JP2008209083A - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
JP2008209083A
JP2008209083A JP2007048430A JP2007048430A JP2008209083A JP 2008209083 A JP2008209083 A JP 2008209083A JP 2007048430 A JP2007048430 A JP 2007048430A JP 2007048430 A JP2007048430 A JP 2007048430A JP 2008209083 A JP2008209083 A JP 2008209083A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigeration cycle
air conditioner
pipe
refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007048430A
Other languages
English (en)
Inventor
Atsushi Nagasawa
敦氏 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2007048430A priority Critical patent/JP2008209083A/ja
Publication of JP2008209083A publication Critical patent/JP2008209083A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

【課題】複数の独立した冷凍サイクルを備え、各々の冷凍サイクル内の冷媒量を低減することで冷媒の漏洩による様々な危険性を回避するとともに、空調負荷に対する適切な空調能力の提供を行うことのできる空気調和機を提供することである。
【解決手段】冷凍サイクル内を循環させる冷媒として可燃性冷媒を使用し、室内機と室外機とに分離されたスプリット型の空気調和機1において、冷凍サイクルを複数、それぞれ独立に備える。
【選択図】図1

Description

本発明は、室内機と室外機とに分離されたスプリット型の空気調和機に関する。
空気調和機内に構成される冷凍サイクル内を循環する冷媒として一般的に使用されるのは、例えば、ハイドロフルオロカーボン(HFC)系の冷媒であった。このHFC系冷媒は、これまでの例えばクロロフルオロカーボン(CFC)系冷媒に代替する冷媒(代替フロン)として用いられているが、このHFC系の冷媒も京都議定書で削減の対象とされている。そこで、地球温暖化防止等のためには、フロンを含まない自然系冷媒の使用が望まれる。
但し、自然系冷媒の中でも、例えば二酸化炭素(CO2)を冷媒として使用した場合には、冷凍サイクル中での圧力が高圧となるため取り扱いが困難な場合が多い。また、同じく自然系冷媒に区分されるハイドロカーボン(HC)系の冷媒を使用した場合は、例えば、プロパンのように可燃性がある冷媒が多く、冷媒配管等からの漏洩安全性を確保することが難しい。
この漏洩安全性を確保するべく、以下の特許文献1では次のような発明が開示されている。すなわち、冷媒の漏洩に対処するために室内に冷媒漏洩検知手段を、室外に冷媒漏洩検知手段からの検知信号に基づいて冷媒を冷媒流路外へ排出する排出手段を設け、漏洩を検知した場合には、冷媒を屋外に排出することで冷媒漏洩時の危険性の低減と室内での引火による火災や爆発を回避する空気調和機が示されている。
特開2000−97505号公報
しかしながら、上述の特許文献1に開示されているような方法も漏洩安全性の確保についての一つの方法であって、確実に冷媒漏洩時の危険性を回避することができるものではなく、有効な手段は見いだされていない。
また、法令上、例えば、可燃性(弱燃性を含む)を有する上述したHC系のような冷媒を使用するには、冷媒の種類とその空気調和機が設置される室内(被空調空間)の広さとによって、空気調和機の冷凍サイクル内を循環させることのできる冷媒の量(許容量)が決められている。すなわち、たとえその空気調和機内を循環する全ての冷媒が被空調空間に漏洩したとしても、被空調空間に冷媒が拡散した結果、漏洩した冷媒の空気中における濃度が所定値以下であれば引火する危険がない。
そこで、冷凍サイクルを構成する冷凍配管の径を細くし、或いは圧縮機を小さくすることでその空気調和機で使用するに必要な冷媒の量を低減する試みがなされているが、許容量以下の冷媒量で被空調空間(空調負荷)に適合した能力を得ることは困難な状況にある。
