JP2008221237A - レーザ加工装置 - Google Patents

レーザ加工装置 Download PDF

Info

Publication number
JP2008221237A
JP2008221237A JP2007059049A JP2007059049A JP2008221237A JP 2008221237 A JP2008221237 A JP 2008221237A JP 2007059049 A JP2007059049 A JP 2007059049A JP 2007059049 A JP2007059049 A JP 2007059049A JP 2008221237 A JP2008221237 A JP 2008221237A
Authority
JP
Japan
Prior art keywords
defect
transfer
transfer substrate
laser
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007059049A
Other languages
English (en)
Other versions
JP4955425B2 (ja
Inventor
Takayuki Akaha
隆之 赤羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2007059049A priority Critical patent/JP4955425B2/ja
Publication of JP2008221237A publication Critical patent/JP2008221237A/ja
Application granted granted Critical
Publication of JP4955425B2 publication Critical patent/JP4955425B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Laser Beam Processing (AREA)

Abstract

【課題】レーザ加工装置において、オープン欠陥を迅速に修復し、欠陥修正を効率的に行うことができるようにする。
【解決手段】レーザ加工装置50を、撮像部、欠陥検出部、レーザ光源1、空間変調素子6、空間変調素子6によって反射されたオン光32を被加工面11aに導く対物レンズ10、対物レンズ移動機構15、転写用薄膜が形成された転写用基板41、転写用基板41を被加工面11aと対物レンズ10との間の光路上において光軸に沿う方向および直交する方向にそれぞれ位置移動可能、かつ光路に対して進退移動可能に保持する転写用基板移動機構43、およびオープン欠陥の部分にオン光32を照射する変調データを生成する変調データ生成部を備え、変調データに基づくオン光32を転写用薄膜上に結像し、転写用薄膜をオープン欠陥上に転写して、オープン欠陥を修復できるように構成する。
【選択図】図1

