JP2020038054A - 積層コイル区間を有する熱交換器 - Google Patents

積層コイル区間を有する熱交換器 Download PDF

Info

Publication number
JP2020038054A
JP2020038054A JP2019199971A JP2019199971A JP2020038054A JP 2020038054 A JP2020038054 A JP 2020038054A JP 2019199971 A JP2019199971 A JP 2019199971A JP 2019199971 A JP2019199971 A JP 2019199971A JP 2020038054 A JP2020038054 A JP 2020038054A
Authority
JP
Japan
Prior art keywords
refrigerant
section
condenser
compressor
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019199971A
Other languages
English (en)
Inventor
コプコ,ウィリアム・エル
L Kopko William
ヤニク,ムスタファ・ケマル
Kemal Yanik Mustafa
バックリー,マイケル・リー
Lee Buckley Michael
ニッキー,グレン・ユージーン
Eugene Nickey Glenn
キャスパー,イアン・マイケル
Michael Casper Ian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Controls Technology Co
Original Assignee
Johnson Controls Technology Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Controls Technology Co filed Critical Johnson Controls Technology Co
Publication of JP2020038054A publication Critical patent/JP2020038054A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Linear Motors (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】HVAC&Rシステムの所望の性能および効率を保つために、非常に高い周囲の気温において、より低い凝縮温度で動作することができる空気凝縮器を提供する。【解決手段】熱交換器には積層コイル区間が備わっている。積層型コイル区間のそれぞれが、他のコイル34区間から独立して流体を循環させるように構成される。積層型コイル区間の両方を通して空気を循環させるために、通風装置が使用される。積層型コイル区間は、一方のコイル区間を出る空気が他方のコイル区間に入るように配置される。【選択図】図2