本発明は上記課題を解決するためになされたものであり、本発明の目的は、複数の独立した冷凍サイクルを備え、各々の冷凍サイクル内の冷媒量を低減することで冷媒の漏洩による様々な危険性を回避するとともに、空調負荷に対する適切な空調能力の提供を行うことのできる空気調和機を提供することである。
本発明の実施の形態に係る特徴は、冷凍サイクル内を循環させる冷媒として可燃性冷媒を使用し、室内機と室外機とに分離されたスプリット型の空気調和機において、冷凍サイクルを複数、それぞれ独立に備える。
本発明によれば、複数の独立した冷凍サイクルを備え、各々の冷凍サイクル内の冷媒量を低減することで冷媒の漏洩による様々な危険性を回避するとともに、空調負荷に対する適切な空調能力の提供を行うことのできる空気調和機を提供することができる。
以下、本発明の実施の形態について図面を参照して詳細に説明する。
図1に示すように、本発明の実施形態に係る空気調和機1は、室内機2と室外機3とが壁4を挟んで設置され、冷媒配管を介して接続されている。
室内機2は、建造物の内部に設置されており、例えば、図示しないリモートコントローラ等で設定された温度に基づいて被空調空間を適切な温度に保つように冷暖房運転や空気循環を行う。室内機2の筐体内部には、第1の室内側熱交換器2aaと、第2の室内側熱交換器2abと、両方の熱交換器に共通に通風する室内ファン2bが収納されている。第1の室内側熱交換器2aaは第1の冷凍サイクルS1を構成し、第2の室内側熱交換器2abは、第2の冷凍サイクルS2を構成している。第1の室内側熱交換器2aaと第2の室内側熱交換器2abは、室内ファン2bからの風が第1の室内側熱交換器2aaから第2の室内側熱交換器2abへと流れるように両者の間に隙間を設けた状態で両者並べて設置される。
第1の室内側熱交換器2aaには、熱交換器の入口、出口につながる銅製の冷媒配管である液側とガス側の2本の補助配管S1aが接続(ロウ付け)されている。第2の室内側熱交換器2abも同様に液側とガス側の補助配管S2aが接続(ロウ付け)されている。なお、圧力損失を低減するために各補助配管S1a、S2aの液側配管は細く、ガス側配管は太くなっている。すなわち、液側配管の方がガス側配管よりも断面積が小さい。各2本の補助配管S1a、S2aの終端に近い部分は、液側配管とガス側配管がそれぞれ2本ごとにまとめて断熱材Dで覆われ、図5に示すようにそれぞれの先端部にフレア接続部FL1がロウ付け等で銅配管に取り付けられている。なお、液側配管の断面積はガス側配管の断面積よりも小さく、それぞれの径が異なっている。
冷媒が循環する冷媒配管である補助配管S1a、S2aは、壁4に空けられた孔を通り室外に引き出されている。壁4の孔を通る部分には補助配管S1a、S2aの断熱材Dが位置し、壁4によって冷媒配管が傷つくことを防止している。この室外に引き出された補助配管S1a、S2aの先端のフレア接続部FL1までが室内機2となる。配管の太さに合わせ液側配管のフレア接続部はガス側配管のフレア接続部よりも小さい。
室外機3は、建造物の外部に設置されており、空気調和機1の室内機2に冷媒配管、電源線等を通じて接続される。室外機3内には圧縮機3aと、アキュムレータ3bと、四方弁3cと、室外側熱交換器3dと、室外ファン3eと、膨張弁3fが設けられている。
圧縮機3a、アキュムレータ3b、四方弁3c、室外側熱交換器3d、膨張弁3fはいずれも、第1の冷凍サイクルS1と第2の冷凍サイクルS2のそれぞれの冷凍サイクルごとに設けられる。すなわち、第1の圧縮機3aa、第1のアキュムレータ3ba、第1の四方弁3ca、第1の室外側熱交換器3da、第1の膨張弁3faにより第1の冷凍サイクルS1が、また、第2の圧縮機3ab、第2のアキュムレータ3bb、第2の四方弁3cb、第2の室外側熱交換器3db、第2の膨張弁3fbにより第2の冷凍サイクルS2が構成される。
また、第1の室外側熱交換器3daと第2の室外側熱交換器3dbは、共通の室外ファン3eからの風が第1の室外側熱交換器3daから第2の室外側熱交換器3dbへと流れるように両者の間に隙間を設けた状態で両者並べて設置される。
室外機3には、図2に示されるように配管接続用のバルブV1、V2が設けられる。バルブV1は例えば、第1の冷凍サイクルS1の液側バルブV1aとガス側バルブV1bであり、その大きさは接続される配管に合わせてガス側バルブV1bが液側バルブV1aより大きくなっている。同様にバルブV2は例えば、第2の冷凍サイクルS2の液側バルブV2aとガス側バルブV2bであり、その大きさは接続される配管に合わせてガス側バルブV2bが液側バルブV2aより大きくなっている。また、図2にあるようにバルブV1、V2は室外機3の側面に上から下に向かって直線状に並べられており、バルブV1a、V1bは近接して並設され、V2a、V2bも近接して設けられる。そこで、識別のためにバルブV1(本実施の形態においては、第1の冷凍サイクルS1が接続されている)の横には「サイクルA」の表示板DS1が、バルブV2(本実施の形態においては、第2の冷凍サイクルS2が接続されている)の横には「サイクルB」の表示板DS2が設けられる。このバルブV1、V2と室内機2側の補助配管S1a、S2aとの間を渡り配管S1b、S2bでつなぐことによって室内機2と室外機3とが接続される。これにより、冷媒配管内を冷媒が循環する空気調和機1の冷凍サイクルS1、S2が完成する。
