条件下でステップ#24に係る酸化処理を施す。
具体的には、例えば250℃程度の酸素ガスをプラズマで励起することにより酸素ラジカルを発生させて第1導電膜13の露出面に対して酸化処理を施し、その後、連続的又は2段階以上の複数段階に分けて断続的に反応温度を上昇させながら酸化処理を施し、最終的には450℃程度まで上昇させるものとする。尚、本実施形態の場合、第1実施形態と異なり、酸化処理が施される方向は、第1導電膜13を構成するTiNの結晶方向に対して直交する方向となる(図15参照)。本ステップにより、可変抵抗体20を構成するTiONの微結晶の占める体積密度は、露出面近傍領域において高密度となり、第1導電膜13の内部方向(図面左向き、当該露出面から離れる方向)に向かって低下する構成となる。
又、上記の反応温度の値は一例であり、初期の段階では200℃〜300℃程度の温度条件下で酸化処理を行い、温度上昇を行いながら、最終的には250℃〜450℃程度の温度条件下で酸化処理を行うものとして良い。又、第1実施形態で上述したのと同様に、オゾン雰囲気による酸化法を用いて酸化処理を行うものとしても良い。
次に、図13(e)に示すように、可変抵抗体20と接触するように第3導電膜21を形成する(ステップ#25)。具体的には、例えばPtを膜厚150nm程度でスパッタ法によって堆積した後、フォトリソグラフィ法及びエッチング法によって図13(e)に示されるような形状にパターニングを行う。尚、本実施形態では、ステップ#24における酸化方向が第1導電膜13を構成するTiNの結晶方向に対して直交する方向であるため、可変抵抗体20を構成するTiONの結晶方向と第3導電膜21を構成するPtの接触界面とが形成する角度は略0°程度となる(図16参照)。
その後、CVD法によって絶縁性材料である第3層間絶縁膜22(以下、SiO膜とする)を膜厚500nm程度堆積し、第1実施形態と同様の方法でメタル配線23及び24を形成する(ステップ#26、図12参照)。これにより、メタル配線23を介して第2導電膜21(第1電極2)に対して電圧印加が可能となり、メタル配線24を介して第1導電膜13(第2電極3)に対して電圧印加が可能となる。
本実施形態においても、第1実施形態と同様、製造後の初期状態における本発明素子1aが備える可変抵抗体20(4)は、第3導電膜21(第1電極2)との接触面において含有される酸素濃度が高く、第1導電膜13(第2電極3)の形成領域に向かって酸素濃度を低下させる構成を示す。従って、本実施形態に係る本発明素子1aにおいても、第1実施形態に係る本発明素子1と同様、初期状態に対してフォーミングプロセスを行うことなく、酸素濃度が低い第1導電膜13に対して酸素濃度が高い第3導電膜21側が正極性となるようなパルス電圧を印加することで高抵抗化が図られ、逆に、酸素濃度が高い第3導電膜21に対して酸素濃度が低い第1導電膜13側が正極性となるようなパルス電圧を印加することで低抵抗化が図られる。
尚、上記において、ステップ#24では、プラズマを用いて酸化処理を行うものとしたが、第1実施形態と同様、オゾン或いは酸素又は酸素を含むガスの雰囲気下で加熱することで酸化処理を行うものとしても良い。
[第3実施形態]
本発明素子及びその製造方法、並びに駆動方法の第2実施形態(以下、適宜「本実施形態」と称する)につき、以下の図17〜図19の各図を参照して説明する。
図17は、本実施形態に係る本発明素子の概略断面構造図である。本発明素子1bは、第1実施形態における本発明素子1が備える可変抵抗体20が、上面視形状が環状であってその内側に絶縁膜17を有する構成であるのに対し、本実施形態における本発明素子1bが備える可変抵抗体20は、内側が完全に可変抵抗体20で充填されており、絶縁膜17を備えない構成である点が異なる。
図17に示される本発明素子1bは、基板下地絶縁膜12が形成された半導体基板11上に、導電性材料13からなる第2電極3と、導電性材料21からなる第1電極2とを下からこの順に有し、導電性材料13(第2電極3)と導電性材料21(第1電極2)との間に可変抵抗体20が形成されている。又、導電性材料13と導電性材料21との間には第1層間絶縁膜14が成膜されており、導電性材料21(第1電極2)は第3層間絶縁膜22で覆われている。そして、第1層間絶縁膜14及び第3層間絶縁膜22の所定領域にはコンタクトホールが形成され、当該コンタクトホール内を充填される導電性材料(メタル配線)23及び24によって第1電極2及び第2電極3に対する電気的接続が可能となっている。