Description

関連出願の相互参照
[0001]本出願は、参照によって本明細書に組み込まれる、2010年2月8日出願の「HEAT EXCHANGER」という名称の米国特許仮出願第61/302,333号の優先権および利益を主張するものである。
[0002]本出願は、一般に熱交換器に関する。より具体的には、本出願は、別々の凝縮温度および/または凝縮圧力で動作する積層コイル区間を有する、加熱、換気、空気調節および冷却(HVAC&R)システムのための空冷凝縮器に関する。
[0003]HVAC&Rシステムでは、冷媒ガスは、圧縮機によって圧縮され、次いで凝縮器に配送される。凝縮器に配送された冷媒蒸気は、例えば空気、水といった流体と熱交換関係になり、相転移して冷媒液になる。凝縮器からの液体冷媒は、蒸発器に対応する膨張装置を通って流れる。蒸発器の中の液体冷媒は、例えば空気、水、他のプロセス流体といった別の流体との熱交換関係になり、相転移して冷媒蒸気になる。蒸発器を通って流れる他の流体は、冷媒との熱交換関係の結果として冷やされるかまたは冷却され、次いで密閉空間を冷却するのに用いられ得る。最終的に、蒸発器の中の蒸気冷媒が圧縮機に戻ってサイクルを完成する。
[0004]空冷凝縮器では、凝縮器を通って流れる冷媒は、ファンまたは送風機などの通風装置によって生成される循環空気と熱交換することができる。空冷凝縮器では、熱交換に循環空気が用いられるので、凝縮器の性能および効率、最終的にはHVAC&Rシステムの性能および効率は、凝縮器を通って循環される空気の周囲温度の影響下にある。周囲の空気温度が上昇するにつれて、凝縮器の中の冷媒の凝縮温度(および凝縮圧力)も上昇する。非常に高い周囲の気温、すなわち43.3℃(110°F)より高い気温では、HVAC&Rシステムの性能および効率が、非常に高い周囲の気温に起因するより高い凝縮温度(および凝縮圧力)のために低下する恐れがある。
[0005]したがって、HVAC&Rシステムの所望の性能および効率を保つために、非常に高い周囲の気温において、より低い凝縮温度で動作することができる空冷凝縮器が必要とされている。
[0006]本出願は、流体を循環させるように構成された少なくとも1つの第1区間と、流体を循環させるように構成された少なくとも1つの第2区間とを有する熱交換器を対象とする。少なくとも1つの第2区間の中の流体の流れは、少なくとも1つの第1区間の中の流体の流れと分離している。熱交換器は、少なくとも1つの第1区間および少なくとも1つの第2区間の両方を通して空気を循環させるための少なくとも1つの通風装置を含む。少なくとも1つの第1区間は、少なくとも1つの第2区間に対して、隣接して、実質的に平行に配置され、また、少なくとも1つの第1区間と少なくとも1つの第2区間は、少なくとも1つの第1区間を出る空気が少なくとも1つの第2区間に入るように配置される。
[0007]本出願はさらに、流体連通の、第1の圧縮機、第1の凝縮器および第1の蒸発器を備える、冷媒を循環させるための第1の回路と、流体連通の、第2の圧縮機、第2の凝
縮器および第2の蒸発器を備える、冷媒を循環させるための第2の回路とを備える蒸気圧縮システムを対象とする。蒸気圧縮システムは、第1の凝縮器および第2の凝縮器の両方を通して空気を循環させるための少なくとも1つの通風装置も含む。第1の凝縮器および第2の凝縮器は、それぞれが、少なくとも1つの実質的に平面状の区間を有する。第1の凝縮器の少なくとも1つの実質的に平面状の区間は、第2の凝縮器の少なくとも1つの実質的に平面状の区間に対して、隣接して、実質的に平行に配置される。第1の凝縮器の中の冷媒の凝縮温度は、第2の凝縮器の中の冷媒の凝縮温度と異なる。
[0008]本出願の利点の1つには、類似の能力のシステムと比較されたとき、システム設計が、フットプリントおよび/または体積に関して、よりコンパクトなことがある。
[0009]本出願の別の利点には、非常に高い周囲の気温における向上されたシステム能力がある。
[0010]本出願のさらに別の利点には、エコノマイザを使用するときに圧縮機の電動機負荷を等しくする能力がある。
[0011]本出願のさらなる利点には、凝縮器を通して空気を循環させるのに使用するファンの数をより少なくする能力があり、このことは、凝縮器に関連したファンノイズの低減をもたらす。
[0012]本出願のさらなる利点には、周囲の気温と凝縮温度をより密接に相関づけることによる、凝縮器表面のより効率的な利用がある。
[0013]本出願の他の利点は、コストの低減、システム効率の改善、および装置の軽量化を含む。
[0014]加熱、換気、空気調節および冷却の装置のための例示的実施形態を示す図である。 [0015]熱交換器の例示的実施形態を示す側面図である。 [0016]熱交換器の例示的実施形態の部分的分解組立図である。 [0017]図4Aは、凝縮器の1つの構成に関する、気温に対する冷媒温度のグラフである。図4Bは、凝縮器の別の構成に関する、気温に対する冷媒温度のグラフである。 [0018]積層の区間またはコイルを有する凝縮器または熱交換器を有する蒸気圧縮システムの例示的実施形態を示す概略図である。 積層の区間またはコイルを有する凝縮器または熱交換器を有する蒸気圧縮システムの別の例示的実施形態を示す概略図である。 積層の区間またはコイルを有する凝縮器または熱交換器を有する蒸気圧縮システムの別の例示的実施形態を示す概略図である。 積層の区間またはコイルを有する凝縮器または熱交換器を有する蒸気圧縮システムの別の例示的実施形態を示す概略図である。 積層の区間またはコイルを有する凝縮器または熱交換器を有する蒸気圧縮システムの別の例示的実施形態を示す概略図である。 積層の区間またはコイルを有する凝縮器または熱交換器を有する蒸気圧縮システムの別の例示的実施形態を示す概略図である。 積層の区間またはコイルを有する凝縮器または熱交換器を有する蒸気圧縮システムの別の例示的実施形態を示す概略図である。 積層の区間またはコイルを有する凝縮器または熱交換器を有する蒸気圧縮システムの別の例示的実施形態を示す概略図である。 [0019]別々のシステム構成に関する、凝縮器のファン数に対するシステム効率のグラフである。 [0020]別々のシステム構成に関する、熱交換器のコストに対するシステム効率のグラフである。
[0021]図1を参照すると、一般的な商用設定の建屋12の、加熱、換気、空気調節、および冷却(HVAC&R)システム10のための例示的環境が示されている。HVAC&Rシステム10は、建屋12を冷却するのに用いられ得る冷却された液体を配給することができる屋上装置14に組み込まれた圧縮機を含んでよい。HVAC&Rシステム10は、建屋12を暖めるのに用いられ得る加熱された液体を配給するためのボイラ16、および建屋12を通して空気を循環させる空気分配システムも含むことができる。空気分配システムは、空気戻り管路18、空気配給管路20、および空気処理器22を含むことができる。空気処理器22は、導管24によってボイラ16および屋上装置14に接続される熱交換器(図示せず)を含むことができる。空気処理器22の熱交換器(図示せず)は、HVAC&Rシステム10の動作モード次第で、ボイラ16からの加熱された液体または屋上装置14からの冷却された液体を受け取ることができる。HVAC&Rシステム10は、建屋12の各階に個別の空気処理器22を有して示されている。しかし、いくつかの空気処理器22は複数の階に対応することができ、または、1つの空気処理器がすべての階に対応することができる。
[0022]HVAC&Rシステム10は、HVAC&Rシステム10で用いられる冷媒との熱交換のための空冷凝縮器を含むことができる。HVAC&Rシステム10の空冷凝縮器の熱伝達面をより効率的に用いるために、凝縮器の冷却温度を、凝縮器を通って循環する空気の温度に相関づけるかまたは一致させることができる。例示の一実施形態では、空冷の熱交換器または凝縮器は、実質的に平面状の区間あるいはV字形にアレンジするかまたは配置されたコイルを有する1つまたは複数の部分を有するように、設定されるか、構成されるか、またはアレンジされ得る。これらの区間またはコイルは、積み重ねるかまたは入れ子状にされ得て、別々の凝縮温度で、別々の凝縮圧力で、かつ/または別々の冷媒回路の中で作動される。積層の区間またはコイルは、1つの区間またはコイルを出る空気が他の区間またはコイルに入るようにアレンジするかまたは配置され得る。別な風に明示されると、凝縮器の一部分の区間またはコイルを通って流れる空気は、直列の構成または機構であり得る。別の例示的実施形態では、凝縮器は、どちらも別々の凝縮温度または凝縮圧力で動作する諸積層区間および諸コイルを有する諸部分、ならびに単一の凝縮温度または凝縮圧力で動作する単一の区間またはコイルを有することができる。
[0023]図2は、凝縮器の例示的実施形態を示す。図2の例示的実施形態では、凝縮器26は、個別の積層の区間またはコイル34を有する部分27を有することができる。熱交換器または凝縮器部分27の、外側の(V字形の)区間またはコイルは1つの冷媒回路の一部分であり得て、熱交換器または凝縮器部分27の、内側の(V字形の)区間またはコイルは第2の冷媒回路の一部分であり得る。1つまたは複数の圧縮機からの放出蒸気または放出ガスは、区間またはコイル34の頂部および中央の接続29で、それぞれの区間またはコイル34に入ることができる。液体の冷媒は、区間またはコイル34の底部近くの接続31から、それぞれの区間またはコイル34を出ることができる。例示の一実施形態では、それぞれの区間またはコイル34は、設計、構成、または機構が同一であり得て、2つの冷媒が区間またはコイル34を通る。しかし、他の例示的実施形態では、区間またはコイルは別々の設計、サイズまたは構成を有することができ、別々の数の冷媒通路を有することができる。2つの通路を有する区間またはコイル34を使用すると、入口の接続および出口の接続を、両方とも区間またはコイル34の同一の終端にもたらし、また、上流の区間またはコイルの過冷部分を出るより低温の空気を、下流の区間またはコイルの過冷部分によって用いられるように供給することができる。
[0024]別の例示的実施形態では、単一通路または奇数通路の構成が、それぞれの区間またはコイル34あるいは特定の区間またはコイル34向けに用いられ得る。単一通路または奇数通路に構成すると、簡単な組立ておよび配管接続の組立てのための十分な空間を設けるために、区間またはコイル34に対応する冷媒母管を、区間またはコイル34の反対端にもたらすことができる。
[0025]図3は、図1に示された例示的HVAC&Rシステム10に使用され得る熱交換器または凝縮器26の部分的分解組立図を示す。熱交換器26は、囲い板30および1つまたは複数のファン32を含む上部組立体28を含むことができる。熱交換器の区間またはコイル34は、囲い板30の下に配置され得て、1つまたは複数の圧縮機、膨張装置、または蒸発器などHVAC&Rシステムの他の構成要素の上に、または少なくとも部分的に上に配置されてよい。熱交換器の区間またはコイル34は、同一の構成要素または共通の構造の構成要素を使用して実装され得て、パッケージ化された装置の一部分として組み立てられ得る。コイル34を通る気流を改善し、コイル34からの液体の排流を支援するために、区間またはコイル34は、0度と90度の間のあらゆる角度に配置されてよい。例示の一実施形態では、熱交換器の区間またはコイルを、パッケージ化された装置の一部分として積み重ねると、標準的な運送用コンテナで出荷することができるコンパクトな装置をもたらす。
[0026]図4Aと図4Bは、単一の凝縮器区間の構成と積層型の凝縮器区間の構成の間の、凝縮器の冷媒温度における対比を示す。図4Aは、単一凝縮器の区間またはコイルの構成に関して、気温に対する凝縮器の冷媒温度を示す。図4Aに示されるように、流出空気の温度と冷却温度の間のピンチポイントが、冷媒の凝縮温度を制限する。ピンチポイントにおける流出空気の温度によって冷却温度が制限されるので、凝縮器の熱伝達面の面積を大きくしても、理論的凝縮温度は、ほとんど改善しないか、少しも改善することができない。また、付加された熱伝達面の面積からの追加の空気側圧力低下によって空気の流れが減少することがあり、結局、より高い凝縮温度をもたらす可能性がある。したがって、所与のファンに関して、単一のコイルまたは区間から得ることができる熱伝達量に対する実質的な限界がある。
[0027]それと対照的に、図4Bは、2つの冷媒回路とともに使用される、直列の空気流れを有する積層型凝縮器の区間またはコイルの構成に関して、気温に対する凝縮器の冷媒温度を示す。上流の冷媒回路(および凝縮器区間)の熱伝達負荷が半分になり、したがって流出空気の温度がより低くなることにより、はるかに低い凝縮温度を用いることができる。下流の冷媒回路(および凝縮器区間)は、図4Aに示された単一の凝縮器区間のものとほぼ同様に機能する。図4Bにおける下流の冷媒回路または区間は、より高い流入冷媒温度を有することができるが、流出冷媒温度は(図4Aに対して)ほとんど不変であり、そのうえ、下流の冷媒回路または区間の熱伝達負荷が半分になる。2つの冷媒回路または凝縮器区間を使用すると、2つの冷媒回路または凝縮器区間に対する平均凝縮温度が大幅に低下する。積層型凝縮器区間を直列空気流れに構成すると、熱交換が、逆流機構を、より優れて近似するので、凝縮温度に対する熱力学的限界を効果的に低減することができる。
[0028]例示の一実施形態では、区間またはコイル34は、マイクロチャンネルまたは多重チャンネルのコイルまたは熱交換器で実施することができる。マイクロチャンネルまたは多重チャンネルのコイルは、コンパクトなサイズ、軽量、空気側圧力低下が小さいこと、および低材料コストといった利点を有することができる。マイクロチャンネルまたは多重チャンネルのコイルまたは区間は、冷媒の流れのための2つ以上のチューブ、通路またはチャンネルをそれぞれが有する2つ以上の流管区間を通して冷媒を循環させることができる。流管区間は、長方形、平行四辺形、台形、長円、楕円または他の類似の幾何学的図形の断面形状を有することができる。流管区間における流管は、正方形、長方形、円、楕円、長円、三角形、台形、平行四辺形または他の適切な幾何学的図形の断面形状を有することができる。一実施形態では、流管区間における流管は、例えば、約0.5mmから約3mmの間の幅または直径といったサイズを有することができる。別の実施形態では、流管区間における流管は、例えば約1mmの幅または直径といったサイズを有することができる。
[0029]別の例示的実施形態では、区間またはコイル34は、円形流管の平板フィンコイルを用いて実施することができる。円形流管の平板フィンコイルの例示的構成の1つには、2つの冷媒回路またはコイルの間に伝導経路がないが、共通の流管シートを使用するように、フィンを分割するものがある。その結果、機械的には単一の装置に見えるが、熱的に分離した2つのコイルになる。別の例示的構成には、冷媒回路とフィンを共有する円形流管のコイルを作製するものがある。しかし、フィンの設計に熱的切れ目(スリットなど)を含むことによって制限され得る、2つの回路またはコイルの間のフィンによる伝導がある可能性がある。さらに別の例示的実施形態では、円形流管のコイル凝縮器は、最適の伝熱能力をもたらすために、両凝縮区間の下流に過熱防止区間を、両凝縮区間の上流に過冷区間とを有するように構成することができる。
[0030]図5〜図12は、積層型凝縮器区間またはコイルを組み込むかまたは使用するHVAC&Rシステム10用の蒸気圧縮システムの別々の例示的実施形態を示す。蒸気圧縮システムは、1つまたは複数の、独立しているかまたは分離した、圧縮機42で始まる回路を通して冷媒を循環させることができ、積層区間またはコイル、膨張装置46、および蒸発器または液体冷却器48を有する凝縮器26を含む。蒸気圧縮システムは、アナログデジタル(A/D)変換器、マイクロプロセッサ、不揮発性メモリ、およびインターフェースボードを含むことができるコントロールパネルも含むことができる。蒸気圧縮システムで冷媒として用いられ得る流体のいくつかの実例には、例えばR−410A、R−407、R−134a、ハイドロフルオロオレフィン(HFO)といったハイドロフルオロカーボン(HFC)ベースの冷媒と、アンモニア(NH)、R−717、二酸化炭素(CO)、R−744、または炭化水素ベースの冷媒のような「天然の」冷媒と、水蒸気またはその他の適切なタイプの冷媒とがある。例示の一実施形態では、蒸気圧縮システムの回路のすべてにおいて、同一の冷媒が循環され得る。しかし、他の実施形態では、分離した冷媒回路には別々の冷媒が循環され得る。
[0031]圧縮機42は、一定のVi(体積比または体積指数)すなわち吸気容量と放出体積の比、または可変Viを有することができる。また、各回路用の圧縮機42は、同一のViを有してよく、あるいは圧縮機42のViが異なってもよい。圧縮機42とともに使用される電動機は、可変速駆動装置(VSD)によって、あるいは交流(AC)または直流(DC)の電源から直接的に、給電され得る。VSDは、使用される場合、AC電源から、特定の一定線間電圧および一定回線周波数を有するAC電力を受け取って、可変の電圧および周波数を有する電動機に電力を供給する。電動機は、VSDによって、またはAC電源もしくはDC電源から直接給電され得る、任意のタイプの電動機を含むことができる。電動機は、例えばスイッチトリラクタンスモータ、誘導電動機、または電子的に整流された永久磁石電動機といった、その他の適切なタイプの電動機であり得る。圧縮機42の出力容量は、圧縮機42の対応する動作速度に基づくものでよく、この動作速度は、VSDによって駆動される電動機の出力速度次第である。別の例示的実施形態では、蒸気タービンもしくはガスタービンまたはエンジンなどの他の駆動機構および関連する構成要素が、圧縮機42を駆動するのに使用され得る。
[0032]圧縮機42は、冷媒蒸気を圧縮し、圧縮された蒸気を、個別の放出通路を通して、凝縮器26の個別の凝縮器区間またはコイルに配送する。凝縮器26は、凝縮器を通って流れる空気の方向に対して、上流の区間またはコイル80および下流の区間またはコイル82を有することができる。上流の区間またはコイル80は、下流の区間またはコイル82と比較して、より低い凝縮器の温度および圧力で動作することができる。圧縮機42によって上流の区間またはコイル80および下流の区間またはコイル82に配送される冷媒蒸気は、1つまたは複数のファン32によって循環される空気に熱を伝達する。冷媒蒸気は、上流の区間またはコイル80と下流の区間またはコイル82との両方で、空気との熱伝達の結果として凝縮して冷媒液になる。また、上流の区間またはコイル80および下流の区間またはコイル82は、液体冷媒用の過冷却器を含むことができる。上流の区間またはコイル80および下流の区間またはコイル82からの液体冷媒は、1つまたは複数の膨張装置46を通って蒸発器48まで流れる。蒸発器48に配送された液体冷媒は、例えば水、空気、エチレングリコール、塩化カルシウムブライン、塩化ナトリウムブライン、または他の適切なタイプの流体といったプロセス流体から熱を吸収して、プロセス流体を冷やし、すなわち温度を低下させ、相転移して冷媒蒸気になる。蒸気冷媒は、蒸発器48を出て、吸い込み管によって圧縮機42に戻り、回路またはサイクルを完成する。蒸発器48は、特定の蒸気圧縮システムで実施される回路の数次第で、1つまたは複数の容器を有することができる。さらに、特定の蒸気圧縮システムに複数の回路が使用されても、蒸発器は、熱伝達のための個別の冷媒回路を維持することができる単一の容器を依然として使用することができる。
[0033]例示の一実施形態では、諸圧縮機42は、同一のViを有しないように選択され得る。換言すれば、1つの圧縮機42が(他の圧縮機と比較して)高いViを有することができ、その他の圧縮機42が(他の圧縮機と比較して)低いViを有することができる。Viが低い圧縮機は、より低い凝縮温度を有する上流の区間またはコイル80に接続することができる。図4Bに示されるように、下流の凝縮器区間またはコイル82向けの空気の温度は、上流の凝縮器区間またはコイル80向けの空気の温度より高い。したがって、下流の凝縮器区間またはコイル82では、この気流温度の差により、高Vi圧縮機からの冷媒を、上流の凝縮器区間またはコイル80の低Vi圧縮機からの冷媒より、より高い凝縮温度および/または凝縮圧力で凝縮することができる。より低い凝縮温度で動作する上流の凝縮器区間またはコイル80とともに低Vi圧縮機を使用すると、蒸気圧縮システムの全負荷効率を改善することができる。また、低Vi圧縮機だけが作動されるとき、蒸気圧縮システムの部分負荷効率が改善され得る。特定の例示的実施形態の1つでは、低Vi圧縮機は遠心圧縮機であり得て、高Vi圧縮機はスクリュ圧縮機などの容積式圧縮機であり得る。
[0034]特定の例示的実施形態の1つでは、上流のコイルを有する冷媒回路用の圧縮機は、可変速の遠心圧縮機であり得て、下流のコイルを有する高Vi圧縮機は、スクリュ圧縮機などの容積式圧縮機であり得る。この実施形態の圧縮機の対は、圧縮機の構成が、遠心圧縮機で必要とされる吐出し風圧を低下させるので、システムの高周囲温度の性能を改善する。遠心圧縮機が達成することができる吐出し風圧は、一般に、所与の圧縮機設計に関する圧縮機吸気と吐出し風圧の最大比によって制限されている。遠心圧縮機は、可変速で直接駆動の磁気軸受を有する密閉型2段圧縮機であり得る。遠心圧縮機を、単独で、すなわちスクリュ圧縮機が部分負荷状態で作動されずに、動作させることにより、システムの高い部分負荷効率が取得され得る。
[0035]図5は、単一の冷媒回路に配給する複数の圧縮機を有する蒸気圧縮システムを示す。図5の蒸気圧縮システムは、1つの圧縮機だけが作動され得るように、冷媒の流れを分離するのに逆止め弁78または他の類似の弁を使用する。また、上流の区間またはコイル80を出る冷媒の圧力と下流の区間またはコイル82を出る冷媒の圧力を等しくするために、凝縮器26の出力においてオリフィス88が使用される。凝縮器26と膨張装置46の間の冷媒系統の作動圧力は、下流の区間またはコイル82に個別の接続が使用された場合の作動圧力より、低くなり得る。作動圧力がより低いと、凝縮器26と膨張装置46の間の液体系統の例えばフィルタ/乾燥機、点検窓といったさらなる構成要素が、より低い圧力向けに構成して作動され得る。個別の冷媒回路に使用される圧縮機は、同一のViまたは別々のViを有することができる。図5の蒸気圧縮システムの例示的実施形態では、圧縮機42はスクロール圧縮機であり得る。
[0036]図6は、複数の個別の冷媒回路およびHVAC&Rシステム10のために空気を直接冷却するのに使用される各回路用の個別の蒸発器区間を有する蒸気圧縮システムを示す。個別の冷媒回路に使用される圧縮機は、同一のViまたは別々のViを有することができる。図6の蒸気圧縮システムの例示的実施形態では、蒸気圧縮システムは、パッケージ化された屋根ユニットで使用され得る。
[0037]図7は、単一の蒸発器容器を使用する複数の個別の冷媒回路を有する蒸気圧縮システムを示す。個別の冷媒回路に使用される圧縮機は、同一のViまたは別々のViを有することができる。図7の蒸気圧縮システムの例示的実施形態では、蒸気圧縮システムは冷却器または冷却液体システムに使用され得て、スクロール圧縮機を組み込む。
[0038]図8〜図12に示される例示的実施形態では、蒸気圧縮回路は、凝縮器26と膨張装置46の間に組み込まれた1つまたは複数の中間回路またはエコノマイザ回路を含むことができる。中間回路またはエコノマイザ回路は、所与の蒸発器サイズに対して冷却能力を向上するのに利用され得て、蒸気圧縮システムの効率および性能を向上することができる。中間回路は、上流の区間またはコイル80および下流の区間またはコイル82の一方または両方に対して、直接接続されるかまたは流体連通され得る1つまたは複数の入口系統を有することができる。1つまたは複数の入口系統は、中間容器の上流に配置された1つまたは複数の膨張装置66を含むことができる。膨張装置66は、上流の区間またはコイル80および/または下流の区間またはコイル82からの冷媒の圧力を中間圧力に下げるように動作し、いくつかの冷媒の蒸気へのフラッシングをもたらす。中間圧力でフラッシングされた冷媒は、その特定の回路に対応する圧縮機42に再導入され得る。中間圧力の冷媒蒸気が圧縮機42に戻されるので、冷媒蒸気が必要とする圧縮はより低く、それによって蒸気圧縮システムの全体的効率が向上する。膨張装置66からの、中間圧力の残りの液体冷媒は、より低いエンタルピーにあり、熱伝達を助長することができる。膨張装置46は、中間容器から中間圧力の冷媒を受け取って、より低いエンタルピーの液体冷媒を蒸発器圧力に膨張させることができる。冷媒が、低いエンタルピーを有して蒸発器48に入ることにより、冷媒が凝縮器から直接膨張される非エコノマイズシステムに対して、エコノマイズ回路を有するシステムにおける冷却効果が向上する。
[0039]中間容器は、フラッシュ中間冷却器とも称されるフラッシュタンク70であり得て、あるいは、中間容器は、「表面エコノマイザ」とも称される熱交換器71としても構成され得る。フラッシュタンク70は、膨張装置66から受け取られた液体から蒸気を分離するのに使用されてよく、液体のさらなる膨張を可能にすることもできる。蒸気は、圧縮機42によってフラッシュタンク70から補助冷媒系統を通って、吸入と放出の間の中間圧力すなわち圧縮の中間段階のポートである吸気入口に引き込まれてよい。例示の一実施形態では、フラッシュタンク70から圧縮機42への冷媒の流れを調節するために、圧縮機42とフラッシュタンク70の間の補助冷媒系統に電磁弁75が配置され得る。フラッシュタンク70の中に集まる液体は、膨張処理からより低いエンタルピーにある。フラッシュタンク70からの液体は、膨張装置46へ流れ、次いで蒸発器48に流れる。2つの異なる圧力の冷媒間で熱を移転するために、熱交換器71が使用され得る。熱交換器71の冷媒間の熱の交換は、熱交換器71の冷媒のうちの1つを過冷して熱交換器71のもう1つの冷媒を少なくとも部分的に蒸発させるのに利用され得る。
[0040]図8は、それぞれが中間回路またはエコノマイザ回路を組み込む複数の個別の冷媒回路を有する蒸気圧縮システムを示す。上流の区間またはコイル80および下流の区間またはコイル82のそれぞれが、フラッシュタンク70に流体連結されている膨張装置66に流体連結され得る。エコノマイザの動作圧を調節するのに、膨張装置66が使用され得る。個別の冷媒回路に使用される圧縮機は、同一のViまたは別々のViを有することができる。下流の区間またはコイル82に接続された高Vi圧縮機および上流の区間またはコイル80に接続された低Vi圧縮機を使用する例示的実施形態では、高Vi圧縮機に対する電動機負荷を低減するように、下流の区間またはコイル82に接続されたフラッシュタンク70からの蒸気冷媒が、より高い圧力で高Vi圧縮機に供給され得る。
[0041]図9が示す蒸気圧縮システムは、中間回路またはエコノマイザ回路に熱交換器が組み込まれるという点を除けば、図8の蒸気圧縮システムに類似のものである。上流の区間またはコイル80は、熱交換器71に続いてフラッシュタンク70にも流体連結されている膨張装置66に流体連結され得る。下流の区間またはコイル82は、膨張装置66に続いてフラッシュタンク70にも流体連結されている熱交換器71に流体連結され得る。個別の冷媒回路に使用される圧縮機は、同一のViまたは別々のViを有することができる。
[0042]図10が示す蒸気圧縮システムは、下流の区間またはコイル82に接続された中間回路またはエコノマイザ回路に、追加の、すなわち第2の熱交換器が組み込まれるという点を除けば、図9の蒸気圧縮システムに類似のものである。下流の区間またはコイル82からの液体冷媒は、2つの別々の通路に分割されて第2の熱交換器71に供給される。通路のうちの1つは、液体冷媒が第2の熱交換器71に入る前に膨張装置66を組み込むことができる。膨張装置66を有する入力通路に対応する第2の熱交換器71の出力は、フラッシュタンク70に接続されたポートから分離した圧縮機42のより高い圧力に対応するポートにおいて下流の区間またはコイル82に配給する圧縮機42に供給され得る。第2の熱交換器71からのもう一方の出力は、図9で説明されたように、第1の熱交換器に入ることができる。個別の冷媒回路に使用される圧縮機は、同一のViまたは別々のViを有することができる。
[0043]図11は、それぞれが中間回路またはエコノマイザ回路を組み込む複数の個別の冷媒回路を有する蒸気圧縮システムを示す。上流の区間またはコイル80は、熱交換器71に続いてフラッシュタンク70にも流体連結されている膨張装置66に流体連結され得る。下流の区間またはコイル82は、膨張装置46に続いて蒸発器48にも流体連結されている熱交換器71に流体連結され得る。個別の冷媒回路に使用される圧縮機は、同一のViまたは別々のViを有することができる。熱交換器71は、上流の区間またはコイル80からの冷媒を、下流の区間またはコイル82からの冷媒液を冷却するのに利用することができる。下流の区間またはコイル82からの冷媒液を冷却することにより、下流の区間またはコイル82に接続された圧縮機42に対する電動機負荷は、低減されて、上流の区間またはコイル80に接続された圧縮機42に対する電動機負荷と等しくされ得る。
[0044]図12が示す蒸気圧縮システムは、下流の区間またはコイル82に接続された中間回路またはエコノマイザ回路の中にさらなるフラッシュタンクが組み込まれるという点を除けば、図11の蒸気圧縮システムに類似のものである。下流の区間またはコイル82からの液体冷媒は、フラッシュタンク70に流体連結されている膨張装置66に流体連結される。図11に関して説明されるように、フラッシュタンク70からの液体冷媒は、熱交換器71に供給され得る。フラッシュタンク70からの蒸気冷媒は、下流の区間またはコイル82に配給する圧縮機42に供給され得る。個別の冷媒回路に使用される圧縮機は、同一のViまたは別々のViを有することができる。
[0045]高Vi圧縮機および低Vi圧縮機を使用する例示の一実施形態では、圧縮機負荷を等化して高い周囲温度における能力を改善するために、エコノマイザ負荷が、より高い凝縮器圧力で動作する高Vi圧縮機を有する回路から、より低い凝縮器圧力で動作する低Vi圧縮機を有する回路へ移され得る。
[0046]図13は、積層型凝縮器コイルの構成を有するシステムの効率を、単一凝縮器コイルの構成を有するシステムの効率と比較する。どちらの凝縮器コイルの構成も、深さ25mmのマイクロチャンネル熱交換器コイルを使用している。解析のために、図8に示されるように構成された蒸気圧縮システムが使用された。また、どちらの圧縮機も同一のVi設計、すなわち高Viの設計である。図13に示されるように、単一凝縮器コイルの構成では16個のファンを使用して達成され得るシステム効率とほぼ同一のシステム効率が、積層型凝縮器コイルの構成ではわずか10個のファンで達成され得て、このことは約9%のシステム効率の改善をもたらすことができる。また、さらなるファンを使用すると、単一凝縮器コイルの構成に対して、より高い効率レベルが達成され得る。図14は、システム効率とシステムコストの間の関係を示す。図14の結果は、図13と同一のシステム構成に基づくものである。図14に示されるように、積層型凝縮器コイルの構成を用いると、単一凝縮器コイルの構成と同一のコストで、より効率的なシステムが達成され得る。さらに、積層型凝縮器コイルの構成は、単一凝縮器コイルの構成と比較して、特定の設計効率に対して低コストをもたらすことができる。
[0047]例示的実施形態では、凝縮器は、別々の圧力で動作する2つを上回る凝縮器区間またはコイルを有するように拡張され得る。一般に、それぞれの追加区間および凝縮圧力では、性能向上の増強はより小さい。
[0048]別の例示的実施形態では、圧縮機のそれぞれが、スクリュ圧縮機、往復圧縮機、遠心圧縮機、回転圧縮機、スイングリンク圧縮機、スクロール圧縮機、タービン圧縮機、またはその他の適切な圧縮機など単段の圧縮機でよいが、あらゆる単段または多段の圧縮機が使用され得る。
[0049]さらなる例示的実施形態では、膨張装置は、電子的膨張弁または熱膨張弁、毛管またはオリフィスなどの膨張弁を含む任意の適切な膨張装置でよい。
[0050]別の例示的実施形態では、各圧縮機は、タンデム圧縮機、トリオ圧縮機、または1つの冷媒回路を共有して1つの圧縮機システムとして働く他の多段圧縮機の構成を含むことができる。例えば、スクロール圧縮機は多段圧縮機に構成され得て、すなわち1つの冷媒回路に2つ以上の圧縮機が接続され得る。スクロール圧縮機の実例では、圧縮機を多段圧縮機の構成にアレンジすることにより、容量制御が実現され得る。また、多段圧縮機の構成は、流れを調整するための弁など他の関連する構成要素を含むことができる。さらに別の例示的実施形態では、別々の設計のViを有する圧縮機が、同じ冷媒回路を共有することもできる。
[0051]他の例示的実施形態では、蒸気圧縮システムは、他の構成を有することができる。例えば、効率をさらに改善するために、さらなるエコノマイザが回路に組み込まれ得る。最適のエコノマイザ構成は、コストに対する効率および容量の改善次第である。
[0052]図に示され、かつ本明細書で説明された例示的実施形態は、現在好ましいものであるが、これらの実施形態は単に実例として提供されていることを理解されたい。例示的実施形態の設計、運転条件および配置において、他の置換、変更、交換および省略が、本出願の範囲から逸脱することなく行なわれ得る。したがって、本出願は、特定の実施形態に限定されず、やはり添付の特許請求の範囲の範囲内に入る様々な変更形態に及ぶものである。本明細書に用いられる言葉遣いおよび用語は、単に説明のためであって、限定する
ものと考えるべきでないことも理解されたい。
[0053]本出願では、本発明の特定の特徴および実施形態だけが示され、かつ説明されており、当業者なら、特許請求の範囲に列挙された内容の斬新な教示および利点から実質的に逸脱することなく、多くの変更および改変(例えば、サイズ、寸法、構造、様々な要素の形状および割合、パラメータの値、取付け構成、材料の用法、方向づけなどの変更)を考えつく可能性がある。例えば、一体化して形成されるように示された要素は複数の部品または要素から構成されてよく、諸要素の位置は逆にされるかそうでなければ変化されてよく、また個別要素の性質もしくは数または位置は変更されるかあるいは変化されてよい。任意の処理または方法のステップの順序または順番は、代替実施形態によって変化されるかまたは並べ換えられてよい。したがって、添付の特許請求の範囲は、このような変更および改変を、すべて本発明の真の精神の範囲内に対象として含むように意図されていることを理解されたい。さらに、例示的実施形態の簡潔な説明を提供するために、実際の実装形態のすべての特徴が説明されているとは限らないことがある(すなわち、現在企図されている本発明を実行する最善の様式とは無関係なもの、または特許請求された発明を可能にするのに無関係なものは、説明されていないことがある)。何らかの工学技術または設計プロジェクトにおけるように、何らかのこのような実際の実装形態の発展において、多数の実装時固有判断が下される可能性があることを理解されたい。このような開発努力は、複雑で時間がかかる可能性があるが、それにもかかわらず、この開示の利益を有する当業者にとって、不必要な実験なしで、設計、製造、および生産の日常的仕事になるであろう。
関連出願の相互参照
[0001]本出願は、参照によって本明細書に組み込まれる、2010年2月8日出願の「HEAT EXCHANGER」という名称の米国特許仮出願第61/302,333号の優先権および利益を主張するものである。
[0002]本出願は、一般に熱交換器に関する。より具体的には、本出願は、別々の凝縮温度および/または凝縮圧力で動作する積層コイル区間を有する、加熱、換気、空気調節および冷却(HVAC&R)システムのための空冷凝縮器に関する。
[0003]HVAC&Rシステムでは、冷媒ガスは、圧縮機によって圧縮され、次いで凝縮器に配送される。凝縮器に配送された冷媒蒸気は、例えば空気、水といった流体と熱交換関係になり、相転移して冷媒液になる。凝縮器からの液体冷媒は、蒸発器に対応する膨張装置を通って流れる。蒸発器の中の液体冷媒は、例えば空気、水、他のプロセス流体といった別の流体との熱交換関係になり、相転移して冷媒蒸気になる。蒸発器を通って流れる他の流体は、冷媒との熱交換関係の結果として冷やされるかまたは冷却され、次いで密閉空間を冷却するのに用いられ得る。最終的に、蒸発器の中の蒸気冷媒が圧縮機に戻ってサイクルを完成する。
[0004]空冷凝縮器では、凝縮器を通って流れる冷媒は、ファンまたは送風機などの通風装置によって生成される循環空気と熱交換することができる。空冷凝縮器では、熱交換に循環空気が用いられるので、凝縮器の性能および効率、最終的にはHVAC&Rシステムの性能および効率は、凝縮器を通って循環される空気の周囲温度の影響下にある。周囲の空気温度が上昇するにつれて、凝縮器の中の冷媒の凝縮温度(および凝縮圧力)も上昇する。非常に高い周囲の気温、すなわち43.3℃(110°F)より高い気温では、HVAC&Rシステムの性能および効率が、非常に高い周囲の気温に起因するより高い凝縮温度(および凝縮圧力)のために低下する恐れがある。
[0005]したがって、HVAC&Rシステムの所望の性能および効率を保つために、非常に高い周囲の気温において、より低い凝縮温度で動作することができる空冷凝縮器が必要とされている。
[0006]本出願は、流体を循環させるように構成された少なくとも1つの第1区間と、流体を循環させるように構成された少なくとも1つの第2区間とを有する熱交換器を対象とする。少なくとも1つの第2区間の中の流体の流れは、少なくとも1つの第1区間の中の流体の流れと分離している。熱交換器は、少なくとも1つの第1区間および少なくとも1つの第2区間の両方を通して空気を循環させるための少なくとも1つの通風装置を含む。少なくとも1つの第1区間は、少なくとも1つの第2区間に対して、隣接して、実質的に平行に配置され、また、少なくとも1つの第1区間と少なくとも1つの第2区間は、少なくとも1つの第1区間を出る空気が少なくとも1つの第2区間に入るように配置される。
[0007]本出願はさらに、流体連通の、第1の圧縮機、第1の凝縮器および第1の蒸発器を備える、冷媒を循環させるための第1の回路と、流体連通の、第2の圧縮機、第2の凝縮器および第2の蒸発器を備える、冷媒を循環させるための第2の回路とを備える蒸気圧縮システムを対象とする。蒸気圧縮システムは、第1の凝縮器および第2の凝縮器の両方を通して空気を循環させるための少なくとも1つの通風装置も含む。第1の凝縮器および第2の凝縮器は、それぞれが、少なくとも1つの実質的に平面状の区間を有する。第1の凝縮器の少なくとも1つの実質的に平面状の区間は、第2の凝縮器の少なくとも1つの実質的に平面状の区間に対して、隣接して、実質的に平行に配置される。第1の凝縮器の中の冷媒の凝縮温度は、第2の凝縮器の中の冷媒の凝縮温度と異なる。
[0008]本出願の利点の1つには、類似の能力のシステムと比較されたとき、システム設計が、フットプリントおよび/または体積に関して、よりコンパクトなことがある。
[0009]本出願の別の利点には、非常に高い周囲の気温における向上されたシステム能力がある。
[0010]本出願のさらに別の利点には、エコノマイザを使用するときに圧縮機の電動機負荷を等しくする能力がある。
[0011]本出願のさらなる利点には、凝縮器を通して空気を循環させるのに使用するファンの数をより少なくする能力があり、このことは、凝縮器に関連したファンノイズの低減をもたらす。
[0012]本出願のさらなる利点には、周囲の気温と凝縮温度をより密接に相関づけることによる、凝縮器表面のより効率的な利用がある。
[0013]本出願の他の利点は、コストの低減、システム効率の改善、および装置の軽量化を含む。
[0014]加熱、換気、空気調節および冷却の装置のための例示的実施形態を示す図である。 [0015]熱交換器の例示的実施形態を示す側面図である。 [0016]熱交換器の例示的実施形態の部分的分解組立図である。 [0017]図4Aは、凝縮器の1つの構成に関する、気温に対する冷媒温度のグラフである。図4Bは、凝縮器の別の構成に関する、気温に対する冷媒温度のグラフである。 [0018]積層の区間またはコイルを有する凝縮器または熱交換器を有する蒸気圧縮システムの例示的実施形態を示す概略図である。 積層の区間またはコイルを有する凝縮器または熱交換器を有する蒸気圧縮システムの別の例示的実施形態を示す概略図である。 積層の区間またはコイルを有する凝縮器または熱交換器を有する蒸気圧縮システムの別の例示的実施形態を示す概略図である。 積層の区間またはコイルを有する凝縮器または熱交換器を有する蒸気圧縮システムの別の例示的実施形態を示す概略図である。 積層の区間またはコイルを有する凝縮器または熱交換器を有する蒸気圧縮システムの別の例示的実施形態を示す概略図である。 積層の区間またはコイルを有する凝縮器または熱交換器を有する蒸気圧縮システムの別の例示的実施形態を示す概略図である。 積層の区間またはコイルを有する凝縮器または熱交換器を有する蒸気圧縮システムの別の例示的実施形態を示す概略図である。 積層の区間またはコイルを有する凝縮器または熱交換器を有する蒸気圧縮システムの別の例示的実施形態を示す概略図である。 [0019]別々のシステム構成に関する、凝縮器のファン数に対するシステム効率のグラフである。 [0020]別々のシステム構成に関する、熱交換器のコストに対するシステム効率のグラフである。
[0021]図1を参照すると、一般的な商用設定の建屋12の、加熱、換気、空気調節、および冷却(HVAC&R)システム10のための例示的環境が示されている。HVAC&Rシステム10は、建屋12を冷却するのに用いられ得る冷却された液体を配給することができる屋上装置14に組み込まれた圧縮機を含んでよい。HVAC&Rシステム10は、建屋12を暖めるのに用いられ得る加熱された液体を配給するためのボイラ16、および建屋12を通して空気を循環させる空気分配システムも含むことができる。空気分配システムは、空気戻り管路18、空気配給管路20、および空気処理器22を含むことができる。空気処理器22は、導管24によってボイラ16および屋上装置14に接続される熱交換器(図示せず)を含むことができる。空気処理器22の熱交換器(図示せず)は、HVAC&Rシステム10の動作モード次第で、ボイラ16からの加熱された液体または屋上装置14からの冷却された液体を受け取ることができる。HVAC&Rシステム10は、建屋12の各階に個別の空気処理器22を有して示されている。しかし、いくつかの空気処理器22は複数の階に対応することができ、または、1つの空気処理器がすべての階に対応することができる。
[0022]HVAC&Rシステム10は、HVAC&Rシステム10で用いられる冷媒との熱交換のための空冷凝縮器を含むことができる。HVAC&Rシステム10の空冷凝縮器の熱伝達面をより効率的に用いるために、凝縮器の冷却温度を、凝縮器を通って循環する空気の温度に相関づけるかまたは一致させることができる。例示の一実施形態では、空冷の熱交換器または凝縮器は、実質的に平面状の区間あるいはV字形にアレンジするかまたは配置されたコイルを有する1つまたは複数の部分を有するように、設定されるか、構成されるか、またはアレンジされ得る。これらの区間またはコイルは、積み重ねるかまたは入れ子状にされ得て、別々の凝縮温度で、別々の凝縮圧力で、かつ/または別々の冷媒回路の中で作動される。積層の区間またはコイルは、1つの区間またはコイルを出る空気が他の区間またはコイルに入るようにアレンジするかまたは配置され得る。別な風に明示されると、凝縮器の一部分の区間またはコイルを通って流れる空気は、直列の構成または機構であり得る。別の例示的実施形態では、凝縮器は、どちらも別々の凝縮温度または凝縮圧力で動作する諸積層区間および諸コイルを有する諸部分、ならびに単一の凝縮温度または凝縮圧力で動作する単一の区間またはコイルを有することができる。
[0023]図2は、凝縮器の例示的実施形態を示す。図2の例示的実施形態では、凝縮器26は、個別の積層の区間またはコイル34を有する部分27を有することができる。熱交換器または凝縮器部分27の、外側の(V字形の)区間またはコイルは1つの冷媒回路の一部分であり得て、熱交換器または凝縮器部分27の、内側の(V字形の)区間またはコイルは第2の冷媒回路の一部分であり得る。1つまたは複数の圧縮機からの放出蒸気または放出ガスは、区間またはコイル34の頂部および中央の接続29で、それぞれの区間またはコイル34に入ることができる。液体の冷媒は、区間またはコイル34の底部近くの接続31から、それぞれの区間またはコイル34を出ることができる。例示の一実施形態では、それぞれの区間またはコイル34は、設計、構成、または機構が同一であり得て、2つの冷媒が区間またはコイル34を通る。しかし、他の例示的実施形態では、区間またはコイルは別々の設計、サイズまたは構成を有することができ、別々の数の冷媒通路を有することができる。2つの通路を有する区間またはコイル34を使用すると、入口の接続および出口の接続を、両方とも区間またはコイル34の同一の終端にもたらし、また、上流の区間またはコイルの過冷部分を出るより低温の空気を、下流の区間またはコイルの過冷部分によって用いられるように供給することができる。
[0024]別の例示的実施形態では、単一通路または奇数通路の構成が、それぞれの区間またはコイル34あるいは特定の区間またはコイル34向けに用いられ得る。単一通路または奇数通路に構成すると、簡単な組立ておよび配管接続の組立てのための十分な空間を設けるために、区間またはコイル34に対応する冷媒母管を、区間またはコイル34の反対端にもたらすことができる。
[0025]図3は、図1に示された例示的HVAC&Rシステム10に使用され得る熱交換器または凝縮器26の部分的分解組立図を示す。熱交換器26は、囲い板30および1つまたは複数のファン32を含む上部組立体28を含むことができる。熱交換器の区間またはコイル34は、囲い板30の下に配置され得て、1つまたは複数の圧縮機、膨張装置、または蒸発器などHVAC&Rシステムの他の構成要素の上に、または少なくとも部分的に上に配置されてよい。熱交換器の区間またはコイル34は、同一の構成要素または共通の構造の構成要素を使用して実装され得て、パッケージ化された装置の一部分として組み立てられ得る。コイル34を通る気流を改善し、コイル34からの液体の排流を支援するために、区間またはコイル34は、0度と90度の間のあらゆる角度に配置されてよい。例示の一実施形態では、熱交換器の区間またはコイルを、パッケージ化された装置の一部分として積み重ねると、標準的な運送用コンテナで出荷することができるコンパクトな装置をもたらす。
[0026]図4Aと図4Bは、単一の凝縮器区間の構成と積層型の凝縮器区間の構成の間の、凝縮器の冷媒温度における対比を示す。図4Aは、単一凝縮器の区間またはコイルの構成に関して、気温に対する凝縮器の冷媒温度を示す。図4Aに示されるように、流出空気の温度と冷却温度の間のピンチポイントが、冷媒の凝縮温度を制限する。ピンチポイントにおける流出空気の温度によって冷却温度が制限されるので、凝縮器の熱伝達面の面積を大きくしても、理論的凝縮温度は、ほとんど改善しないか、少しも改善することができない。また、付加された熱伝達面の面積からの追加の空気側圧力低下によって空気の流れが減少することがあり、結局、より高い凝縮温度をもたらす可能性がある。したがって、所与のファンに関して、単一のコイルまたは区間から得ることができる熱伝達量に対する実質的な限界がある。
[0027]それと対照的に、図4Bは、2つの冷媒回路とともに使用される、直列の空気流れを有する積層型凝縮器の区間またはコイルの構成に関して、気温に対する凝縮器の冷媒温度を示す。上流の冷媒回路(および凝縮器区間)の熱伝達負荷が半分になり、したがって流出空気の温度がより低くなることにより、はるかに低い凝縮温度を用いることができる。下流の冷媒回路(および凝縮器区間)は、図4Aに示された単一の凝縮器区間のものとほぼ同様に機能する。図4Bにおける下流の冷媒回路または区間は、より高い流入冷媒温度を有することができるが、流出冷媒温度は(図4Aに対して)ほとんど不変であり、そのうえ、下流の冷媒回路または区間の熱伝達負荷が半分になる。2つの冷媒回路または凝縮器区間を使用すると、2つの冷媒回路または凝縮器区間に対する平均凝縮温度が大幅に低下する。積層型凝縮器区間を直列空気流れに構成すると、熱交換が、逆流機構を、より優れて近似するので、凝縮温度に対する熱力学的限界を効果的に低減することができる。
[0028]例示の一実施形態では、区間またはコイル34は、マイクロチャンネルまたは多重チャンネルのコイルまたは熱交換器で実施することができる。マイクロチャンネルまたは多重チャンネルのコイルは、コンパクトなサイズ、軽量、空気側圧力低下が小さいこと、および低材料コストといった利点を有することができる。マイクロチャンネルまたは多重チャンネルのコイルまたは区間は、冷媒の流れのための2つ以上のチューブ、通路またはチャンネルをそれぞれが有する2つ以上の流管区間を通して冷媒を循環させることができる。流管区間は、長方形、平行四辺形、台形、長円、楕円または他の類似の幾何学的図
形の断面形状を有することができる。流管区間における流管は、正方形、長方形、円、楕円、長円、三角形、台形、平行四辺形または他の適切な幾何学的図形の断面形状を有することができる。一実施形態では、流管区間における流管は、例えば、約0.5mmから約3mmの間の幅または直径といったサイズを有することができる。別の実施形態では、流管区間における流管は、例えば約1mmの幅または直径といったサイズを有することができる。
[0029]別の例示的実施形態では、区間またはコイル34は、円形流管の平板フィンコイルを用いて実施することができる。円形流管の平板フィンコイルの例示的構成の1つには、2つの冷媒回路またはコイルの間に伝導経路がないが、共通の流管シートを使用するように、フィンを分割するものがある。その結果、機械的には単一の装置に見えるが、熱的に分離した2つのコイルになる。別の例示的構成には、冷媒回路とフィンを共有する円形流管のコイルを作製するものがある。しかし、フィンの設計に熱的切れ目(スリットなど)を含むことによって制限され得る、2つの回路またはコイルの間のフィンによる伝導がある可能性がある。さらに別の例示的実施形態では、円形流管のコイル凝縮器は、最適の伝熱能力をもたらすために、両凝縮区間の下流に過熱防止区間を、両凝縮区間の上流に過冷区間とを有するように構成することができる。
[0030]図5〜図12は、積層型凝縮器区間またはコイルを組み込むかまたは使用するHVAC&Rシステム10用の蒸気圧縮システムの別々の例示的実施形態を示す。蒸気圧縮システムは、1つまたは複数の、独立しているかまたは分離した、圧縮機42で始まる回路を通して冷媒を循環させることができ、積層区間またはコイル、膨張装置46、および蒸発器または液体冷却器48を有する凝縮器26を含む。蒸気圧縮システムは、アナログデジタル(A/D)変換器、マイクロプロセッサ、不揮発性メモリ、およびインターフェースボードを含むことができるコントロールパネルも含むことができる。蒸気圧縮システムで冷媒として用いられ得る流体のいくつかの実例には、例えばR−410A、R−407、R−134a、ハイドロフルオロオレフィン(HFO)といったハイドロフルオロカーボン(HFC)ベースの冷媒と、アンモニア(NH)、R−717、二酸化炭素(CO)、R−744、または炭化水素ベースの冷媒のような「天然の」冷媒と、水蒸気またはその他の適切なタイプの冷媒とがある。例示の一実施形態では、蒸気圧縮システムの回路のすべてにおいて、同一の冷媒が循環され得る。しかし、他の実施形態では、分離した冷媒回路には別々の冷媒が循環され得る。
[0031]圧縮機42は、一定のVi(体積比または体積指数)すなわち吸気容量と放出体積の比、または可変Viを有することができる。また、各回路用の圧縮機42は、同一のViを有してよく、あるいは圧縮機42のViが異なってもよい。圧縮機42とともに使用される電動機は、可変速駆動装置(VSD)によって、あるいは交流(AC)または直流(DC)の電源から直接的に、給電され得る。VSDは、使用される場合、AC電源から、特定の一定線間電圧および一定回線周波数を有するAC電力を受け取って、可変の電圧および周波数を有する電動機に電力を供給する。電動機は、VSDによって、またはAC電源もしくはDC電源から直接給電され得る、任意のタイプの電動機を含むことができる。電動機は、例えばスイッチトリラクタンスモータ、誘導電動機、または電子的に整流された永久磁石電動機といった、その他の適切なタイプの電動機であり得る。圧縮機42の出力容量は、圧縮機42の対応する動作速度に基づくものでよく、この動作速度は、VSDによって駆動される電動機の出力速度次第である。別の例示的実施形態では、蒸気タービンもしくはガスタービンまたはエンジンなどの他の駆動機構および関連する構成要素が、圧縮機42を駆動するのに使用され得る。
[0032]圧縮機42は、冷媒蒸気を圧縮し、圧縮された蒸気を、個別の放出通路を通して、凝縮器26の個別の凝縮器区間またはコイルに配送する。凝縮器26は、凝縮器を通っ
て流れる空気の方向に対して、上流の区間またはコイル80および下流の区間またはコイル82を有することができる。上流の区間またはコイル80は、下流の区間またはコイル82と比較して、より低い凝縮器の温度および圧力で動作することができる。圧縮機42によって上流の区間またはコイル80および下流の区間またはコイル82に配送される冷媒蒸気は、1つまたは複数のファン32によって循環される空気に熱を伝達する。冷媒蒸気は、上流の区間またはコイル80と下流の区間またはコイル82との両方で、空気との熱伝達の結果として凝縮して冷媒液になる。また、上流の区間またはコイル80および下流の区間またはコイル82は、液体冷媒用の過冷却器を含むことができる。上流の区間またはコイル80および下流の区間またはコイル82からの液体冷媒は、1つまたは複数の膨張装置46を通って蒸発器48まで流れる。蒸発器48に配送された液体冷媒は、例えば水、空気、エチレングリコール、塩化カルシウムブライン、塩化ナトリウムブライン、または他の適切なタイプの流体といったプロセス流体から熱を吸収して、プロセス流体を冷やし、すなわち温度を低下させ、相転移して冷媒蒸気になる。蒸気冷媒は、蒸発器48を出て、吸い込み管によって圧縮機42に戻り、回路またはサイクルを完成する。蒸発器48は、特定の蒸気圧縮システムで実施される回路の数次第で、1つまたは複数の容器を有することができる。さらに、特定の蒸気圧縮システムに複数の回路が使用されても、蒸発器は、熱伝達のための個別の冷媒回路を維持することができる単一の容器を依然として使用することができる。
[0033]例示の一実施形態では、諸圧縮機42は、同一のViを有しないように選択され得る。換言すれば、1つの圧縮機42が(他の圧縮機と比較して)高いViを有することができ、その他の圧縮機42が(他の圧縮機と比較して)低いViを有することができる。Viが低い圧縮機は、より低い凝縮温度を有する上流の区間またはコイル80に接続することができる。図4Bに示されるように、下流の凝縮器区間またはコイル82向けの空気の温度は、上流の凝縮器区間またはコイル80向けの空気の温度より高い。したがって、下流の凝縮器区間またはコイル82では、この気流温度の差により、高Vi圧縮機からの冷媒を、上流の凝縮器区間またはコイル80の低Vi圧縮機からの冷媒より、より高い凝縮温度および/または凝縮圧力で凝縮することができる。より低い凝縮温度で動作する上流の凝縮器区間またはコイル80とともに低Vi圧縮機を使用すると、蒸気圧縮システムの全負荷効率を改善することができる。また、低Vi圧縮機だけが作動されるとき、蒸気圧縮システムの部分負荷効率が改善され得る。特定の例示的実施形態の1つでは、低Vi圧縮機は遠心圧縮機であり得て、高Vi圧縮機はスクリュ圧縮機などの容積式圧縮機であり得る。
[0034]特定の例示的実施形態の1つでは、上流のコイルを有する冷媒回路用の圧縮機は、可変速の遠心圧縮機であり得て、下流のコイルを有する高Vi圧縮機は、スクリュ圧縮機などの容積式圧縮機であり得る。この実施形態の圧縮機の対は、圧縮機の構成が、遠心圧縮機で必要とされる吐出し風圧を低下させるので、システムの高周囲温度の性能を改善する。遠心圧縮機が達成することができる吐出し風圧は、一般に、所与の圧縮機設計に関する圧縮機吸気と吐出し風圧の最大比によって制限されている。遠心圧縮機は、可変速で直接駆動の磁気軸受を有する密閉型2段圧縮機であり得る。遠心圧縮機を、単独で、すなわちスクリュ圧縮機が部分負荷状態で作動されずに、動作させることにより、システムの高い部分負荷効率が取得され得る。
[0035]図5は、単一の冷媒回路に配給する複数の圧縮機を有する蒸気圧縮システムを示す。図5の蒸気圧縮システムは、1つの圧縮機だけが作動され得るように、冷媒の流れを分離するのに逆止め弁78または他の類似の弁を使用する。また、上流の区間またはコイル80を出る冷媒の圧力と下流の区間またはコイル82を出る冷媒の圧力を等しくするために、凝縮器26の出力においてオリフィス88が使用される。凝縮器26と膨張装置46の間の冷媒系統の作動圧力は、下流の区間またはコイル82に個別の接続が使用された
場合の作動圧力より、低くなり得る。作動圧力がより低いと、凝縮器26と膨張装置46の間の液体系統の例えばフィルタ/乾燥機、点検窓といったさらなる構成要素が、より低い圧力向けに構成して作動され得る。個別の冷媒回路に使用される圧縮機は、同一のViまたは別々のViを有することができる。図5の蒸気圧縮システムの例示的実施形態では、圧縮機42はスクロール圧縮機であり得る。
[0036]図6は、複数の個別の冷媒回路およびHVAC&Rシステム10のために空気を直接冷却するのに使用される各回路用の個別の蒸発器区間を有する蒸気圧縮システムを示す。個別の冷媒回路に使用される圧縮機は、同一のViまたは別々のViを有することができる。図6の蒸気圧縮システムの例示的実施形態では、蒸気圧縮システムは、パッケージ化された屋根ユニットで使用され得る。
[0037]図7は、単一の蒸発器容器を使用する複数の個別の冷媒回路を有する蒸気圧縮システムを示す。個別の冷媒回路に使用される圧縮機は、同一のViまたは別々のViを有することができる。図7の蒸気圧縮システムの例示的実施形態では、蒸気圧縮システムは冷却器または冷却液体システムに使用され得て、スクロール圧縮機を組み込む。

[0038]図8〜図12に示される例示的実施形態では、流体連通の、第1の圧縮機42A、第1の凝縮器26Aおよび第1の蒸発器48Aを備える、第1の冷媒を循環させるための第1の冷媒回路100Aと、流体連通の、第2の圧縮機42B、第2の凝縮器26Bおよび第2の蒸発器48Bを備える、第2の冷媒を循環させるための第2の冷媒回路100Bと、前記第1の凝縮器26Aを通ってからその後、前記第2の凝縮器26Bを通して空気を循環させるための少なくとも1つの通風装置32とを備える。また、蒸気圧縮回路は、凝縮器26A及び26Bと膨張装置46の間に組み込まれた1つまたは複数の中間回路またはエコノマイザ回路を含むことができる。中間回路またはエコノマイザ回路は、所与の蒸発器サイズに対して冷却能力を向上するのに利用され得て、蒸気圧縮システムの効率および性能を向上することができる。中間回路は、上流の区間またはコイル80および下流の区間またはコイル82の一方または両方に対して、直接接続されるかまたは流体連通され得る1つまたは複数の入口系統を有することができる。1つまたは複数の入口系統は、中間容器の上流に配置された1つまたは複数の膨張装置66を含むことができる。膨張装置66は、上流の区間またはコイル80および/または下流の区間またはコイル82からの冷媒の圧力を中間圧力に下げるように動作し、いくつかの冷媒の蒸気へのフラッシングをもたらす。中間圧力でフラッシングされた冷媒は、その特定の回路に対応する圧縮機42A及び42Bに再導入され得る。中間圧力の冷媒蒸気が圧縮機42A及び42Bに戻されるので、冷媒蒸気が必要とする圧縮はより低く、それによって蒸気圧縮システムの全体的効率が向上する。膨張装置66からの、中間圧力の残りの液体冷媒は、より低いエンタルピーにあり、熱伝達を助長することができる。膨張装置46は、中間容器から中間圧力の冷媒を受け取って、より低いエンタルピーの液体冷媒を蒸発器圧力に膨張させることができる。冷媒が、低いエンタルピーを有して蒸発器48A及び48Bに入ることにより、冷媒が凝縮器から直接膨張される非エコノマイズシステムに対して、エコノマイズ回路を有するシステムにおける冷却効果が向上する。なお、図8〜図12に示す如く、第1の蒸発器(48A)と第2の蒸発器(48B)とは、共通の容器の入口から出口まで伸びており、該伸びている区間内でプロセス流体と熱交換する。
[0039]中間容器は、フラッシュ中間冷却器とも称されるフラッシュタンク70A及び70Bであり得て、あるいは、中間容器は、「表面エコノマイザ」とも称される熱交換器71(図9−図12参照)としても構成され得る。フラッシュタンク70A及び70Bは、膨張装置66から受け取られた液体から蒸気を分離するのに使用されてよく、液体のさらなる膨張を可能にすることもできる。蒸気は、圧縮機42A及び42Bによってフラッシュタンク70A及び70Bから補助冷媒系統を通って、吸入と放出の間の中間圧力すなわち圧縮の中間段階のポートである吸気入口に引き込まれてよい。例示の一実施形態では、フラッシュタンク70Aから圧縮機42A及び42Bへの冷媒の流れを調節するために、圧縮機42A及び42Bとフラッシュタンク70A及び70Bの間の補助冷媒系統に電磁弁75が配置され得る。フラッシュタンク70A及び70Bの中に集まる液体は、膨張処理からより低いエンタルピーにある。フラッシュタンク70A及び70Bからの液体は、膨張装置46へ流れ、次いで蒸発器48A及び48Bに流れる。2つの異なる圧力の冷媒間で熱を移転するために、熱交換器71A(図9参照)が使用され得る。熱交換器71Aの冷媒間の熱の交換は、熱交換器71Aの冷媒のうちの1つを過冷して熱交換器71Aのもう1つの冷媒を少なくとも部分的に蒸発させるのに利用され得る。
[0040]図8は、それぞれが中間回路またはエコノマイザ回路を組み込む複数の個別の冷媒回路を有する蒸気圧縮システムを示す。上流の区間またはコイル80および下流の区間またはコイル82のそれぞれが、フラッシュタンク70A及び70Bに流体連結されている膨張装置66に流体連結され得る。エコノマイザの動作圧を調節するのに、膨張装置66が使用され得る。個別の冷媒回路に使用される圧縮機は、同一のViまたは別々のViを有することができる。下流の区間またはコイル82に接続された高Vi圧縮機42Bおよび上流の区間またはコイル80に接続された低Vi圧縮機42Aを使用する例示的実施形態では、高Vi圧縮機42Bに対する電動機負荷を低減するように、下流の区間またはコイル82に接続されたフラッシュタンク70Bからの蒸気冷媒が、より高い圧力で高Vi圧縮機42Bに供給され得る。
[0041]図9が示す蒸気圧縮システムは、中間回路またはエコノマイザ回路に熱交換器が組み込まれるという点を除けば、図8の蒸気圧縮システムに類似のものである。上流の区間またはコイル80は、熱交換器71Aに続いてフラッシュタンク70Aにも流体連結されている膨張装置66に流体連結され得る。下流の区間またはコイル82は、膨張装置66に続いてフラッシュタンク70Bにも流体連結されている熱交換器71Aに流体連結され得る。個別の冷媒回路に使用される圧縮機は、同一のViまたは別々のViを有することができる。
[0042]図10が示す蒸気圧縮システムは、下流の区間またはコイル82に接続された中間回路またはエコノマイザ回路に、追加の、すなわち第2の熱交換器が組み込まれるという点を除けば、図9の蒸気圧縮システムに類似のものである。下流の区間またはコイル82からの液体冷媒は、2つの別々の通路に分割されて第2の熱交換器71Bに供給される。通路のうちの1つは、液体冷媒が第2の熱交換器71Bに入る前に膨張装置66を組み込むことができる。膨張装置66を有する入力通路に対応する第2の熱交換器71Bの出力は、フラッシュタンク70Bに接続されたポートから分離した圧縮機42のより高い圧力に対応するポートにおいて下流の区間またはコイル82に配給する圧縮機42Bに供給され得る。第2の熱交換器71Bからのもう一方の出力は、図10で説明されたように、第1の熱交換器71Aに入ることができる。個別の冷媒回路に使用される圧縮機は、同一のViまたは別々のViを有することができる。
[0043]図11は、それぞれが中間回路またはエコノマイザ回路を組み込む複数の個別の冷媒回路を有する蒸気圧縮システムを示す。上流の区間またはコイル80は、熱交換器71Aに続いてフラッシュタンク70Aにも流体連結されている膨張装置66に流体連結され得る。下流の区間またはコイル82は、膨張装置46に続いて蒸発器48Bにも流体連結されている熱交換器71Aに流体連結され得る。個別の冷媒回路に使用される圧縮機42A及び42Bは、同一のViまたは別々のViを有することができる。熱交換器71Aは、上流の区間またはコイル80からの冷媒を、下流の区間またはコイル82からの冷媒液を冷却するのに利用することができる。下流の区間またはコイル82からの冷媒液を冷却することにより、下流の区間またはコイル82に接続された圧縮機42Bに対する電動機負荷は、低減されて、上流の区間またはコイル80に接続された圧縮機42Aに対する電動機負荷と等しくされ得る。
[0044]図12が示す蒸気圧縮システムは、下流の区間またはコイル82に接続された中間回路またはエコノマイザ回路の中にさらなるフラッシュタンクが組み込まれるという点を除けば、図11の蒸気圧縮システムに類似のものである。下流の区間またはコイル82からの液体冷媒は、フラッシュタンク70Bに流体連結されている膨張装置66に流体連結される。フラッシュタンク70Bからの液体冷媒は、熱交換器71Aに供給され得る。フラッシュタンク70Bからの蒸気冷媒は、下流の区間またはコイル82に配給する圧縮機42Bに供給され得る。個別の冷媒回路に使用される圧縮機は、同一のViまたは別々のViを有することができる。
[0045]高Vi圧縮機および低Vi圧縮機を使用する例示の一実施形態では、圧縮機負荷を等化して高い周囲温度における能力を改善するために、エコノマイザ負荷が、より高い凝縮器圧力で動作する高Vi圧縮機を有する回路から、より低い凝縮器圧力で動作する低Vi圧縮機を有する回路へ移され得る。
[0046]図13は、積層型凝縮器コイルの構成を有するシステムの効率を、単一凝縮器コイルの構成を有するシステムの効率と比較する。どちらの凝縮器コイルの構成も、深さ25mmのマイクロチャンネル熱交換器コイルを使用している。解析のために、図8に示されるように構成された蒸気圧縮システムが使用された。また、どちらの圧縮機も同一のVi設計、すなわち高Viの設計である。図13に示されるように、単一凝縮器コイルの構成では16個のファンを使用して達成され得るシステム効率とほぼ同一のシステム効率が、積層型凝縮器コイルの構成ではわずか10個のファンで達成され得て、このことは約9%のシステム効率の改善をもたらすことができる。また、さらなるファンを使用すると、単一凝縮器コイルの構成に対して、より高い効率レベルが達成され得る。図14は、システム効率とシステムコストの間の関係を示す。図14の結果は、図13と同一のシステム構成に基づくものである。図14に示されるように、積層型凝縮器コイルの構成を用いると、単一凝縮器コイルの構成と同一のコストで、より効率的なシステムが達成され得る。さらに、積層型凝縮器コイルの構成は、単一凝縮器コイルの構成と比較して、特定の設計効率に対して低コストをもたらすことができる。
[0047]例示的実施形態では、凝縮器は、別々の圧力で動作する2つを上回る凝縮器区間またはコイルを有するように拡張され得る。一般に、それぞれの追加区間および凝縮圧力では、性能向上の増強はより小さい。
[0048]別の例示的実施形態では、圧縮機のそれぞれが、スクリュ圧縮機、往復圧縮機、遠心圧縮機、回転圧縮機、スイングリンク圧縮機、スクロール圧縮機、タービン圧縮機、またはその他の適切な圧縮機など単段の圧縮機でよいが、あらゆる単段または多段の圧縮機が使用され得る。
[0049]さらなる例示的実施形態では、膨張装置は、電子的膨張弁または熱膨張弁、毛管またはオリフィスなどの膨張弁を含む任意の適切な膨張装置でよい。
[0050]別の例示的実施形態では、各圧縮機は、タンデム圧縮機、トリオ圧縮機、または1つの冷媒回路を共有して1つの圧縮機システムとして働く他の多段圧縮機の構成を含むことができる。例えば、スクロール圧縮機は多段圧縮機に構成され得て、すなわち1つの冷媒回路に2つ以上の圧縮機が接続され得る。スクロール圧縮機の実例では、圧縮機を多段圧縮機の構成にアレンジすることにより、容量制御が実現され得る。また、多段圧縮機の構成は、流れを調整するための弁など他の関連する構成要素を含むことができる。さらに別の例示的実施形態では、別々の設計のViを有する圧縮機が、同じ冷媒回路を共有することもできる。
[0051]他の例示的実施形態では、蒸気圧縮システムは、他の構成を有することができる。例えば、効率をさらに改善するために、さらなるエコノマイザが回路に組み込まれ得る。最適のエコノマイザ構成は、コストに対する効率および容量の改善次第である。
[0052]図に示され、かつ本明細書で説明された例示的実施形態は、現在好ましいものであるが、これらの実施形態は単に実例として提供されていることを理解されたい。例示的実施形態の設計、運転条件および配置において、他の置換、変更、交換および省略が、本出願の範囲から逸脱することなく行なわれ得る。したがって、本出願は、特定の実施形態に限定されず、やはり添付の特許請求の範囲の範囲内に入る様々な変更形態に及ぶものである。本明細書に用いられる言葉遣いおよび用語は、単に説明のためであって、限定する
ものと考えるべきでないことも理解されたい。
[0053]本出願では、本発明の特定の特徴および実施形態だけが示され、かつ説明されており、当業者なら、特許請求の範囲に列挙された内容の斬新な教示および利点から実質的に逸脱することなく、多くの変更および改変(例えば、サイズ、寸法、構造、様々な要素の形状および割合、パラメータの値、取付け構成、材料の用法、方向づけなどの変更)を考えつく可能性がある。例えば、一体化して形成されるように示された要素は複数の部品または要素から構成されてよく、諸要素の位置は逆にされるかそうでなければ変化されてよく、また個別要素の性質もしくは数または位置は変更されるかあるいは変化されてよい。任意の処理または方法のステップの順序または順番は、代替実施形態によって変化されるかまたは並べ換えられてよい。したがって、添付の特許請求の範囲は、このような変更および改変を、すべて本発明の真の精神の範囲内に対象として含むように意図されていることを理解されたい。さらに、例示的実施形態の簡潔な説明を提供するために、実際の実装形態のすべての特徴が説明されているとは限らないことがある(すなわち、現在企図されている本発明を実行する最善の様式とは無関係なもの、または特許請求された発明を可能にするのに無関係なものは、説明されていないことがある)。何らかの工学技術または設計プロジェクトにおけるように、何らかのこのような実際の実装形態の発展において、多数の実装時固有判断が下される可能性があることを理解されたい。このような開発努力は、複雑で時間がかかる可能性があるが、それにもかかわらず、この開示の利益を有する当業者にとって、不必要な実験なしで、設計、製造、および生産の日常的仕事になるであろう。

以上説明したように、本発明は以下の形態を有する。
[形態1] 流体を循環させるように構成された少なくとも1つの第1区間と、
流体を循環させるように構成された少なくとも1つの第2区間であって、前記少なくとも1つの第2区間における前記流体の流れが、前記少なくとも1つの第1区間における流体の流れと分離している少なくとも1つの第2区間と、
前記少なくとも1つの第1区間および前記少なくとも1つの第2区間の両方を通して空気を循環させるための少なくとも1つの通風装置と
を備える熱交換器であって、
前記少なくとも1つの第1区間が、前記少なくとも1つの第2区間に対して、隣接して、実質的に平行に配置され、
前記少なくとも1つの第1区間と前記少なくとも1つの第2区間は、前記少なくとも1つの第1区間を出る空気が前記少なくとも1つの第2区間に入るように配置される熱交換器。
[形態2]
前記少なくとも1つの第1区間または前記少なくとも1つの第2区間のうち少なくとも1つが、多重チャンネルの熱交換器コイルを備える形態1に記載の熱交換器。
[形態3]
前記少なくとも1つの第1区間が、V字形に配置された1対のコイルを備え、前記少なくとも1つの第2区間が、V字形に配置された1対のコイルを備える形態1に記載の熱交換器。
[形態4]
前記少なくとも1つの第1区間で循環する前記流体および前記少なくとも1つの第2区間で循環する前記流体が、同一の供給源からのものである形態1に記載の熱交換器。
[形態5]
前記少なくとも1つの第1区間で循環する前記流体の圧力が、前記少なくとも1つの第2区間で循環する前記流体の圧力より低い形態1に記載の熱交換器。
[形態6]
前記少なくとも1つの第1区間および前記少なくとも1つの第2区間のそれぞれが、対応する区間を通る流体の複数の通路を有するように構成される形態1に記載の熱交換器。
[形態7]
前記流体の複数の通路が、流体の2つの通路である形態6に記載の熱交換器。
[形態8]
前記少なくとも1つの第1区間および前記少なくとも1つの第2区間が、別々の流体回路に接続される形態1に記載の熱交換器。
[形態9]
前記少なくとも1つの第1区間および前記少なくとも1つの第2区間が、共通の構造用部品を使用して取り付けられる形態1に記載の熱交換器。
[形態10]
流体連通の、第1の圧縮機、第1の凝縮器および第1の蒸発器を備える、冷媒を循環させるための第1の回路と、
流体連通の、第2の圧縮機、第2の凝縮器および第2の蒸発器を備える、冷媒を循環させるための第2の回路と、
前記第1の凝縮器および前記第2の凝縮器の両方を通して空気を循環させるための少なくとも1つの通風装置と
を備える蒸気圧縮システムであって、
前記第1の凝縮器および前記第2の凝縮器のそれぞれが、少なくとも1つの実質的に平面状の区間を備え、前記第1の凝縮器の前記少なくとも1つの実質的に平面状の区間が、
前記第2の凝縮器の前記少なくとも1つの実質的に平面状の区間に対して、隣接して、実質的に平行に配置され、
前記第1の凝縮器の中の前記冷媒の凝縮温度が、前記第2の凝縮器の中の前記冷媒の凝縮温度と異なる蒸気圧縮システム。
[形態11]
前記第1の凝縮器の前記少なくとも1つの実質的に平面状の区間および前記第2の凝縮器の前記少なくとも1つの実質的に平面状の区間が、空気を、前記第1の凝縮器の前記少なくとも1つの実質的に平面状の区間で、次いで前記第2の凝縮器の前記少なくとも1つの実質的に平面状の区間で循環させるように配置される形態10に記載のシステム。
[形態12]
前記第1の凝縮器の中の前記冷媒の前記凝縮温度が、前記第2の凝縮器の中の前記冷媒の前記凝縮温度未満である形態11に記載のシステム。
[形態13]
前記第1の圧縮機と前記第2の圧縮機が別々の体積比を有する形態12に記載のシステム。
[形態14]
前記第1の圧縮機が、前記第2の圧縮機より低い体積比を有する形態13に記載のシステム。
[形態15]
前記第1の蒸発器と前記第2の蒸発器が、どちらも、共通の容器の中のプロセス流体と熱交換する形態10に記載のシステム。
[形態16]
前記第1の凝縮器から冷媒を受け取って前記第1の圧縮機に蒸気冷媒を供給し、かつ前記第1の蒸発器に液体冷媒を供給するように構成された第1のエコノマイザをさらに備える形態10に記載のシステム。
[形態17]
前記第2の凝縮器から冷媒を受け取って前記第2の圧縮機に蒸気冷媒を供給し、かつ前記第2の蒸発器に液体冷媒を供給するように構成された第2のエコノマイザをさらに備える形態16に記載のシステム。
[形態18]
前記第1の凝縮器から冷媒を受け取るための第1の入力と、前記第1のエコノマイザに冷媒を供給するための第1の出力と、前記第2の凝縮器から冷媒を受け取るための第2の入力と、前記第2のエコノマイザに冷媒を供給するための第2の出力とを備える第3のエコノマイザであって、
前記第1の回路の中の冷媒と前記第2の回路の中の冷媒の間の熱交換を可能にするように構成される第3のエコノマイザ をさらに備える形態17に記載のシステム。
[形態19]
前記第2の凝縮器から冷媒を受け取って、前記第3のエコノマイザおよび前記第2の圧縮機に冷媒を供給するように構成された第4のエコノマイザであって、前記第2の圧縮機に供給された冷媒を気化させるように構成される第4のエコノマイザをさらに備える形態18に記載のシステム。
[形態20]
前記第4のエコノマイザから前記第2の圧縮機に供給される前記冷媒が、前記第2のエコノマイザから前記第2の圧縮機に供給される前記冷媒と分離する位置で前記第2の圧縮機に入る形態19に記載のシステム。
[形態21]
前記第1の凝縮器からの冷媒を受け取るための第1の入力と、前記第1のエコノマイザに冷媒を供給するための第1の出力と、前記第2の凝縮器から冷媒を受け取るための第2の入力と、前記第2の蒸発器に冷媒を供給するための第2の出力とを備える第2のエコノマイザをさらに備える形態16に記載のシステム。
[形態22]
前記第2の凝縮器から冷媒を受け取って前記第2の圧縮機に蒸気冷媒を供給し、かつ前記第2のエコノマイザに液体冷媒を供給するように構成された第3のエコノマイザをさらに備える形態21に記載のシステム。

Claims (22)

  1. 流体を循環させるように構成された少なくとも1つの第1区間と、
    流体を循環させるように構成された少なくとも1つの第2区間であって、前記少なくとも1つの第2区間における前記流体の流れが、前記少なくとも1つの第1区間における流体の流れと分離している少なくとも1つの第2区間と、
    前記少なくとも1つの第1区間および前記少なくとも1つの第2区間の両方を通して空気を循環させるための少なくとも1つの通風装置と
    を備える熱交換器であって、
    前記少なくとも1つの第1区間が、前記少なくとも1つの第2区間に対して、隣接して、実質的に平行に配置され、
    前記少なくとも1つの第1区間と前記少なくとも1つの第2区間は、前記少なくとも1つの第1区間を出る空気が前記少なくとも1つの第2区間に入るように配置される熱交換器。
  2. 前記少なくとも1つの第1区間または前記少なくとも1つの第2区間のうち少なくとも1つが、多重チャンネルの熱交換器コイルを備える請求項1に記載の熱交換器。
  3. 前記少なくとも1つの第1区間が、V字形に配置された1対のコイルを備え、前記少なくとも1つの第2区間が、V字形に配置された1対のコイルを備える請求項1に記載の熱交換器。
  4. 前記少なくとも1つの第1区間で循環する前記流体および前記少なくとも1つの第2区間で循環する前記流体が、同一の供給源からのものである請求項1に記載の熱交換器。
  5. 前記少なくとも1つの第1区間で循環する前記流体の圧力が、前記少なくとも1つの第2区間で循環する前記流体の圧力より低い請求項1に記載の熱交換器。
  6. 前記少なくとも1つの第1区間および前記少なくとも1つの第2区間のそれぞれが、対応する区間を通る流体の複数の通路を有するように構成される請求項1に記載の熱交換器。
  7. 前記流体の複数の通路が、流体の2つの通路である請求項6に記載の熱交換器。
  8. 前記少なくとも1つの第1区間および前記少なくとも1つの第2区間が、別々の流体回路に接続される請求項1に記載の熱交換器。
  9. 前記少なくとも1つの第1区間および前記少なくとも1つの第2区間が、共通の構造用部品を使用して取り付けられる請求項1に記載の熱交換器。
  10. 流体連通の、第1の圧縮機、第1の凝縮器および第1の蒸発器を備える、冷媒を循環させるための第1の回路と、
    流体連通の、第2の圧縮機、第2の凝縮器および第2の蒸発器を備える、冷媒を循環させるための第2の回路と、
    前記第1の凝縮器および前記第2の凝縮器の両方を通して空気を循環させるための少なくとも1つの通風装置と
    を備える蒸気圧縮システムであって、
    前記第1の凝縮器および前記第2の凝縮器のそれぞれが、少なくとも1つの実質的に平面状の区間を備え、前記第1の凝縮器の前記少なくとも1つの実質的に平面状の区間が、前記第2の凝縮器の前記少なくとも1つの実質的に平面状の区間に対して、隣接して、実
    質的に平行に配置され、
    前記第1の凝縮器の中の前記冷媒の凝縮温度が、前記第2の凝縮器の中の前記冷媒の凝縮温度と異なる蒸気圧縮システム。
  11. 前記第1の凝縮器の前記少なくとも1つの実質的に平面状の区間および前記第2の凝縮器の前記少なくとも1つの実質的に平面状の区間が、空気を、前記第1の凝縮器の前記少なくとも1つの実質的に平面状の区間で、次いで前記第2の凝縮器の前記少なくとも1つの実質的に平面状の区間で循環させるように配置される請求項10に記載のシステム。
  12. 前記第1の凝縮器の中の前記冷媒の前記凝縮温度が、前記第2の凝縮器の中の前記冷媒の前記凝縮温度未満である請求項11に記載のシステム。
  13. 前記第1の圧縮機と前記第2の圧縮機が別々の体積比を有する請求項12に記載のシステム。
  14. 前記第1の圧縮機が、前記第2の圧縮機より低い体積比を有する請求項13に記載のシステム。
  15. 前記第1の蒸発器と前記第2の蒸発器が、どちらも、共通の容器の中のプロセス流体と熱交換する請求項10に記載のシステム。
  16. 前記第1の凝縮器から冷媒を受け取って前記第1の圧縮機に蒸気冷媒を供給し、かつ前記第1の蒸発器に液体冷媒を供給するように構成された第1のエコノマイザをさらに備える請求項10に記載のシステム。
  17. 前記第2の凝縮器から冷媒を受け取って前記第2の圧縮機に蒸気冷媒を供給し、かつ前記第2の蒸発器に液体冷媒を供給するように構成された第2のエコノマイザをさらに備える請求項16に記載のシステム。
  18. 前記第1の凝縮器から冷媒を受け取るための第1の入力と、前記第1のエコノマイザに冷媒を供給するための第1の出力と、前記第2の凝縮器から冷媒を受け取るための第2の入力と、前記第2のエコノマイザに冷媒を供給するための第2の出力とを備える第3のエコノマイザであって、
    前記第1の回路の中の冷媒と前記第2の回路の中の冷媒の間の熱交換を可能にするように構成される第3のエコノマイザ
    をさらに備える請求項17に記載のシステム。
  19. 前記第2の凝縮器から冷媒を受け取って、前記第3のエコノマイザおよび前記第2の圧縮機に冷媒を供給するように構成された第4のエコノマイザであって、前記第2の圧縮機に供給された冷媒を気化させるように構成される第4のエコノマイザをさらに備える請求項18に記載のシステム。
  20. 前記第4のエコノマイザから前記第2の圧縮機に供給される前記冷媒が、前記第2のエコノマイザから前記第2の圧縮機に供給される前記冷媒と分離する位置で前記第2の圧縮機に入る請求項19に記載のシステム。
  21. 前記第1の凝縮器からの冷媒を受け取るための第1の入力と、前記第1のエコノマイザに冷媒を供給するための第1の出力と、前記第2の凝縮器から冷媒を受け取るための第2の入力と、前記第2の蒸発器に冷媒を供給するための第2の出力とを備える第2のエコノマイザをさらに備える請求項16に記載のシステム。
  22. 前記第2の凝縮器から冷媒を受け取って前記第2の圧縮機に蒸気冷媒を供給し、かつ前記第2のエコノマイザに液体冷媒を供給するように構成された第3のエコノマイザをさらに備える請求項21に記載のシステム。
JP2019199971A 2010-02-08 2019-11-01 積層コイル区間を有する熱交換器 Pending JP2020038054A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US30233310P 2010-02-08 2010-02-08
US61/302,333 2010-02-08

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017145221A Division JP2017207274A (ja) 2010-02-08 2017-07-27 積層コイル区間を有する熱交換器

Publications (1)

Publication Number Publication Date
JP2020038054A true JP2020038054A (ja) 2020-03-12

Family

ID=44115719

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2012552137A Pending JP2013519064A (ja) 2010-02-08 2011-02-07 積層コイル区間を有する熱交換器
JP2015125439A Pending JP2015212616A (ja) 2010-02-08 2015-06-23 積層コイル区間を有する熱交換器
JP2017145221A Pending JP2017207274A (ja) 2010-02-08 2017-07-27 積層コイル区間を有する熱交換器
JP2019199971A Pending JP2020038054A (ja) 2010-02-08 2019-11-01 積層コイル区間を有する熱交換器

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2012552137A Pending JP2013519064A (ja) 2010-02-08 2011-02-07 積層コイル区間を有する熱交換器
JP2015125439A Pending JP2015212616A (ja) 2010-02-08 2015-06-23 積層コイル区間を有する熱交換器
JP2017145221A Pending JP2017207274A (ja) 2010-02-08 2017-07-27 積層コイル区間を有する熱交換器

Country Status (6)

Country Link
US (2) US9869487B2 (ja)
EP (2) EP2534427B1 (ja)
JP (4) JP2013519064A (ja)
KR (2) KR101762244B1 (ja)
CN (1) CN102753902B (ja)
WO (1) WO2011097583A2 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493144B (zh) * 2012-09-07 2015-07-21 Ind Tech Res Inst 熱交換循環系統
WO2014109970A1 (en) 2013-01-11 2014-07-17 Carrier Corporation Fan coil unit with shrouded fan
US20140209278A1 (en) * 2013-01-30 2014-07-31 Visteon Global Technologies, Inc. Thermal energy storage system with heat pump, reduced heater core, and integrated battery cooling and heating
US9631852B2 (en) * 2013-03-15 2017-04-25 Johnson Controls Technology Company System and method for controlling compressor motor voltage
US9581364B2 (en) 2013-03-15 2017-02-28 Johnson Controls Technology Company Refrigeration system with free-cooling
GB2534066B (en) 2013-10-01 2020-02-19 Trane Int Inc Rotary Compressors with variable speed and volume control
EP2910765B1 (en) 2014-02-21 2017-10-25 Rolls-Royce Corporation Single phase micro/mini channel heat exchangers for gas turbine intercooling and corresponding method
CN104896695B (zh) * 2014-03-05 2017-11-17 珠海格力电器股份有限公司 一种模块化空调机组密封结构及空调机组
US10254028B2 (en) 2015-06-10 2019-04-09 Vertiv Corporation Cooling system with direct expansion and pumped refrigerant economization cooling
EP3310471B1 (en) * 2015-06-18 2022-12-07 Uop Llc Processes and systems for controlling cooling fluid
CN104949548A (zh) * 2015-07-03 2015-09-30 湖南省中达换热装备有限公司 组合式空冷器
US20170130974A1 (en) * 2015-11-09 2017-05-11 Carrier Corporation Residential outdoor heat exchanger unit
CN105352080A (zh) * 2015-11-30 2016-02-24 苏州市朗吉科技有限公司 组合式双冷源制冷系统
CN105605648A (zh) * 2016-02-25 2016-05-25 山东科灵节能装备股份有限公司 全天候吸收太阳能的空气能热泵机组
US10655888B2 (en) * 2016-03-08 2020-05-19 Heatcraft Refrigeration Products Llc Modular rack for climate control system
CN110325804B (zh) 2016-08-22 2021-08-20 江森自控科技公司 用于控制制冷系统的系统和方法
US10415856B2 (en) * 2017-04-05 2019-09-17 Lennox Industries Inc. Method and apparatus for part-load optimized refrigeration system with integrated intertwined row split condenser coil
EP3607252B1 (en) * 2017-04-07 2024-02-21 Carrier Corporation Chiller system with an economizer module and method of operating such a system
US10816236B2 (en) * 2017-06-09 2020-10-27 Johnson Controls Technology Company Condensate recycling system for HVAC system
KR102014466B1 (ko) * 2017-07-10 2019-10-21 엘지전자 주식회사 칠러유닛 및 이를 포함하는 칠러시스템
US11204187B2 (en) * 2017-07-14 2021-12-21 Danfoss A/S Mixed model compressor
US11085666B2 (en) 2018-05-22 2021-08-10 Johnson Controls Technology Company Collapsible roof top unit systems and methods
US10724761B2 (en) * 2018-06-13 2020-07-28 SolarXWorks, LLC Modular heat transfer units
MX2021006310A (es) 2018-11-28 2021-08-11 Evapco Inc Metodo y aparato para el arranque escalonado de un sistema de refrigeracion con amoniaco empacado de baja carga enfriado por aire.
US11454420B2 (en) * 2019-02-06 2022-09-27 Johnson Controls Tyco IP Holdings LLP Service plate for a heat exchanger assembly
CN109974197B (zh) * 2019-03-16 2021-06-04 河北雄安瑞恒能源科技有限公司 一种楼宇用中央空调智能控制系统
US11236946B2 (en) 2019-05-10 2022-02-01 Carrier Corporation Microchannel heat exchanger
US20210262705A1 (en) * 2019-06-07 2021-08-26 Carrier Corporation Modular waterside economizer integrated with air-cooled chillers
IT201900021486A1 (it) 2019-11-18 2021-05-18 Mitsubishi Electric Hydronics & It Cooling Systems S P A Disposizione migliorata di ciclo di refrigerazione raffreddato ad aria
US11262112B2 (en) * 2019-12-02 2022-03-01 Johnson Controls Technology Company Condenser coil arrangement
CA3170165A1 (en) * 2020-02-19 2021-08-26 Evapco, Inc. Double stack "v" heat exchanger
EP4111110A4 (en) * 2020-02-26 2024-03-06 Johnson Controls Tyco IP Holdings LLP FREE COOLING SYSTEM FOR HVAC SYSTEM
WO2024108138A1 (en) * 2022-11-17 2024-05-23 Tyco Fire & Security Gmbh Air-cooled heat exchangers and evaporative cooling assemblies

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824764A (ja) * 1981-08-07 1983-02-14 株式会社日立製作所 ヒ−トポンプ装置
JPH0611280A (ja) * 1992-03-11 1994-01-21 Modine Mfg Co 蒸発器又は蒸発器兼凝縮器
JPH11264621A (ja) * 1998-03-18 1999-09-28 Mitsubishi Electric Corp 空気調和装置の制御方法
JP2004299446A (ja) * 2003-03-28 2004-10-28 Calsonic Kansei Corp 車両用熱交換器
JP2006200864A (ja) * 2005-01-24 2006-08-03 T Rad Co Ltd 多流体熱交換器
JP2007139278A (ja) * 2005-11-16 2007-06-07 Sanden Corp 熱交換器及びこれを用いた冷熱機器
JP2007183077A (ja) * 2006-01-10 2007-07-19 Ebara Corp 冷凍装置
JP2008530498A (ja) * 2005-03-14 2008-08-07 ヨーク・インターナショナル・コーポレーション 電力供給された過冷却器を備えるhvacシステム
JP2008209083A (ja) * 2007-02-28 2008-09-11 Toshiba Carrier Corp 空気調和機
WO2008130359A1 (en) * 2007-04-24 2008-10-30 Carrier Corporation Refrigerant vapor compression system with dual economizer circuits

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2280041A1 (fr) * 1974-05-31 1976-02-20 Teal Technip Liquefaction Gaz Procede et installation pour le refroidissement d'un melange gazeux
US4149389A (en) * 1978-03-06 1979-04-17 The Trane Company Heat pump system selectively operable in a cascade mode and method of operation
US4332137A (en) * 1979-10-22 1982-06-01 Carrier Corporation Heat exchange apparatus and method having two refrigeration circuits
US4369633A (en) * 1981-09-03 1983-01-25 Snyder David A Multiple stage compressor with flash gas injection assembly
US4998580A (en) * 1985-10-02 1991-03-12 Modine Manufacturing Company Condenser with small hydraulic diameter flow path
US5121613A (en) * 1991-01-08 1992-06-16 Rheem Manufacturing Company Compact modular refrigerant coil apparatus and associated manufacturing methods
WO1999064794A1 (en) * 1998-06-11 1999-12-16 York International Corporation Chiller assembly
JP2002081886A (ja) * 2000-09-08 2002-03-22 Nikkei Nekko Kk 並設一体型熱交換装置
US6553778B2 (en) * 2001-01-16 2003-04-29 Emerson Electric Co. Multi-stage refrigeration system
US6644049B2 (en) * 2002-04-16 2003-11-11 Lennox Manufacturing Inc. Space conditioning system having multi-stage cooling and dehumidification capability
US20040089015A1 (en) * 2002-11-08 2004-05-13 York International Corporation System and method for using hot gas reheat for humidity control
KR100511288B1 (ko) * 2003-11-14 2005-08-31 엘지전자 주식회사 4대의 압축기를 구비한 공기조화기의 실외기
US6978630B2 (en) * 2004-01-16 2005-12-27 Dometic Corporation Dual-circuit refrigeration system
US7096681B2 (en) * 2004-02-27 2006-08-29 York International Corporation System and method for variable speed operation of a screw compressor
JP2007198693A (ja) 2006-01-27 2007-08-09 Mayekawa Mfg Co Ltd カスケード型ヒートポンプシステム
JP4970022B2 (ja) * 2006-08-02 2012-07-04 カルソニックカンセイ株式会社 複合型熱交換器及び複合型熱交換器システム
CN101755175A (zh) * 2007-06-04 2010-06-23 开利公司 具有级联回路和性能增强部件的制冷系统
US20090025405A1 (en) * 2007-07-27 2009-01-29 Johnson Controls Technology Company Economized Vapor Compression Circuit
US7942020B2 (en) * 2007-07-27 2011-05-17 Johnson Controls Technology Company Multi-slab multichannel heat exchanger
US20110056667A1 (en) 2008-07-15 2011-03-10 Taras Michael F Integrated multi-circuit microchannel heat exchanger

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824764A (ja) * 1981-08-07 1983-02-14 株式会社日立製作所 ヒ−トポンプ装置
JPH0611280A (ja) * 1992-03-11 1994-01-21 Modine Mfg Co 蒸発器又は蒸発器兼凝縮器
JPH11264621A (ja) * 1998-03-18 1999-09-28 Mitsubishi Electric Corp 空気調和装置の制御方法
JP2004299446A (ja) * 2003-03-28 2004-10-28 Calsonic Kansei Corp 車両用熱交換器
JP2006200864A (ja) * 2005-01-24 2006-08-03 T Rad Co Ltd 多流体熱交換器
JP2008530498A (ja) * 2005-03-14 2008-08-07 ヨーク・インターナショナル・コーポレーション 電力供給された過冷却器を備えるhvacシステム
JP2007139278A (ja) * 2005-11-16 2007-06-07 Sanden Corp 熱交換器及びこれを用いた冷熱機器
JP2007183077A (ja) * 2006-01-10 2007-07-19 Ebara Corp 冷凍装置
JP2008209083A (ja) * 2007-02-28 2008-09-11 Toshiba Carrier Corp 空気調和機
WO2008130359A1 (en) * 2007-04-24 2008-10-30 Carrier Corporation Refrigerant vapor compression system with dual economizer circuits

Also Published As

Publication number Publication date
EP2534427A2 (en) 2012-12-19
JP2015212616A (ja) 2015-11-26
US9869487B2 (en) 2018-01-16
WO2011097583A3 (en) 2011-11-24
CN102753902A (zh) 2012-10-24
KR20120125526A (ko) 2012-11-15
US20180156492A1 (en) 2018-06-07
JP2013519064A (ja) 2013-05-23
WO2011097583A2 (en) 2011-08-11
US10215444B2 (en) 2019-02-26
KR101762244B1 (ko) 2017-07-28
CN102753902B (zh) 2016-03-23
JP2017207274A (ja) 2017-11-24
EP3264003A1 (en) 2018-01-03
KR20160027209A (ko) 2016-03-09
EP2534427B1 (en) 2017-10-18
US20110192188A1 (en) 2011-08-11

Similar Documents

Publication Publication Date Title
JP2020038054A (ja) 積層コイル区間を有する熱交換器
KR101410438B1 (ko) 모터용 냉각 시스템
US8434323B2 (en) Motor cooling applications
US10508843B2 (en) Heat exchanger with water box
US10458687B2 (en) Vapor compression system
CN105229382A (zh) 用于空冷式冷却器的模块化盘管
US20230341135A1 (en) Heat exchanger for a heating, ventilation, and air-conditioning system
JP6040666B2 (ja) ヒートポンプシステム
WO2024020019A1 (en) Compressor system for heating, ventilation, air conditioning & refrigeration system
US20220333834A1 (en) Chiller system with multiple compressors
WO2012037021A2 (en) Compressor having an oil management system
KR102509997B1 (ko) 실외 유닛
US20230392828A1 (en) Chiller system with serial flow evaporators
US20190203987A1 (en) Condenser subcooler component of a vapor compression system
WO2017138052A1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210708