本発明の実施の形態の例として、図1、2では第1の冷凍サイクルS1と第2の冷凍サイクルS2の2つの冷凍サイクルを設けた例を示している。これら複数の冷凍サイクルは互いに独立しており、相互の冷凍サイクルが接続されて1つの大きな冷凍サイクルとなることはない。ここで、各冷凍サイクル内の冷媒量は、被空調空間に対して法定されている冷媒量よりも少ない量が封入されている。なお、各冷凍サイクル内の冷媒量が、被空調空間に対して法定されている冷媒量よりも少ない量であれば、設けられる冷凍サイクルの数は自由である。
ここで、第1の冷凍サイクルS1を用いて空気調和機1の運転について説明する。第1の冷凍サイクルS1による暖房運転は、図1の破線の矢印に示されているように、まず、室外機3内に設けられている第1の圧縮機3aaが冷媒を圧縮し、高温高圧にする。高温高圧になった気体冷媒は、第1の四方弁3ca、バルブV1b、渡り配管S1b、補助配管S1aと冷媒配管を通り第1の室内側熱交換器2aaで凝縮される。この凝縮が行われる際に発生する熱が室内ファン2bによって室内に供給されることにより室内が暖房される。放熱して低温になった液冷媒は、再度冷媒配管(補助配管S1a、渡り配管S1b、バルブV1a)を通り室外機3内の第1の膨張弁3faで低温低圧の冷媒となり、第1の室外側熱交換器3daに導かれる。冷媒は室外ファン3eからの風を受けて第1の室外側熱交換器3daで蒸発して外気から熱を奪い、温度の上がった低圧の気体となる。この気体となった冷媒は再び第1の四方弁3caを通って第1のアキュムレータ3baを介し、第1の圧縮機3aaに吸い込まれ、圧縮されて高温高圧となり、これまでのサイクルを繰り返す。一方冷房運転は、実線の矢印に示される順序で冷媒が循環し、第1の室内側熱交換器2aaで蒸発することで室内の冷房が行われる。
本発明の実施の形態における空気調和機1では複数の冷凍サイクルが設けられており、暖房運転の場合にはいずれの冷凍サイクルも暖房運転を行い、一方、冷房運転の場合にはいずれの冷凍サイクルも冷房運転を行う。このように複数の冷凍サイクルを同じ運転を行うように制御することにより、独立した冷凍サイクル内を循環する冷媒量が被空調空間に対して法定されている冷媒量よりも少なくとも、空調負荷に対する適切な空調能力を提供することができる。なお、インバータ装置によって両者の圧縮機3aa、3abを可変速駆動する場合には、両者の圧縮機の回転数をほぼ同じに制御することが効率の観点からは望ましい。
また、除湿運転は、一般的に冷房運転を行うことで行われる。すなわち、第1の圧縮機3aaで圧縮されて高温高圧となった冷媒は、第1の四方弁3caを介して第1の室外側熱交換器3daを通過する。その際、室外ファン3eは回転させず、また、第1の膨張弁3faも開放状態としておく。このようにすることで、冷媒は高温高圧の状態のまま室内機2へと送られる。
これまで1つの冷凍サイクルのみからなる空気調和機の室内機では、室内側熱交換器を直列に2つ接続させていた。この2つの室内側熱交換器の間には膨張弁が配置され、通常の冷暖房運転時にはこの膨張弁を開放する。一方、除湿運転時には、この膨張弁を絞り高温高圧の冷媒が入る1つ目の室内側熱交換器を高温に維持するとともに、膨張弁を通過した2つ目の室内側熱交換器を低温とする再熱除湿サイクルと言われるシステムを採用することで、室温を一定に保ちつつ除湿を行うようにしている。
本発明の実施の形態においては、冷凍サイクルが独立して複数設けられていることから、空気調和機内を複雑な機器構成とすることなく、すなわち、室内機に膨張弁を設けることなく、より効率よく除湿運転することができる。例えば、第1の冷凍サイクルS1を使用して暖房運転を行い、第2の冷凍サイクルS2を使用して冷房運転を行うことにより、被空調空間の温度を下げることなく除湿を行うことができる。
さらに、暖房運転時には、室外機3に霜が付くため通常、暖房運転から冷房運転に切り換えて除霜を行う。本発明の実施の形態においては、複数の独立した冷凍サイクルを備えるため、除霜運転もそれぞれの冷凍サイクルが独自に行うことになる。但し、複数の冷凍サイクルの全てが同時に除霜運転を行うと、除霜運転中は室内ファン2bを停止させて被空調空間に冷気が送風されないように制御していても被空調空間の温度を下げることにもなりかねない。そこで、例えば、図3の説明図に示すようにいずれか一方の冷凍サイクルが除霜中は他方の冷凍サイクルを暖房、もしくはインバータ装置により圧縮機を可変速駆動する、いわゆるインバータ機種の場合は高暖房とする運転パターンを採用することで、効率の良い暖房及び除霜運転を行うこととしている。