以下に、図17〜図19の各図を参照して本発明素子1bの製造工程について説明する。尚、以下の図18(a)〜(e)の各図は、本発明素子1bを製造する際の一過程における概略断面構造図である。又、図19は本発明素子1bの製造工程をフローチャートにしたものであり、以下の文中の各ステップは、図19に示されるフローチャートの一ステップを表すものとする。
まず、下地絶縁膜12が形成された半導体基板11上に、例えばスパッタリング法によって導電性材料である第1導電膜13(以下、Pt膜とする)を膜厚200nm程度で堆積した後、フォトリソグラフィ法及びエッチング法によって所定の形状にパターニングを施す(ステップ#31)。そして、図18(a)に示すように、例えばCVD法によって絶縁性材料である第1層間絶縁膜14(以下、SiO膜とする)を膜厚400nm程度堆積した後、表面をCMP法により平坦化する(ステップ#32)。尚、平坦化後の第1導電膜13の上部に形成されている第1層間絶縁膜14の膜厚は100nm程度である。
次に、図18(b)に示すように、フォトリソグラフィ法及びエッチング法によって第1導電膜13が下層に形成されている一部の領域内に、第1導電膜13の上面が露出するように第1層間絶縁膜14に直径275nm程度の開口部15を形成する(ステップ#33)。
次に、図18(c)に示すように、ALD法(Atomic Layer Deposition)法により可変抵抗体20を構成する遷移金属酸化膜又は遷移金属酸窒化膜(以下、ここではNiO膜とする)を膜厚200nm程度堆積し、開口部15内を可変抵抗体膜20で充填する(ステップ#34)。このとき、開口部15内に充填される可変抵抗体膜20に含有される酸素濃度が、開口部15の最上面近傍領域において酸素濃度が高く、第1導電膜13の上面位置方向に向かって酸素濃度が低下するような条件下でステップ#34に係る成膜を行う。
具体的には、NiO膜の成膜の際、酸素ガスを添加した状態で成膜するものとし、成膜処理の初期段階においてはこの添加される酸素ガスの流量を少なく設定し、その後連続的又は2段階以上の複数段階に分けて断続的に酸素ガスの流量を増加していきながら成膜処理を行うこととする。これにより、成膜されるNiO膜は、上面に近いほど酸素濃度が高く、上面から離れるほど、即ち、第1導電膜13の露出面(上面)に近付くほど酸素濃度が低下する。
尚、本ステップでは、ALD法による成膜の他、CVD法や反応性スパッタリング法によって可変抵抗体膜を成膜するものとしても良い。CVD法に基づいて成膜する場合には、前記のALD法の場合と同様、添加される酸素ガスの流量を変化させることで成膜条件を変化させ、これにより成膜される可変抵抗体膜20の含有酸素濃度に勾配を持たせることができる。又、反応性スパッタリング法による場合には、Ar/Oガスの下でスパッタリングを行い、Oガスの分圧を変化させることで成膜条件を変化させて、成膜される可変抵抗体膜20の含有酸素濃度に勾配を持たせることができる。この場合、例えば、初期段階においては、Ar流量を90〜100sccm程度、O流量を0〜10sccm程度でスパッタ処理を行い、その後、連続的又は2段階以上の複数段階に分けて断続的にO分圧を増加させながらスパッタ処理を行って、最終的にAr流量を40〜60sccm程度、O流量を40〜60sccm程度でスパッタ処理を行うものとすることができる。
次に、図18(d)に示すように、開口部15の外部に堆積された可変抵抗体膜20、即ち第1層間絶縁膜14の上面に堆積された可変抵抗体20をCMP法により除去し、平坦化する(ステップ#35)。
次に、図18(e)に示すように、ステップ#35で形成された可変抵抗体20に接触するように、上面に第3導電膜21を堆積する(ステップ#36)。具体的には、例えばPtを膜厚150nm程度でスパッタ法によって堆積した後、フォトリソグラフィ法及びエッチング法によって図18(e)に示されるような形状にパターニングを行う。
その後、CVD法によって絶縁性材料である第3層間絶縁膜22(以下、SiO膜とする)を膜厚500nm程度堆積し、第1実施形態と同様の方法でメタル配線23及び24を形成する(ステップ#37、図17参照)。これにより、メタル配線23を介して第2導電膜21(第1電極2)に対して電圧印加が可能となり、メタル配線24を介して第1導電膜13(第2電極3)に対して電圧印加が可能となる。
本実施形態においても、第1及び第2実施形態と同様、製造後の初期状態における本発明素子1bが備える可変抵抗体20(4)は、第3導電膜21(第1電極2)との接触面において含有される酸素濃度が高く、第1導電膜13(第2電極3)の形成領域に向かって酸素濃度を低下させる構成を示す。従って、本実施形態に係る本発明素子1bにおいても、上記各実施形態と同様、初期状態に対してフォーミングプロセスを行うことなく、酸素濃度が低い第1導電膜13に対して酸素濃度が高い第3導電膜21側が正極性となるようなパルス電圧を印加することで高抵抗化が図られ、逆に、酸素濃度が高い第3導電膜21に対して酸素濃度が低い第1導電膜13側が正極性となるようなパルス電圧を印加することで低抵抗化が図られる。
尚、第1及び第2実施形態では、第2電極3としてTiNを利用するものとしたが、酸化処理されることで生成される酸化物が抵抗可変特性(スイッチング特性)を有する材料であれば、TiNに限定されるものではない。即ち、TiNの他、Cu、Ni、Ti、Nb、Zn、Co、W、V等の遷移金属材料、又はこれらの窒化物で構成されるものとしても構わないし、更にこれらの複合膜で構成されるものとしても良い。このとき、第1及び第2実施形態では、第2電極3として利用される材料が酸化されることで生成される遷移金属酸化物又は遷移金属酸窒化物が可変抵抗体4として利用される。
又、第1及び第2実施形態における第1電極2の材料、及び第3実施形態の第1電極2及び第2電極3の材料は、一般的に電極としての機能を奏する導電性材料であれば良く、上述したTiN、Ptの他、Ir、Os、Ru、Rh、Pd、Ti、Al、Cu、Zn、Mn、Zr、Ni、V、W、Co等の遷移金属材料、又はこれらの窒化物で構成されるものとしても構わないし、更にこれらの複合膜で構成されるものとしても良い。
又、第3実施形態における可変抵抗体4の材料としては、上述したNiO膜の他、抵抗可変特性(スイッチング特性)を有する遷移金属酸化物又は繊維金属酸窒化物であれば、いかなる材料(例えばCuO、NiO、TiON等)であっても構わない。
本発明に係る第1実施形態の可変抵抗素子の概略断面構造図 本発明に係る第1実施形態の可変抵抗素子の製造方法を示す各製造工程毎の概略断面構造図(1) 本発明に係る第1実施形態の可変抵抗素子の製造方法を示す各製造工程毎の概略断面構造図(2) 本発明に係る第1実施形態の可変抵抗素子の製造方法を示すフローチャート 本発明に係る第1実施形態の可変抵抗素子の抵抗特性を示すグラフ 本発明に係る可変抵抗素子に対してパルス電圧を印加したことによる抵抗状態の変化を説明するための模式図 本発明に係る可変抵抗素子の抵抗状態の保持特性を示すグラフ 本発明に係る第1実施形態の可変抵抗素子の製造方法の一工程に係る酸化処理において望ましい酸化角度条件を説明するための模式図(1) 本発明に係る第1実施形態の可変抵抗素子の製造方法の一工程に係る酸化処理において望ましい酸化角度条件を説明するための模式図(2) 酸化角度と製造後の本発明に係る可変抵抗素子の抵抗比との関係を示すグラフ 可変抵抗素子の抵抗特性を測定するための測定系の構成を示す概略構成図 本発明に係る第2実施形態の可変抵抗素子の概略断面構造図 本発明に係る第2実施形態の可変抵抗素子の製造方法を示す各製造工程毎の概略断面構造図 本発明に係る第1実施形態の可変抵抗素子の製造方法を示すフローチャート 本発明に係る第2実施形態の可変抵抗素子の製造方法の一工程に係る酸化処理において望ましい酸化角度条件を説明するための模式図(1) 本発明に係る第2実施形態の可変抵抗素子の製造方法の一工程に係る酸化処理において望ましい酸化角度条件を説明するための模式図(2) 本発明に係る第3実施形態の可変抵抗素子の概略断面構造図 本発明に係る第3実施形態の可変抵抗素子の製造方法を示す各製造工程毎の概略断面構造図 本発明に係る第3実施形態の可変抵抗素子の製造方法を示すフローチャート 可変抵抗素子の概念的構成図 PCMO膜を用いた従来の可変抵抗素子の概略断面構造図
符号の説明
1: 本発明に係る第1実施形態の可変抵抗素子
1a: 本発明に係る第2実施形態の可変抵抗素子
1b: 本発明に係る第3実施形態の可変抵抗素子
2: 第1電極
3: 第2電極
4: 可変抵抗体
11: 半導体基板
12: 下地絶縁膜
13: 第1導電膜
14: (第1)層間絶縁膜
16: 第2導電膜
17: 第2層間絶縁膜
20: 可変抵抗体
21: 第3導電膜
22: 第3層間絶縁膜
23: 導電膜(メタル配線)
24: 導電膜(メタル配線)
25: コンタクトホール
26: コンタクトホール
30: 抵抗特性測定装置
31: パルスジェネレータ
31a: パルスジェネレータの出力端子
32: デジタルオシロスコープ
32a、32b: デジタルオシロスコープの入力端子
32g: デジタルオシロスコープのグランド端子
33: パラメータアナライザ
34: 切替スイッチ
34a: 切替スイッチの固定端
34b、34c: 切替スイッチの可動端
90: 従来の可変抵抗素子
91: PCMO膜

Claims (15)

  1. 第1電極と第2電極の間に可変抵抗体が狭持され、前記第1電極と前記第2電極の間に電圧パルスが印加されることで両電極間の電気抵抗が変化する可変抵抗素子であって、
    前記可変抵抗体が、
    遷移金属酸化物又は遷移金属酸窒化物で構成されており、前記第1電極と接触する第1接触面から、前記第2電極と接触する第2接触面に向けて、含有されている酸素濃度が低下する遷移金属酸化物又は遷移金属酸窒化物で構成されていることを特徴とする可変抵抗素子。
  2. 前記可変抵抗体を構成する前記遷移金属酸化物又は前記遷移金属酸窒化物が、前記第1接触面から前記第2接触面の方向に10nm進んだ位置において、含有されている酸素濃度を前記第1接触面と比較して15%以上低下させることを特徴とする請求項1に記載の可変抵抗素子。
  3. 前記可変抵抗体を構成する前記遷移金属酸化物又は前記遷移金属酸窒化物が、前記第1接触面から前記第2接触面に向けて微結晶の体積密度を低下させることを特徴とする請求項1又は請求項2に記載の可変抵抗素子。
  4. 前記第2電極が前記第1電極の形成面に向かって突出する突出部を有し、
    前記可変抵抗体が、前記第1電極と連結するように前記第2電極の突出部の先端に形成される層状の遷移金属酸化物又は遷移金属酸窒化物の多結晶体であって、当該多結晶体の界面と前記第1接触面の界面とによって形成される角度が0°以上22°以下であることを特徴とする請求項1〜請求項3の何れか1項に記載の可変抵抗素子。
  5. 前記可変抵抗体が、Ti又はNiの酸化物又は酸窒化物で構成されることを特徴とする請求項1〜請求項4の何れか1項に記載の可変抵抗素子。
  6. 請求項1に記載の可変抵抗素子の製造方法であって、
    基板上に前記第2電極を形成する第1工程と、
    前記第1工程終了後、前記第2電極の一部を露出させる第2工程と、
    前記第2工程終了後、前記第2電極の露出面に接触するように前記可変抵抗体を形成する第3工程と、
    前記第3工程終了後、前記可変抵抗体と接触するように前記第1電極を形成する第4工程と、を有し、
    前記第3工程が、前記第2電極の露出面近傍から、所定の方向に向かって含有される酸素濃度が上昇又は低下するような条件下で前記可変抵抗体を形成する工程であることを特徴とする可変抵抗素子の製造方法。
  7. 前記第3工程が、前記第2電極の露出面から前記第2電極の内部方向に向かって前記可変抵抗体内部の酸素濃度が低下するような条件下での酸化処理であることを特徴とする請求項6に記載の可変抵抗素子の製造方法。
  8. 前記第3工程が、
    反応温度を2段階以上変化させながら酸化処理を施す工程であることを特徴とする請求項7に記載の可変抵抗素子の製造方法。
  9. 前記第1工程が、
    前記基板上に第1導電膜を堆積後、所定形状にパターニングする工程と、
    その後に、第1層間絶縁膜を堆積後、所定領域を開口して前記第1導電膜の一部上面を露出させる開口部を形成する工程と、
    その後に、前記開口部を完全には充填しない範囲の膜厚で、前記第1導電膜と接触するように前記開口部の底面及び内側側面を含む全面に第2導電膜を堆積する工程と、
    その後に、第2層間絶縁膜を堆積する工程と、を有し、
    前記第1導電膜と前記第2導電膜とが結合されることで前記第2電極を形成する工程であり、
    前記第2工程が、
    前記第1層間絶縁膜の上面が露出するまで前記第2層間絶縁膜及び前記第2導電膜を除去する工程であることを特徴とする請求項7又は請求項8に記載の可変抵抗素子の製造方法。
  10. 前記第3工程が、
    前記第2導電膜の結晶成長方向に対して68°以上90°以下の方向で前記第2導電膜に対して酸化処理を施す工程であることを特徴とする請求項9に記載の可変抵抗素子の製造方法。
  11. 前記第1工程が、
    前記基板上に第1導電膜と第1層間絶縁膜を堆積後、両者を所定形状にパターニングすることで、パターニングされた前記第1導電膜によって前記第2電極を形成する工程であり、
    前記第2工程が、前記第1工程においてパターニングされた前記第1導電膜の側壁部分を露出する工程であることを特徴とする請求項7又は請求項8に記載の可変抵抗素子の製造方法。
  12. 前記第3工程が、前記第2工程において露出された前記第1導電膜の側壁部分に対し、当該第1導電膜の結晶成長方向に対して直交する方向で酸化処理を施す工程であることを特徴とする請求項11に記載の可変抵抗素子の製造方法。
  13. 前記第1工程が、
    前記基板上に第1導電膜を堆積後、所定形状にパターニングすることで、パターニングされた前記第1導電膜によって前記第2電極を形成する工程であり、
    前記第2工程が、
    第1層間絶縁膜を全面に堆積後、所定領域を開口して前記第2電極の一部上面を露出させる開口部を形成する工程であり、
    前記第3工程が、
    遷移金属酸化物又は遷移金属酸窒化物で構成される可変抵抗体膜を、前記開口部の底面に位置する前記第2電極の露出面近傍から上方へ向かって含有される酸素濃度が上昇するような条件下で、前記開口部を充填するように全面に堆積する工程であることを特徴とする請求項6に記載の可変抵抗素子の製造方法。
  14. 前記第3工程が、
    酸素流量又は酸素分圧を2段階以上変化させながら前記可変抵抗体膜をALD法、CVD法、又は反応性スパッタリング法によって堆積する工程であることを特徴とする請求項13に記載の可変抵抗素子の製造方法。
  15. 請求項1に記載の可変抵抗素子の駆動方法であって、
    前記可変抵抗素子の抵抗特性を低抵抗状態から高抵抗状態に遷移させる場合には、前記第1電極が前記第2電極に対して正極性となるようなパルス電圧を両電極間に印加し、
    前記可変抵抗素子の抵抗特性を高抵抗状態から低抵抗状態に遷移させる場合には、前記第1電極が前記第2電極に対して負極性となるようなパルス電圧を両電極間に印加することを特徴とする可変抵抗素子の駆動方法。
JP2007070322A 2007-03-19 2007-03-19 可変抵抗素子 Expired - Fee Related JP4805865B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007070322A JP4805865B2 (ja) 2007-03-19 2007-03-19 可変抵抗素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007070322A JP4805865B2 (ja) 2007-03-19 2007-03-19 可変抵抗素子

Publications (2)

Publication Number Publication Date
JP2008235427A true JP2008235427A (ja) 2008-10-02
JP4805865B2 JP4805865B2 (ja) 2011-11-02

Family

ID=39907910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007070322A Expired - Fee Related JP4805865B2 (ja) 2007-03-19 2007-03-19 可変抵抗素子

Country Status (1)

Country Link
JP (1) JP4805865B2 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105383A (ja) * 2007-10-05 2009-05-14 Sharp Corp 可変抵抗素子及びその製造方法
JP2009130344A (ja) * 2007-11-28 2009-06-11 Sony Corp 記憶素子および記憶装置
JP2009141275A (ja) * 2007-12-10 2009-06-25 Fujitsu Ltd 抵抗変化素子、これを用いた記憶装置、及びそれらの作製方法
JP2009164580A (ja) * 2007-11-07 2009-07-23 Interuniv Micro Electronica Centrum Vzw 抵抗スイッチングNiO層を含むメモリ素子の製造方法、およびそのデバイス
WO2009150814A1 (ja) * 2008-06-10 2009-12-17 パナソニック株式会社 半導体装置、半導体装置の製造方法、半導体チップおよびシステム
JP2010135541A (ja) * 2008-12-04 2010-06-17 Sharp Corp 可変抵抗素子並びにその製造方法
CN101834274A (zh) * 2010-04-15 2010-09-15 复旦大学 一种阻变金属氮化物材料的制备方法
JP2010251352A (ja) * 2009-04-10 2010-11-04 Panasonic Corp 不揮発性記憶素子及びその製造方法
US8395925B2 (en) 2009-06-08 2013-03-12 Panasonic Corporation Forming method for variable resistance nonvolatile memory element, and variable resistance nonvolatile memory device
US8445883B2 (en) 2008-10-30 2013-05-21 Panasonic Corporation Nonvolatile semiconductor memory device and manufacturing method thereof
US8553444B2 (en) 2008-08-20 2013-10-08 Panasonic Corporation Variable resistance nonvolatile storage device and method of forming memory cell
US8581224B2 (en) 2012-01-20 2013-11-12 Micron Technology, Inc. Memory cells
US8871561B2 (en) 2011-02-01 2014-10-28 Panasonic Corporation Variable resistance nonvolatile storage device and method for manufacturing the same
US9006697B2 (en) 2012-03-23 2015-04-14 Kabushiki Kaisha Toshiba Resistance change element and nonvolatile memory device
JP2017117823A (ja) * 2015-12-21 2017-06-29 東京エレクトロン株式会社 Dramキャパシタの下部電極およびその製造方法
CN111383961A (zh) * 2018-12-25 2020-07-07 东京毅力科创株式会社 基板处理装置和基板处理方法
JPWO2021085475A1 (ja) * 2019-11-01 2021-05-06

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349690A (ja) * 2003-05-21 2004-12-09 Sharp Corp メモリ抵抗特性を制御する酸素含有量システムおよび方法
JP2005317976A (ja) * 2004-04-28 2005-11-10 Samsung Electronics Co Ltd 段階的な抵抗値を有する多層構造を利用したメモリ素子
WO2006075574A1 (ja) * 2005-01-14 2006-07-20 Matsushita Electric Industrial Co., Ltd. 抵抗変化素子とその製造方法
JP2007048779A (ja) * 2005-08-05 2007-02-22 Sharp Corp 可変抵抗素子とその製造方法並びにそれを備えた記憶装置
JP2007287761A (ja) * 2006-04-13 2007-11-01 Matsushita Electric Ind Co Ltd 抵抗変化素子とそれを用いた抵抗変化型メモリならびにその製造方法
JP2008205007A (ja) * 2007-02-16 2008-09-04 Fujitsu Ltd 抵抗変化型素子および抵抗変化型素子抵抗スイッチング方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349690A (ja) * 2003-05-21 2004-12-09 Sharp Corp メモリ抵抗特性を制御する酸素含有量システムおよび方法
JP2005317976A (ja) * 2004-04-28 2005-11-10 Samsung Electronics Co Ltd 段階的な抵抗値を有する多層構造を利用したメモリ素子
WO2006075574A1 (ja) * 2005-01-14 2006-07-20 Matsushita Electric Industrial Co., Ltd. 抵抗変化素子とその製造方法
JP2007048779A (ja) * 2005-08-05 2007-02-22 Sharp Corp 可変抵抗素子とその製造方法並びにそれを備えた記憶装置
JP2007287761A (ja) * 2006-04-13 2007-11-01 Matsushita Electric Ind Co Ltd 抵抗変化素子とそれを用いた抵抗変化型メモリならびにその製造方法
JP2008205007A (ja) * 2007-02-16 2008-09-04 Fujitsu Ltd 抵抗変化型素子および抵抗変化型素子抵抗スイッチング方法

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105383A (ja) * 2007-10-05 2009-05-14 Sharp Corp 可変抵抗素子及びその製造方法
JP2009164580A (ja) * 2007-11-07 2009-07-23 Interuniv Micro Electronica Centrum Vzw 抵抗スイッチングNiO層を含むメモリ素子の製造方法、およびそのデバイス
JP2009130344A (ja) * 2007-11-28 2009-06-11 Sony Corp 記憶素子および記憶装置
JP2009141275A (ja) * 2007-12-10 2009-06-25 Fujitsu Ltd 抵抗変化素子、これを用いた記憶装置、及びそれらの作製方法
US8624214B2 (en) 2008-06-10 2014-01-07 Panasonic Corporation Semiconductor device having a resistance variable element and a manufacturing method thereof
WO2009150814A1 (ja) * 2008-06-10 2009-12-17 パナソニック株式会社 半導体装置、半導体装置の製造方法、半導体チップおよびシステム
US8553444B2 (en) 2008-08-20 2013-10-08 Panasonic Corporation Variable resistance nonvolatile storage device and method of forming memory cell
US8830730B2 (en) 2008-08-20 2014-09-09 Panasonic Corporation Variable resistance nonvolatile storage device and method of forming memory cell
US8445883B2 (en) 2008-10-30 2013-05-21 Panasonic Corporation Nonvolatile semiconductor memory device and manufacturing method thereof
JP2010135541A (ja) * 2008-12-04 2010-06-17 Sharp Corp 可変抵抗素子並びにその製造方法
JP2010251352A (ja) * 2009-04-10 2010-11-04 Panasonic Corp 不揮発性記憶素子及びその製造方法
US8395925B2 (en) 2009-06-08 2013-03-12 Panasonic Corporation Forming method for variable resistance nonvolatile memory element, and variable resistance nonvolatile memory device
CN101834274A (zh) * 2010-04-15 2010-09-15 复旦大学 一种阻变金属氮化物材料的制备方法
US8871561B2 (en) 2011-02-01 2014-10-28 Panasonic Corporation Variable resistance nonvolatile storage device and method for manufacturing the same
US9142766B2 (en) 2012-01-20 2015-09-22 Micron Technology, Inc. Memory cells containing metal oxides
CN104067391A (zh) * 2012-01-20 2014-09-24 美光科技公司 存储器单元及形成存储器单元的方法
US8962387B2 (en) 2012-01-20 2015-02-24 Micron Technology, Inc. Methods of forming memory cells
KR101533942B1 (ko) * 2012-01-20 2015-07-03 마이크론 테크놀로지, 인크 메모리 셀 및 메모리 셀 형성 방법
US8581224B2 (en) 2012-01-20 2013-11-12 Micron Technology, Inc. Memory cells
US9006697B2 (en) 2012-03-23 2015-04-14 Kabushiki Kaisha Toshiba Resistance change element and nonvolatile memory device
JP2017117823A (ja) * 2015-12-21 2017-06-29 東京エレクトロン株式会社 Dramキャパシタの下部電極およびその製造方法
CN111383961A (zh) * 2018-12-25 2020-07-07 东京毅力科创株式会社 基板处理装置和基板处理方法
CN111383961B (zh) * 2018-12-25 2023-12-08 东京毅力科创株式会社 基板处理装置和基板处理方法
JPWO2021085475A1 (ja) * 2019-11-01 2021-05-06
WO2021085475A1 (ja) * 2019-11-01 2021-05-06 国立研究開発法人科学技術振興機構 電流センサおよび電力変換回路
JP7257712B2 (ja) 2019-11-01 2023-04-14 国立研究開発法人科学技術振興機構 電流センサおよび電力変換回路
US12095348B2 (en) 2019-11-01 2024-09-17 Japan Science And Technology Agency Current sensor and power conversion circuit

Also Published As

Publication number Publication date
JP4805865B2 (ja) 2011-11-02

Similar Documents

Publication Publication Date Title
JP4805865B2 (ja) 可変抵抗素子
JP3989506B2 (ja) 可変抵抗素子とその製造方法ならびにそれを備えた半導体記憶装置
KR100682926B1 (ko) 저항체를 이용한 비휘발성 메모리 소자 및 그 제조방법
JP3889023B2 (ja) 可変抵抗素子とその製造方法並びにそれを備えた記憶装置
US7615769B2 (en) Nonvolatile memory device and fabrication method thereof
TWI540775B (zh) 電阻變化型非揮發性記憶裝置、半導體裝置及電阻變化型非揮發性記憶裝置之動作方法
KR101171065B1 (ko) 기억소자 및 기억장치
US7259387B2 (en) Nonvolatile semiconductor memory device
US8084760B2 (en) Ring-shaped electrode and manufacturing method for same
TWI472018B (zh) Memory elements and memory devices
JP5156060B2 (ja) 不揮発性半導体記憶装置
JP4529654B2 (ja) 記憶素子及び記憶装置
JP5308105B2 (ja) 可変抵抗素子及びその製造方法
JP4613478B2 (ja) 半導体記憶素子及びこれを用いた半導体記憶装置
JP2007067415A (ja) 不揮発性メモリ素子及びその製造方法
KR20150093149A (ko) 기억 소자 및 기억 장치
JP4648940B2 (ja) 可変抵抗素子の製造方法
JP2007049156A (ja) リセット電流の安定化のためのメモリ素子の製造方法
JP2007157941A (ja) 記憶素子及び記憶装置
JP6162931B2 (ja) 記憶素子および記憶装置
JP5215741B2 (ja) 可変抵抗素子
US11925129B2 (en) Multi-layer selector device and method of fabricating the same
JP5360145B2 (ja) 記憶素子及び記憶装置
JP2009043850A (ja) 可変抵抗素子及びその製造方法
JP2007273517A (ja) 電気素子およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4805865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees