JP2008208725A - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP2008208725A
JP2008208725A JP2007043456A JP2007043456A JP2008208725A JP 2008208725 A JP2008208725 A JP 2008208725A JP 2007043456 A JP2007043456 A JP 2007043456A JP 2007043456 A JP2007043456 A JP 2007043456A JP 2008208725 A JP2008208725 A JP 2008208725A
Authority
JP
Japan
Prior art keywords
amount
nox
air
fuel ratio
storage reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007043456A
Other languages
English (en)
Inventor
Toshihiro Mori
俊博 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007043456A priority Critical patent/JP2008208725A/ja
Publication of JP2008208725A publication Critical patent/JP2008208725A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】内燃機関の排気浄化装置において、吸蔵還元型NOx触媒に実際に流入するHC
量を求めることにより該吸蔵還元型NOx触媒にとって最適な量のHCを供給することが
できる技術を提供する。
【解決手段】HC供給手段からHCを供給したときのNOx触媒よりも上流の空燃比と下
流の空燃比との差からNOx触媒に実際に流入したHC量を算出し(S104)、このH
C量に基づいてHC供給手段から供給するHC量を補正する(S105、S106)。
【選択図】図4

Description

本発明は、内燃機関の排気浄化装置に関する。
空燃比センサでは、排気中に含まれる酸素とHCとが該空燃比センサのヒータにより発せられる熱により反応して酸素が消費される。そして、残った酸素量に応じた大きさの電流が流れる。この電流の大きさに基づいて酸素とHCとの比、すなわち空燃比を検出している。
しかし、排気中に含まれる燃料のクラッキングが十分でないと、排気中に含まれる一部の燃料が酸素と反応することができなくなる。すなわち、HCと反応せずに残る酸素の量が多くなるため、空燃比センサにて流れる電流が大きくなる。その結果、空燃比センサにより検出される空燃比は実際よりもリーン側へずれることになる。なお、このようにして起こる検出空燃比のずれを以下、「リーンずれ」という。
ここで、排気中への燃料供給量が多いほど空燃比センサの出力信号がリーンずれするという関係に基づいて空燃比センサの出力信号を補正する技術が知られている(例えば、特許文献1参照。)。このようにして空燃比センサの出力信号を補正しつつNOx触媒の劣
化判定の精度を向上させている。
特開2005−146900号公報 特開2005−90324号公報
しかし、従来では空燃比センサの出力信号を補正してはいるが、実際にNOx触媒に流
入するHC量は考慮されていない。すなわち、NOx触媒よりも上流側に備えられている
酸化触媒が劣化すると該酸化触媒をすり抜けるHCが多くなるため、NOx触媒に流入す
るHC量が増加する。また、内燃機関の燃焼室から未燃燃料が排出されることによりNOx触媒に流入するHC量が増加することがある。このような場合、排気の空燃比が変化し
なくても排気中のHC量が増加することになる。従来ではこのHC量の増加を検出することができないため、NOx触媒をHCがすり抜ける虞があった。そのため、燃料の供給量
を減少させることによりHCのすり抜けを抑制する必要があり、NOx浄化率を向上させ
ることが困難となっていた。
本発明は、上記したような問題点に鑑みてなされたものであり、内燃機関の排気浄化装置において、吸蔵還元型NOx触媒に実際に流入するHC量を求めることにより該吸蔵還
元型NOx触媒にとって最適な量のHCを供給することができる技術を提供することを目
的とする。
上記課題を達成するために本発明による内燃機関の排気浄化装置は、以下の手段を採用した。すなわち、本発明による内燃機関の排気浄化装置は、
排気中のNOxを吸蔵しHCの存在下でNOxを還元する吸蔵還元型NOx触媒と、
前記吸蔵還元型NOx触媒よりも上流側からHCを供給するHC供給手段と、
前記HC供給手段から供給するHC量を算出するHC供給量算出手段と、
前記吸蔵還元型NOx触媒よりも上流側の排気の空燃比を検出する上流側空燃比センサ
と、
前記吸蔵還元型NOx触媒よりも下流側の排気の空燃比を検出する下流側空燃比センサ
と、
前記HC供給量算出手段により算出されるHC量を供給したときの前記上流側空燃比センサにより検出される空燃比と前記下流側空燃比センサにより検出される空燃比との差から前記吸蔵還元型NOx触媒に実際に流入したHC量を算出するHC流入量算出手段と、
前記HC流入量算出手段により算出されたHC量に基づいて前記HC供給手段から供給するHC量を補正するHC供給量補正手段と、
を具備することを特徴とする。
HC供給量算出手段は、HC供給手段から供給させようとするHC量を算出する。つまり、HC供給量の指令値を算出する。これは、吸蔵還元型NOx触媒が要求するHC量と
してもよい。そして、HC供給量算出手段により算出された量のHCがHC供給手段から供給される。
HC供給手段によりHCが供給されると、吸蔵還元型NOx触媒において該HCが反応
する。そのため、吸蔵還元型NOx触媒よりも下流側ではHC量が減少している。つまり
、上流側空燃比センサでは出力信号のリーンずれが起こるが、下流側空燃比センサでは出力信号のリーンずれはほとんど起こらない。そして、上流側空燃比センサにより得られる空燃比と下流側空燃比センサにより得られる空燃比との差は、排気中のHC量と相関関係がある。この関係に基づいてHC流入量算出手段は吸蔵還元型NOx触媒に流入したHC
量を算出することができる。
そして、HC流入量算出手段により算出されたHC量と、HC供給量算出手段により算出されたHC量と、を比較することにより、該HC供給量算出手段による算出結果を補正することができる。これにより、吸蔵還元型NOx触媒に適量のHCを供給することが可
能になる。
また本発明においては、前記HC供給量算出手段は、前記吸蔵還元型NOx触媒におけ
るNOx還元効率と、該吸蔵還元型NOx触媒をHCがすり抜けないHC量の上限値と、に基づいて前記HC供給手段から供給するHC量を算出することができる。
NOx還元効率は、吸蔵還元型NOx触媒に流入したHCがどれだけの割合でNOxと反
応しているのかを表す値である。このNOx還元効率が高いほど、より多くのHCを供給
することができ、より多くのNOxを浄化させることができる。しかし、HCの供給量が
多くなりすぎるとHCが吸蔵還元型NOx触媒で反応し切れずに該吸蔵還元型NOx触媒をすり抜ける虞がある。そのため、HCが吸蔵還元型NOx触媒をすり抜けないように該H
Cの供給量に上限を設ける。これにより、HCが吸蔵還元型NOx触媒をすり抜けること
を抑制できる。
ここで、NOx還元効率と、吸蔵還元型NOx触媒をHCがすり抜けない上限となるHC量とは、夫々吸蔵還元型NOx触媒の床温と、吸蔵還元型NOx触媒に吸蔵されているNOx量若しくはSOx量と、に応じて変化するため、これらの値に基づいてHC供給手段から供給するHC量を算出してもよい。
本発明に係る内燃機関の排気浄化装置は、吸蔵還元型NOx触媒に実際に流入するHC
量を求めることにより該吸蔵還元型NOx触媒にとって最適な量のHCを供給することが
できる。
以下、本発明に係る内燃機関の排気浄化装置の具体的な実施態様について図面に基づいて説明する。
図1は、本実施例に係る内燃機関の排気浄化装置を適用する内燃機関1とその吸・排気系の概略構成を示す図である。図1に示す内燃機関1は、水冷式の4サイクル・ディーゼルエンジンである。
内燃機関1には、吸気通路2および排気通路3が接続されている。この吸気通路2の途中には、該吸気通路2内を流通する吸気の流量に応じた信号を出力するエアフローメータ4が設けられている。このエアフローメータ4により、内燃機関1の吸入空気量が測定される。また、この吸入空気量に基づいて排気の量を求めることもできる。
一方、排気通路3の途中には、吸蔵還元型NOx触媒6(以下、NOx触媒6という。)が備えられている。このNOx触媒6は、流入する排気の酸素濃度が高いときは排気中の
NOxを吸蔵し、流入する排気の酸素濃度が低下し且つ還元剤が存在するときは吸蔵して
いたNOxを還元する機能を有する。
また、NOx触媒6よりも上流の排気通路3には、該排気通路3を流通する排気の空燃
比を検出する上流側空燃比センサ8が取り付けられている。一方、NOx触媒6よりも下
流の排気通路3には、該排気通路3を流通する排気の空燃比を検出する下流側空燃比センサ9が取り付けられている。
さらに、NOx触媒6よりも上流の排気通路3には、該排気通路3を流通する排気中に
還元剤たる燃料(軽油)を噴射する燃料添加弁7を備えている。燃料添加弁7は、後述するECU10からの信号により開弁して排気中へ燃料を噴射する。なお、本実施例においては燃料添加弁7が、本発明におけるHC供給手段に相当する。
以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU10が併設されている。このECU10は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。
ECU10には、各種センサ等が電気配線を介して接続され、該センサ等の出力信号が入力されるようになっている。一方、ECU10には、燃料添加弁7が電気配線を介して接続され、該ECU10により燃料添加弁7が制御される。
そして本実施例では、NOx触媒6にとって最適な量のHCを供給するように燃料添加
弁7からの燃料添加量を決定する。ここで最適な量のHCとは、HCがNOx触媒6をす
り抜けることなく該NOx触媒6に吸蔵されているNOxまたはSOxの還元効率が最大と
なるHC量である。このHC量は、単位時間あたりの供給量またはリッチスパイク1回当たりの供給量の何れであってもよい。
以下、NOxの還元について説明するが、SOxについても同様に考えることができる。また、NOx触媒6をすり抜けないHC量の上限を「限界HC量」と称する。ここでNOx還元効率は、NOx触媒6における反応速度としても良い。そして、NOx還元効率及び限界HC量は、NOx触媒6の床温及びNOxの吸蔵量に応じて変化するため、これらの値に応じて最適HC量を決定する。例えば、NOx触媒6の床温と、NOx触媒6におけるNOx吸蔵量と、NOx還元効率が最大となるHC量または限界HC量と、の関係を予め実験等により求めてマップ化しておき、該マップにNOx触媒6の床温と、NOx吸蔵量とを代入してNOx還元効率が最大となるHC量または限界HC量を得る。
そして、NOx還元効率が最大となるHC量が限界HC量以下であれば、NOx還元効率が最大となるHC量が最適HC量となる。また、NOx還元効率が最大となるHC量が限
界HC量よりも多い場合には、限界HC量が最適HC量となる。なお、本実施例においては最適HC量を求めるECU10が、本発明におけるHC供給量算出手段に相当する。
また、NOx触媒6に実際に流入するHC量を上流側空燃比センサ8から得られる空燃
比(以下、上流側空燃比という。)及び下流側空燃比センサ9から得られる空燃比(以下、下流側空燃比という。)に基づいて算出する。そして、NOx触媒6に流入するHC量
が最適HC量となるように、燃料添加弁7からの燃料噴射量をフィードバック制御する。
ここで、図2は、燃料添加弁7からNOx触媒6へ燃料を添加したときの上流側空燃比
及び下流側空燃比の推移を示したタイムチャートである。実線は上流側空燃比、破線は下流側空燃比を夫々示している。
上流側空燃比センサ8及び下流側空燃比センサ9から得られる空燃比は、排気中にHCが多量に存在しているときにはリーンずれを起こす。ここで、NOx触媒6にてHCが酸
化されるため、該NOx触媒6よりも下流側では上流側と比較して排気中のHC量が少な
くなる。そのため、下流側空燃比のほうが上流側空燃比よりも低くなる。そして、上流側空燃比と下流側空燃比との差(以下、リーンずれ量という。)は、NOx触媒6に流入す
るHC量に応じて変わる。つまり、上流側空燃比と下流側空燃比との差に応じてNOx触
媒6に流入したHC量を検出することができる。ここで、上流側空燃比と下流側空燃比との差は、排気の量と排気の温度とに応じても変わるため、これらの値も考慮してHC量の検出を行う。なお、本実施例においてはリーンずれ量に基づいてHC量を求めるECU10が、本発明におけるHC流入量算出手段に相当する。
図3は、リーンずれ量とNOx触媒6に流入するHC量との関係を示した図である。こ
の関係は、予め実験等により求めておく。また、この関係は排気の量と排気の温度とに応じて複数求めておいても良い。図3中の破線は最適HC量を示している。
リーンずれ量から求まるHC量が最適HC量よりも多い場合には、多いほど燃料添加弁7からの燃料添加量を減少させる。同様に、リーンずれから求まるHC量が最適HC量よりも少ない場合には、少ないほど燃料添加弁7からの燃料添加量を増加させる。これにより、NOx触媒6に実際に流入したHC量に応じて燃料添加弁7からの燃料噴射量を補正
することができる。なお、本実施例においては燃料添加弁7からの燃料噴射量を補正するECU10が、本発明におけるHC供給量補正手段に相当する。
次に図4は、本実施例における燃料添加弁7からの燃料噴射量の補正制御のフローを示したフローチャートである。本ルーチンは所定の時間毎に繰り返し実行される。
ステップS101では、燃料添加弁7からNOx触媒6への燃料添加中であるか否か判
定される。本実施例では、燃料添加弁7から燃料を噴射された排気が上流側空燃比センサ8及び下流側空燃比センサ9を通過するときの排気の空燃比を夫々のセンサにて検出している。
ステップS101で肯定判定がなされた場合にはステップS102へ進み、一方否定判定がなされた場合には本ルーチンを一旦終了させる。
ステップS102では、最適HC量が算出される。上記したように、NOx触媒6をす
り抜けることなく燃料添加弁7から噴射された全ての燃料がNOxの還元に使用されるよ
うな燃料量の上限値が求められる。例えば、NOx触媒6の床温と、NOxの吸蔵量と、HC量との関係を予め実験等により求めてマップ化しておく。
ステップS103では、NOx触媒6に実際に流入するHC量が算出される。リーンず
れ量と、排気の量と、排気の温度と、NOx触媒6に流入するHC量と、の関係を予め実
験等により求めてマップ化しておき、該マップへリーンずれ量と、排気の量と、排気の温度と、を代入することにより、HC量が算出される。
ステップS104では、NOx触媒6に実際に流入するHC量が、最適HC量よりも少
ないか否か判定される。本ステップでは、ステップS103で算出されたHC量と、ステップS102で算出された最適HC量とが比較される。
ステップS104で肯定判定がなされた場合にはステップS105へ進み、一方否定判定がなされた場合にはステップS106へ進む。
ステップS105では、燃料添加弁7からの燃料添加量が減量される。このときの減量の度合いは、図3に基づいて決定される。
ステップS106では、燃料添加弁7からの燃料添加量が増量される。このときの増量の度合いは、図3に基づいて決定される。
このようにしてNOx触媒6に流入するHC量に基づいて燃料添加弁7からの燃料添加
量を最適化することが可能となる。
以上説明したように、本実施例によればNOx触媒6に実際に流入するHC量に基づい
て燃料添加弁7からの燃料噴射量を補正することができるため、NOx触媒6からHCが
流出することを抑制しつつNOx還元効率を高めることができる。
実施例に係る内燃機関の排気浄化装置を適用する内燃機関とその吸・排気系の概略構成を示す図である。 燃料添加弁からNOx触媒へ燃料を添加したときの上流側空燃比及び下流側空燃比の推移を示したタイムチャートである。 リーンずれ量とNOx触媒に流入するHC量との関係を示した図である。 実施例における燃料添加弁からの燃料噴射量の補正制御のフローを示したフローチャートである。
符号の説明
1 内燃機関
2 吸気通路
3 排気通路
4 エアフローメータ
6 吸蔵還元型NOx触媒
7 燃料添加弁
8 上流側空燃比センサ
9 下流側空燃比センサ
10 ECU

Claims (2)

  1. 排気中のNOxを吸蔵しHCの存在下でNOxを還元する吸蔵還元型NOx触媒と、
    前記吸蔵還元型NOx触媒よりも上流側からHCを供給するHC供給手段と、
    前記HC供給手段から供給するHC量を算出するHC供給量算出手段と、
    前記吸蔵還元型NOx触媒よりも上流側の排気の空燃比を検出する上流側空燃比センサ
    と、
    前記吸蔵還元型NOx触媒よりも下流側の排気の空燃比を検出する下流側空燃比センサ
    と、
    前記HC供給量算出手段により算出されるHC量を供給したときの前記上流側空燃比センサにより検出される空燃比と前記下流側空燃比センサにより検出される空燃比との差から前記吸蔵還元型NOx触媒に実際に流入したHC量を算出するHC流入量算出手段と、
    前記HC流入量算出手段により算出されたHC量に基づいて前記HC供給手段から供給するHC量を補正するHC供給量補正手段と、
    を具備することを特徴とする内燃機関の排気浄化装置。
  2. 前記HC供給量算出手段は、前記吸蔵還元型NOx触媒におけるNOx還元効率と、該吸蔵還元型NOx触媒をHCがすり抜けないHC量の上限値と、に基づいて前記HC供給手
    段から供給するHC量を算出することを特徴とする請求項1に記載の内燃機関の排気浄化装置。
JP2007043456A 2007-02-23 2007-02-23 内燃機関の排気浄化装置 Withdrawn JP2008208725A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007043456A JP2008208725A (ja) 2007-02-23 2007-02-23 内燃機関の排気浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007043456A JP2008208725A (ja) 2007-02-23 2007-02-23 内燃機関の排気浄化装置

Publications (1)

Publication Number Publication Date
JP2008208725A true JP2008208725A (ja) 2008-09-11

Family

ID=39785244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007043456A Withdrawn JP2008208725A (ja) 2007-02-23 2007-02-23 内燃機関の排気浄化装置

Country Status (1)

Country Link
JP (1) JP2008208725A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010018852A1 (ja) 2008-08-13 2010-02-18 旭硝子株式会社 塗料組成物および塗膜が形成された物品
JP2010144626A (ja) * 2008-12-18 2010-07-01 Mazda Motor Corp エンジンの排気浄化装置
JP2015108321A (ja) * 2013-12-04 2015-06-11 本田技研工業株式会社 内燃機関の排気浄化システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010018852A1 (ja) 2008-08-13 2010-02-18 旭硝子株式会社 塗料組成物および塗膜が形成された物品
JP2010144626A (ja) * 2008-12-18 2010-07-01 Mazda Motor Corp エンジンの排気浄化装置
JP2015108321A (ja) * 2013-12-04 2015-06-11 本田技研工業株式会社 内燃機関の排気浄化システム

Similar Documents

Publication Publication Date Title
US9528416B2 (en) Exhaust gas purification apparatus for internal combustion engine
JP4305643B2 (ja) 内燃機関の排気浄化装置
JP2007064167A (ja) 内燃機関の排気浄化装置および排気浄化方法
JP5907269B2 (ja) 内燃機関の排気浄化装置
JPH1047048A (ja) 内燃機関の排気浄化装置
JP6018543B2 (ja) 内燃機関における触媒の酸素吸蔵量推定方法、内燃機関の空燃比制御方法、触媒の酸素吸蔵量推定装置、内燃機関の空燃比制御装置及び自動二輪車
US10190457B2 (en) Exhaust gas purification apparatus for an internal combustion engine
JP2006083796A (ja) 内燃機関の空燃比制御装置
JP2009299557A (ja) 触媒の劣化判定装置
JP2007040130A (ja) 内燃機関の排気浄化装置
JP2008057365A (ja) 内燃機関の排気浄化装置
JP2008208725A (ja) 内燃機関の排気浄化装置
JP2016079856A (ja) 内燃機関の排気浄化装置の異常判定システム
JP4506279B2 (ja) 内燃機関の排気浄化装置
JP2010084670A (ja) 内燃機関の空燃比制御装置
JP2008069728A (ja) 内燃機関の排気浄化装置
JP4682829B2 (ja) 内燃機関の排気浄化装置
JP4609299B2 (ja) 内燃機関の排気浄化装置
JP2007032438A (ja) 内燃機関の空燃比制御装置
JP4645471B2 (ja) 硫黄被毒回復制御装置
JP4214923B2 (ja) 内燃機関の排気浄化装置
JP2005069187A (ja) 内燃機関の燃料噴射制御装置
JP2007224750A (ja) 硫黄被毒回復制御装置
JP4661626B2 (ja) 内燃機関の排気浄化装置
JP2008128012A (ja) 空燃比検出装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100511