すなわち、図3においては、第1の冷凍サイクルS1、第2の冷凍サイクルS2の運転パターン及び室温を示す線が示されている。各冷凍サイクルは、図示しない制御部(マイクロコンピュータ等)により、統合的に制御されるようになっている。ここで通常空気調和機1が暖房運転を行っているときは、上述したように第1の冷凍サイクルS1、第2の冷凍サイクルS2のいずれも暖房運転を行っている。暖房運転を行うことで次第に室外機3に霜が付くため、まず第1の冷凍サイクルS1が除霜運転に移行する。但し、除霜運転を行う場合は冷房運転となるため、そのままでは室内の温度が下がってしまうことから、第2の冷凍サイクルS2において第1の冷凍サイクルS1が除霜運転をしている間、圧縮機を可変速駆動するインバータ装置の出力周波数を通常(空調負荷に基づく要求)より上げて暖房運転の能力を上げる(高能力運転)。この高能力運転では、例えば、室内の室温がこれまでの室温よりも高くなるように第2の冷凍サイクルS2を運転する。このような運転制御を行うことで、第1の冷凍サイクルS1が除霜運転を行うことによる室温の低下を防止することができる。第1の冷凍サイクルS1の除霜運転が終了すると、第1の冷凍サイクルS1も通常運転に戻る。次に、第2の冷凍サイクルS2が除霜運転を開始する。第2の冷凍サイクルS2が除霜運転を開始すると、第1の冷凍サイクルS1は高能力運転を開始する。
このように制御部により各々の冷凍サイクルを適切に動作制御することによって、図3に示すように室温を一定に保つことができ、一方で、室外機3の除霜を効率的に行うことができる。
以上のように、本発明の実施の形態における空気調和機1には、複数の独立した冷凍サイクルが設けられているが、室内機2と室外機3とを誤って接続してしまうと、これら独立して設けられた冷凍サイクルが1つの配管で連通した大きな冷凍サイクルのようになってしまい、本発明の目的を達成できなくなってしまう。
一般的に冷凍サイクルはその構成上、室外機3の2箇所から冷媒が出入りする。すなわち、一方は膨張弁につながる冷媒配管であり、この冷媒配管には液体の冷媒が流れている。他方は四方弁につながる冷媒配管であり、この冷媒配管には気体の冷媒が流れている。上述した室内機の補助配管S1a、S2aと同様に、通常、液体の冷媒が流れる冷媒配管の径は気体の冷媒が流れる冷媒配管の径よりも小さい(図2参照)。また、室内機2と室外機3の施工順序は、まず室内機2を設置して補助配管S1a、S2aを壁4に空けた孔から室外へと引き出し、この補助配管S1a、S2aに渡り配管S1b、S2bの一端を接続する。その後、渡り配管S1b、S2bの他端を室外機3のバルブV1、2に接続することで、冷凍サイクルが完成する。
補助配管S1a、S2aに渡り配管S1b、S2bの一端を接続する場合は、図5に示すようにフレア接続を行う。図5は、補助配管と渡り配管とがフレア接続具FL1及びフレアナットFL2を用いて接続されている様子を示す断面図である。
この接続について第1の冷凍サイクルS1を例にとって説明すると、まず補助配管S1aにはフレア接続具FL1の一端がロウ付けされている。フレア接続具FL1は、一般に真ちゅう製であり、中空の管状となっており、接続された補助配管S1aの管状部分を通じて渡り配管S1bとの間を冷媒が流通可能とされている。また、フレア接続具FL1の他端はテーパ状にシール面が形成されるとともに、外周面には雄ネジが形成されている。
次に、渡り配管S1bの補助配管S1aと接続する一端からフレアナットFL2を通す。このフレアナットFL2の内面にはフレア接続具FL1の雄ネジと接続するための雌ネジが切られており、径が変化する部分はシール面とされている。この後フレアナットFL2を通した渡り配管S1bの一端がラッパ状となるようにフレア加工を行う。その上で、フレアナットFL2をフレア接続具FL1と接続(ネジ止め)する。これにより渡り配管S1bのフレア部分FがフレアナットFL2のシール面とフレア接続具FL1のシール面とに挟まれ密着することにより、封入されている冷媒が漏洩することなく補助配管S1aと渡り配管S1bとが接続される。
ここで、液冷媒の流れる冷媒配管と気体冷媒の流れる渡り配管S1a、S2bは各1セットとなって断熱材に覆われている。このように液冷媒と気体冷媒の配管がまとめられている渡り配管を用いるとともに、図2に示すように室外機のバルブ群の周囲に冷凍サイクルの区別を示す表示板DSを設けていれば、冷凍サイクルの接続を間違うことはない。
すなわち、誤接続において問題となるのは、一方の冷凍サイクルの一方の配管を他方の冷凍サイクルの一方の配管に接続してしまうことである。液側配管とガス側配管では上述の通り、その太さが異なるため、誤接続はありえない。このため、起こりうるのは渡り配管部分において液側配管またはガス側配管のみを交差して接続してしまう場合だけである。
図4には、室外機のバルブVと渡り配管S1b、S2bとの接続部分を示している。こちらの部分も室内の補助配管S1a、S2aと渡り配管S1a、S2bの接続とほぼ同様に、バルブVにフレア接続具FL1が設けられ、フレア部Fを施した渡り配管S1bにナットFL2が通されており、このフレア接続具FL1とナットFL2を締め付けることによりフレア部Fでシールがなされる。
これに対し、設置時の工事業者は、まず、室内機2の一方の補助配管S1aに渡り配管S1bを接続する。この際、いずれも太さの違う液側配管とガス側配管とを持っているため、ここで間違いを起こすことはない。すなわち、それぞれの補助配管S1a、S2aにおいては、同じ冷凍サイクルへつなぐべき液側及びガス側の補助配管がまとめて断熱材に覆われている。また、渡り配管S1b、S2bにおいても補助配管S1a、S2a同様に液側配管とガス側配管とが1つの断熱材に覆われている。このため、室内機2に接続された渡り配管S1b、S2bの室外機に接続される側の配管部分では渡り配管を基準に2つの冷凍サイクルが区分されている。
続いて、この渡り配管S1b、S2bを室外機3のバルブV1、V2に接続するが、この際にも、それぞれの冷凍サイクルの液側とガス側バルブV1a、V1bとV2a、V2bが1組でセットになって、それぞれの液側とガス側のバルブは近接配置され、各セットの間には少し距離を離して配置していること、及び冷凍サイクルを区別するための各配管のセットに対して表示板DSが設けられていることから、渡り配管S1b、S2bの液側配管のみやガス配管のみを交差して接続してしまうことはない。
このような構成を用いれば、作業の結果、一方の冷凍サイクルと他方の冷凍サイクルの配管が交差して誤接続してしまう可能性を大幅に低減することができる。 さらに、空気調和機1に3以上の複数の冷凍サイクルが設けられても、同じ系統の補助配管が区別でき、渡り配管S1b、S2bも液側とガス側が各々セットとして区分され、さらに、室外機3の液冷媒用、気体冷媒用のバルブVのセットが区別できれば、独立して設けられた冷凍サイクルを間違うことなく接続できる。すなわち、それぞれの冷凍サイクルの補助配管及び渡り配管を各冷凍サイクルごとの組み(液側配管とガス側配管のセット)にし、かつ室外機に設けられるバルブも各冷凍サイクルごとの組み(液側バルブとガス側バルブのセット)とすることで、冷凍サイクルを構成する冷媒配管の接続部の誤接続を防止する誤接続防止手段を構成できる。
なお、室外機のバルブVの冷凍サイクルごとの識別として、バルブの配置及び表示にて対処したが、2つの冷凍サイクルまでであれば、図4に示すように、渡り配管S1b、S2bの室外機3のバルブVと接続する部分をフレア加工しナットで締め付けて両者を接続する際に、ナットを締め付ける方向を冷凍サイクルごとに変えておくことにより対処することも可能である。すなわち、例えば、一方の冷凍サイクル用のバルブV1は液側、ガス側ともに左ネジとし、バルブV2の液側、ガス側とも右ネジとして誤接続が生ずることを防止できる。
一方、渡り配管において液側とガス側の配管をまとめると、液冷媒は低温低圧であるのに対して気体冷媒は高温高圧であることから、それぞれの冷媒配管との間にも断熱材が挟まれているものの熱ロスが発生する。
そこで、他の実施の形態としてこの熱ロスを避けるために複数の冷凍サイクルの液冷媒の配管は液冷媒の配管ごとに、気体冷媒の配管は気体冷媒の配管ごとにまとめ、これを断熱材によって囲繞することで冷暖房運転における熱ロスを最小限にくい止めることができる。ところが液側配管とガス側配管とを複数組備える複数の冷凍サイクルを構成する場合、補助配管と渡り配管及び室外機3のバルブの接続は、上述の施工順序を勘案すると非常に難しくなり、誤接続の危険性が高い。すなわち、上述したように液冷媒の配管と気体冷媒の配管を適切なバルブと接続しなければ、冷凍サイクルが1つの大きな冷凍サイクルとなってしまう。
そこで、このような配管構造となる場合には、渡り配管S1b、S2bと接続される室内機2の補助配管S1a、S2a、室外機3のバルブVのそれぞれに接続先、或いはその補助配管S1a、S2a、バルブVがいずれの冷凍サイクルを構成する冷媒配管であるかを示す識別標識を貼付する。なお、ここにいう識別標識には、直接補助配管S1a、S2aに表示された識別標識の他、貼付されたシール、目印のために塗布された塗料等も含まれる。
また別の方法としては、全ての接続部分の太さを異ならせる誤接続防止手段も考えられる。2つの冷凍サイクルを用いた場合、渡り配管S1b、S2bと接続される室内機2の補助配管S1a、S2aそれぞれに4種類の大きさのフレア接続具FL1、フレアナットFL2を用いるととも4種類のバルブVを使用する。この際、配管そのものは同じ太さのものを使用しても良い。この場合、2つの冷凍サイクルは確実に区分できるので、例えば2つの冷凍サイクルの容量を異ならせている場合には効果が発揮できる。さらに、3つ以上の冷凍サイクルを用いる場合には、接続部の太さとネジ方向の組み合わせ誤接続防止手段を構成し、各接続部を異ならせることで、誤接続を防止することも考えられる。
このように、複数の独立した冷凍サイクルを備え、それぞれの冷凍サイクル内に定められた冷媒の許容量以下の冷媒を循環させているので、万が一、可燃性の冷媒が被空調空間に漏洩したとしても少量の冷媒が拡散するにとどまり、例えば引火の危険性を回避することができ、より安全な空気調和機を提供することができる。
また、冷凍サイクルを独立させたことにより、複数の冷凍サイクルが同時に損壊する可能性は極めて低い。そして、1つ1つの冷凍サイクルには許容量以下の冷媒しか循環していないが、複数の冷凍サイクルを空気調和機に組み込むことによって、室内機及び室外機の各々の設置場所が少なくて済むとともに、空調負荷に対する適切な空調能力の提供を行うことのできる空気調和機を提供することができる。さらに、上述の実施の形態において説明したように複数の冷凍サイクルを独立して設けてもそれぞれの冷媒配管が適切な部分に接続できるように誤接続防止手段を設けたので、誤接続を減らし1つの大きな冷凍サイクルの出現を回避して複数の冷凍サイクルを独立して設けたことの効果を十分に発揮することができる。
なお、この発明は、上記実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施の形態に開示されている複数の構成要素を適宜組み合わせることにより種々の発明を形成できる。例えば、実施の形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施の形態に亘る構成要素を適宜組み合わせてもよい。
本発明の実施の形態における複数の独立した冷凍サイクルを備える空気調和機を示す構成図である。 本発明の実施の形態における室外機を示す説明図である。 本発明の実施の形態における空気調和機の運転パターンの一例を示す説明図である。 本発明の実施の形態における誤接続防止の一例を示す説明図である。 本発明の実施の形態における補助配管と渡り配管との接続状態を示す説明図である。
符号の説明
1…空気調和機、2…室内機、3…室外機、S1…第1の冷凍サイクル、S2…第2の冷凍サイクル

Claims (4)

  1. 冷凍サイクル内を循環させる冷媒として可燃性冷媒を使用し、室内機と室外機とに分離されたスプリット型の空気調和機において、
    前記冷凍サイクルを複数、それぞれ独立に備えることを特徴とする空気調和機。
  2. 前記複数の冷凍サイクル内を循環する前記冷媒を個々の冷凍サイクルごとに逆向きに循環させて同時に暖房運転または冷房運転を行うことにより室内の除湿運転を行うことを特徴とする請求項1に記載の空気調和機。
  3. 前記冷凍サイクルを構成する冷媒配管の接続部の誤接続を防止するための誤接続防止手段を備えたことを特徴とする請求項1または請求項2に記載の空気調和機。
  4. 誤接続防止手段として、前記冷凍サイクルを構成する冷媒配管の接続部に、前記複数、独立して設けられる冷凍サイクルを識別する識別手段が設けられていることを特徴とする請求項3に記載の空気調和機。
JP2007048430A 2007-02-28 2007-02-28 空気調和機 Pending JP2008209083A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007048430A JP2008209083A (ja) 2007-02-28 2007-02-28 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007048430A JP2008209083A (ja) 2007-02-28 2007-02-28 空気調和機

Publications (1)

Publication Number Publication Date
JP2008209083A true JP2008209083A (ja) 2008-09-11

Family

ID=39785531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007048430A Pending JP2008209083A (ja) 2007-02-28 2007-02-28 空気調和機

Country Status (1)

Country Link
JP (1) JP2008209083A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038729A (ja) * 2009-08-12 2011-02-24 Hoshizaki Electric Co Ltd 冷凍装置
JP2013519064A (ja) * 2010-02-08 2013-05-23 ジョンソン コントロールズ テクノロジー カンパニー 積層コイル区間を有する熱交換器
US20140196483A1 (en) * 2011-09-13 2014-07-17 Mitsubishi Electric Corporation Heat pump apparatus and method of controlling heat pump apparatus
JP2019500569A (ja) * 2015-12-21 2019-01-10 トゥルー・マニュファクチュアリング・カンパニー・インコーポレイテッドTrue Manufacturing Co., Inc. 炭化水素冷媒用のデュアル回路蒸発器を有する製氷機
JP2020153593A (ja) * 2019-03-20 2020-09-24 三菱重工サーマルシステムズ株式会社 室外機ユニットおよびそれを備えた空気調和装置
WO2020240852A1 (ja) * 2019-05-31 2020-12-03 三菱電機株式会社 空気調和装置
KR20230022638A (ko) * 2021-08-09 2023-02-16 엘지전자 주식회사 공기 조화기 일체형 냉장고 및 그 제어방법
KR20230022628A (ko) * 2021-08-09 2023-02-16 엘지전자 주식회사 공기 조화기 일체형 냉장고

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038729A (ja) * 2009-08-12 2011-02-24 Hoshizaki Electric Co Ltd 冷凍装置
JP2020038054A (ja) * 2010-02-08 2020-03-12 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company 積層コイル区間を有する熱交換器
US10215444B2 (en) 2010-02-08 2019-02-26 Johnson Controls Technology Company Heat exchanger having stacked coil sections
JP2015212616A (ja) * 2010-02-08 2015-11-26 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company 積層コイル区間を有する熱交換器
KR101762244B1 (ko) * 2010-02-08 2017-07-28 존슨 컨트롤스 테크놀러지 컴퍼니 축적된 코일 구간들을 갖는 열교환기
US9869487B2 (en) 2010-02-08 2018-01-16 Johnson Controls Technology Company Heat exchanger having stacked coil sections
JP2013519064A (ja) * 2010-02-08 2013-05-23 ジョンソン コントロールズ テクノロジー カンパニー 積層コイル区間を有する熱交換器
US20140196483A1 (en) * 2011-09-13 2014-07-17 Mitsubishi Electric Corporation Heat pump apparatus and method of controlling heat pump apparatus
JP2021167725A (ja) * 2015-12-21 2021-10-21 トゥルー・マニュファクチュアリング・カンパニー・インコーポレイテッドTrue Manufacturing Co., Inc. 炭化水素冷媒用のデュアル回路蒸発器を有する製氷機
JP2019500569A (ja) * 2015-12-21 2019-01-10 トゥルー・マニュファクチュアリング・カンパニー・インコーポレイテッドTrue Manufacturing Co., Inc. 炭化水素冷媒用のデュアル回路蒸発器を有する製氷機
JP7165054B2 (ja) 2015-12-21 2022-11-02 トゥルー・マニュファクチュアリング・カンパニー・インコーポレイテッド 炭化水素冷媒用のデュアル回路蒸発器を有する製氷機
US11231218B2 (en) 2015-12-21 2022-01-25 True Manufacturing Company, Inc. Ice machine with a dual-circuit evaporator for hydrocarbon refrigerant
JP7025587B2 (ja) 2015-12-21 2022-02-24 トゥルー・マニュファクチュアリング・カンパニー・インコーポレイテッド 炭化水素冷媒用のデュアル回路蒸発器を有する製氷機
US11846459B2 (en) 2015-12-21 2023-12-19 True Manufacturing Co., Inc. Ice machine with a dual-circuit evaporator for hydrocarbon refrigerant
JP2020153593A (ja) * 2019-03-20 2020-09-24 三菱重工サーマルシステムズ株式会社 室外機ユニットおよびそれを備えた空気調和装置
JP7423190B2 (ja) 2019-03-20 2024-01-29 三菱重工サーマルシステムズ株式会社 空気調和装置
WO2020240852A1 (ja) * 2019-05-31 2020-12-03 三菱電機株式会社 空気調和装置
JP7086285B2 (ja) 2019-05-31 2022-06-17 三菱電機株式会社 空気調和装置
JPWO2020240852A1 (ja) * 2019-05-31 2021-10-28 三菱電機株式会社 空気調和装置
KR20230022638A (ko) * 2021-08-09 2023-02-16 엘지전자 주식회사 공기 조화기 일체형 냉장고 및 그 제어방법
KR20230022628A (ko) * 2021-08-09 2023-02-16 엘지전자 주식회사 공기 조화기 일체형 냉장고
KR102614568B1 (ko) 2021-08-09 2023-12-19 엘지전자 주식회사 공기 조화기 일체형 냉장고
KR102671345B1 (ko) 2021-08-09 2024-06-03 엘지전자 주식회사 공기 조화기 일체형 냉장고 및 그 제어방법

Similar Documents

Publication Publication Date Title
US10222098B2 (en) Refrigeration cycle apparatus
JP2008209083A (ja) 空気調和機
US20210131706A1 (en) Air conditioner and indoor unit
JP6289757B2 (ja) 冷凍サイクル装置及び冷凍サイクルシステム
AU2017396590B2 (en) Air-conditioning apparatus
JP6528446B2 (ja) 空気調和装置
WO2017163321A1 (ja) 冷凍サイクル装置
JP6157789B1 (ja) 冷凍サイクル装置及び冷媒漏洩検知方法
WO2017154161A1 (ja) 冷凍サイクル装置
WO2018092197A1 (ja) 空気調和装置および冷媒漏洩検知方法
WO2020110216A1 (ja) 空気調和装置
JP2006234296A (ja) マルチ型空気調和装置
WO2019130383A1 (ja) 空気調和装置
JP4557459B2 (ja) 空気調和装置
JP2021162232A (ja) 空気調和装置
WO2019123631A1 (ja) 空気調和装置
JP5918415B2 (ja) 空気調和装置
JP2005291558A (ja) 空気調和装置
US20220146158A1 (en) Refrigerant cycle system and method
WO2023002522A1 (ja) 空気調和装置及び空気調和装置の設置方法
US11906211B2 (en) Heating, ventilation, and air conditioning system with primary and secondary heat transfer loops
JP2023037822A (ja) 空気調和装置
US11920833B2 (en) Heat exchanger for a HVAC unit
KR200154606Y1 (ko) 공기조화기의 배스호스와 연결배관 꼬임방지장치
JP2007107820A (ja) 空気調和装置及びそれに用いられる空気調和装置の熱源ユニット