Description

本発明は、レーザ加工装置に関する。例えば、液晶基板、半導体基板やプリント基板等において、パターンの一部が欠落したオープン欠陥を修復するレーザ加工(リペア加工)を行うレーザ加工装置に関する。
従来、例えば、液晶表示デバイス(LCD)の製造工程などでは、フォトリソグラフィ処理工程で処理されるガラス基板に対して各種検査を行われる。この検査の結果、ガラス基板上に形成されたレジストパターン、エッチングパターン、配線パターンに欠陥が検出されると、レーザ加工装置を用いて、欠陥を修正するレーザ加工、いわゆるリペア加工を施す場合が多い。このリペア加工には、パターンの一部が欠落するオープン欠陥を修復する配線修復と、パターン同士が接触したショート欠陥を除去またはカットするカット修正とがある。カット修正はカット部にレーザ光を照射するだけでよいのに対して、配線修復は不足パターンを埋める物質を付着させるため、カット修正と異なるプロセスが必要になる。
このような配線修復を行うレーザ加工装置として、例えば、特許文献1には、レーザ光源と、CVDセルと、CVDセル内の基板上にレーザ光を周子する光学系と、熱解離反応により導電性物質を堆積する化合物ガスをCVDセルに供給する原料ガス供給系と、CVDセル内に基板を保持する機構と、基板に対してレーザ光の照射位置を走査するX−Yステージとを備える配線形成装置が記載されている。この配線形成装置は、いわゆるCVD(Chemical Vapor Deposition、化学気相成長法)ワイヤリング技術を用いて配線修復を行うものである。
特開昭63−133549号公報
しかしながら、上記のような従来のレーザ加工装置には以下のような問題があった。
CVDワイヤリング技術は、配線修復に用いる材料を気相中から堆積させ、レーザ光を走査することで、ワイヤリング長を延ばしていく技術であり、ワイヤリング速度は、きわめて遅い。特許文献1に記載の技術では、このような技術課題に対応して、CVDワイヤリング技術に用いるレーザ光を円形ビームから楕円ビームにすることで描画速度を6μm/sから30μm/sに向上しているが、近年では、基板面積が増大する傾向にあるので、1枚の基板当たりの修復長さも増加する傾向があるため、さらなる時間短縮が強く求められている。
また、特許文献1に記載の装置では、配線修復範囲をCVDセルで覆い、CVDセル内の雰囲気を原料ガスの雰囲気に調整してから配線修復を行う必要があるので、大型の基板の配線修復の場合、CVDセルを移動したりする段取り替えの時間もかかってしまうという問題がある。
また、一般に、1つの基板の欠陥修正には、カット修正と配線修復との両方を行う必要があるが、特許文献1の装置では、カット修正と配線修復とを交互に行えないという問題がある。仮に、1つの装置に両者を行う機構を設けたとしても、それぞれの加工を切り換える場合に、やはり段取り替えの時間が掛かるため、効率的な欠陥修正を行うことができないという問題がある。
本発明は、上記のような問題に鑑みてなされたものであり、オープン欠陥を迅速に修復し、欠陥修正を効率的に行うことができるレーザ加工装置を提供することを目的とする。
上記の課題を解決するために、本発明のレーザ加工装置は、層形成物質により層状のパターンが形成された被加工面の画像を撮像する撮像部と、該撮像部によって撮像された前記被加工面の画像から、前記被加工面のパターンの一部が欠落したオープン欠陥と前記被加工面のパターン同士が接触したショート欠陥とを区別して欠陥を検出し、該欠陥の位置、形状の情報を含む欠陥情報を取得する欠陥検出部とを有するレーザ加工装置であって、前記層形成物質を蒸発または昇華可能なレーザ光を発生するレーザ光源と、該レーザ光源から出射されたレーザ光を空間変調する空間変調素子と、該空間変調素子によって一定方向に向けて反射されたレーザ光を被加工面に導く結像光学系と、該結像光学系の結像位置を前記被加工面の近傍の光軸方向に移動する結像位置移動機構と、ガラス基板上に前記層形成物質からなる転写用薄膜が形成された転写用基板と、該転写用基板を、前記転写用薄膜を前記被加工面側に向けた状態で、前記被加工面と前記結像光学系との間の光路上において前記結像光学系の光軸に沿う方向および直交する方向にそれぞれ位置移動可能、かつ前記光路に対して進退移動可能に保持する転写用基板移動機構と、前記欠陥検出部によって検出された前記オープン欠陥の欠陥情報に基づいて、前記オープン欠陥の部分に前記レーザ光を照射するための前記空間変調素子の変調データを生成する変調データ生成部とを備え、前記転写用基板上の前記転写用薄膜の未転写領域を前記被加工面近傍の前記オープン欠陥上に移動し、前記変調データ生成部によって生成された変調データに基づいて空間変調されたレーザ光を前記転写用薄膜上に結像し、前記レーザ光の照射部分の前記層形成物質を前記オープン欠陥上に転写して、前記オープン欠陥を修復できる構成とする。
この発明によれば、撮像部で撮像された被加工面の画像から、欠陥検出部によって被加工面上にオープン欠陥が検出された場合、転写用基板移動機構を駆動して、転写用基板を転写用薄膜が被加工面の近傍に対向する状態で、被加工面と結像光学系との間の光路上に進出させる。そして、欠陥検出部が取得する欠陥情報に基づいて、転写用基板移動機構を駆動し、転写用基板の未転写領域を被加工面近傍のオープン欠陥上に移動させる。
一方、変調データ生成部によって、欠陥検出部による欠陥情報に基づいて、オープン欠陥の部分にレーザ光を照射するための変調データを生成し、空間変調素子に送出する。また、結像位置移動機構を駆動して、結像光学系の結像位置を、転写用薄膜の位置に移動する。
そして、レーザ光を空間変調素子に照射し、変調データに応じて空間変調されたレーザ光を結像光学系によって転写用薄膜上に結像する。これにより、転写用基板の転写用薄膜におけるレーザ光の照射範囲の層形成物質を被加工面側に蒸発または昇華させて、オープン欠陥上に転写して、オープン欠陥を修復することができる。
また、転写用基板移動機構を用いて、転写用基板を被加工面と結像光学系との間の光路から退避させることで、オープン欠陥の欠陥修正を終了でき、撮像部、欠陥検出部、変調データ生成部、空間変調素子、および結像光学系は、ショート欠陥のカット修正にも転用可能となっているので、レーザ光源を代えるだけで、ショート欠陥のカット修正を行う構成に段取り替えすることができる。
本発明のレーザ加工装置によれば、層形成物質を、被加工面上のオープン欠陥に合わせて転写用基板から転写することができるので、配線パターンを走査することなくオープン欠陥を迅速に修正することができ、欠陥修正を効率的に行うことができるという効果を奏する。
以下では、本発明の実施の形態について添付図面を参照して説明する。すべての図面において、実施形態が異なる場合であっても、同一または相当する部材には同一の符号を付し、共通する説明は省略する。
本発明の実施形態に係るレーザ加工装置について説明する。
図1は、本発明の実施形態に係るレーザ加工装置の概略構成を示す光軸を含む断面における模式説明図である。図2(a)、(b)は、本発明の実施形態に係るレーザ加工装置の空間変調素子の微小ミラーの配列を示す平面図、および空間変調素子の微小ミラーについて説明する模式的な斜視図である。図3(a)、(b)は、本発明の実施形態に係るレーザ加工装置の転写用基板ユニットの模式的な平面図およびそのA−A図である。図4は、本発明の実施形態に係るレーザ加工装置の制御ユニットの機能構成を示す機能ブロック図である。
本実施形態のレーザ加工装置50は、例えば、金属配線やフォトレジストなどの層状のパターンが表面に形成された被加工物において、パターンの欠陥を検出して、レーザ光により、欠陥部分を修正するレーザ加工(リペア加工)を行うための装置である。被加工物としては、例えば、LCD(液晶ディスプレイ)のガラス基板や半導体ウエハ基板などを挙げることができる。
また、欠陥としては、パターンの一部が欠落したオープン欠陥とパターン同士が接触したショート欠陥とが挙げられる。本明細書では、このように、オープン、ショートという言葉は、形状的な意味に用い、電気的な意味では用いないことにする。パターンが導電パターンの場合には、回路上のオープン、ショートに対応することになる。
また、以下では、オープン欠陥の欠落部にパターンを形成する層形成物質を付着させてパターンを修復する場合を配線修復、ショート欠陥における接触部をレーザ光でカットしてパターンを修復する場合をカット修正と称する。
レーザ加工装置50の概略構成は、図1に示すように、ステージ17、加工ヘッド移動機構18、レーザ光源部30、空間変調素子6、結像レンズ7(結像光学系)、対物レンズ10(結像光学系)、照明光源14、観察用結像レンズ12、撮像素子13、転写用基板ユニット40、転写用基板移動機構43、および制御ユニット60からなる。ここで、レーザ光源部30の一部、空間変調素子6、結像レンズ7、対物レンズ10、照明光源14、観察用結像レンズ12、撮像素子13、転写用基板ユニット40、および転写用基板移動機構43は、筐体に一体に保持されて加工ヘッド51を構成している。
ステージ17は、被加工物である基板11を、その被加工面11aが上側に向けられた状態で水平に保持し、制御ユニット60からの制御信号により、水平面内の一定方向(例えば、図1の左右方向)に沿って基板11を移動するものである。
加工ヘッド移動機構18は、加工ヘッド51を、ステージ17上の基板11の情報で、基板11の移動方向と直交する方向(例えば、図1の紙面直交方向)に移動する機構であり、ステージ17を跨ぐ門型の支持部材であるガントリ52の水平梁上に設けられている。
ステージ17と加工ヘッド移動機構18とは、それぞれの移動を組み合わせることにより、加工ヘッド51を、被加工面11aに対して、被加工面11aに沿う2軸方向に相対移動する加工ヘッド移動機構16を構成している。
加工ヘッド移動機構16は、制御ユニット60の加工領域移動制御部78(図4参照)に電気的に接続され、加工領域移動制御部78の制御信号に応じた被加工面11a上の位置に移動制御されるようになっている。
レーザ光源部30は、レーザ光31を空間変調素子6に向けて出射するリペア加工用の光源であり、本実施形態では、レーザ光源1、集光ユニット2、光ファイバ3、およびコリメートユニット4からなる構成を採用している。
レーザ光源1は、カット修正時は被加工面11aに、配線修復時は転写用基板ユニット40に向けて、それぞれ、カット修正、配線修復に必要な適宜の波長、出力を備えるレーザ光31を出射するもので、本実施形態では、パルス発振可能なYAGレーザを採用している。YAGレーザは、基本波長λ=1.064μmであり、第2、第3、第4高調波(それぞれ波長λ=532nm、λ=355nm、λ=266nm)が出射可能である。
カット修正の場合、被加工面11から除去する層形成物資やゴミなどに吸収特性が高いレーザ波長を適宜切り替えて設定することができる。例えば、フォトレジストを除去するためには紫外域の発振波長、例えば、波長λなどのレーザ光を用いることが好ましい。
配線修復の場合、本実施形態では、転写用基板ユニット40に効率的に熱エネルギーを加えるため、赤外域の波長λを用いるようにしている。
レーザ光源1は、制御ユニット60のレーザ光制御部75(図4参照)に電気的に接続され、これらの波長、出力、パルス幅などの条件設定が行われるようになっている。
レーザ光源1から出力されるレーザ光は、光量分布がガウシアン分布になっているので、本実施形態では、レーザ光源1から出力されたレーザ光を集光ユニット2によって集光して光ファイバ3の一方の端面に光結合し、光ファイバ3を通過させて、光ファイバ3の他方の端面から出射させることで、光量分布を均一化できるようにしている。
光ファイバ3の他方の端面から出射されるレーザ光は、コリメートユニット4によって集光され、略平行光束であるレーザ光31を形成できるようになっている。
空間変調素子6は、レーザ光源部30のコリメートユニット4から投射されたレーザ光31を空間変調する反射型空間変調素子である。本実施形態では、微小ミラーアレイであるDMD(Digital Micro mirror Device)を採用している。すなわち、図1の紙面奥行き方向に延在された基準平面内に、例えばMEMS(Micro Electro Mechanical Systems)技術などで形成された複数の微小ミラー6aが2次元的に配列され、図2(a)に示すように、長辺W×短辺Hの矩形状の変調領域Mが形成されている。
各微小ミラー6aの裏面側には、図2(b)に示すように、微小ミラー6aに電界を加えるミラー駆動部6bが設けられており、各微小ミラー6aは、空間変調素子6に電気的に接続された空間変調素子駆動部77からの制御信号によって発生する静電電界によって、オン状態では、例えば、基準平面から+12°回転され、オフ状態では、基準平面から−12°回転される。以下では、オン状態の微小ミラー6aによって反射された光をオン光32、オフ状態の微小ミラー6aによって反射された光をオフ光35と称する。
本実施形態では、コリメートユニット4から投射されたレーザ光31は、反射ミラー5aによって偏向され、空間変調素子6の基準平面に対して一定の入射角で照射されるようになっている。
結像レンズ7、対物レンズ10は、空間変調素子6で空間変調され、一定方向に向けて反射されたオン光32による像を、基板11の被加工面11a上に結像するレンズまたはレンズ群からなる光学素子である。本実施形態では、対物レンズ10は無限遠設計とされている。
結像レンズ7は、本実施形態では、光軸が基板11と平行となる姿勢に設けられており、空間変調素子6と結像レンズ7との間に、空間変調素子6のオン光32を結像レンズ7の光軸に沿って入射させる反射ミラー5bが配置されている。
対物レンズ10は、その光軸が被加工面11aの法線方向に沿うように配置され、結像レンズ7と対物レンズ10との間には、結像レンズ7の光軸を、対物レンズ10の光軸に折り曲げるビームスプリッタ8が設けられている。
ビームスプリッタ8は、オン光32の波長光を反射し、後述する観察用光33の波長光を透過させるビームスプリッタ面を備えている。
また、対物レンズ10は、倍率に応じた複数セットが、不図示のレボルバ機構などによって切り替え可能に設けられ、各対物レンズ10の鏡筒10aは、対物レンズ10が光軸上にセットされた状態で光軸方向に沿って移動可能とされている。
このような対物レンズ10の切り替え、および光軸方向の移動は、制御ユニット60の対物レンズ制御部73(図4参照)に電気的に接続された対物レンズ移動機構15(結像位置移動機構)によって行われる。
結像レンズ7、対物レンズ10からなる結像光学系の投影倍率は、被加工面11a上での必要な加工精度に応じて適宜設定される。例えば、変調領域M全体のW×Hの大きさの画像が、被加工面11a上で、倍率βで、W’×H’の大きさに投影されるように設定する。すなわち、被加工面11a上のW’×H’の範囲の領域が加工可能領域Rとなる。
ここで、結像レンズ7のNAは、加工に必要な分解能を満たし、かつオフ光(不図示)として反射された光が、入射しない大きさとされる。
ビームスプリッタ8と対物レンズ10との間の光路上には、対物レンズ10を通して被加工面11aを落射照明するために、照明光源14によって出射され、照明用レンズ14aによって略平行光に集光された観察用光33を光路上に合成するハーフミラー9が設けられている。
照明光源14は、加工形状を決定したり、加工結果を確認するために被加工面11a上の加工可能領域内を照明する光源である。例えば、可視光を発生するキセノンランプやLEDなど適宜の光源を採用することができる。
ハーフミラー9は、オン光32を透過させ、観察用光33の一部を反射する反射透過率特性を有するハーフミラーからなる。また、ハーフミラー9の反射透過率特性は、波長特性が付与されていてもよく、この場合、オン光32の波長に対して高透過率、好ましくは略100%の透過率にするとよい。このようにすれば、結像光学系での光量損失を低減することができる。また、レーザ光31の照射時にはね上げや移動による光路から退避可能な構成としてもよい。
観察用結像レンズ12は、ビームスプリッタ8によって透過される光の光路上に配置され、対物レンズ10の結像位置と撮像素子13の撮像面とを共役の関係とするレンズまたはレンズ群である。
撮像素子13は、撮像面上に結像された画像を光電変換するもので、例えば、2次元CCDなどからなる。
撮像素子13で光電変換された画像信号は、撮像素子13に電気的に接続された制御ユニット60の撮像制御部70(図4参照)に送出される。
観察用結像レンズ12と撮像素子13とは、撮像部を構成する
転写用基板ユニット40は、転写用基板41および基板ホルダ42(ガス浮上ホルダ)とからなり、転写用基板移動機構43によって、対物レンズ10と被加工面11aとの間の光路上において、光軸に沿う方向および直交する方向にそれぞれ位置移動可能、かつ光路に対して進退移動可能に保持されている。
転写用基板41は、図3(a)、(b)に示すように、ガラス基板41aの一方の表面に、適宜の被膜形成技術、例えばスパッタリングなどによって、基板11において配線修復するための層形成物質からなる転写用薄膜が形成されたものである。
転写用基板41の転写用薄膜としては、配線修復するための層形成物質に応じて、適宜の金属、金属化合物、金属合金を採用することができる。例えば、スパッタリングによって薄膜形成可能な他の層形成物質の例としては、Au、Al、Pd、Ag、Cu、Ta、Mo、W、SiO、Si、Al、TiW、TiN、TiC、ITO(Indium Tin Oxide,インジウムスズ酸化物)、Ni−Cu合金、Ni−Cr合金、Nb−Ti合金、Mo−Si合金、Co−Cr合金、Co−P合金、鉄系合金、ステンレスなどを挙げることができる。
本実施形態では、例えば、Al、Wなどの金属配線を配線修復するため、これに応じて、例えば、Al、Wなどからなる金属薄膜41b(転写用薄膜)がスパッタリングによって形成されている。
金属薄膜41bの厚さは、レーザ光源1の光量などに応じて転写用薄膜が効率的に蒸発または昇華できる厚さを採用することができるが、例えば、100nm〜300nmが好適である。また、金属薄膜41bは、レーザ光の入射側に、レーザ光を吸収して熱エネルギーに変換する光吸収層を有する多層構造の薄膜としてもよい。
ガラス基板41aの材質は、金属薄膜41bを蒸発または昇華させるためのレーザ光がオン光32として照射された場合に、透過できるガラス基板であればどのような材質でもよい。本実施形態では、耐熱特性、熱衝撃特性が良好な石英ガラスを採用している。
ガラス基板41aの平面視の形状は、適宜の形状を採用することができる。本実施形態では円板の例で説明するが、例えば、矩形、多角形などであってもよい。
また、転写用基板41には、後述する浮上機構44から供給される浮上用のガスを被加工面11aに向けて噴射する4つの噴射孔41cが、外縁近傍の所定径の円周上に等ピッチで、厚さ方向に貫通して設けられている。
基板ホルダ42は、金属薄膜41bが基板11側に向けられた状態で、転写用基板41を保持する部材である。
本実施形態では、転写用基板41の外形よりわずかに大きい外形を有し、中央部に開口部42bを有する平面視環状の保持部42aと、保持部42aの側面から側方に延在されたアーム部42cとからなる。
保持部42aの基板11側の面には、転写用基板41のガラス基板41aを位置決めして固定するための穴形状の保持面42dが形成されている。転写用基板41の固定方法は適宜の方法を採用することができるが、本実施形態では接着を採用している。
また、保持面42dには、基板ホルダ42の噴射孔41cが形成された円周に合わせて平面視円環状の溝部からなるガス流路42fが形成され、アーム部42cの内部には、一方の端部が、ガス流路42fに貫通し、他方の端部がアーム部42cの延在方向に端部に貫通する貫通孔であるガス流路42eが設けられている。
このため、ガス流路42fは、転写用基板41を基板ホルダ42に接着したとき、ガラス基板41aにより噴射孔41cを除く範囲が覆われて管路を形成する。これにより、転写用基板ユニット40には、ガス流路42eからガス流路42fを経て噴射孔41cに連通するガス流路が形成されている。
転写用基板移動機構43は、転写用基板ユニット40のアーム部42cの端部を着脱可能に保持するXYZステージからなり、制御ユニット60の転写用基板移動制御部82と電気的に接続され、転写用基板移動制御部82からの制御信号により転写用基板ユニット40の位置を移動できるようになっている。
また、転写用基板移動機構43には、ガス流路42eに、転写用基板ユニット40を浮上させるための適宜圧のガスを供給するチューブ44aが設けられ、チューブ44aの他端側が、浮上機構44(図1参照)に接続されている。
浮上機構44は、制御ユニット60の浮上機構制御部83(図4参照)からの制御信号によって、適宜圧のガスを転写用基板ユニット40のガス流路42eに供給し、噴射孔41cからガスを噴射することで、転写用基板41を被加工面11aに対して高さΔ(図3(b)参照)に保持するためのガス供給機構である。
高さΔは、レーザ光によって蒸発または昇華された層形成物質が、直下の被加工面11aに付着するために、被加工面11aに十分近接する高さであることが好ましい。このようなΔは、好ましくは、1μm〜30μm、より好ましくは、1μm〜5μmである。
また、本実施形態では、浮上機構44が供給するガスは、金属薄膜41bの金属が蒸発または昇華する際に酸化するのを防止するため、不活性ガス、例えば、窒素ガスなどを採用している。
浮上機構44によって転写用基板ユニット40が浮上される際は、転写用基板移動機構43は、アーム部42cの上下方向(Z方向)の保持状態を解除し、上下方向に移動自在の状態で水平方向(X、Y方向)に位置移動可能にできるようになっている。
制御ユニット60は、図4に示すように、撮像素子13、対物レンズ移動機構15、レーザ光源1、照明光源14、空間変調素子6、加工ヘッド移動機構16、ディスプレイ27、転写用基板移動機構43、および浮上機構44と電気的に接続され、それぞれとの間で、通信を行って、データや制御信号を送受信し、必要な演算処理を行って、レーザ加工装置50の全体制御を行うものである。
制御ユニット60の装置構成は、本実施形態では、CPU、メモリ、入出力部、外部記憶装置などで構成されたコンピュータによって、図4に示す制御機能、演算機能に対応して作成されたプログラムを実行することにより、あるいは、図4に示す制御機能を実現するハードウェアにより実現している。
制御ユニット60の主要な機能ブロック構成は、装置制御部80、画像処理部71(変調データ生成部)、欠陥検出部72、記憶部74、転写用基板移動制御部82(移動位置設定部)、転写履歴記憶部81、および通信インタフェース84からなる。
装置制御部80は、レーザ加工装置50の全体制御を行うもので、撮像素子13を制御する撮像制御部70、対物レンズ移動機構15を制御することで対物レンズ10の切り替えおよびフォーカス調整を行う対物レンズ制御部73、レーザ光源1の条件設定および発振制御を行うレーザ光制御部75、照明光源14の点灯制御を行う照明制御部76、空間変調素子6の各微小ミラー6aのオン状態とオフ状態との切り替えを制御する空間変調素子駆動部77、加工ヘッド移動機構16の移動量を制御して、加工ヘッド51の基板11上での位置を制御し、対物レンズ10の光軸を加工領域に相対移動する加工領域移動制御部78、転写用基板移動機構43の3軸方向の位置、光路への進退、およびアーム部42cの保持状態を制御する転写用基板移動制御部82、および浮上機構44を制御する浮上機構制御部83とそれぞれ電気的に接続され、それぞれに制御信号を送出できるようになっている。
転写用基板移動制御部82は、後述する未転写領域の情報を記憶する転写履歴記憶部81に電気的に接続され、未転写領域の位置を選択して、転写用基板ユニット40の移動位置を設定できるようになっている。
また、装置制御部80は、画像処理部71、記憶部74およびディスプレイ27とも電気的に接続され、それらを介して、各種の画像処理制御および画像データの表示処理制御を行えるようになっている。
また、装置制御部80は、通信インタフェース84を介して、通信回線85に接続されており、通信回線85上に接続されたデータサーバ上に構築された基板情報データベース86と通信して、ステージ17上に保持された基板11に製造工程に応じて被加工面11a上に形成されるパターンの情報や、予め他の検査装置、例えば、自動検査などによるマクロ検査装置などによって検出された欠陥の情報などを取得できるようになっている。
ディスプレイ27は、本実施形態では、被加工面11aの観察画像を表示する他、GUIを用いてレーザ加工装置50の操作入力を行えるようになっている。
画像処理部71は、撮像素子13から送出された画像信号に、例えばノイズ処理、輝度補正などの適宜の画像処理を施し、被加工面11aの画像データを取得する。この画像データは、欠陥検出部72に送出されるとともに、記憶部74に記憶され、装置制御部80を介して、ディスプレイ27に拡大表示できるようになっている。
また、欠陥検出部72から、欠陥情報とともに修正が必要な欠陥の画像データが送出された場合には、欠陥の画像データを結像レンズ7および対物レンズ10で構成される結像光学系の倍率βに応じて、空間変調素子6上の位置情報に換算し、レーザ光を照射する領域にオン光32を照射できるような空間変調素子6の変調データを生成し、装置制御部80を介して、空間変調素子駆動部77に送出する。
欠陥検出部72は、画像処理部71から送出された画像データから、欠陥検出処理を行うものである。例えば、取得された画像データと、あらかじめ記憶部74などに記憶された正常なパターンの画像データとの間で輝度の差分をとり、その差分データを所定閾値で2値化したデータから欠陥を抽出することができる。そして、欠陥の形状解析を行い、例えば、他の正常なパターンの機能に障害を与えない孤立欠陥などの修正が不要な欠陥であるか、修正が必要な欠陥であるかを判定し、さらに、修正が必要な場合には、オープン欠陥であるか、ショート欠陥であるかを判定し、それらの判定結果とともに、画像データを画像処理部71に送出する。
次に、レーザ加工装置50の動作について説明する。
図5は、本発明の実施形態に係るレーザ加工装置の動作について説明するフローチャートである。図6(a)は、被加工面の正常パターンの一例を示す模式説明図である。図6(b)は、被加工面に発生したオープン欠陥の一例を示す模式説明図である。図7は、本発明の実施形態に係る配線修復動作について説明するフローチャートである。図8は、図6(a)のオープン欠陥に対応した空間変調素子の変調データの例を示す模式説明図である。図9は、本発明の実施形態に係るレーザ加工装置の転写用基板の移動の様子を示す模式説明図である。図10は、本発明の実施形態に係るカット修正動作について説明するフローチャートである。
基板11は、例えば、マクロ検査装置などの他の検査装置で欠陥が検出されると、レーザ加工装置50に搬入され、ステージ17上にセットされる。このとき、転写用基板ユニット40は、アーム部42cを3軸方向に保持しておき、浮上機構44のガス供給を停止した状態で、光路外の待機位置に退避されている。
ステップS1では、装置制御部80は、基板情報データベース86にアクセスして、基板11に形成された正常パターンの画像データ、および他の検査装置で検出された欠陥の情報を取得し記憶部74に記憶させる。
そして、他の検査装置で検出された欠陥の位置情報に基づいて、最初の検査位置を決定し、加工領域移動制御部78を介して、対物レンズ10の光軸を最初の検査位置に位置座標を加工領域移動機構16に送出する。
加工領域移動機構16では、送出された位置座標に基づいて、ステージ17、加工ヘッド移動機構18を駆動して、加工ヘッド51を基板11に対して相対移動させる。
ステップS2では、被加工面11aの画像を取得して視野範囲の欠陥検出処理を行う。
まず、対物レンズ制御部73を介して対物レンズ移動機構15のレボルバ機構を駆動し、低倍率の対物レンズ10をセットし、この倍率の対物レンズ10によって画像を取得する。そのために、照明光源14を点灯し、観察用光33を発生させる。観察用光33は、照明用レンズ14aによって略平行光束とされ、ハーフミラー9で反射されて、この反射光が対物レンズ10で集光されて被加工面11a上の視野範囲を照明する。
被加工面11aで反射された反射光34は、対物レンズ10で集光され、ハーフミラー9、ビームスプリッタ8を透過して、観察用結像レンズ12に導かれる。観察用結像レンズ12に入射した反射光34は、撮像素子13の撮像面に結像される。
撮像素子13は、結像された被加工面11aの画像を光電変換し、画像信号として撮像制御部70に送出する。この画像信号は、画像処理部71に送出されて、例えば、コントラスト法などによって、フォーカス情報を生成し、このフォーカス情報を対物レンズ制御部73に送出することで、被加工面11aに対する対物レンズ10のオートフォーカス動作を行う。
そして、合焦後、必要に応じて、ノイズ除去、輝度補正などの画像処理を施した画像データとして、欠陥検出部72に送出する。また、記憶部74に記憶し、ディスプレイ27に表示する。
欠陥検出部72では、周知の良品の画像データとの差分を取り、その差分について、予め設定した閾値で2値化して欠陥検出するなどの欠陥検出処理を行う。ただし、ステップS2では、低倍率の観察のため、他の検査装置による欠陥位置の確認、または修正を行うことを目的としており、検出された欠陥がオープン欠陥か、ショート欠陥かは判定しない。
次にステップS3では、ステップS2の欠陥検出処理の結果、欠陥の存在が確認されたかどうか判定し、欠陥が存在する場合には、検出された欠陥の位置情報を装置制御部80に送出して、ステップS4に移行する。
欠陥の存在を確認できない場合は、ステップS11に移行する。
次に、ステップS4では、欠陥の詳細情報を取得するため、対物レンズ10を高倍率のものに切り替え、ステップS2で取得された欠陥の位置情報に応じて、加工ヘッド51を移動する。このとき、加工可能領域R内に複数の欠陥が存在する場合には、それら欠陥群の中心位置に移動し、加工可能領域Rの画像データを取得する。そして、欠陥検出部72により再度欠陥検出処理を行う。
次に、ステップS5では、ステップS4の欠陥検出処理の結果、欠陥の存在が確認されたかどうか判定し、欠陥が存在する場合には、ステップS6に移行する。
一方、欠陥の存在を確認できない場合、あるいは、欠陥であっても回路パターンにかかっていない場合等、機能上問題が発生しないため修正が不要な欠陥であるような場合は、ステップS11に移行する。
次にステップS6では、加工可能領域Rの欠陥が、オープン欠陥を含んでいるかどうか判定する。
例えば、加工可能領域R内の正常パターンが、図6(a)のような配線パターン101である場合の例で説明する。
配線パターン101は、多数のTFTが配列された回路の金属配線を金属薄膜41bと同材質の金属で形成したものである。すなわち、被加工面11aの最上層には、配線102a、102b、102c、ソースライン103、103a、103b、TFT部104、ドレイン電極105、105aなどからなる金属層パターンが形成されている。なお、符号106は下層に存在するゲートラインを示す。
このような配線パターン101に対して、図6(b)に示すような、撮像画像110が取得されたとする。欠陥検出部72は、配線パターン101と撮像画像110との差分をとることにより、欠陥領域111をオープン欠陥として検出することになる。すなわち、図6(b)の例では、配線102a、102b、102c、ソースライン103a、103b、ドレイン電極105aの一部が欠落していることが分かる。
このように、オープン欠陥が含まれている場合は、ステップS7に移行する。
また、オープン欠陥が存在しない場合には、ステップS8に移行する。
ステップS7は、図7に示すようなフローにしたがって、配線修復を行う工程である。
ステップS20では、配線修復の初期設定を行う。すなわち、レーザ光源1の条件設定、変調データの作成、転写回数の設定を行う。
レーザ光源1の条件設定は、レーザ光制御部75によって、レーザ光源1の波長および出力を配線修復用に設定する。
変調データの作成は、画像処理部71によって行う。
例えば、欠陥領域111の欠落範囲を配線修復するには、配線パターン101の画像と撮像画像110との差分を取って、その画像を結像光学系の倍率βに応じて、変調領域M上の画像データに変換し、画像データ上の欠落部分にオン光32が到達するように、各微小ミラー6aのオンオフを設定する変調データを作成する。図8にこの変調データの例を示す。
欠落部分である配線102a、102b、102c、ソースライン103a、103b、ドレイン電極105aに対応して、それぞれ領域102A、102B、102C、103A、103B、105Aの範囲がオン状態データ121とされ、それ以外の変調領域Mがすべてオフ状態データに設定された変調データ200を生成する。変調データ200は、例えば、各微小ミラー6aの2次元配列位置に対応して、オン状態が1、オフ状態が0の数値が対応する表データとして生成される。
なお、ここでは、他の回路パターンにかからない範囲で検出された欠陥の大きさより、大きく変調データ200のオン部分が設定される。または、回路をつなぐ長手方向に長く設定される。これにより、より確実に回路をつなぐことが可能となる。
転写回数の設定は、装置制御部80によって行う。転写回数を設定するのは、金属薄膜41bが修正対象の金属層よりも薄いため、オン状態データ121による転写を複数回行って、所望の金属層を形成するためである。例えば、金属薄膜41bの厚さが100nmで、修正対象の金属層の層厚が0.3μmの場合、転写回数は、3回に設定する。
次に、ステップS21では、転写用基板移動制御部82によって転写用基板移動機構43を駆動して、転写用基板ユニット40を被加工面11a上に進出させる。このとき、アーム部42cは保持状態とし、被加工面11a上の高さは転写時の高さより高く保持する。
また、転写用基板ユニット40の水平方向の位置は、未転写領域が、加工可能領域R上に位置するように設定される。すなわち、図3(a)に示すように、転写用基板41は、開口部42bの範囲に、オン光32を照射することで、金属薄膜41bを蒸発または昇華させて、層形成物質を被加工面11aに転写することができるが、本実施形態では、予め転写用基板41上の矩形状の転写領域45を、図9(a)に示すように、加工可能領域Rの大きさに対応して仮想的な区画A、A、A、…、のように等分割しておき、1回の転写工程を行うごとに、これらの区画を順次移動させるようにしている。これらの区画の位置情報、およびどの区画が未転写領域であるかを示す情報は、転写履歴記憶部81に記憶しておく。
したがって、ステップS21では、例えば、区画Aが、加工可能領域Rと重なるような位置に転写用基板ユニット40を進出させる。
なお、転写回数に対応する区画が確保できない場合は、転写用基板ユニット40の交換を促す警告を、ディスプレイ27に表示し、新しい転写用基板ユニット40に交換してから、工程を続行する。
転写用基板ユニット40が光路上に進出すると、転写用基板41が撮像素子13の撮像範囲に入るので、画像処理部71では、転写用基板41の非透明部である金属薄膜41b面に対して、対物レンズ10のオートフォーカス動作が行われ、以下の工程では、金属薄膜41b面に対する合焦状態が保たれる。
次に、ステップS22では、浮上機構制御部83により浮上機構44から浮上用のガスを供給する。供給されたガスは、ガス流路42e、42fを通して、4箇所の噴射孔41cから被加工面11aに向けて噴射される。
次に、ステップS23では、転写用基板移動機構43によりアーム部42cの上下方向(Z方向)の保持を解除する。これにより、転写用基板ユニット40は、噴射孔41cから噴射されるガスによって被加工面11a上で高さΔの位置に浮上される。
このとき、アーム部42cの水平方向(XY方向)の保持状態は維持されているため、転写用基板移動機構43によって、水平方向に位置移動可能となっている。
これにより、Δが微小な高さであっても、転写用基板41を安定して保持することができ、また水平方向にも円滑に移動させることができる。
次に、ステップS24では、転写用基板移動制御部82が転写履歴記憶部81の情報を参照して、転写用基板移動機構43を駆動し、転写用基板41を未転写領域に移動させる。転写第1回目は、ステップS21で、未転写領域である区画Aが選択されているので、区画Aが加工可能領域Rに正確に重なるように、転写用基板移動機構43によって水平方向の位置合わせを行う。これにより、万一ステップS23において水平方向の位置がずれた場合でも、正確に位置合わせすることが可能となる。
転写第2回目以降は、転写履歴記憶部81に記憶された転写済み領域の情報を参照して、例えば、区画Aなどの未転写領域に移動する。
次に、ステップS25では、装置制御部80は、画像処理部71から送出された変調データ200を空間変調素子駆動部77に送出する。
空間変調素子駆動部77に変調データ200が送出されると、変調データ200に基づいて、空間変調素子6の各微小ミラー6aが駆動される。
次に、ステップS26では、装置制御部80は、レーザ光制御部75によってレーザ光源1をパルス発振させ、コリメートユニット4から略平行光束のレーザ光31を出射する。
レーザ光31は、反射ミラー5aによって偏向され、空間変調素子6の各微小ミラー6aを照射する。そして、オン状態の微小ミラー6aによりオン光32が反射されると、反射ミラー5bによって、結像レンズ7の光軸に沿って入射される。一方、オフ光35は、結像レンズ7のNA外に反射される。
これにより、オン光32のみが、結像レンズ7で集光され、ビームスプリッタ8で反射され、ハーフミラー9を透過し、対物レンズ10によって、金属薄膜41b上に結像される。このため、変調データ200に対応する変調領域Mの画像が、加工可能領域Rの大きさに倍率変換されて、金属薄膜41b上に結像される。
これにより、金属薄膜41b上でオン光32が照射された位置の層形成物質が熱エネルギーを受けて蒸発または昇華し、近接して配置された被加工面11aのオープン欠陥部分に付着する。このとき、転写用基板41の高さΔは、浮上機構44によって微小距離に安定して保持されているので、層形成物質を対向する位置に正確かつ効率的に転写することが可能となる。
次に、ステップS27では、空間変調素子駆動部77により、空間変調素子6の駆動状態をリセットする。そして、区画Aが転写済領域であることを転写履歴記憶部81に記憶する。以上で、第1回目の転写が終了する。
次に、ステップS28では、装置制御部80は、転写回数が、ステップS20で設定した転写回数になったかどうか判定し、転写回数に達していない場合には、ステップS24に移行し、上記ステップS24〜S27を繰り返す。
また、転写回数に達した場合は、ステップS29に移行する。
ステップS29では、転写用基板移動機構43によりアーム部42cを上下方向に保持状態とし、被加工面11aから離すため上方に移動する。そして、浮上機構制御部83により浮上機構44からのガス供給を停止し(ステップS30)、次いで、転写用基板移動機構43により転写用基板ユニット40を光路外に退避する。
以上で、配線修復工程(図5のステップS7)が終了する。そして、ステップS9に移行する。
一方、ステップS8は、図10に示すようなフローにしたがって、カット修正を行う工程である。
ステップS40では、カット修正の初期設定を行う。すなわち、レーザ光源1の条件設定、変調データの作成を行う。
レーザ光源1の条件設定は、レーザ光制御部75によって、レーザ光源1の波長および出力をカット修正用に設定する。
変調データの作成は、画像処理部71によって行う。この場合、オン光32が、除去すべきパターン上に照射されるように、各微小ミラー6aのオンオフを設定する変調データを作成する。
次に、ステップS41では、装置制御部80は、画像処理部71から送出された変調データを空間変調素子駆動部77に送出する。
空間変調素子駆動部77に変調データが送出されると、変調データに基づいて、空間変調素子6の各微小ミラー6aが駆動される。
次に、ステップS42では、ステップS26と同様に、ステップS40で設定した条件でレーザ光31を発振させ、被加工面11aにオン光32を照射する。これにより、加工可能領域R内のパターンがカット修正される。
次に、ステップS43では、空間変調素子駆動部77により、空間変調素子6の駆動状態をリセットする。
以上で、ステップS8を終了し、ステップS9に移行する。
なお、加工可能領域R内にオープン欠陥とショート欠陥とが両方ある場合は、ステップS7の後にステップS8のカット修正が行われる。
図5のステップS9では、ステップS7またはS8の実行後の被加工面11aの画像を撮像素子13で撮像し、欠陥検出部72により欠陥検出処理を行う。これにより、ステップS7またはS8の修正結果を確認する。
次にステップS10では、修正すべきオープン欠陥またはショート欠陥が修正されているかどうか判定し、修正が成功していない場合には、ステップS4に移行する。
修正が成功したと判定された場合は、ステップS11に移行する。
ステップS11では、他に検査位置があるかどうか判定し、他の検査位置がある場合、ステップS1に移行する。
他の検査位置がない場合には、動作を終了する。
このように、レーザ加工装置50では、基板11の欠陥検出を行い、オープン欠陥が検出された場合、空間変調素子6の変調領域Mに対応する加工可能領域Rの範囲に任意形状層形成物質を転写しオープン欠陥を配線修復することができる。その際、転写するパターンに対応するオン光32を空間変調素子6によって発生させるので、加工可能領域Rの範囲であれば、任意の形状、任意個数の欠陥を同時に修正することができる。そのため、効率的な修正を行うことができる。
また、レーザ加工装置50は、観察用結像レンズ12、撮像素子13などの観察手段と、リペア加工用の結像光学系とを共通に用いて、カット修正も行うことができるようになっている。そして、配線修復とカット修正とは、転写用基板ユニット40を光路に対して進退させ、レーザ光源1の初期設定を必要に応じて変更するだけで、選択的に切り替えることができる。
全体をため、そのため、1台の装置内で、配線修復とカット修正と容易に切り替えてリペア加工を行うことができ、基板11の移送を行わなくても済み、段取り替えも迅速に行うことができる。
また、噴射孔41cから、不活性ガスを噴射することで、転写用基板41と被加工面11aとの間の隙間を微小に保つとともに、転写用基板41と被加工面11aとの間を不活性ガスで覆うようにしているので、転写用基板41の移動とともに、不活性雰囲気を移動することができ、装置を簡素化することができる。
次に、本発明の実施形態の第1変形例に係るレーザ加工装置について説明する。
図11は、本発明の実施形態の第1変形例に係るレーザ加工装置の転写用基板の移動の様子を示す模式説明図である。
本変形例は、上記実施形態の配線修復の工程において、未転写領域の移動方法を変えたものである。以下、上記実施形態と異なる点を中心に説明する。
本変形例は、図7のステップS24で、未転写領域に移動する際、予め移動する区画の大きさを固定せず、図8に示すように、オン状態データ121が存在するオン状態データ外接範囲122の大きさと、転写用基板41上の未転写領域の空きスペースとに応じて、未転写領域の残存ができるだけ少なくなるように、未転写領域を動的に設定して移動するようにしたものである。
例えば、図8に示す変調データ200による配線修復を行うものとして、転写用基板41の転写領域45が、区画B〜Bが転写にすでに利用されて、残りの範囲が未転写領域45aであったとする。
このとき、転写用基板移動制御部82は、オン状態データ121から、オン状態データをすべて含む矩形範囲を、オン状態データ外接範囲122(図8参照)として算出する。そして、区画B〜Bに隣接し、オン状態データ121の面積が確保される未転写領域45aに移動させる。例えば、領域Sに移動する。このとき、転写回数nに応じて、領域Sの面積のn倍の領域が連続的に確保できる位置に移動すると、2回目以降、例えば、S、S、…などの隣接領域に順次移動できるので効率的な移動が行える。
これを繰り返して、転写領域45内に未転写領域ができるだけ少なくなるように制御する。
本変形例では、転写用基板41の転写効率がよくなるので、安価に配線修復を行うことができる。
次に、本発明の実施形態の第2変形例に係るレーザ加工装置について説明する。
図12は、本発明の実施形態の第2変形例に係るレーザ加工装置の概略構成を示す光軸を含む断面における模式説明図である。図13は、本発明の実施形態の第2変形例に係るレーザ加工装置の空間変調素子の概略構成を示す模式的な斜視図である。
本変形例のレーザ加工装置55は、上記実施形態のレーザ加工装置50の空間変調素子6に代えて、空間変調素子61を備え、反射ミラー5aを削除したものである。以下、上記実施形態と異なる点を中心に説明する。
空間変調素子61は、図12に示すように、レーザ光31の光路中に配置して、レーザ光31の一部を光路断面における位置に応じて透過することで、空間変調を行う透過型空間変調素子である。例えば、高速に動作できる微小な可動構造が製作できるMEMS技術を用い、光反射性の微小な矩形板をその一辺で回動ヒンジにより支持したフリップ61aを2次元的に複数配列した構成を採用することができる。各フリップ61aは、制御信号に応じてそれぞれ静電電圧が印加されることにより、回動ヒンジを中心として回動される。そのため、静電電圧が印加されないオフ状態では、回動角が0度となり各フリップ61aが1つの平面に整列する。一方、静電電圧が印加されるオン状態では、回動角が90度となり、フリップ61aがオフ状態の平面に対して直交する位置まで回動される。
レーザ光31は、オフ状態のフリップ61aが整列する平面の法線方向に略沿って入射されるようにする。
このような構成により、各フリップ61aは、空間変調素子駆動部77により、オフ状態またはオン状態に制御される。特定のフリップ61aがオン状態となると、オン状態のフリップ61aの配置に対応した開口部が形成され、オン状態のフリップ30aの位置にオン光32Aが透過される。
オン光32Aは、反射ミラー5bで反射されて結像レンズ7に入射され、対物レンズ10で、金属薄膜41b、また被加工面11aに結像される。
このため、上記実施形態のレーザ加工装置50と全く同様にして、配線修復およびカット修正を行うことができる。
なお、上記の説明では、対物レンズ10のオートフォーカスを、コントラスト法などの画像処理によって行った例で説明したが、測距センサなどによるオートフォーカス動作を行うようにしてもよい。
また、上記の説明では、対物レンズ10がフォーカス位置を、転写用基板41の進退に応じてオートフォーカス動作を行うことで切り換えるようにした例で説明したが、転写用基板移動機構43によって、転写用基板41を被加工面11aに対して一定高さΔの位置に保持する構成を採用すれば、転写時のフォーカス位置は、被加工面11aから一定高さΔだけシフトするようにして、転写用基板41にオートフォーカスさせなくてもよい。
この場合、例えば、転写用基板移動機構43、転写用基板ユニット40を加工ヘッド51と別体に保持し、対物レンズ10のフォーカス位置を、加工ヘッド51の上下動によって変更する構成を採用することができる。
また、上記の説明では、レーザ加工装置は、配線修復とカット修正とを切り替えられるようにしているが、レーザ光源1を配線修復の条件のみに適合するものを採用し、配線修復のみを行う装置としてもよい。
また、上記の実施形態の第1変形例の説明では、未転写領域を動的に割り当てる場合、オン状態データ外接範囲122を矩形外形として説明したが、これは一例であり、任意の多角形領域を採用することができる。
また、上記の説明では、ガス浮上ホルダが、転写用基板に貫通する噴射孔を通してガスを噴射する構成の例で説明したが、噴射孔は、転写用基板の外縁を保持する部分のガス浮上ホルダに貫通させて設けてもよい。
また、上記の説明では、転写用基板がガス浮上保持される構成の例で説明したが、被加工面との間の距離を、層形成物資が良好に転写できる寸法に保つことができれば、必ずしもガス浮上させなくてもよい。
また、層形成物質が、転写時に酸化されるおそれがない場合には、不活性ガスを噴射する必要はない。
本発明の実施形態に係るレーザ加工装置の概略構成を示す光軸を含む断面における模式説明図である。 本発明の実施形態に係るレーザ加工装置の空間変調素子の微小ミラーの配列を示す平面図、および空間変調素子の微小ミラーについて説明する模式的な斜視図である。 本発明の実施形態に係るレーザ加工装置の転写用基板ユニットの模式的な平面図およびそのA−A図である。 本発明の実施形態に係るレーザ加工装置の制御ユニットの機能構成を示す機能ブロック図である。 本発明の実施形態に係るレーザ加工装置の動作について説明するフローチャートである。 被加工面の正常パターンの一例を示す模式説明図、および被加工面に発生したオープン欠陥の一例を示す模式説明図である。 本発明の実施形態に係る配線修復動作について説明するフローチャートである。 図6(a)のオープン欠陥に対応した空間変調素子の変調データの例を示す模式説明図である。 本発明の実施形態に係るレーザ加工装置の転写用基板の移動の様子を示す模式説明図である。 本発明の実施形態に係るカット修正動作について説明するフローチャートである。 本発明の実施形態の第1変形例に係るレーザ加工装置の転写用基板の移動の様子を示す模式説明図である。 本発明の実施形態の第2変形例に係るレーザ加工装置の概略構成を示す光軸を含む断面における模式説明図である。 本発明の実施形態の第2変形例に係るレーザ加工装置の空間変調素子の概略構成を示す模式的な斜視図である。
符号の説明
1 レーザ光源
6、61 空間変調素子
7 結像レンズ(結像光学系)
10 対物レンズ(結像光学系)
11 基板(被加工物)
11a 被加工面
12 観察用結像レンズ
13 撮像素子
15 対物レンズ移動機構(結像位置移動機構)
16 加工領域移動機構
17 ステージ
18 加工ヘッド移動機構
30 レーザ光源部
31 レーザ光
32、32A オン光
40 転写用基板ユニット
41 転写用基板
41a ガラス基板
41b 金属薄膜(転写用薄膜)
41c 噴射孔
42 基板ホルダ(ガス浮上ホルダ)
42e、42f ガス流路
43 転写用基板移動機構
44 浮上機構
45 転写領域
45a 未転写領域
50、55 レーザ加工装置
71 画像処理部(変調データ生成部)
72 欠陥検出部
73 結像位置制御部
75 レーザ光制御部
80 装置制御部
81 転写履歴記憶部
82 転写用基板移動制御部
101 配線パターン
111 欠陥領域
121 オン状態データ
122 オン状態データ外接範囲
M 変調領域
R 加工可能領域R
、…、A、B、…、B 区画
、S、S 領域

Claims (4)

  1. 層形成物質により層状のパターンが形成された被加工面の画像を撮像する撮像部と、該撮像部によって撮像された前記被加工面の画像から、前記被加工面のパターンの一部が欠落したオープン欠陥と前記被加工面のパターン同士が接触したショート欠陥とを区別して欠陥を検出し、該欠陥の位置、形状の情報を含む欠陥情報を取得する欠陥検出部とを有するレーザ加工装置であって、
    前記層形成物質を蒸発または昇華可能なレーザ光を発生するレーザ光源と、
    該レーザ光源から出射されたレーザ光を空間変調する空間変調素子と、
    該空間変調素子によって一定方向に向けて反射されたレーザ光を被加工面に導く結像光学系と、
    該結像光学系の結像位置を前記被加工面の近傍の光軸方向に移動する結像位置移動機構と、
    ガラス基板上に前記層形成物質からなる転写用薄膜が形成された転写用基板と、
    該転写用基板を、前記転写用薄膜を前記被加工面側に向けた状態で、前記被加工面と前記結像光学系との間の光路上において前記結像光学系の光軸に沿う方向および直交する方向にそれぞれ位置移動可能、かつ前記光路に対して進退移動可能に保持する転写用基板移動機構と、
    前記欠陥検出部によって検出された前記オープン欠陥の欠陥情報に基づいて、前記オープン欠陥の部分に前記レーザ光を照射するための前記空間変調素子の変調データを生成する変調データ生成部とを備え、
    前記転写用基板上の前記転写用薄膜の未転写領域を前記被加工面近傍の前記オープン欠陥上に移動し、前記変調データ生成部によって生成された変調データに基づいて空間変調されたレーザ光を前記転写用薄膜上に結像し、前記レーザ光の照射部分の前記層形成物質を前記オープン欠陥上に転写して、前記オープン欠陥を修復できるようにしたことを特徴とするレーザ加工装置。
  2. 前記転写用基板は、前記被加工面に対して不活性ガスを噴射するための流路が形成されたガス浮上ホルダを介して、前記転写用基板移動機構に保持されてなり、
    前記転写用基板移動機構は、前記ガス浮上ホルダの前記結像光学系の光軸方向の保持と保持解除とを選択的に切り換えられるようにしたことを特徴とする請求項1に記載のレーザ加工装置。
  3. 前記転写用基板の転写済み領域の位置情報を記憶する転写履歴記憶部と、
    前記欠陥検出部によって検出された前記オープン欠陥の大きさと、前記転写履歴記憶部に記憶された前記転写済み領域の位置情報とを参照して、転写に用いる前記未転写領域を設定する移動位置設定部とを備え、
    前記転写用基板移動機構は、転写動作時に、前記移動位置設定部で設定された未転写領域に前記転写用基板を移動させるようにしたことを特徴とする請求項1または2に記載のレーザ加工装置。
  4. 前記レーザ光源は、前記層形成物質を蒸発または昇華可能な第1のレーザ光と、前記被加工面上の欠陥を除去加工可能な第2のレーザ光とを選択的に切り換えて発生可能とされ、
    前記欠陥検出部は、前記被加工面上から除去すべきショート欠陥が検出可能とされ、
    前記変調データ生成部は、前記欠陥検出部によって検出されたショート欠陥の情報に基づいて、前記ショート欠陥の部分に前記第2のレーザ光を照射するための前記空間変調素子の変調データを生成し、
    前記転写用移動機構により前記転写用基板を、前記被加工面と前記結像光学系との間の光路から退避した状態で、前記第2のレーザ光の発生を選択することによって前記ショート欠陥を除去できるようにしたことを特徴とする請求項1〜3のいずれかに記載のレーザ加工装置。
JP2007059049A 2007-03-08 2007-03-08 レーザ加工装置 Expired - Fee Related JP4955425B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007059049A JP4955425B2 (ja) 2007-03-08 2007-03-08 レーザ加工装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007059049A JP4955425B2 (ja) 2007-03-08 2007-03-08 レーザ加工装置

Publications (2)

Publication Number Publication Date
JP2008221237A true JP2008221237A (ja) 2008-09-25
JP4955425B2 JP4955425B2 (ja) 2012-06-20

Family

ID=39840435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007059049A Expired - Fee Related JP4955425B2 (ja) 2007-03-08 2007-03-08 レーザ加工装置

Country Status (1)

Country Link
JP (1) JP4955425B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120079A (ja) * 2008-11-21 2010-06-03 Komatsu Engineering Corp 微細加工装置および微細加工方法
WO2010061884A1 (ja) * 2008-11-28 2010-06-03 浜松ホトニクス株式会社 光変調装置およびレーザ加工装置
JP2010128325A (ja) * 2008-11-28 2010-06-10 Hamamatsu Photonics Kk 光変調装置およびレーザ加工装置
JP2010128327A (ja) * 2008-11-28 2010-06-10 Hamamatsu Photonics Kk 光変調装置
JP2011194432A (ja) * 2010-03-18 2011-10-06 Olympus Corp レーザ加工方法、及び、レーザ加工装置
KR101624885B1 (ko) * 2008-11-13 2016-05-27 올림푸스 가부시키가이샤 결함 수정 장치
US9457424B2 (en) 2008-11-28 2016-10-04 Hamamatsu Photonics K.K. Laser machining device
CN113556934A (zh) * 2021-06-24 2021-10-26 广东工业大学 一种自动检测、快速修补印刷电路板的方法及装置
CN115786909A (zh) * 2023-01-09 2023-03-14 西安国盛激光科技有限公司 导卫激光熔覆修复方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104088A (ja) * 1985-10-30 1987-05-14 Nippei Toyama Corp レ−ザ出力制御装置
JPS6356382A (ja) * 1986-08-25 1988-03-10 Mitsubishi Electric Corp レ−ザ加工用非接触倣い装置
JPH0469951A (ja) * 1990-07-11 1992-03-05 Hitachi Ltd 電子回路基板における配線修正方法とその電子回路基板
JPH05104266A (ja) * 1991-05-16 1993-04-27 Nikon Corp レーザ加工装置
JPH0679488A (ja) * 1992-09-03 1994-03-22 Hamamatsu Photonics Kk レーザ加工装置
JPH08150487A (ja) * 1994-11-28 1996-06-11 Hajime Makita デポジション装置
JP2002222694A (ja) * 2001-01-25 2002-08-09 Sharp Corp レーザー加工装置及びそれを用いた有機エレクトロルミネッセンス表示パネル
JP2002280321A (ja) * 2001-03-21 2002-09-27 Ishikawajima Harima Heavy Ind Co Ltd レーザアニール装置
JP2002351055A (ja) * 2001-03-23 2002-12-04 Hoya Corp フォトマスクの欠陥修正方法
JP2006122989A (ja) * 2004-10-29 2006-05-18 Sony Corp レーザ加工装置
JP2007019105A (ja) * 2005-07-05 2007-01-25 V Technology Co Ltd 電子回路基板の配線補修用積層材および電子回路基板の配線補修方法並びに配線補修装置
JP2007029983A (ja) * 2005-07-26 2007-02-08 Olympus Corp レーザリペア装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104088A (ja) * 1985-10-30 1987-05-14 Nippei Toyama Corp レ−ザ出力制御装置
JPS6356382A (ja) * 1986-08-25 1988-03-10 Mitsubishi Electric Corp レ−ザ加工用非接触倣い装置
JPH0469951A (ja) * 1990-07-11 1992-03-05 Hitachi Ltd 電子回路基板における配線修正方法とその電子回路基板
JPH05104266A (ja) * 1991-05-16 1993-04-27 Nikon Corp レーザ加工装置
JPH0679488A (ja) * 1992-09-03 1994-03-22 Hamamatsu Photonics Kk レーザ加工装置
JPH08150487A (ja) * 1994-11-28 1996-06-11 Hajime Makita デポジション装置
JP2002222694A (ja) * 2001-01-25 2002-08-09 Sharp Corp レーザー加工装置及びそれを用いた有機エレクトロルミネッセンス表示パネル
JP2002280321A (ja) * 2001-03-21 2002-09-27 Ishikawajima Harima Heavy Ind Co Ltd レーザアニール装置
JP2002351055A (ja) * 2001-03-23 2002-12-04 Hoya Corp フォトマスクの欠陥修正方法
JP2006122989A (ja) * 2004-10-29 2006-05-18 Sony Corp レーザ加工装置
JP2007019105A (ja) * 2005-07-05 2007-01-25 V Technology Co Ltd 電子回路基板の配線補修用積層材および電子回路基板の配線補修方法並びに配線補修装置
JP2007029983A (ja) * 2005-07-26 2007-02-08 Olympus Corp レーザリペア装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101624885B1 (ko) * 2008-11-13 2016-05-27 올림푸스 가부시키가이샤 결함 수정 장치
JP2010120079A (ja) * 2008-11-21 2010-06-03 Komatsu Engineering Corp 微細加工装置および微細加工方法
WO2010061884A1 (ja) * 2008-11-28 2010-06-03 浜松ホトニクス株式会社 光変調装置およびレーザ加工装置
JP2010128325A (ja) * 2008-11-28 2010-06-10 Hamamatsu Photonics Kk 光変調装置およびレーザ加工装置
JP2010128327A (ja) * 2008-11-28 2010-06-10 Hamamatsu Photonics Kk 光変調装置
CN102227667A (zh) * 2008-11-28 2011-10-26 浜松光子学株式会社 光调制装置和激光加工装置
US9285579B2 (en) 2008-11-28 2016-03-15 Hamamatsu Photonics K.K. Light modulating device and laser processing device
US9457424B2 (en) 2008-11-28 2016-10-04 Hamamatsu Photonics K.K. Laser machining device
KR101681337B1 (ko) * 2008-11-28 2016-11-30 하마마츠 포토닉스 가부시키가이샤 레이저 가공장치
JP2011194432A (ja) * 2010-03-18 2011-10-06 Olympus Corp レーザ加工方法、及び、レーザ加工装置
CN113556934A (zh) * 2021-06-24 2021-10-26 广东工业大学 一种自动检测、快速修补印刷电路板的方法及装置
CN115786909A (zh) * 2023-01-09 2023-03-14 西安国盛激光科技有限公司 导卫激光熔覆修复方法

Also Published As

Publication number Publication date
JP4955425B2 (ja) 2012-06-20

Similar Documents

Publication Publication Date Title
JP4955425B2 (ja) レーザ加工装置
TWI486724B (zh) 微影裝置、可程式化之圖案化器件及微影方法
TWI494708B (zh) 微影裝置、可程式化之圖案化器件及微影方法
CN101147093B (zh) 维修方法及其装置
JP5137488B2 (ja) レーザ照射装置およびそれを用いたレーザ加工システム
CN100587914C (zh) 处理半导体晶片的激光束处理设备、方法及半导体晶片
JP5086687B2 (ja) レーザ加工装置
TW201044012A (en) Method and device using rotating printing arm to project or view image across a workpiece
JP2010224544A (ja) レーザビーム露光装置およびその方法
JPWO2017155104A1 (ja) レーザ光照射装置及びレーザ光照射方法
WO1999066543A1 (fr) Procedes et dispositif de detection de position et d'exposition, realisations et procedes de fabrication correspondants
JP6643328B2 (ja) リソグラフィ構造を生成するための光学系
JP2007052413A (ja) ホログラムマスクを用いて合成パターンを大型基板に印刷するための方法および装置
TW201207571A (en) Liquid immersion member, method for manufacturing liquid immersion member, exposure apparatus, and device manufacturing method
JP2014083562A (ja) レーザ照射ユニット及びレーザ加工装置
JP2009006339A (ja) レーザ加工装置、及び、レーザ加工方法
JP4533874B2 (ja) レーザビーム露光装置
TW201250398A (en) Lithographic apparatus, method for maintaining a lithographic apparatus, and device manufacturing method
JP5057787B2 (ja) 欠陥修正装置
JP2006120790A (ja) 露光装置
JP4235584B2 (ja) 露光装置及びパターン形成方法
JP6227347B2 (ja) 露光装置、および、光学装置
JP3477246B2 (ja) レーザ描画装置
JP2000353647A (ja) マスクとウエハの倍率補正量検出方法及び位置合わせ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120315

R151 Written notification of patent or utility model registration

Ref document number: 4955425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees