JP2008207325A - 研磨パッド及び研磨パッドの製造方法 - Google Patents

研磨パッド及び研磨パッドの製造方法 Download PDF

Info

Publication number
JP2008207325A
JP2008207325A JP2008023330A JP2008023330A JP2008207325A JP 2008207325 A JP2008207325 A JP 2008207325A JP 2008023330 A JP2008023330 A JP 2008023330A JP 2008023330 A JP2008023330 A JP 2008023330A JP 2008207325 A JP2008207325 A JP 2008207325A
Authority
JP
Japan
Prior art keywords
polishing pad
fiber
elastic body
polishing
polymer elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008023330A
Other languages
English (en)
Other versions
JP5289787B2 (ja
Inventor
Kimio Nakayama
公男 中山
Nobuo Takaoka
信夫 高岡
Hirobumi Kikuchi
博文 菊池
Mitsuru Kato
充 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2008023330A priority Critical patent/JP5289787B2/ja
Publication of JP2008207325A publication Critical patent/JP2008207325A/ja
Application granted granted Critical
Publication of JP5289787B2 publication Critical patent/JP5289787B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

【課題】スクラッチの発生を抑制しながら、高い平坦性が得られる研磨を、研磨レートを長時間低下させずに行うことができる研磨パッドを提供することを目的とする。
【解決手段】平均断面積が0.01〜30μmの範囲である極細単繊維から構成される繊維束1から形成された繊維絡合体と、高分子弾性体2とを含有し、前記高分子弾性体の一部が前記繊維束の内部に存在して、前記極細単繊維を集束しており、空隙を除いた部分の体積割合が55〜95%の範囲であり、前記繊維絡合体と前記高分子弾性体との比率が、質量比で90/10〜55/45の範囲であり、前記高分子弾性体の吸水率が0.5〜8質量%の範囲であり、前記極細単繊維が、ガラス転移温度50℃以上で、且つ、吸水率が4質量%以下の熱可塑性樹脂から形成されている研磨パッドを用いる。
【選択図】図1

Description

本発明は研磨パッド、詳しくは、半導体ウエハ、半導体デバイス、シリコンウエハ、ハードディスク、ガラス基板、光学製品、または、各種金属等を研磨するための研磨パッドに関する。
近年、集積回路の高集積化及び多層配線化に伴い、集積回路が形成される半導体ウエハには、高精度の平坦性が求められている。
半導体ウエハを研磨するための研磨法としては、ケミカルメカニカル研磨(CMP)が知られている。CMPは、被研磨基材表面を、砥粒のスラリーを滴下しながら研磨パッドにより研磨する方法である。
下記特許文献1〜4は、CMPに用いられる研磨パッドとして、2液硬化型ポリウレタンを発泡成形することによって製造される、独立気泡構造を有する高分子発泡体からなる研磨パッドを開示する。このような研磨パッドは、後述する不織布タイプの研磨パッドに比べて剛性が高いことから、高精度の平坦性が要求される半導体ウエハの研磨などに好ましく用いられている。
独立気泡構造を有する高分子発泡体からなる研磨パッドは、例えば、2液硬化型ポリウレタンを注型発泡成形することにより製造される。このような研磨パッドは比較的高い剛性を有するために、研磨時に、被研磨基材の凸部に対して選択的に荷重が掛かりやすくなり、その結果、研磨レート(研磨速度)が比較的高くなる。しかしながら、凝集した砥粒が研磨面に存在する場合には、凝集した砥粒に対しても荷重が選択的に掛かるために、研磨面に傷(スクラッチ)が付きやすくなる。特に、非特許文献1に記載されているように、スクラッチが付き易い銅配線を有する基材や、界面の接着性が弱い低誘電率材料を研磨する場合には、傷や界面剥離が特に発生しやすくなる。また、注型発泡成形においては、高分子弾性体を均質に発泡させることが難しいために、被研磨基材の平坦性や、研磨時の研磨レートがばらつきやすい。さらに、独立孔を有する研磨パッドにおいては、独立孔に由来する空隙に砥粒や研磨屑が目詰まりすることにより、研磨が進行するにつれて、研磨レートが低下する。
一方、別のタイプの研磨パッドとして、特許文献5〜14は、ポリウレタン樹脂を不織布に含浸させ、湿式凝固させることにより得られる不織布タイプの研磨パッドを開示する。不織布タイプの研磨パッドは柔軟性に優れている。そのために、被研磨基材の研磨面に凝集した砥粒が存在する場合には、研磨パッドが変形することにより、凝集した砥粒に荷重が選択的に掛かることを抑制する。しかしながら、不織布タイプの研磨パッドは、柔軟であるために、研磨レートが低い。また、研磨パッドが被研磨基材の表面形状に追従して変形するために、高い平坦化性能(被研磨基材を平坦にする特性)が得られない。
このような不織布タイプの研磨パッドにおいて、近年、より高い平坦化性能を得ること等を目的とする、極細繊維の繊維束から形成される不織布を用いて得られる不織布タイプの研磨パッドが知られている(例えば、下記特許文献15〜18)。具体的には、例えば、特許文献15には、平均繊度が0.0001〜0.01dtexのポリエステル極細繊維の繊維束が絡合してなる不織布と、その不織布内部空間に存在するポリウレタンを主成分とした高分子弾性体とから構成されるシート状物からなる研磨パッドが記載されている。このような研磨パッドによれば、従来よりも高精度な研磨加工が実現されることが記載されている。
しかしながら、特許文献15〜18に記載されたような研磨パッドにおいては、繊度の小さい短繊維の極細繊維をニードルパンチ処理することにより得られる不織布を用いているために、見掛け密度が低く、空隙率も高かった。そのために、柔らかく剛性が低い研磨パッドしか得られず、そのために、表面形状に追従して変形するために、充分に高い平坦化性能が得られなかった。
特開2000−178374号公報 特開2000−248034号公報 特開2001−89548号公報 特開平11−322878号公報 特開2002−9026号公報 特開平11−99479号公報 特開2005−212055号公報 特開平3−234475号公報 特開平10−128674号公報 特開2004−311731号公報 特開平10−225864号公報 特表2005−518286号公報 特開2003−201676号公報 特開2005−334997号公報 特開2007−54910号公報 特開2003−170347号公報 特開2004−130395号公報 特開2002−172555号公報 柏木正弘ら、「CMPのサイエンス」、株式会社サイエンスフォーラム、1997年8月20日、p.113〜119
本発明は、スクラッチの発生を抑制しながら、高い平坦性が得られる研磨を、研磨レートを長時間低下させずに行うことができる研磨パッドを提供することを目的とする。
極細繊維は非常に柔らかいために、従来から知られた、極細繊維からなる不織布に高分子弾性体を含浸することにより得られる研磨パッドは、剛性が低かった。本発明者らは、繊維の曲げ弾性が繊維直径の4乗に比例することに着目した。そして、繊維束を構成する極細単繊維を集束させて一本の太い繊維のような状態で存在させることにより、高い剛性を有する研磨パッドが得られると考えた。このように、繊維束を構成する極細単繊維を集束させて一本の太い繊維のような状態で存在させることにより、高い剛性を有する研磨パッドが得られる。また、これにより研磨パッドの空隙率を低下させることができるために、さらに剛性が高い研磨パッドが得られる。さらに、研磨パッド中の繊維密度を高めることにより、得られる研磨パッドの剛性をさらに高めることができると考えた。また、親水性が高い高分子弾性体を用いて吸水率を高めることにより、砥粒スラリーの保持性を高めることができると考えた。一方、吸水率が低く、且つ、ガラス転移温度が高い極細単繊維を用いることにより、研磨の際に摩擦熱により昇温したときのような高温下の湿潤状態においても、機械的特性が変化しにくい研磨パッドが得られると考え、本発明に想到するに至った。
すなわち、本発明の研磨パッドは、平均断面積が0.01〜30μmの範囲である極細単繊維から構成される繊維束から形成された繊維絡合体と、高分子弾性体とを含有し、前記高分子弾性体の一部が前記繊維束の内部に存在して、前記極細単繊維を集束しており、空隙を除いた部分の体積割合(以下、研磨パッド充填率ともいう)が55〜95%の範囲であり、前記繊維絡合体と前記高分子弾性体との比率が、質量比で90/10〜55/45の範囲であり、前記高分子弾性体の吸水率が0.5〜8質量%の範囲であり、前記極細単繊維が、ガラス転移温度50℃以上で、且つ、吸水率が4質量%以下の熱可塑性樹脂から形成されていることを特徴とする。
本発明の研磨パッドは、高い繊維密度を有する極細単繊維からなる繊維束から形成された繊維絡合体を含有し、その繊維束内部においては、極細単繊維が高分子弾性体により集束されている。このように集束された極細単繊維からなる繊維束は、あたかも1本の太い繊維のような剛性を発現する。そして、研磨パッド充填率を55〜95%の範囲にすることにより、高い剛性を維持することができる。また、吸水率が0.5〜8質量%の範囲である高分子弾性体を用いることにより、砥粒スラリーの保持性を高めることができる。さらに、ガラス転移温度50℃以上で、吸水率が4質量%以下の熱可塑性樹脂からなる極細単繊維を用いることにより、研磨時の摩擦熱により昇温したときの高温下の湿潤状態においても、機械的特性が変化しにくい研磨パッドが得られる。また、研磨パッドの表面においては、集束された極細単繊維の繊維束がある程度の大きさの凹凸を形成するとともに、研磨の際に、繊維束が分繊またはフィブリル化することにより繊維密度の高い極細単繊維が形成されるために、被研磨基材との接触面積が大きくなるとともに、砥粒スラリーの保持性が高くなって、研磨レートが高まる。これらの結果、長時間使用しても研磨レートが低下せず(以下、この特性を研磨安定性ともいう)に、高い平坦化性能を有する研磨パッドが得られる。
また、本発明の研磨パッドにおいては、繊維束の平均断面積が80μm/束以上であることが、研磨パッドの剛性を充分に維持することができる点から好ましい。
また、研磨パッドの50℃における貯蔵弾性率[E’(50℃、dry)]が100〜800MPaの範囲である場合には、研磨の際に摩擦熱により研磨パッドの温度が高くなったときにおいても、充分な剛性が維持されるために、より高い平坦化性能を維持することができる点から好ましい。
また、前記高分子弾性体がカルボキシル基、スルホン酸基、及び、炭素数3以下のポリアルキレングリコール基からなる群から選ばれる少なくとも1種の親水性基を有する場合には、得られる研磨パッドの砥粒スラリーに対する濡れ性を高めることにより、砥粒スラリーの保持性をさらに高めることができる点から好ましい。
また、前記親水性基を有する高分子弾性体が架橋構造を有する場合には、濡れ性を維持しながら高分子弾性体が膨潤することを抑制することができる。親水性基を有する高分子弾性体は一般に水で膨潤しやく、吸水率が高くなりやすい傾向がある(例えば、10〜30質量%)。研磨の際に研磨パッドが膨潤した場合には、研磨レートが経時的に変化したり、平坦化性能が低下するおそれがある。高分子弾性体に架橋構造を形成することによりこのような膨潤を抑制することができる。
また、前記親水性基を有する高分子弾性体が架橋構造を有する場合において、150℃における貯蔵弾性率[E’(150℃、dry)]が0.1〜100MPaの範囲である場合には、架橋構造が充分に形成されている点から好ましい。
また、前記高分子弾性体としては、ポリウレタン系樹脂が、極細単繊維を集束したり、繊維束同士を結着したりするための接着性に優れている点から好ましい。
また、前記極細単繊維を形成するための熱可塑性樹脂が芳香族ポリエステル系樹脂、及び半芳香族ポリアミド系樹脂からなる群から選ばれる少なくとも1種の樹脂であることが、ガラス転移温度50℃以上で、且つ、吸水率が4質量%以下の熱可塑性樹脂が得られやすい点から好ましい。
また、前記極細単繊維がポリエステル系繊維を含有し、前記高分子弾性体がポリウレタン系樹脂を含有し、見かけ密度が0.7g/cm以上である場合には、より高い研磨レートと高い平坦化性能が得られる研磨が実現できる点から好ましい。
また、空隙を除いた部分の前記繊維絡合体の体積割合(以下、繊維絡合体充填率ともいう)が35%以上であることが、研磨パッド表面に空隙に起因する大きな凹凸が形成されにくくなるために、平坦化性能が低下することを抑制できる点から好ましい。
また、50℃の温水で飽和膨潤したときの50℃における貯蔵弾性率[E’(50℃、wet)]が100〜800MPaの範囲である場合には、研磨の際に、湿潤条件化において研磨パッドが摩擦熱により高温になった場合でも、変形しにくい点から好ましい。
また、50℃における貯蔵弾性率[E’(50℃、dry)]と50℃の温水で飽和膨潤したときの50℃における貯蔵弾性率[E’(50℃、wet)]との比[E’(50℃、dry)/E’(50℃、wet)]が、2.5以下である場合には、研磨時に吸水することによる、研磨パッドの変形を抑制することができる点から好ましい。
また、50℃の温水で飽和膨潤したときの23℃における貯蔵弾性率[E’(23℃、wet)]と50℃の温水で飽和膨潤したときの50℃における貯蔵弾性率[E’(50℃、wet)]との比[E’(23℃、wet)/E’(50℃、wet)]が2.5以下である場合には、研磨時における局部的な温度変化によっても研磨パッドが変形しにくくなるために、研磨レートが低下することや、平坦化性能が低下することを抑制することができる。
また、前記繊維束の平均繊維長が100mm以上である場合には、極細単繊維の密度を容易に高めることができる点、研磨パッドの剛性をさらに高めることができる点、及び、極細単繊維が抜けることによるスクラッチの発生を抑制できる点から好ましい。
また、研磨パッドが連通孔構造を有する場合には、多量の砥粒スラリーを保持でき、また、空隙に砥粒が目詰まりすることによる研磨レートの低下を抑制できる点から好ましい。
また、研磨パッドの少なくとも一表面に、600本/mm以上の繊維密度で前記極細単繊維が表出している場合には、表面に存在する高密度の極細単繊維により研磨パッド表面がソフトになるために、凝集した砥粒に選択的に荷重が掛かりにくくなり、スクラッチの発生がさらに抑制される。
また、研磨パッドが、テーバー摩耗試験(摩耗輪H−22、荷重500g、1000回)における、摩耗減量が10〜150mgである場合には、研磨時において表面がドレッシング処理により適度に更新されるために、表面の空隙に目詰まりが生じにくく、また、適度に寿命も維持することができる。
また、本発明の研磨パッドの製造方法は、水溶性熱可塑性樹脂5〜50質量%とガラス転移温度が50℃以上で吸水率が4質量%以下の非水溶性熱可塑性樹脂95〜50質量%とを溶融紡糸して得られる海島型複合繊維からなる長繊維ウェブを製造するウェブ製造工程と、前記長繊維ウェブを複数枚重ねて絡合させることによりウェブ絡合シートを形成するウェブ絡合工程と、前記ウェブ絡合シートを湿熱収縮させることにより、面積収縮率が35%以上になるように収縮させる湿熱収縮処理工程と、前記ウェブ絡合シート中の前記水溶性熱可塑性樹脂を熱水中で溶解することにより、極細単繊維からなる繊維絡合体を形成する繊維絡合体形成工程と、前記繊維絡合体に吸水率が0.5〜8質量%の範囲の高分子弾性体を形成するための高分子弾性体の水性液を含浸及び乾燥凝固させる高分子弾性体充填工程とを備えることを特徴とする。このような製造方法によれば、極細単繊維の繊維密度が高く、形成される繊維束同士および該繊維束を構成する極細単繊維同士が高分子弾性体により強固に集束された剛性が高い研磨パッドが得られる。また、研磨パッドの吸水率に相関する空隙の調整が容易である。また、長繊維を含有するウェブ絡合シートを湿熱収縮させる工程を経ることにより、短繊維を含有するウェブ絡合シートを湿熱収縮させる場合に比べて、ウェブ絡合シートを大きく収縮させることができ、そのために、極細単繊維の繊維密度が緻密になる。
前記湿熱収縮処理工程と繊維絡合体形成工程との間に、湿熱収縮されたウェブ絡合シートに高分子弾性体の水性液を含浸及び乾燥凝固させることにより繊維束を結着させる繊維束結着工程をさらに備えることが好ましい。このような工程を設けることにより、より空隙の少ない研磨パッドが得られる。
前記水溶性熱可塑性樹脂はポリビニルアルコール系樹脂であることが好ましい。水溶性熱可塑性樹脂がポリビニルアルコール系樹脂である場合には、海島型複合繊維からポリビニルアルコール系樹脂を溶解するときに、形成される極細単繊維が大きく捲縮する。これにより、繊維密度が緻密になるために、繊維密度の高い繊維絡合体が得られる。
また、前記ウェブ製造工程がスパンボンド法により前記長繊維ウェブを製造する工程であることが、製造が容易である点から好ましい。
また、前記高分子弾性体の水性液がポリウレタン系樹脂の水性懸濁液であることが、高分子弾性体の高濃度の含浸が可能であるために、研磨パッドの空隙率を下げやすい点から好ましい。
本発明によれば、スクラッチの発生を抑制しながら、高い平坦性が得られる研磨を、長時間行うことができる研磨パッドが得られる。
[研磨パッドの構成]
本実施形態の研磨パッドを添付する図面を参照しながら説明する。図1は、本実施形態の研磨パッド10の模式図を示す。図2は研磨パッド10の厚み方向断面の部分拡大模式図、図3は繊維束の断面模式図である。
図1、図2、及び図3中、1は極細単繊維から形成された繊維束、2は高分子弾性体、3は極細単繊維、4は空隙であり、4aは空隙4から形成される連通孔である。また、5は極細単繊維3からなる繊維束1により形成された繊維絡合体である。
繊維束1は0.01〜30μmの範囲の平均断面積を有する一群の極細単繊維3から形成されている。また、図3に示すように、極細単繊維3は繊維束1の内部空間に存在する高分子弾性体2により集束されている。また、複数の繊維束1同士は、高分子弾性体2により結着されていることが好ましい。そして、繊維絡合体5は、繊維束1が絡合するように形成されている。また、繊維束1は、断面積が40μm以上になるような繊維束を含有することが好ましい。そして、任意の厚み方向断面において観察される繊維束1の束密度は600束/mm以上であることが好ましい。また、研磨パッド10は、空隙を除いた部分の体積割合が55〜95%の範囲になる範囲、すなわち、空隙率が5〜45%になる範囲で空隙4が存在している。空隙4の一部は、研磨パッド10の内部を連通するような連通孔4aを形成していることが好ましい。
本実施形態の研磨パッドは、極細単繊維の繊維束からなる繊維絡合体を含有し、また、高い繊維密度と低い空隙率を備えている。さらに、繊維束を構成する極細単繊維は、集束されており、繊維束同士も結着されている。このような構成によれば、繊維束による補強効果と、高い研磨パッド充填率(すなわち低い空隙率)による補強効果により、研磨時に高い剛性を維持しうる研磨パッドが得られる。また、繊維密度が高いために、研磨の際に研磨パッドの表面に存在する繊維束が分繊またはフィブリル化することにより高い繊維密度の極細単繊維が形成される。この極細単繊維により被研磨基材との接触面積が高くなり、また、多量の砥粒スラリーを保持することができる。さらに、研磨の際に露出する極細単繊維により、研磨パッドの表面がソフトになるために、砥粒の凝集物が存在した場合に、該凝集物に選択的に荷重が掛かることを抑制することができ、それにより、被研磨基材にスクラッチが発生しにくくなる。
極細単繊維は、その平均断面積が0.01〜30μmの範囲であり、好ましくは、0.1〜20μmの範囲である。前記極細単繊維の平均断面積が0.01μm未満の場合には、研磨パッドの表面近傍の極細単繊維が充分に分繊せず、その結果、砥粒スラリーの保持力が低下する。一方、前記極細単繊維の平均断面積が30μmを超える場合には、研磨パッドの表面が粗くなりすぎて研磨レートが低下し、また、繊維表面に凝集した砥粒がスクラッチを発生させやすくする。
本実施形態における繊維束は極細単繊維から形成されており、繊維束を構成する極細単繊維は高分子弾性体により集束されている。
繊維束の平均長さは、特に限定されないが、100mm以上、さらには、200mm以上であることが、極細単繊維の密度を容易に高めることができる点、研磨パッドの剛性を容易に高めることができる点、及び、繊維の抜けを抑制できる点から好ましい。前記繊維束の長さが短すぎる場合には、極細単繊維の高密度化が困難で、また、充分に高い剛性が得られず、さらに、研磨中に極細単繊維が抜けやすくなる傾向がある。上限は、特に限定されず、例えば、後述するスパンボンド法により製造された不織布に由来する繊維絡合体を含有する場合には、物理的に切れていない限り、数m、数百m、数kmあるいはそれ以上の繊維長の繊維束が含まれてもよい。
厚み方向断面に存在する40μm以上の断面積を有する繊維束の割合としては、断面積当たりの繊維束の合計束数に対して25%以上であることが好ましい。また、特に高い平坦性が要求されるシリコンウエハ用、半導体ウエハ用、半導体デバイス用の研磨パッドにおいては、40%以上、さらには、50%以上であること、とくには、100%であることが好ましい。前記40μm以上である繊維束の割合が低すぎる場合には、研磨レートが低下したり、平坦化性能が充分に高い研磨パッドが得られにくくなる傾向がある。
また、厚み方向断面に存在する繊維束の平均断面積としては80μm以上、さらには、100μm以上、とくには、120μm以上、であることが充分に剛性の高い研磨パッドが得られる点から好ましい。前記平均断面積が低すぎる場合には、高い剛性が充分に維持できなくなく傾向がある。
また、繊維束の平均断面積としては80μm以上、さらには、100μm以上、とくには、120μm以上、であることが充分に剛性の高い研磨パッドが得られる点から好ましい。前記平均断面積が小さすぎる場合には、高い剛性が充分に維持できなくなく傾向がある。
本実施形態の研磨パッドにおいては、その厚み方向断面の単位面積当たり、繊維束が600束/mm以上存在することが好ましい。このように繊維束が高密度で存在することにより、研磨の際に研磨パッドの表面に表出した繊維束が分繊またはフィブリル化することにより極細単繊維を形成し、これにより、砥粒スラリーの保持性が高くなるとともに、表面がソフトになって、スクラッチの発生が抑制される。
繊維束の束密度としては、その厚み方向断面に存在する、単位面積当たりの繊維束数が600束/mm以上、さらには1000束/mm以上であることが好ましく、4000束/mm以下、さらには、3000束/mm以下であることが好ましい。前記繊維束の密度が低すぎる場合には、研磨パッド表面に形成される極細単繊維の繊維密度が低くなって、研磨レートが低下したり、平坦化性能が低下する傾向がある。また繊維束の密度が高すぎる場合には、研磨パッド表面が緻密になりすぎて砥粒保持性が不充分になり、研磨レートが低下する傾向がある。なお、本実施形態の研磨パッドにおいては、厚み方向及び面方向において繊維束の繊維密度の斑が少ないことが、研磨安定性の点から好ましい。
本実施形態における繊維絡合体は、一般的な不織布よりも高密度である。具体的には、繊維絡合体の空隙を除いた部分の体積割合(繊維絡合体充填率)が、35%以上、さらには50%以上、であって、90%以下、さらには80%以下であることが好ましい。前記繊維絡合体充填率が低すぎる場合には、繊維絡合体の表面形状が粗くなりすぎて、得られる研磨パッドの表面が粗くなりすぎて平坦化性能が低下する傾向があり、また、研磨パッド表面の繊維密度が低くなる傾向がある。一方、前記繊維絡合体充填率が高すぎる場合には、繊維絡合体が緻密になり過ぎて、繊維束内部に高分子弾性体を充分に含浸させにくくなる。その結果、極細単繊維が充分に集束されなくなって、繊維が抜けて研磨の安定性が低下したり、脱落した繊維に砥粒が凝集したりする傾向がある。
本実施形態の研磨パッドを構成する極細単繊維は、ガラス転移温度(T)が50℃以上、好ましくは60℃以上で、且つ、吸水率が4質量%以下、好ましくは2質量%以下の熱可塑性樹脂から形成されている。前記熱可塑性樹脂のガラス転移温度が50℃未満の場合には、剛性が不足するために平坦化性能が低下し、また、研磨の際には、経時的に剛性が低下することにより、研磨安定性や研磨均一性が低下する。ガラス転移温度の上限は特に限定されないが、工業的な製造上、300℃以下、さらには、150℃以下であることが好ましい。なお、研磨過程では吸水状態となることから、ガラス転移温度は50℃の温水に処理した後、濡れたままの状態で測定したガラス転移温度が50℃以上であることが、更に好ましい。
また、前記熱可塑性樹脂の吸水率が4質量%を越える場合には、研磨の際に極細単繊維が砥粒スラリー中の水分を徐々に吸収することにより剛性が経時的に低下する。このような場合には、平坦化性能が経時的に低下したり、研磨レートや研磨均一性が変動したりしやすい。吸水率は0〜2質量%であることが好ましい。
このような熱可塑性樹脂の具体例としては、例えば、ポリエチレンテレフタレート(PET、T77℃、吸水率1質量%)、イソフタル酸変性ポリエチレンテレフタレート(T67〜77℃、吸水率1質量%)、スルホイソフタル酸変性ポリエチレンテレフタレート(T67〜77℃、吸水率1〜4質量%)、ポリブチレンナフタレート(T85℃、吸水率1質量%)、ポリエチレンナフタレート(T124℃、吸水率1質量%)等から形成される芳香族ポリエステル系繊維;テレフタル酸とノナンジオールとメチルオクタンジオール共重合ナイロン(T125〜140℃、吸水率1〜4質量%)等から形成される半芳香族ポリアミド系樹脂等が挙げられる。これらはそれぞれ単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中では、ポリエチレンテレフタレート(PET)、イソフタル酸変性ポリエチレンテレフタレート、ポリブチレンナフタレート、ポリエチレンナフタレートが、研磨パッドの剛性、耐水性、及び耐磨耗性を充分に維持しうる点からも好ましい。特に、PETおよびイソフタル酸変性PET等の変性PETは、後述する海島型複合繊維からなるウェブ絡合シートから極細単繊維を形成する湿熱処理工程において大幅に捲縮するために、緻密で高密度の繊維絡合体を形成することができること、研磨シートの剛性を高めやすいこと、及び、研磨の際に水分による経時変化を発生しにくいこと、等の点から好ましい。
また、本発明の効果を損なわない範囲で、必要に応じて、その他の熱可塑性樹脂からなる極細単繊維を含有してもよい。このような熱可塑性樹脂としては、ポリ乳酸、ポリブチ
レンテレフタレート、ポリヘキサメチレンテレフタレート、ポリエチレンサクシネート、
ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリヒドロキシブチ
レート−ポリヒドロキシバリレート共重合体等の芳香族ポリエステルや脂肪族ポリエステ
ルおよびその共重合体;ナイロン6、ナイロン66、ナイロン10、ナイロン11、ナイ
ロン12などの脂肪族ナイロンおよびその共重合体、ポリエチレン、ポリプロピレンなど
のポリオレフィン類;エチレン単位を25〜70モル%含有する変性ポリビニルアルコー
ル;ポリウレタン系エラストマー、ナイロン系エラストマー、ポリエステル系エラストマー等のエラストマーなどを併用してもよい。
本実施形態の研磨パッドは、前記繊維絡合体に吸水率が0.5〜8質量%、好ましくは、1〜6質量%の高分子弾性体が充填されて複合化された構造を有する。
前記高分子弾性体の吸水率が0.5質量%未満の場合には、研磨の際に研磨パッドに対する砥粒スラリーの濡れ性が低下する。これにより、研磨レートが低下したり、研磨均一性や研磨安定性が低下したり、砥粒が凝集しやすくなってスクラッチが発生しやすくなる。一方、前記高分子弾性体の吸水率が8質量%を超える場合には、研磨の際に研磨パッドの剛性が経時的に低下することにより平坦化性能が低下し、また、研磨レートや研磨均一性が変動しやすくなる。なお、高分子弾性体の吸水率とは、乾燥処理した高分子弾性体フィルムを室温の水に浸漬して飽和膨潤させたときの吸水率である。また、2種以上の高分子弾性体を含有する場合には各高分子弾性体の吸水率に質量分率を乗じた値の和としても理論上算出される。
このような吸水率を有する高分子弾性体は、高分子弾性体を構成する高分子の架橋度を調整したり、親水性の官能基を導入したりすること等により得ることができる。
本実施形態において用いられる高分子弾性体の具体例としては、例えば、ポリウレタン系樹脂、ポリアミド系樹脂、(メタ)アクリル酸エステル系樹脂、(メタ)アクリル酸エステル−スチレン系樹脂、(メタ)アクリル酸エステル−アクリロニトリル系樹脂、(メタ)アクリル酸エステル−オレフィン系樹脂、(メタ)アクリル酸系エステル−(水添)イソプレン系樹脂、(メタ)アクリル酸エステル−ブタジエン系樹脂、スチレン−ブタジエン系樹脂、スチレン−水添イソプレン系樹脂、アクリロニトリル−ブタジエン系樹脂、アクリロニトリル−ブタジエン−スチレン系樹脂、酢酸ビニル系樹脂、(メタ)アクリル酸エステル−酢酸ビニル系樹脂、エチレン−酢酸ビニル系樹脂、エチレン−オレフィン系樹脂、シリコーン系樹脂、フッ素系樹脂、及び、ポリエステル系樹脂等が挙げられる。
本実施形態の高分子弾性体においては、カルボキシル基、スルホン酸基、及び、炭素数3以下のポリアルキレングリコール基からなる群から選ばれる少なくとも1種の親水性基を有することが、吸水率や親水性を調整することにより、研磨の際における、研磨パッドの砥粒スラリーに対する濡れ性を向上させることができる点から好ましい。このように濡れ性を向上させることにより、研磨レート、研磨均一性、及び研磨安定性が向上する。
このような親水性基は高分子弾性体を製造する際のモノマー成分として、親水性基を有する成分を共重合することにより、高分子弾性体に導入することができる。このような親水性基を有するモノマー成分の共重合割合としては、0.1〜20質量%、更には、0.5〜10質量%であることが、吸水による膨潤軟化を最小限に抑えつつ、吸水率や濡れ性を高めることができる点から好ましい。
前記高分子弾性体は、それぞれ単独で用いても2種以上を組み合わせて用いてもよい。これらの中では、ポリウレタン系樹脂が、極細単繊維を集束したり、繊維束同士を結着したりするための接着性に優れており、研磨パッドの硬度を高め、研磨での経時的安定性に優れている点から好ましい。また、とくに、カルボキシル基、スルホン酸基、及び、炭素数3以下のポリアルキレングリコール基からなる群から選ばれる少なくとも1種の親水性基を有するポリウレタン系樹脂が、研磨パッドの剛性、濡れ性、及び研磨の際の経時的安定性が高い点から好ましい。
前記高分子弾性体としては、150℃における貯蔵弾性率[E’(150℃、dry)]が0.1〜100MPa、さらには、1〜80MPaであることが好ましい。このような弾性率は、高分子弾性体に架橋構造を形成させることにより得ることができる。一般に、高分子弾性体が親水性基を有する場合には、水で膨潤しやすく吸水率が高くなる傾向がある。このような場合には、架橋構造の度合いを調整することにより、吸水率を制御することができる。なお、2種以上の高分子弾性体を含有する場合には各高分子弾性体の[E’(150℃、dry)]に質量分率を乗じた値の和としても理論上算出される。
本実施形態の研磨パッドは、従来から知られた、一般的な不織布タイプの研磨パッドに比べて、空隙を除いた部分の体積割合(研磨パッド充填率)が高い、すなわち、空隙率が低い。
具体的には、研磨パッド充填率が、55%以上、好ましくは60%以上であって、95%以下、好ましくは90%以下である。前記研磨パッド充填率が55%未満の場合には、表面の粗さが粗くなりすぎて研磨レートが低下し、また、平坦化性能が低下する。また、研磨中に硬度が変化して研磨安定性が低下する。一方、研磨パッド充填率が95%を超える場合には、砥粒スラリーを充分に保持できなくなって、研磨レートが低下する。また、研磨パッドの剛性が高くなりすぎることにより、被研磨基材の表面の反りやうねりに追従しにくくなり、その結果、スクラッチの発生が多くなったり、被研磨基材の全表面に対する平坦性(グローバル平坦性)が低下したりする。なお、前記研磨パッド充填率は、研磨パッドの見掛け密度を求め、また、研磨パッドの各構成材料の構成比およびそれぞれの密度から空隙率が0%のときの密度(理論密度)を算出し、「研磨パッドの見掛け密度/理論密度×100(%)」の式により算出することができる。
本実施形態の研磨パッドにおいては、繊維束を形成する極細単繊維は、高分子弾性体により集束されている。このように、極細単繊維が集束されていることにより、研磨パッドの剛性が高くなる。極細単繊維が集束されていない場合には、極細単繊維が柔軟性を帯びるために、高い平坦化性能が得られない。また、繊維の抜けが多くなり、抜けた繊維に砥粒が凝集してスクラッチが発生しやすくなる。ここで、極細単繊維が集束されているとは、繊維束内部に存在する極細単繊維の大部分が、繊維束内部に存在する高分子弾性体により接着され拘束されている状態を意味する。
また、複数の繊維束同士は、繊維束の外側に存在する高分子弾性体により結着されて、塊(バルク)状に存在していることが好ましい。このように、繊維束同士が結着されることにより、研磨パッドの形態安定性が向上して、研磨安定性が向上する。
極細単繊維の集束状態、及び、繊維束同士の結着状態は研磨パッドの断面の電子顕微鏡写真により確認することができる。
極細単繊維を集束している高分子弾性体、及び、繊維束同士を結着している高分子弾性体は非多孔質状であることが好ましい。なお、非多孔質状とは、多孔質状、または、スポンジ状(以下、単に、多孔質状とも言う)の高分子弾性体が有するような空隙(独立気泡)を実質的に有さない状態を意味する。具体的には、例えば、溶剤系ポリウレタンを凝固させて得られるような、微細な気泡を多数有する高分子弾性体ではないことを意味する。集束または結着している高分子弾性体が非多孔質状である場合には、研磨安定性が高くなり、また、摩耗しにくく、また、研磨時のスラリー屑やパッド屑が空隙に堆積しにくくなるために、高い研磨レートを長時間維持することができる。更に、極細単繊維に対する接着強度が高くなるために、繊維の抜けに起因するスクラッチの発生を抑制することができる。さらに、より高い剛性が得られるために、平坦化性能に優れた研磨パッドが得られる。
本実施形態の研磨パッド中の繊維絡合体と高分子弾性体との比率は、質量比で、90/10〜55/45であり、好ましくは、85/15〜65/35の範囲である。繊維絡合体と高分子弾性体との質量比率が上記範囲である場合には、研磨パッドの剛性を高めやすく、また、研磨パッド表面に表出する極細単繊維の密度を充分に高めることができる。その結果、研磨安定性、研磨レート、及び、平坦化性能をより高めることができる。前記比率が90/10を超える場合には繊維束の断面積を大きくすることが困難になり、55/45未満の場合には繊維密度が不充分になる。
本実施形態の研磨パッドは、50℃における貯蔵弾性率[E’(50℃、dry)]が100〜800MPa、さらには、200〜600MPaの範囲であることが好ましい。CMPによる研磨においては、研磨が進行するにつれて摩擦熱により研磨パッドの温度が50℃程度にまで高くなる傾向がある。従って、研磨パッドが50℃のときの貯蔵弾性率が低すぎる場合には、研磨が進行するにつれて研磨パッドの剛性が低下してしまう。その結果、研磨レートや、被研磨基材の平坦性が低下する傾向がある。また、研磨パッドの貯蔵弾性率が高すぎる場合には、研磨の際の剛性が高すぎてスクラッチが発生しやすくなる傾向がある。
また、本実施形態の研磨パッドは、50℃の温水で飽和膨潤したときの吸水率が5〜45質量%、さらには10〜30質量%であることが好ましい。前記吸水率が低すぎる場合には、砥粒スラリーの保持性が低下して、研磨レートが低下し、平坦化性能が低下する。また、前記吸水率が高すぎる場合にも、高い研磨レートが得られず、さらに、研磨中に硬度等の特性が変化しやすくなるために、研磨レートが経時的に低下する。
また、本実施形態の研磨パッドは連通孔を有することが、吸水率を調整することが容易である点から好ましい。独立気泡構造のみでは研磨パッドに水が吸水されにくいため、5〜45質量%の吸水率にすることは困難である。ここで、連通孔とは、研磨パッドの表面と裏面とを貫通する孔を意味する。
なお、連通孔構造における吸水率は研磨パッドの空隙に相関することから、研磨パッド中の空隙の割合を調整することによっても、吸水率を調整することができる。連通孔の存在は、研磨パッドの表面に滴下した水が、研磨パッドの連通孔を通じて、研磨パッドの裏面に表出することにより確認できる。
また、本実施形態の研磨パッドは、50℃の温水で飽和膨潤したときの50℃における貯蔵弾性率[E’(50℃、wet)]が100〜800MPa、さらには200〜600MPaの範囲であることが好ましい。CMPによる研磨においては、研磨が進行するにつれて摩擦熱により研磨パッドの温度が50℃程度にまで高くなる。また、研磨は砥粒スラリーの存在下、湿潤状態で行われる。研磨パッドが50℃の温水で飽和膨潤したときの貯蔵弾性率が100MPa未満の場合には、研磨が進行するにつれて研磨パッドの剛性が低下する。その結果、研磨レートや、平坦化性能が低下する傾向がある。また、前記研磨パッドの貯蔵弾性率が800MPaを超える場合には、研磨の際の剛性が高すぎてスクラッチが発生しやすくなる。
さらに、本実施形態の研磨パッドは、50℃の温水で飽和膨潤させたときの50℃における損失弾性率[E’’(50℃、wet)]が13〜130MPa、さらには、30〜100MPaの範囲であることが好ましい。前記損失弾性率[E’’(50℃、wet)]が低すぎる場合には、研磨パッドが研磨中に塑性変形(永久変形)することにより形状が変化して、研磨レートが経時的に低下する傾向がある。一方、前記損失弾性率[E’’(50℃、wet)]が高すぎる場合には、塑性変形しにくいために研磨パッドの柔軟性(クッション性)が低下して被研磨基材との密着性が低下することにより、平坦化性能が低下する傾向がある。
さらに、本実施形態の研磨パッドは、50℃における貯蔵弾性率[E’(50℃、dry)]と50℃の温水で飽和膨潤したときの50℃における貯蔵弾性率[E’(50℃、wet)]との比[E’(50℃、dry)/E’(50℃、wet)]が、2.5以下、さらには1.8以下であって、0.5以上であることが好ましい。前記[E’(50℃、dry)/E’(50℃、wet)]が2.5を超える場合には、研磨の際に研磨パッドが砥粒スラリーを徐々に吸水することにより、剛性が低下していく傾向があり、そのために、研磨レートや研磨均一性が変動することにより、研磨安定性が低下しやすい傾向がある。
さらに、本実施形態の研磨パッドは、50℃の温水で飽和膨潤したときの23℃における貯蔵弾性率[E’(23℃、wet)]と50℃の温水で飽和膨潤したときの50℃における貯蔵弾性率[E’(50℃、wet)]との比[E’(23℃、wet)/E’(50℃、wet)]が2.5以下、さらには1.8以下であって、0.5以上であることが好ましい。研磨の際に研磨パッドの表面は、局部的、又は全体的に23〜50℃程度にまで変化する。このような場合において、前記[E’(23℃、wet)/E’(50℃、wet)]が2.5を超える場合には、研磨の際に局部的な温度の上昇により、研磨パッドの剛性が部分的に低下する傾向がある。これにより、研磨レートや研磨均一性が変動したり、研磨安定性が低下する傾向がある。
例えば、ポリウレタン弾性体は、貯蔵弾性率の温度依存性が大きく、また、吸水することによりその温度依存性は変化するが、一般的に、ポリウレタン弾性体の[E’(23℃、wet)/E’(50℃、wet)]は大きい(例えば、2.5〜20程度)。本実施形態の研磨パッドにおいては、ガラス転移温度が50℃以上で吸水率が4質量%以下のような熱可塑性樹脂からなる極細単繊維を高充填することにより、研磨パッドの[E’(23℃、wet)/E’(50℃、wet)]を低くすることができる。
本実施形態の研磨パッドの見掛け密度は、0.7〜1.2g/cm、さらには、0.8〜1.2g/cmの範囲であることが、剛性に優れている点から好ましい。
また、本実施形態の研磨パッドの23℃におけるJIS−D硬度[D(23℃、dry)]は、45〜75、さらには50〜70程度であることが好ましい。前記D硬度が高すぎる場合にはスクラッチが発生しやすくなり、低すぎる場合には平坦化性能が低下する傾向がある。なお、本実施形態の研磨パッドは、表面に極細単繊維が高い繊維密度で形成されるために、極細単繊維を含有しない研磨パッドに比べて表面がソフトである。そのために、D硬度を高めてもスクラッチが発生しにくい。
さらに、本実施形態の研磨パッドは、50℃の温水で飽和膨潤させたときの23℃におけるJIS−D硬度[D(23℃、wet)]が50〜70であることが好ましい。なお、[D(23℃、wet)]が50〜70は、[E’(50℃、wet)]が130〜800MPa程度の研磨パッドにより得られる。
また、50℃の温水で飽和膨潤させたときの23℃における研磨パッドのD硬度[D(23℃、wet)]と23℃における研磨パッドのD硬度[D(23℃、dry)]の比率([D(23℃、wet)]/[D(23℃、dry)]は、0.9〜1.1程度であることが好ましい。前記比率が0.9以上の研磨パッドは、[E’(50℃、dry)]/[E’(50℃、wet)]が2.5以下程度の研磨パッドにより得られる。
なお、50℃の温水で飽和膨潤させたときの23℃における研磨パッドのD硬度[D(23℃、wet)]が47〜70である場合には、50℃の温水で飽和膨潤させた時のC硬度[C(23℃、wet)]が90〜99、50℃の温水で飽和膨潤させた時のA硬度[A(23℃、wet)]では91〜99程度にほぼ対応する。
また、本実施形態の研磨パッドは、テーバー摩耗(摩耗輪H−22、荷重500g、1000回)での摩耗減量が10〜150mg、さらには、20〜100mgであることが好ましい。摩擦減量が小さすぎる場合には、研磨中のドレッシング処理等において表面構造が自己更新されにくく、目詰まりが起こりやすくなって、研磨レートが低下したり、研磨パッド寿命が短くなりやすい。一方、摩耗減量が大きすぎる場合には、繊維の抜けやすくなり、そのために、研磨安定性が低下したり、脱落した繊維によりスクラッチが発生しやすくなる。また、研磨パッドの寿命も短くなる。本実施形態の研磨パッドは、摩耗しにくい集束された高い繊維密度の極細単繊維の繊維束からなる繊維絡合体と、高分子弾性体との比率、及び高分子弾性体の吸水率を調整することにより摩耗減量を適宜調整することができる。なお、研磨過程では吸水状態となることから、テーバー摩耗での摩耗減量はガラス転移温度は50℃の温水に処理した後、濡れたままの状態で測定したテーバー摩耗での摩耗減量が10〜150mgであることが、更に好ましい。
本実施形態の研磨パッドは、バフィング等によるパッド平坦化処理や、ダイヤモンド等のパッドドレッシングを用いた研磨前のシーズニング処理(コンディショニング処理)や、研磨時のドレッシィング処理を施すことにより、表面近傍に存在する繊維束を分繊、又はフィブリル化することにより極細単繊維を形成させていることが好ましい。フィブリル化された極細単繊維の繊維密度としては、600本/mm以上、さらには、1000本/mm以上、特には、2000本/mm以上であることが好ましい。前記繊維密度が小さすぎる場合には、砥粒の保持性が不充分になる傾向がある。前記繊維密度の上限は特に限定されないが、生産性の点から、1000000本/mm程度である。また、研磨パッド表面の極細単繊維は立毛されていても、立毛されていなくても良い。極細単繊維が立毛されている場合には、研磨パッドの表面がよりソフトになるためにスクラッチの低減効果がより高くなる。一方、極細単繊維の立毛の程度が低い場合には、ミクロ平坦性を重視する用途に有利となる。このように用途に応じて表面状態を適宜選択することが好ましい。
[研磨パッドの製造方法]
次に、本実施形態の研磨パッドの製造方法の一例について詳しく説明する。
本実施形態の研磨パッドは、例えば、水溶性熱可塑性樹脂5〜50質量%とガラス転移温度が50℃以上で吸水率が4質量%以下の非水溶性熱可塑性樹脂95〜50質量%とを溶融紡糸して得られる海島型複合繊維からなる長繊維ウェブを製造するウェブ製造工程と、前記長繊維ウェブを複数枚重ねて絡合させることによりウェブ絡合シートを形成するウェブ絡合工程と、前記ウェブ絡合シートを湿熱収縮させることにより、面積収縮率が35%以上になるように収縮させる湿熱収縮処理工程と、前記ウェブ絡合シート中の前記水溶性熱可塑性樹脂を熱水中で溶解することにより、極細単繊維からなる繊維絡合体を形成する繊維絡合体形成工程と、前記繊維絡合体に吸水率が0.5〜8質量%の範囲の高分子弾性体を形成するための高分子弾性体の水性液を含浸及び乾燥凝固させる高分子弾性体充填工程、とを備えるような研磨パッドの製造方法により得ることができる。
前記製造方法においては、長繊維を含有するウェブ絡合シートを湿熱収縮させる工程を経ることにより、短繊維を含有するウェブ絡合シートを湿熱収縮させる場合に比べて、ウェブ絡合シートを大きく収縮させることができ、そのために、極細単繊維の繊維密度が緻密になる。そして、ウェブ絡合シートの水溶性熱可塑性樹脂を溶解抽出することにより、繊維束からなる繊維絡合体が形成される。このとき、水溶性熱可塑性樹脂が溶解抽出された部分に空隙が形成される。そして、この空隙に高分子弾性体の水性液を含浸及び乾燥凝固させることにより、繊維束を構成する極細単繊維が集束されるとともに、繊維束同士も集束される。このようにして、繊維密度が高く、空隙率が低く、極細単繊維が収束された剛性が高い研磨パッドが得られる。
以下に各工程について、詳しく説明する。
(1)ウェブ製造工程
本工程においては、はじめに、水溶性熱可塑性樹脂5〜50質量%とガラス転移温度が50℃以上で吸水率が4質量%以下の非水溶性熱可塑性樹脂95〜50質量%とを溶融紡糸して得られる海島型複合繊維からなる長繊維ウェブを製造する。
前記海島型複合繊維は、水溶性熱可塑性樹脂と、前記水溶性熱可塑性樹脂と相溶性が低いガラス転移温度が50℃以上で吸水率が4質量%以下の非水溶性熱可塑性樹脂とをそれぞれ溶融紡糸した後、複合化させることにより得られる。そして、このような海島型複合繊維から水溶性熱可塑性樹脂を溶解除去または分解除去することにより、極細単繊維が形成される。海島型複合繊維の太さは、工業性の観点から、0.5〜3デシテックスであることが好ましい。
なお、本実施形態においては、極細単繊維を形成するための複合繊維として海島型複合繊維について詳しく説明するが、海島型繊維の代わりに多層積層型断面繊維等の公知の極細繊維発生型繊維を用いてもよい。
前記水溶性熱可塑性樹脂としては、水、アルカリ性水溶液、酸性水溶液等により、溶解除去または分解除去できる熱可塑性樹脂であって、溶融紡糸が可能な樹脂が好ましく用いられる。このような、水溶性熱可塑性樹脂の具体例としては、例えば、ポリビニルアルコール、ポリビニルアルコール共重合体等のポリビニルアルコール系樹脂(PVA系樹脂);ポリエチレングリコール及び/又はスルホン酸アルカリ金属塩を共重合成分として含有する変性ポリエステル;ポリエチレンオキシド等が挙げられる。これらの中では、特に、PVA系樹脂が以下の理由により、好ましく用いられる。
PVA系樹脂を水溶性熱可塑性樹脂成分とする海島型複合繊維を用いた場合、PVA系樹脂を溶解することにより形成される極細単繊維が大きく捲縮する。このことにより繊維密度が高い繊維絡合体が得られる。また、PVA系樹脂を水溶性熱可塑性樹脂成分とする海島型複合繊維を用いた場合、PVA系樹脂を溶解させるときに、形成される極細単繊維や高分子弾性体は実質的に分解または溶解されないので、極細単繊維や高分子弾性体の物性低下が起こりにくい。さらに、環境負荷も小さい。
PVA系樹脂は、ビニルエステル単位を主体とする共重合体をケン化することにより得られる。ビニルエステル単位を形成するためのビニル単量体の具体例としては、例えば、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニル、及び、バーサティック酸ビニル等が挙げられる。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。これらの中では、酢酸ビニルが工業性の点から好ましい。
PVA系樹脂は、ビニルエステル単位のみからなるホモPVAであっても、ビニルエステル単位以外の共重合単量体単位を構成単位として含有する変性PVAであってもよい。溶融紡糸性、水溶性、繊維物性を制御できる点から、変性PVAがより好ましい。ビニルエステル単位以外の共重合単量体単位の具体例としては、例えば、エチレン、プロピレン、1−ブテン、イソブテンなどの炭素数4以下のα−オレフィン類;メチルビニルエーテル、エチルビニルエーテル、n−プロピルビニルエーテル、イソプロピルビニルエーテル、n−ブチルビニルエーテルなどのビニルエーテル類等が挙げられる。ビニルエステル単位以外の共重合単量体単位の含有割合としては、1〜20モル%、さらには、4〜15モル%とくには、6〜13モル%の範囲であることが好ましい。これらの中ではエチレン単位を4〜15モル%、さらには、6〜13モル%含有するエチレン変性PVAが海島型複合繊維の物性が高くなる点から好ましい。
PVA系樹脂の粘度平均重合度は、200〜500、さらには、230〜470、とくには、250〜450の範囲であることが、安定な海島構造が形成する点、溶融紡糸性に優れた溶融粘度を示す点、及び、溶解時の溶解速度が速い点から好ましい。なお、前記重合度は、JIS−K6726に準じて測定される。すなわち、PVA樹脂を再ケン化し、精製した後、30℃の水中で測定した極限粘度[η]から次式により求められる。
粘度平均重合度P=([η]×103/8.29)(1/0.62)
PVA系樹脂のケン化度としては、90〜99.99モル%、さらには93〜99.98モル%、とくには、94〜99.97モル%、殊には、96〜99.96モル%の範囲であることが好ましい。前記ケン化度がこのような範囲である場合には、水溶性に優れ、熱安定性が良好で、溶融紡糸性に優れ、また、生分解性にも優れたPVA系樹脂が得られる。
前記PVA系樹脂の融点としては、160〜250℃、さらには170〜227℃、特には175〜224℃、殊には180〜220℃の範囲であることが、機械的特性及び熱安定性に優れる点、及び溶融紡糸性に優れる点から好ましい。なお、前記PVA系樹脂の融点が高すぎる場合には、融点と分解温度が近づくために、溶融紡糸の際に分解を生じることにより、溶融紡糸性が低下する傾向がある。
また、前記PVA系樹脂の融点が、前記非水溶性熱可塑性樹脂の融点に比べて低すぎる場合には、溶融紡糸性が低下する点から好ましくない。このような観点から、PVA系樹脂の融点は、前記非水溶性熱可塑性樹脂の融点に比べて60℃以上、さらには、30℃以上低すぎないことが好ましい。
前記非水溶性熱可塑性樹脂としては、水、アルカリ性水溶液、酸性水溶液等により、溶解除去または分解除去されない熱可塑性樹脂であって、溶融紡糸が可能な樹脂が好ましく用いられる。
前記非水溶性熱可塑性樹脂の具体例としては、上述した、研磨パッドを構成する極細単繊維を形成するために用いられる、ガラス転移温度(T)が50℃以上で、且つ、吸水率が4質量%以下の各種熱可塑性樹脂が用いられうる。
前記非水溶性熱可塑性樹脂は各種添加剤を含有してもよい。前記添加材の具体例としては、例えば、触媒、着色防止剤、耐熱剤、難燃剤、滑剤、防汚剤、蛍光増白剤、艶消剤、着色剤、光沢改良剤、制電剤、芳香剤、消臭剤、抗菌剤、防ダニ剤、無機微粒子等が挙げられる。
次に、前記水溶性熱可塑性樹脂と前記非水溶性熱可塑性樹脂とを溶融紡糸して海島型複合繊維を形成し、得られた海島型複合繊維から長繊維ウェブを形成する方法について、詳しく説明する。
前記長繊維ウェブは、例えば、前記水溶性熱可塑性樹脂と前記非水溶性熱可塑性樹脂とを溶融紡糸することにより複合化した後、スパンボンド法により、延伸後、堆積させることにより得られる。このように、スパンボンド法によりウェブを形成することにより、繊維の抜けが少なく、繊維密度が高く、形態安定性が良好な海島型複合繊維からなる長繊維ウェブが得られる。なお、長繊維とは、短繊維を製造するときのような切断工程を経ずに製造された繊維である。
海島型複合繊維の製造においては、水溶性熱可塑性樹脂と非水溶性熱可塑性樹脂とがそれぞれ溶融紡糸され、複合化される。水溶性熱可塑性樹脂と非水溶性熱可塑性樹脂との質量比としては、5/95〜50/50、さらには、10/90〜40/60の範囲であることが好ましい。水溶性熱可塑性樹脂と非水溶性熱可塑性樹脂との質量比がこのような範囲である場合には、高密度の繊維絡合体が得られ、また、極細単繊維の形成性にも優れる。
水溶性熱可塑性樹脂と非水溶性熱可塑性樹脂とを溶融紡糸により複合化した後、スパンボンド法により、長繊維ウェブを形成する方法について、以下に詳しく説明する。
はじめに、水溶性熱可塑性樹脂及び非水溶性熱可塑性樹脂をそれぞれ別々の押出機により溶融混練し、それぞれ異なる紡糸口金から溶融樹脂のストランドを同時に吐出させる。そして、吐出されたストランドを複合ノズルで複合させた後、紡糸ヘッドのノズル孔から吐出させることにより海島型複合繊維を形成する。溶融複合紡糸においては、海島型複合繊維における島数は4〜4000島/繊維、さらには10〜1000島/繊維にすることが、単繊維繊度が小さく、繊維密度の高い繊維束が得られる点から好ましい。
前記海島型複合繊維は冷却装置で冷却された後、エアジェット・ノズルなどの吸引装置を用いて目的の繊度となるように1000〜6000m/分の引き取り速度に相当する速度の高速気流により延伸される。その後、延伸された複合繊維を移動式の捕集面の上に堆積することにより長繊維ウェブが形成される。なお、このとき、必要に応じて堆積された長繊維ウェブを、部分的に圧着してもよい。繊維ウェブの目付量は、20〜500g/mの範囲であることが均一な繊維絡合体が得られ、また、工業性の点から好ましい。
(2)ウェブ絡合工程
次に、得られた前記長繊維ウェブを複数枚重ねて絡合させることによりウェブ絡合シートを形成するウェブ絡合工程について説明する。
ウェブ絡合シートは、ニードルパンチや高圧水流処理等の公知の不織布製造方法を用いて長繊維ウェブに絡合処理を行うことにより形成される。以下に、代表例として、ニードルパンチによる絡合処理について詳しく説明する。
はじめに、長繊維ウェブに針折れ防止油剤、帯電防止油剤、絡合向上油剤などのシリコーン系油剤または鉱物油系油剤を付与する。なお、目付ムラを低減させるために、2枚以上の繊維ウェブを、クロスラッパーにより重ね合わせ、油剤を付与してもよい。
その後、例えば、ニードルパンチにより三次元的に繊維を絡合させる絡合処理を行う。ニードルパンチ処理を行うことにより、繊維密度が高く、繊維の抜けを起こしにくいウェブ絡合シートが得られる。なお、ウェブ絡合シートの目付量は、目的とする研磨パッドの厚さ等に応じて適宜選択されるが、具体的には、例えば、100〜1500g/mの範囲であることが取扱い性に優れる点から好ましい。
油剤の種類や量、及び、ニードルパンチにおけるニードル形状、ニードル深度、パンチ数などのニードル条件は、ウェブ絡合シートの層間剥離力が高くなるような条件が適宜選択される。バーブ数は針折れが生じない範囲で多いほうが好ましく、具体的には、例えば、1〜9バーブの中から選ばれる。ニードル深度は重ね合わせたウェブ表面までバーブが貫通するような条件、かつ、ウェブ表面にニードルパンチ後の模様が強く出ない範囲で設定することが好ましい。また、ニードルパンチ数はニードル形状、油剤の種類と使用量等により調整されるが、具体的には、500〜5000パンチ/cmが好ましい。また、絡合処理後の目付量が、絡合処理前の目付量の質量比で1.2倍以上、さらには、1.5倍以上となるように絡合処理することが、繊維密度が高い繊維絡合体が得られ、また、繊維の抜けを低減できる点から好ましい。上限は特に限定されないが、処理速度の低下による製造コストの増大を避ける点で4倍以下であることが好ましい。
ウェブ絡合シートの層間剥離力は、2kg/2.5cm以上、さらには、4kg/2.
5cm以上であることが、形態保持性が良好で、且つ、繊維の抜けが少なく、繊維密度が高い繊維絡合体が得られる点から好ましい。なお、層間剥離力は、三次元絡合の度合いの目安になる。層間剥離力が小さすぎる場合には、繊維絡合体の繊維密度が充分に高くない。また、絡合不織布の層間剥離力の上限は特に限定されないが、絡合処理効率の点から30kg/2.5cm以下であることが好ましい。
また、研磨パッドの硬さを調節する目的で、本発明の効果を損なわない範囲で、必要に応じて、上記のようにして得られた不織布であるウェブ絡合シートに、さらに極細単繊維からなる編物または織物(編織物)を重ねて、ニードルパンチング処理および/または高圧水流処理により絡合処理を行うことにより、編織物が絡合一体化された絡合不織布、例えば、編織物/絡合不織布、絡合不織布/編織物/絡合不織布などの積層構造体をウェブ絡合シートとして用いてもよい。
前記編織物を構成する極細単繊維は、特に限定されない。具体的には、例えば、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート(PBT)、ポリエステルエラストマー等から形成されるポリエステル系繊維;ナイロン6、ナイロン66、芳香族ポリアミド、ポリアミドエラストマー等から形成されるポリアミド系繊維;ウレタン系ポリマー、オレフィン系ポリマー、アクリロニトリル系ポリマー等からなる繊維が好ましく用いられる。これらの中では、PET、PBT、ナイロン6、ナイロン66等から形成される繊維が、工業性の点から好ましい。
また、前記編織物を形成するための海島型複合繊維の除去成分の具体例としては、例えば、ポリスチレンおよびその共重合体、ポリエチレン、PVA系樹脂、共重合ポリエステル、共重合ポリアミド等が挙げられる。これらの中では、溶解除去する際に大きな収縮を生じる点からPVA系樹脂が好ましく用いられる。
(3)湿熱収縮処理工程
次に、ウェブ絡合シートを湿熱収縮させることにより、ウェブ絡合シートの繊維密度及び絡合度合を高めるための湿熱収縮処理工程について説明する。なお、本工程においては、長繊維を含有するウェブ絡合シートを湿熱収縮させることにより、短繊維を含有するウェブ絡合シートを湿熱収縮させる場合に比べて、ウェブ絡合シートを大きく収縮させることができ、そのために、極細単繊維の繊維密度が特に高くなる。
湿熱収縮処理は、スチーム加熱により行うことが好ましい。
スチーム加熱条件としては、雰囲気温度が60〜130℃の範囲で、相対湿度75%以上、さらには相対湿度90%以上で、60〜600秒間加熱処理することが好ましい。このような加熱条件の場合には、ウェブ絡合シートを高収縮率で収縮させることができるので好ましい。なお、相対湿度が低すぎる場合には、繊維に接触した水分が速やかに乾燥することにより、収縮が不充分になる傾向がある。
湿熱収縮処理は、前記ウェブ絡合シートを面積収縮率が35%以上、さらには、40%以上になるように収縮させることが好ましい。このように高い収縮率で収縮させることにより、高い繊維密度が得られる。前記面積収縮率の上限は特に限定されないが、収縮の限度や処理効率の点から80%以下程度であることが好ましい。
なお、面積収縮率(%)は、下記式(1):
(収縮処理前のシート面の面積−収縮処理後のシート面の面積)/収縮処理前のシート面の面積×100・・・(1)、により計算される。前記面積は、シートの表面の面積と裏面の面積の平均面積を意味する。
このように湿熱収縮処理されたウェブ絡合シートは、海島型複合繊維の熱変形温度以上の温度で加熱ロールや加熱プレスすることにより、さらに、繊維密度が高められてもよい。
また、湿熱収縮処理前後におけるウェブ絡合シートの目付量の変化としては、収縮処理後の目付量が、収縮処理前の目付量に比べて、1.2倍(質量比)以上、さらには、1.5倍以上で、4倍以下、さらには3倍以下であることが好ましい。
(4)繊維束結着工程
ウェブ絡合シートの極細繊維化処理を行う前に、ウェブ絡合シートの形態安定性を高める目的や、得られる研磨パッドの空隙率を低減させることを目的として、必要に応じて、収縮処理されたウェブ絡合シートに吸水率が0.5〜8質量%の範囲の高分子弾性体の水性液を含浸及び乾燥凝固させることにより、予め、前記繊維束を結着させておいてもよい。
本工程においては、収縮処理された前記ウェブ絡合シートに、前記高分子弾性体の水性液を含浸させ、乾燥凝固させることにより、前記ウェブ絡合シートに高分子弾性体を充填する。水性液の状態で高分子弾性体を含浸させ、乾燥凝固させることにより、高分子弾性体を形成することができる。高分子弾性体の水性液は、高濃度で粘度が低く、含浸浸透性にも優れているために、高充填しやすい。また、繊維に対する接着性にも優れている。従って、本工程により充填された高分子弾性体は、長繊維の海島型複合繊維を強固に拘束する。
高分子弾性体の水性液とは、高分子弾性体を形成する成分を水系媒体に溶解した水性溶液、又は、高分子弾性体を形成する成分を水系媒体に分散させた水性分散液である。なお、水性分散液には、懸濁分散液及び乳化分散液が含まれる。特に、耐水性に優れている点から、水性分散液を用いることがより好ましい。
高分子弾性体としては、極細単繊維に対する結着性が高い点から、水素結合性高分子弾性体が好ましい。水素結合性高分子弾性体とは、例えば、ポリウレタン系樹脂、ポリアミド系樹脂、ポリビニルアルコール系樹脂等のように、水素結合により結晶化あるいは凝集する高分子からなる弾性体である。水素結合性高分子弾性体は、接着性が高く、繊維絡合体の形態保持性を向上させ、また、繊維の抜けを抑制する。
以下に、高分子弾性体としてポリウレタン系樹脂からなる弾性体を用いる場合について、代表例として詳しく説明する。
ポリウレタン系樹脂からなる弾性体としては、平均分子量200〜6000の高分子ポリオールと有機ポリイソシアネ−トと、鎖伸長剤とを、所定のモル比で反応させることにより得られる各種のポリウレタン系樹脂が挙げられる。
前記高分子ポリオールの具体例としては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリ(メチルテトラメチレングリコール)などのポリエーテル系ポリオールおよびその共重合体;ポリブチレンアジペートジオール、ポリブチレンセバケートジオール、ポリヘキサメチレンアジペートジオール、ポリ(3−メチル−1,5−ペンチレンアジペート)ジオール、ポリ(3−メチル−1,5−ペンチレンセバケート)ジオール、ポリカプロラクトンジオールなどのポリエステル系ポリオールおよびその共重合体;ポリヘキサメチレンカーボネートジオール、ポリ(3−メチル−1,5−ペンチレンカーボネート)ジオール、ポリペンタメチレンカーボネートジオール、ポリテトラメチレンカーボネートジオールなどのポリカーボネート系ポリオールおよびその共重合体;ポリエステルカーボネートポリオール等が挙げられる。また、必要に応じて、トリメチロールプロパン等の3官能アルコールやペンタエリスリトール等の4官能アルコールなどの多官能アルコール、又は、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール等の短鎖アルコールを併用してもよい。これらは単独で用いても、2種以上を組み合わせて用いてもよい。特に、非晶性のポリカーボネート系ポリオール、脂環式ポリカーボネート系ポリオール、直鎖状ポリカーボネート系ポリオール、及び、これらのポリカーボネート系ポリオールとポリエーテル系ポリオール又はポリエステル系ポリオールとの混合物を用いることが、耐加水分解性や耐酸化性等の耐久性に優れた研磨シートが得られる点から好ましい。また、炭素数5以下、特には炭素数3以下のポリアルキレングリコール基を含有するポリウレタン系樹脂、水に対する濡れ性がとくに良好になる点から好ましい。
前記有機ポリイソシアネートの具体例としては、例えば、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート、4,4’−ジシクロヘキシルメタンジイソシアネート等の脂肪族あるいは脂環族ジイソシアネート等の無黄変型ジイソシアネート;2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、キシリレンジイソシアネートポリウレタン等の芳香族ジイソシアネート、等が挙げられる。また、必要に応じて、3官能イソシアネートや4官能イソシアネートなどの多官能イソシアネートを併用してもよい。これらは単独で用いても、2種以上を組み合わせて用いてもよい。これらの中では、4,4’−ジシクロヘキシルメタンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、キシリレンジイソシアネートが、繊維に対する接着性が高く、また、硬度が高い研磨パッドが得られる点から好ましい。
前記鎖伸長剤の具体例としては、例えば、ヒドラジン、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、キシリレンジアミン、イソホロンジアミン、ピペラジンおよびその誘導体、アジピン酸ジヒドラジド、イソフタル酸ジヒドラジドなどのジアミン類;ジエチレントリアミンなどのトリアミン類;トリエチレンテトラミンなどのテトラミン類;エチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、1,4−ビス(β−ヒドロキシエトキシ)ベンゼン、1,4−シクロヘキサンジオールなどのジオール類;トリメチロールプロパンなどのトリオール類;ペンタエリスリトールなどのペンタオール類;アミノエチルアルコール、アミノプロピルアルコールなどのアミノアルコール類等が挙げられる。これらは単独で用いても、2種以上を組み合わせて用いてもよい。これらの中では、ヒドラジン、ピペラジン、ヘキサメチレンジアミン、イソホロンジアミンおよびその誘導体、エチレントリアミンなどのトリアミンの中から2種以上組み合わせて用いることが、短時間で硬化反応が完了する点から好ましい。また、鎖伸長反応時に、鎖伸長剤とともに、エチルアミン、プロピルアミン、ブチルアミンなどのモノアミン類;4−アミノブタン酸、6−アミノヘキサン酸などのカルボキシル基含有モノアミン化合物;メタノール、エタノール、プロパノール、ブタノールなどのモノオール類を併用してもよい。
また、2,2−ビス(ヒドロキシメチル)プロピオン酸、2,2−ビス(ヒドロキシメチル)ブタン酸、2,2−ビス(ヒドロキシメチル)吉草酸などのカルボキシル基含有ジオール等を併用して、ポリウレタン系弾性体の骨格にカルボキシル基などのイオン性基を導入することにより、水に対する濡れ性をさらに向上させることができる。
また、ポリウレタン系樹脂の吸水率や貯蔵弾性率を制御するために、ポリウレタンを形成するモノマー単位が有する官能基と反応し得る官能基を分子内に2個以上含有する架橋剤や、ポリイソシアネート系化合物、多官能ブロックイソシアネート系化合物等の自己架橋性の化合物を添加することのより、架橋構造を形成することが好ましい。
前記モノマー単位の官能基と架橋剤の官能基との組み合わせとしては、カルボキシル基とオキサゾリン基、カルボキシル基とカルボジイミド基、カルボキシル基とエポキシ基、カルボキシル基とシクロカーボネート基、カルボキシル基とアジリジン基、カルボニル基とヒドラジン誘導体、ヒドラジド誘導体などが挙げられる。これらの中では、カルボキシル基を有するモノマー単位とオキサゾリン基、カルボジイミド基またはエポキシ基を有する架橋剤と組み合わせ、水酸基またはアミノ基を有するモノマー単位とブロックイソシアネート基を有する架橋剤との組み合わせ、およびカルボニル基を有するモノマー単位とヒドラジン誘導体またはヒドラジド誘導体との組み合わせが、架橋形成が容易であり、得られる研磨パッドの剛性や耐磨耗性が優れる点から、特に好ましい。なお、架橋構造は、繊維絡合体にポリウレタン系樹脂を付与した後の熱処理工程において形成することが、高分子弾性体の水性液の安定性を維持する点から好ましい。これらの中でも、架橋性能や水性液のポットライフ性が優れ、また安全面でも問題のないカルボジイミド基および/またはオキサゾリン基が特に好ましい。カルボジイミド基を有する架橋剤としては、例えば日清紡績株式会社製「カルボジライトE−01」、「カルボジライトE−02」、「カルボジライトV−02」などの水分散カルボジイミド系化合物を挙げることができる。また、オキサゾリン基を有する架橋剤としては、例えば日本触媒株式会社製「エポクロスK−2010E」、「エポクロスK−2020E」、「エポクロスWS−500」などの水分散オキサゾリン系化合物を挙げることができる。架橋剤の配合量としては、ポリウレタン系樹脂に対して、架橋剤の有効成分が1〜20質量%であることが好ましく、1.5〜1質量%であることがより好ましく、2〜10質量%であることがさらに好ましい。
また、極細単繊維との接着性を高め繊維束の剛性を高める点から、ポリウレタン系樹脂中の高分子ポリオールの成分の含有率としては、65質量%以下、さらには、60質量%以下であることが好ましい。また、40質量%以上、さらには、45質量%以上であることが適度な弾性を付与することによりスクラッチの発生を抑制することができる点から好ましい。
また、ポリウレタン系樹脂は、浸透剤、消泡剤、滑剤、撥水剤、撥油剤、増粘剤、増量剤、硬化促進剤、酸化防止剤、紫外線吸収剤、蛍光剤、防黴剤、発泡剤、ポリビニルアルコール、カルボキシメチルセルロースなどの水溶性高分子化合物、染料、顔料、無機微粒子などをさらに含有してもよい。
ポリウレタン系樹脂を水性溶液または水性分散液にする方法は、特に限定されず、公知の方法を用いることができる。具体的には、例えば、カルボキシル基、スルホン酸基、水酸基などの親水性基を有する単量体を共重合成分として用いることにより、水性媒体に対する分散性をポリウレタン系樹脂に付与する方法、または、ポリウレタン系樹脂に界面活性剤を添加して、乳化又は懸濁させる方法が挙げられる。また、水性の高分子弾性体は水に対する濡れ性に優れる特性が有り、砥粒を均一且つ多量に保持ことに有利である。
前記乳化又は懸濁に用いられる界面活性剤の具体例としては、例えば、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム、ポリオキシエチレントリデシルエーテル酢酸ナトリウム、ドデシルベンゼンスルフォン酸ナトリウム、アルキルジフェニルエーテルジスルフォン酸ナトリウム、ジオクチルスルホコハク酸ナトリウムなどのアニオン性界面活性剤;ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレン−ポリオキシプロピレンブロック共重合体などのノニオン性界面活性剤などが挙げられる。また、反応性を有する、いわゆる反応性界面活性剤を用いてもよい。また、界面活性剤の曇点を適宜選ぶことにより、ポリウレタン系樹脂に感熱ゲル化性を付与することもできる。
ポリウレタン系樹脂の水性分散液の分散平均粒子径としては、0.01〜1μm、さらには、0.03〜0.5μmであることが好ましい。
本工程においては、高分子弾性体を形成するために、従来一般的に用いられている高分子弾性体の有機溶媒溶液を用いる代わりに、高分子弾性体の水性液を用いている。このように高分子弾性体の水性液を用いることにより、より高い濃度で高分子弾性体を含有する樹脂液を含浸させることができる。そして、これにより、得られる研磨パッドの空隙率を低下させることができる。
高分子弾性体の水性液の含浸する固形分濃度は、15質量%以上、さらには、25質量%以上であることが、空隙率を充分に低下させることができる点から好ましい。
前記ウェブ絡合シートに高分子弾性体の水性液を含浸する方法としては、例えば、ナイフコーター、バーコーター、又はロールコーターを用いて、または、ディッピングする方法が挙げられる。
そして、高分子弾性体の水性液が含浸されたウェブ絡合シートを乾燥することにより、高分子弾性体を凝固させることができる。乾燥方法としては、50〜200℃の乾燥装置中で熱処理する方法や、赤外線加熱の後に乾燥機中で熱処理する方法等が挙げられる。
なお、前記ウェブ絡合シートに高分子弾性体の水性液を含浸させた後、乾燥する場合、該水性液がウェブ絡合シートの表層に移行(マイグレーション)することにより、均一な充填状態が得られないことがある。このような場合には、水性液の高分子弾性体の粒径を調整すること;高分子弾性体のイオン性基の種類や量を調整すること、あるいは、pH等を変えてその安定性を調整すること;1価または2価のアルカリ金属塩やアルカリ土類金属塩、ノニオン系乳化剤、会合型水溶性増粘剤、水溶性シリコーン系化合物などの会合型感熱ゲル化剤、または、水溶性ポリウレタン系化合物を併用すること等により、40〜100℃程度における水分散安定性を低下させること;等によりマイグレーションを抑制することができる。なお、必要に応じて、高分子弾性体が表面に偏在するようにマイグレーションさせてもよい。
(5)極細繊維形成工程
次に、水溶性熱可塑性樹脂を熱水中で溶解することにより、極細単繊維を形成する極細繊維形成工程について説明する。
本工程は、水溶性熱可塑性樹脂を除去することにより極細単繊維を形成する工程である。このとき、前記ウェブ絡合シートの水溶性熱可塑性樹脂が溶解抽出された部分に空隙が形成される。そして、この空隙に、後の高分子弾性体充填工程において、高分子弾性体を充填することにより、極細単繊維が集束される。
極細繊維化処理は、ウェブ絡合シート又は、ウェブ絡合シートと高分子弾性体との複合体を、水、アルカリ性水溶液、酸性水溶液等で熱水加熱処理することにより、海成分を形成する水溶性熱可塑性樹脂を溶解除去、または、分解除去する処理である。
熱水加熱処理条件の具体例としては、例えば、第1段階として、65〜90℃の熱水中に5〜300秒間浸漬した後、さらに、第2段階として、85〜100℃の熱水中で100〜600秒間処理することが好ましい。また、溶解効率を高めるために、必要に応じて、ロールでのニップ処理、高圧水流処理、超音波処理、シャワー処理、攪拌処理、揉み処理等を行ってもよい。
本工程においては、海島型複合繊維から水溶性熱可塑性樹脂を溶解して極細単繊維を形成する際に、極細繊維が大きく捲縮される。この捲縮により繊維密度が緻密になるために、高密度の繊維絡合体が得られる。
(6)高分子弾性体充填工程
次に、極細単繊維から形成される繊維束内部に高分子弾性体を充填することにより、前記極細単繊維を集束するとともに、繊維束を結着させる工程について説明する。
極細繊維形成工程(5)において、海島型複合繊維に極細繊維化処理を施すことにより、水溶性熱可塑性樹脂が除去されて繊維束の内部に空隙が形成される。本工程においては、このような空隙に高分子弾性体を充填することにより、極細単繊維を集束するとともに、研磨パッドの空隙率を低下させることができる。なお、極細単繊維が繊維束を形成している場合には、毛細管現象により高分子弾性体の水性液が含浸されやすいので極細単繊維はより集束されて拘束されやすい。
本工程に用いられる高分子弾性体の水性液は、繊維束結着工程(4)で説明した高分子弾性体の水性液と同様のものが用いられうる。
本工程において極細単繊維から形成される繊維束内部に高分子弾性体を充填する方法は、繊維束結着工程(4)で用いられる方法と同様の方法が適用できる。このようにして、研磨パッドが形成される。
[研磨パッドの後加工]
得られた研磨パッドは、必要に応じて、成形処理、平坦化処理、起毛処理、積層処理、及び表面処理等の後加工処理が施されてもよい。
前記成形処理、及び平坦化処理は、得られた研磨パッドを研削により所定の厚みに熱プレス成形したり、所定の外形に切断したりする加工である。研磨パッドとしては、厚み0.5〜3mm程度に研削加工されたものであることが好ましい。
前記起毛処理とは、サンドペーパー、針布、ダイヤモンド等により研磨パッド表面に機械的な摩擦力や研磨力を与えて、集束された極細単繊維を分繊する処理である。このような起毛処理により、研磨パッド表層部に存在する繊維束がフィブリル化され、表面に多数の極細単繊維が形成される。
前記積層処理とは、得られた研磨パッドを基材に張り合わせて積層化することにより剛性を調整する処理である。例えば、研磨パッドを硬度の低い弾性体シートと積層することにより、被研磨面のグローバル平坦性(非研磨基材全体の平坦性)をさらに向上させることができる。なお、積層の際の接着は、溶融接着でも、接着剤や粘着剤を介した接着であってもよい。前記基材の具体例としては、例えば、ポリウレタン等からなる弾性スポンジ体;ポリウレタンを含浸した不織布(例えば、ニッタ・ハース(株)製の商品名Suba400);天然ゴム、ニトリルゴム、ポリブタジエンゴム、シリコーンゴムなどのゴムやポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、フッ素系熱可塑性エラストマーなどの熱可塑性エラストマーからなる弾性樹脂フィルム;発泡プラスチック;編物、織物等のシート状基材が挙げられる。
また、前記表面処理は、砥粒スラリーの保持性や排出性を調整するために研磨パッド表面に、格子状、同心円状、渦巻き状等の溝や孔を形成する処理である。
[研磨方法]
以下に、本実施形態の研磨パッドを用いた研磨の一例として、ケミカルメカニカル研磨(CMP)について、図4の模式説明図を参照しながら説明する。
図4中、20は研磨装置、21はターンテーブル、22は砥粒スラリー供給管、23はコンディショナ、24は被研磨基材である。また、ターンテーブル21の表面には、研磨パッド10が貼られている。
ターンテーブル21は研磨装置20に備えられた図略のモータにより高速回転される。CMPにおいては、高速回転するターンテーブル21に貼られた研磨パッド10に砥粒スラリー供給管22から砥粒スラリー25が少量ずつ供給される。そして、被研磨基材24は、研磨装置20に備えられた図略の荷重手段により荷重が掛けられることにより、その表面が研磨される。また、研磨パッド10は、研磨の経時変化を抑制するために、コンディショナ23により表面の目立てが施される。
砥粒スラリーは、水やオイルなどの液状媒体に、シリカ、酸化アルミニウム、酸化セリウム、酸化ジルコニウム、炭化ケイ素等の研磨剤が分散されたスラリーである。また、砥粒スラリーは、必要に応じて、塩基、酸、界面活性剤などの成分を含有してもよい。
また、CMPを行うに際し、必要に応じ、研磨スラリーと共に、潤滑油、冷却剤などを供給してもよい。
前記コンディショナとしては、好ましくは#50〜#1000、さらに好ましくは#100〜#600の範囲のダイヤモンド等のドレッサーが用いられる。なお、コンディショニングは被研磨基材24を研磨する前に行っても、研磨中に行ってもよい。また、被研磨基材24の研磨と研磨パッド10のコンディショニングとを交互に行ってもよい。ダイヤモンドドレッサーの番手が小さすぎる場合には、表面粗さが粗くなる傾向があり、一方、大きすぎる場合には、コンディショニングに時間がかかる傾向がある。
本実施形態の研磨パッドは、シリコンウエハ、化合物半導体ウエハ、半導体ウエハ、半導体デバイス、液晶部材、光学素子、水晶、光学基板、電子回路基板、電子回路マスク基板、多層配線基板、ハードディスク、MEMS(マイクロ−エレクトロ−メカニカルシステムズ)基材等の研磨に好ましく用いられる。
半導体ウエハや半導体デバイスの具体例としては、例えば、酸化シリコン、酸化フッ化シリコン、有機ポリマーなどの絶縁膜;銅、アルミニウム、タングステンなどの配線材金属膜;タンタル、チタン、窒化タンタル、窒化チタンなどのバリアメタル膜を表面に有する基材が挙げられる。
研磨においては、一次研磨、二次研磨(調整研磨)、仕上げ研磨、鏡面研磨等何れの研磨にも用いられる。また、研磨部分としては、基材の表面、裏面、端面のいずれであってもよい。
以下、本発明を実施例により具体的に説明する。なお、本発明は実施例により何ら限定されるものではない。
[実施例1]
水溶性熱可塑性ポリビニルアルコール系樹脂(PVA系樹脂)と、変性度6モル%のイソフタル酸変性ポリエチレンテレフタレ−ト(変性PET:T77℃、吸水率1質量%、公定水分率0.4質量%)とを20:80(質量比)の割合で溶融複合紡糸用口金から吐出することにより、海島型複合繊維を形成した。なお、溶融複合紡糸用口金は、島数が25島/繊維で、口金温度は260℃であった。そして、エジェクター圧力を紡糸速度4000m/minとなるように調整して、平均繊度2.0dtexの長繊維をネット上に捕集することにより、目付量30g/mのスパンボンドシート(長繊維ウェブ)が得られた。
得られたスパンボンドシートをクロスラッピングにより18枚重ねて、総目付が540g/mの重ね合わせウェブを作製した。そして、得られた重ね合わせウェブに、針折れ防止油剤をスプレーした。次に、バーブ数1個でニードル番手42番のニードル針、及びバーブ数6個でニードル番手42番のニードル針を用いて、重ね合わせウェブを2000パンチ/cmでニードルパンチ処理して絡合させることにより、ウェブ絡合シートを得た。得られたウェブ絡合シートの目付量は870g/m、層間剥離力は13.0kg/2.5cmであった。また、ニードルパンチ処理による面積収縮率は38%であった。
次に、得られたウェブ絡合シートを70℃、95%RHの条件で90秒間スチーム処理した。このときの面積収縮率は52%であった。そして、120℃のオーブン中で乾燥させた後、さらに、140℃で熱プレスすることにより、目付量1800g/m、見掛け密度0.82g/cm、厚み2.2mmのウェブ絡合シートを得た。このとき、熱プレス後のウェブ絡合シートの厚みは、熱プレス前のウェブ絡合シートの厚みの0.72倍であった。
次に、熱プレスされたウェブ絡合シートに、第1のポリウレタン弾性体として、ポリウレタン弾性体Aの水性分散液(固形分40質量%)を含浸させた。なお、ポリウレタン弾性体Aは、ポリカーボネート系ポリオールと、炭素数2〜3のポリアルキレングリコールと、炭素数4のポリアルキレングリコールとを、6:0.5:3.5(モル比)で混合したポリカーボネート/ポリエーテル(6/4)系ポリオールをポリオール成分とする無黄変型ポリウレタン樹脂である。ポリウレタン弾性体Aの吸水率は5質量%、150℃における貯蔵弾性率[E’(150℃、dry)]は60MPaである。このとき水性分散液の固形分付着量はウェブ絡合シートの質量に対して、13質量%であった。そして、水分散液が含浸されたウェブ絡合シートを90℃、50%RH雰囲気下で乾燥凝固処理し、さらに、140℃で乾燥処理した。そして、それを140℃で熱プレスすることにより、目付量1800g/m、見掛け密度0.82g/cm、厚み2.2mmのシートを得た。このとき、熱プレス後のウェブ絡合シートの厚みは、熱プレス前の0.90倍であった。
次に、ポリウレタン弾性体Aが充填されたウェブ絡合シートを、ニップ処理、及び高圧水流処理しながら95℃の熱水中に10分間浸漬することによりPVA系樹脂を溶解除去し、さらに、乾燥することにより、平均繊度が0.09dtex、目付量1640g/m、見掛け密度0.82g/cm、厚み2.0mmである、ポリウレタン弾性体Aと繊維絡合体との複合体を得た。
そして、前記複合体に、第2のポリウレタン弾性体として、ポリウレタン弾性体B(固形分40%)の水性分散液をさらに含浸させた。なお、ポリウレタン弾性体Bは、ポリカーボネート系ポリオールと炭素数2〜3のポリアルキレングリコールとを99.8:0.2(モル比)で混合した混合物をポリオール成分とし、カルボキシル基含有モノマーを1.5質量%含有する無黄変型ポリウレタン樹脂100質量部にカルボジイミド系架橋剤5質量部を含浸させ、熱処理することにより架橋構造を形成させたポリウレタン樹脂である。ポリウレタン弾性体Bの吸水率は2質量%、150℃における貯蔵弾性率[E’(150℃、dry)]は49MPaであった。このとき水性分散液の付着量はウェブ絡合シートの質量に対して、16質量%であった。次に、水性分散液が含浸されたウェブ絡合シートを90℃、50%RH雰囲気下で凝固処理し、140℃で乾燥処理することにより、研磨パッド前駆体が得られた。得られた研磨パッド前駆体は、目付量1910g/m、見掛け密度0.95g/cm、厚み2.0mmであった。
そして、得られた研磨パッド前駆体は、厚さ1.6mmのシート形状に研削加工され、さらに、直径51cmの円形状に切断され、表面に幅2.0mm、深さ1.0mmの溝を格子状に15.0mm間隔で形成することにより円形状の研磨パッドを作製した。
得られた研磨パッドを以下の評価方法により、評価した。
(1)極細単繊維の平均断面積、及び、繊維束内部の極細単繊維の集束状態の確認
得られた研磨パッドをカッター刃を用いて厚み方向に切断することにより、厚み方向の切断面を形成した。そして、得られた切断面を酸化オスミウムで染色した。そして、前記切断面を走査型電子顕微鏡(SEM)で500〜1000倍で観察し、その画像を撮影した。そして、得られた画像から切断面に存在する極細単繊維の断面積を求めた。ランダムに選択した100個の断面積を平均した値を平均断面積とした。また、集束状態の確認は、得られた画像を観察し、繊維束の外周を構成する極細単繊維のみならず、内部の極細単繊維同士が高分子弾性体によって接着一体化されている状態を集束されている「有」、繊維束の内部に高分子弾性体が存在していないか、あるいは、わずかしか存在しておらず、極細単繊維同士が殆ど接着一体化されていない状態を集束されていない「無」と判断した。
(2)単位面積当たりの繊維束の束数(繊維束密度)
前記「(1)極細単繊維の平均断面積」の評価で用いた画像を観察し、切断面に存在する繊維束のうち、切断面に対してほぼ垂直に存在する繊維束の束数を数えた。画像1枚あたりの繊維束の本数を数えた部分の面積は約0.5mmであった。そして、数えられた繊維束の束数を0.5mmで割ることにより1mm当たりに存在する繊維束の束数を計算した。10枚の画像について単位面積当たりの繊維束の束数を求め、得られた10個の値を平均した値を、繊維束の単位面積当たりの束数とした。
(3)繊維束の平均断面積
研磨パッドをランダムな方向に複数個所切断し、得られた切断面を酸化オスミウムで染色した。そして、前記各切断面をSEMにより500〜1000倍で観察し、その画像を撮影した。得られた画像から繊維束の断面をランダムに1000個選択した。そして、各繊維束の断面積を測定した。そして、測定された1000個の断面積の平均を求めた。
(4)研磨パッドの表面における極細単繊維の断面積および繊維密度
研磨処理した後の研磨パッドの表面を酸化オスミウムで染色し、SEMにより100〜300倍で観察し、その画像を撮影した。そして、得られた画像から極細単繊維の平均断面積および繊維密度(1mmあたりの極細単繊維の本数)を測定した。なお、測定はランダムに選択した100箇所で行った。得られた100点の平均断面積及び密度の平均値を、極細単繊維の断面積および密度とした。
(5)研磨パッドの見掛け密度及び研磨パッド充填率
JIS K 7112に準じて、得られた研磨パッドの見掛け密度を測定した。一方、研磨パッドを構成する各構成成分の構成比率と各構成成分の密度とから、空隙が存在しない場合の繊維絡合体と高分子弾性体との複合体の理論密度を算出した。そして、前記理論密度に対する前記見掛け密度の割合を、研磨パッド充填率(研磨パッドの空隙を除いた部分の体積割合)とした。なお、各構成成分の密度は、例えば、変性PET(1.38g/cm)、ポリウレタン弾性体(1.05g/cm)、PVA系樹脂(1.25g/cm)である。
(6)繊維絡合体の空隙を除いた部分の体積割合(繊維絡合体充填率)
(5)で求めた研磨パッド充填率から、高分子弾性体の密度と構成比率の積から求めた高分子弾性体の充填率を減じることにより、繊維絡合体の繊維絡合体充填率を算出した。
(7)高分子弾性体の吸水率
高分子弾性体を50℃で乾燥して得られた厚さ200μmのフィルムを、130℃で3
0分間熱処理した後、20℃、65%RHの条件下に3日間放置したものを乾燥サンプル
とし、23℃の水に乾燥サンプルを3日間浸漬した。その後、23℃の水から取り出した直後のフィルムの最表面の余分な水滴等をJKワイパー150−S(株式会社クレシア製)にて拭き取った後のものを水膨潤サンプルとした。乾燥サンプルと水膨潤サンプルの質量を測定し、下記式に従って吸水率を求めた。
吸水率(%)=
(水膨潤サンプルの質量−乾燥サンプルの質量)/乾燥サンプルの質量)×100
(8)極細単繊維を構成する熱可塑性樹脂の吸水率
極細単繊維を構成する熱可塑性樹脂を融点+20〜100℃の温度で熱プレスして得ら
れた厚さ200μmのフィルムを、130℃で30分間熱処理した。その後、20℃、65%RHの条件下に3日間放置したものを乾燥サンプルとした。乾燥サンプルを23℃の水に3日間浸漬した後、水から取り出した直後のフィルムの最表面の余分な水滴等をJKワイパー150−S(株式会社クレシア製)にて拭き取った後のものを水膨潤サンプルとした。乾燥サンプルと水膨潤サンプルの質量を測定し、下記式に従って吸水率を求めた。
吸水率(%)=
(水膨潤サンプルの質量−乾燥サンプルの質量)/乾燥サンプルの質量×100
(9)研磨パッドを50℃の温水で飽和膨潤させたときの吸水率
得られた研磨パッドを縦4cm×横10cmに切り抜いた。そして、20℃、65%RHの条件下に3日間放置して乾燥した。そして、50℃の温水中でディップ及びニップを3回繰り返した後、50℃の温水中に3日間浸漬することにより飽和膨潤させた。そして、温水から取り出した研磨パッドの表面に付着した水滴をJKワイパー150−S(株式会社クレシア製)で拭き取った。そして、研磨パッドの乾燥直後の質量と、飽和膨潤後の質量から、下記式により50℃の温水で飽和膨潤させたときの吸水率を求めた。
吸水率(%)=
(飽和膨潤時の研磨パッドの質量−乾燥直後の研磨パッドの質量)/乾燥直後の研磨パッドの質量×100
(10)極細単繊維を構成する熱可塑性樹脂のガラス転移温度
示差走査熱量計(TA3000、メトラー社製)を用いて、窒素中、熱可塑性樹脂を昇温速度10℃/分で300℃まで昇温し、その後昇温速度10℃/分で100℃まで降温した後、再度、昇温速度10℃/分で300℃まで昇温した過程での偏曲温度からガラス転移温度を求めた。
(11)研磨パッドの50℃における貯蔵弾性率[E’(50℃、dry)]
得られた研磨パッドを縦4cm×横0.5cmに切り抜いてサンプルを作製した。そして、サンプル厚みをマイクロメーターで測定した。そして、動的粘弾性測定装置(DVEレオスペクトラー、(株)レオロジー社製)を用いて、周波数11Hz、昇温速度3℃/分での条件で50℃における動的粘弾性率を測定し、貯蔵弾性率を算出した。
(12)研磨パッドを50℃の温水で飽和膨潤したときの50℃または23℃における貯蔵弾性率
得られた研磨パッドを縦4cm×横0.5cmに切り抜いてサンプルを作製した。そして、サンプル厚みをマイクロメーターで測定した。そして、50℃の温水中でディップ及びニップを3回繰り返した後、50℃の温水中に3日間浸漬することにより飽和膨潤させた。そして、温水から取り出した研磨パッドの表面に付着した水滴をJKワイパー150−S(株式会社クレシア製)で拭き取った。そして、膨潤処理後のサンプルを用いて、動的粘弾性測定装置(DVEレオスペクトラー、(株)レオロジー社製)により、周波数11Hz、昇温速度3℃/分の条件で、50℃または23℃における貯蔵弾性率[E’(50℃、wet)]または、[E’(23℃、wet)]を求めた。
(13)D硬度および50℃の温水で膨潤させた後のD硬度
研磨パッドの23℃におけるJIS−D硬度[D(23℃、dry)]をJIS K 7311に準じて測定した。
また、研磨パッドを縦4cm×横10cm程度に切り抜き、50℃の温水中でディップ−ニップを3回繰り返した後、50℃温水に3日間浸漬した後、50℃温水から取り出した直後に最表面の余分な水滴等をJKワイパー150−S(株式会社クレシア製)にて拭き取った後のものを50℃の温水で飽和膨潤させたサンプル(以下、水膨潤サンプルという場合がある)として、23℃におけるD硬度[D(23℃、wet)]をJIS K 7311に準じて測定した。
(14)高分子弾性体の150℃における貯蔵弾性率
高分子弾性体を50℃で乾燥して得られた厚さ200μmのフィルムを、130℃で30分間熱処理した後、動的粘弾性測定装置(DVEレオスペクトラー、(株)レオロジー社製)を使用して、150℃における動的粘弾性率を周波数11Hz、昇温速度3℃/分で測定することにより、貯蔵弾性率[E’(150℃、dry)]を求めた。
(15)連通孔構造の有無
研磨パッドの表面に滴下した水が、研磨パッドの連通孔を通じて、研磨パッドの裏面に表出するか否かにより、連通孔構造の有無を確認した。
(16)テーバー摩耗減量
研磨パッドを、JIS L1096の8.17.3C(テーバー形式)に準じ、摩耗輪をH−22、荷重500g、1000回にて摩耗減量を測定した。
(17)研磨パッドの研磨性能評価
円形状研磨パッドの裏面に粘着テープを貼り付けた後、研磨パッドをCMP研磨装置(株式会社野村製作所製「PP0−60S」)に装着した。そして、番手#325のダイヤモンドドレッサー(三菱マテリアル株式会社製のMEC325L)を用いて、圧力177kPa、ドレッサー回転数110回転/分の条件で、蒸留水を120mL/分の速度で流しながら18分間研磨パッド表面を研削することによりコンディショニング(シーズニング)を行った。
次に、プラテン回転数50回転/分、ヘッド回転数49回転/分、研磨圧力35kPaの条件において、キャボット社製研磨スラリーSS12を120ml/分の速度で供給しながら、酸化膜表面を有する直径6インチのシリコンウエハを100秒間研磨した。そして、研磨後のシリコンウエハ面内の任意の49点の厚みを測定し、各点における研磨された厚みを研磨時間で除することにより、研磨レート(nm/分)を求めた。そして、49点の研磨レートの平均値を研磨レート(R)とし、また、その標準偏差(σ)を求めた。
そして、下式により平坦性を評価した。なお、平坦性の値が小さいほど、平坦化性能に優れていることを示す。
平坦性(%)=(σ/R)×100
次に、前記研磨した研磨パッドを湿潤状態で25℃で24時間放置した。そして、その後、シーズニングを行った後、再度、同様に研磨を行った後の、研磨レート(R)及び平坦性を求めた。
さらに、シーズニングと研磨とを交互に300回繰り返し、300回目の研磨時の研磨レート(R)及び平坦性を求めた。
また、各研磨後のシリコンウエハの表面に存在する0.16μm以上の大きさの傷の数をウエハ表面検査装置Surfscan SP1(KLA−Tencor社製)を用いて、測定することにより、スクラッチ性を評価した。
〈評価結果〉
得られた研磨パッドは、SEMによる観察から、ポリウレタン弾性体が繊維束の内部に存在しており、極細単繊維を集束していることが確認された。また、ポリウレタン弾性体が前記繊維束同士を結着していることが確認された。また、前記ポリウレタン弾性体が非多孔質状であることが確認された。
また、50℃の温水で飽和膨潤させた後のD硬度[D(23℃、wet)]は61であり、極細単繊維の平均断面積が7μmであり、繊維束が研磨パッドの厚さ方向と平行な任意の断面において1800束/mmの束密度で存在し、繊維絡合体充填率が51%、研磨パッド充填率が74%で連通孔構造を有するものであった。また、極細繊維絡合体と高分子弾性体の比率は74/26であった。(1回目の高分子弾性体付与量と2回目の高分子弾性体の付与量の質量比率=46/54、高分子弾性体の平均吸水率=3.4%)であった。
また、得られた研磨パッドを50℃の温水で飽和膨潤させたときの吸水率は15%、50℃の温水で飽和膨潤させたときの50℃における貯蔵弾性率[E’(50℃、wet)]は350、50℃における貯蔵弾性率[E’(50℃、dry)]は560MPa、[E’(23℃、wet)/E’(50℃、wet)]の比率は1.5、[E’(50℃、dry)/(E’(50℃、wet)]の比率は、1.6であり、また、テーバー摩耗減量は60mgであった。得られた研磨パッドの断面の100倍のSEM写真を図5に、500倍のSEM写真を図6に示す。結果を表1にまとめて示す。
[実施例2]
ウェブ絡合シートを熱プレスする工程までは実施例1と同様に行い、熱プレスされたウェブ絡合シートを得た。
次に、熱プレスされたウェブ絡合シートを95℃の熱水中に10分間浸漬してPVA系樹脂を溶解除去することにより、繊維束からなる繊維絡合体を得た。そして、得られた繊維絡合体に、実施例1で用いたポリウレタン弾性体Aの水性分散液(固形分40%)を含浸させた。このとき水分散液の付着量は繊維絡合体の質量に対して、30質量%であった。次に、水分散液が含浸された繊維絡合体を140℃で乾燥処理することにより研磨パッド前駆体が得られた。そして、得られた研磨パッド前駆体を、実施例1と同様にして後加工することにより、研磨パッドが得られた。評価結果を表1に示す。
[実施例3]
ウェブ絡合シートを70℃、95%RHの条件で90秒間スチーム処理することにより、面積収縮率を52%にする代わりに、70℃、60%RHの条件で90秒間スチーム処理することにより、面積収縮率を35%に調整すること以外は、実施例1と同様にしてウェブ絡合シートを得た。なお、収縮され、熱プレスされて得られたウェブ絡合シートは、目付量1340g/m、見掛け密度0.60g/cm、厚み2.2mmであった。
そして、得られた収縮されたウェブ絡合シートを用いて、第1のポリウレタン弾性体の水性分散液、及び第2のポリウレタン弾性体の水性分散液の固形分濃度をそれぞれ25質量%に変更した以外は、実施例1と同様にして研磨パッドを得た。得られた研磨パッドは、目付量1150g/m、見掛け密度0.72g/cm、厚み1.6mmであった。結果を表1に示す。
[実施例4]
海島型複合繊維の製造において、PVA系樹脂と変性PETの比率を20:80とする代わりに、15:85とし、また、第1のポリウレタン弾性体の水性分散液、及び第2のポリウレタン弾性体の水性分散液の固形分濃度をそれぞれ50質量%とした以外は、実施例1と同様にして研磨パッドを得た。得られた研磨パッドは、目付量1790g/m、見掛け密度1.12g/cm、厚み1.6m、研磨パッド充填率90%、繊維絡合体とポリウレタン弾性体との質量比率は58/42であった。結果を表1に示す。
[実施例5]
第1のポリウレタン弾性体としてポリウレタン弾性体A、及び第2のポリウレタン弾性体としてポリウレタン弾性体Bを用いる代わりに、何れも下記のポリウレタン弾性体Cを用いた以外は実施例1と同様にして研磨パッドを得た。なお、ポリウレタン弾性体Cは、ポリカーボネート系ポリオールをポリオール成分とし、カルボキシル基含有モノマーを1.5質量%含有するモノマー成分を重合させて得られた無黄変型ポリウレタン樹脂100質量部に、カルボジイミド系架橋剤7質量部を含浸させ、熱処理することにより架橋構造を形成させた、吸水率0.7質量%、150℃における貯蔵弾性率[E’(150℃、dry)]は50MPaの無黄変型ポリウレタン弾性体である。結果を表1に示す。
[実施例6]
第1のポリウレタン弾性体としてポリウレタン弾性体A、及び、第2のポリウレタン弾性体としてポリウレタン弾性体Bを用いる代わりに、何れも下記のポリウレタン弾性体Dを用いた以外は実施例1と同様にして研磨パッドを得た。なお、ポリウレタン弾性体Dは、ポリカーボネート系ポリオールと、炭素数2〜3のポリアルキレングリコールと、炭素数4のポリアルキレングリコールとを、6:1.5:2.5(モル比)で混合したポリカーボネート/ポリエーテル(6/4)系をポリオール成分とする無黄変型ポリウレタン樹脂を含浸させ、熱処理することにより得られた、吸水率8質量%、150℃における貯蔵弾性率[E’(150℃、dry)]が40MPaの高分子弾性体である。結果を表1に示す。
[実施例7]
海島型複合繊維の形成において、変性PETの代わりに、テレフタル酸とノナンジオールとメチルオクタンジオール共重合ナイロンから形成される半芳香族ポリアミド系樹脂(T125℃、吸水率4質量%)を用いて海島型複合繊維を製造した以外は、実施例1と同様にして研磨パッドを得た。結果を表1に示す。
[実施例8]
第1のポリウレタン弾性体の水性分散液及び第2のポリウレタン弾性体の水性分散液の付着量をウェブ絡合シートの質量に対して、何れもそれぞれ10質量%になるように調整した以外は、実施例1と同様に研磨パッドを製造した。得られた研磨パッドは、目付量1340g/m、見掛け密度0.84g/cm、厚み1.6mであった。評価結果を表1に示す。
[実施例9]
研磨に用いるスラリーを、昭和電工製研磨スラリーGPL−C1010に変更した以外は、実施例1と同様に行った。結果を表1に示す。
[実施例10]
シリコンウエハを銅プレートに変更し、研磨に用いるスラリーをフジミインコーポレーテッド製PL7101(スラリー1000gあたり35%過酸化水素水30cc混合)に変更し、スラリー流量を200ml/分に変更した以外は、実施例1と同様に行った。結果を表1に示す。
[実施例11]
シリコンウエハをベアシリコンウエハに変更した以外は、実施例1と同様に行った。結果を表1に示す。
[比較例1]
変性PETを溶融紡糸することにより、平均繊度1.5dtexのPET長繊維を溶融紡糸し、得られた長繊維をネット上に捕集することにより、目付量30g/mのスパンボンドシート(長繊維ウェブ)を得た。
得られたスパンボンドシートから、実施例1と同様にして重ね合わせウェブを作製した。そして、得られた重ね合わせウェブを実施例1と同様に、ニードルパンチ処理して絡合させることにより、ウェブ絡合シートを得た。得られたウェブ絡合シートの層間剥離力は12kg/2.5cmであった。次に、得られたウェブ絡合シートを70℃、95%RHの条件で90秒間スチーム処理した。そして、140℃のオーブン中で乾燥させた後、140℃で熱プレスすることによりウェブ絡合シートを得た。
次に、熱プレスされたウェブ絡合シートに、実施例1で用いた無黄変型ポリウレタン弾性体Bの水性分散液(固形分40質量%)を含浸させた。このとき水分散液の付着量はウェブ絡合シートの質量に対して、16質量%であった。そして、水分散液が含浸されたウェブ絡合シートを140℃で乾燥処理した。そして、バフィング処理を行って表面と裏面とを平坦化して、研磨パッドを得た。得られた研磨パッドを実施例1と同様にして評価した。評価結果を表1に示す。
[比較例2]
水溶性熱可塑性ポリビニルアルコール系樹脂(PVA系樹脂)と、変性度6モル%のイソフタル酸変性ポリエチレンテレフタレ−トとを40:60(質量比)の割合で溶融複合紡糸用口金から吐出することにより、海島型複合繊維を形成した。そして得られた海島型複合繊維を延伸し、捲縮した後、カットすることにより、繊度6dtex、繊維長51mmの短繊維を得た。得られた短繊維をカード及びクロスラッパーすることにより短繊維ウェブが得られた。
得られた短繊維ウェブを用いた以外は実施例1と同様にして研磨パッドを作成し、評価した。なお、短繊維ウェブから得られたウェブ絡合シートをスチーム処理したときの面積収縮率は30%であった。評価結果を表1に示す。
[比較例3]
高分子弾性体として、ポリウレタン弾性体水性分散液を用いてポリウレタン弾性体を形成する代わりに、N,N−ジメチルホルムアミド溶液に溶解させたポリウレタン樹脂溶液(12質量%濃度)を含浸し40℃のDMFと水の混合液中で湿式凝固させてポリウレタン弾性体を形成した以外は実施例1と同様にして研磨パッドを作成した。得られた研磨パッドにはポリウレタン弾性体が多孔質状に存在していた。また、SEMによる断面観察から、得られた研磨パッドにおいては、繊維束の内部にポリウレタン弾性体が少量存在していたが、合計断面積が40μm/束以上である繊維束の割合は5%であり、実質的に極細単繊維は集束されていなかった。評価結果を表1に示す。なお、研磨性能評価においては、スクラッチ性や研磨安定性が悪く、また、研磨中における繊維の脱落が見られた。また、研磨中の目詰まりが多かった。
[比較例4]
実施例1と同様にして製造された、熱プレスされたウェブ絡合シートに、無黄変型ポリウレタン弾性体Aの水性分散液(固形分40質量%)を含浸させた。このとき水分散液の付着量はウェブ絡合シートの質量に対して、13質量%であった。そして、水分散液が含浸されたウェブ絡合シートを90℃、50%RH雰囲気で凝固処理し、さらに、140℃で乾燥処理した。そして、バフィング処理を行って表面と裏面とを平坦化した。次に、無黄変型ポリウレタン弾性体が充填されたウェブ絡合シートを95℃の熱水中に10分間浸漬してPVA系樹脂を溶解除去し、さらに、乾燥することにより研磨パッドを得た。なお、得られた研磨パッド中の繊維束の内部には、ポリウレタン弾性体がほとんど存在しておらす、極細単繊維は実質的に集束されていなかった。得られた研磨パッドを実施例1と同様にして評価した。結果を表1に示す。また、得られた研磨パッド断面の100倍のSEM写真を図7に示す。
[比較例5]
海島型複合繊維の形成において、変性PETの代わりに、ポリアミド6/12共重合体(T45℃、吸水率7質量%)を用いて海島型複合繊維を製造した以外は、実施例1と同様にして研磨パッドを得た。得られた研磨パッドは、目付量1390g/m、見掛け密度0.80g/cm、厚み1.7mmであった。
[比較例6]
第1のポリウレタン弾性体として、ポリウレタン弾性体Aの代わりに、ポリエーテル系のポリアルキレングリコールを含有し架橋構造を有する無黄変型ポリウレタン弾性体(吸水率15%、150℃の貯蔵弾性率[E’(150℃、dry)]が50MPa)を用い、第2のポリウレタン弾性体として、ポリウレタン弾性体Bの代わりに水分散ポリエーテル系のカルボキシル基を含有し架橋構造を有する無黄変型ポリウレタン弾性体(吸水率8%、150℃の貯蔵弾性率[E’(150℃、dry)]が10MPa)を用いた以外は、実施例1と同様にして研磨パッドを作成した。評価結果を表1に示す。
[比較例7]
極細繊維化した後にポリウレタン弾性体Bを充填する代わりに、メチルメタクリレートモノマーをシートに浸漬し窒素中で重合した以外は、実施例1と同様にして研磨パッドを作成した。得られた研磨パッド充填率は97%であった。評価結果を表1に示す。
本発明に係る実施例1〜8の研磨パッドは、何れも研磨レートに優れており、また平坦化性能も優れていた。これは、高分子弾性体が繊維束を構成する極細単繊維を集束しているために研磨時における剛性が高いこと、研磨パッド表面に高い繊維密度で極細単繊維が表出していること、高分子弾性体が適度な吸水性を有しており研磨パッドの砥粒スラリーの保持性に優れていること、及び、空隙率が比較的低いこと等によると考えられる。また、長時間用いても、研磨レート及び平坦化性能の低下もほとんど見られなかった。これは、極細単繊維を構成する熱可塑性樹脂のガラス転移点が高く、吸水率が低いために、研磨の際に高温になっても変形しにくいことによると考えられる。また、スクラッチの発生も少なかった。これは、研磨パッド表面に表出した極細単繊維がクッションの役割をして、局所的な荷重がかかりにくいこと、及び、繊維が抜けないこと等によると考えられる。また、研磨条件を代えて研磨性能を評価した実施例9〜11においても、研磨安定性に優れており、また、平坦化性能が優れていた。
一方、極細単繊維を用いる代わりに、通常の繊度のPET繊維を用いた比較例1の研磨パッドにおいては、研磨パッド表面に繊度の高いPET繊維が表出しているために、極細単繊維のようなクッション性がないためにスクラッチが多く発生した。また、砥粒スラリーの保持性も悪いために研磨レートも低かった。また、長繊維ウェブを用いる代わりに、短繊維ウェブを用いて得られた比較例2の研磨パッドは、研磨レート及び平坦化性能が低く、また、スクラッチの発生も多かった。これは、研磨時における剛性が低く、また、研磨パッド表面の極細単繊維が少ないこと等によるものであると考えられる。また、極細単繊維が集束されていない比較例3、4においては貯蔵弾性率が低いために、研磨時に充分な剛性が得られなかった。そのために、平坦化性能が低かった。
また、ガラス転移点が低く、吸水率も高いポリアミド6/12共重合体から得られた極細単繊維を用いた比較例5は、研磨レートが低く、また、研磨レートや平坦化性能の経時変化が大きかった。これは、研磨の際に研磨パッドが高温になったときに変形するためであると考えられる。また、吸水率が高い高分子弾性体を含浸させた比較例6も、研磨レートや平坦化性能の経時変化が大きかった。これも、研磨の際に研磨パッドが高温になったときに変形することによると考えられる。また、研磨パッド充填率が98%と高い比較例7の研磨パッドにおいては、研磨レートが低く、またスクラッチの発生も多かった。これは、表面に表出する単繊維が少なく、また、空隙が少なすぎるために砥粒保持性が悪くなること、及び、研磨の際に剛性が高すぎることによると思われる。
本発明に係る研磨パッドは、シリコンウエハ、半導体ウエハ、半導体デバイス、ハードディスク、ガラス基板、光学製品、または、各種金属等を研磨するための研磨パッドとして用いることができる。
図1は本実施形態の研磨パッド10の大模式図である。 図2は本実施形態の研磨パッド10の厚み方向断面の部分拡大模式図である。 極細単繊維が高分子弾性体により集束されてなる繊維束の垂直方向の断面模式図である。 図4は研磨パッド10を用いたケミカルメカニカル研磨(CMP)の模式説明図である。 図5は実施例1で得られた研磨パッドの厚み方向断面のSEM写真(100倍)である。 図6は実施例1で得られた研磨パッドの厚み方向断面のSEM写真(500倍)である。 図7は比較例4で得られた研磨パッドの厚み方向断面のSEM写真(100倍)である。
符号の説明
1 繊維束
2 高分子弾性体
3 極細単繊維
4 空隙
4a 空隙(連通孔)
5 繊維絡合体
10 研磨パッド
20 研磨装置
21 ターンテーブル
22 砥粒スラリー供給管
23 コンディショナ
24 被研磨基材
25 砥粒スラリー

Claims (13)

  1. 平均断面積が0.01〜30μmの範囲である極細単繊維から構成される繊維束から形成された繊維絡合体と、高分子弾性体とを含有し、
    前記高分子弾性体の一部が前記繊維束の内部に存在して、前記極細単繊維を集束しており、
    空隙を除いた部分の体積割合が55〜95%の範囲であり、
    前記繊維絡合体と前記高分子弾性体との比率が、質量比で90/10〜55/45の範囲であり、
    前記高分子弾性体の吸水率が0.5〜8質量%の範囲であり、
    前記極細単繊維が、ガラス転移温度50℃以上で、吸水率が4質量%以下の熱可塑性樹脂から形成されていることを特徴とする研磨パッド。
  2. 繊維束の平均断面積が80μm/束以上である請求項1に記載の研磨パッド。
  3. 50℃における貯蔵弾性率[E’(50℃、dry)]が100〜800MPaの範囲である請求項1または2に記載の研磨パッド。
  4. 前記高分子弾性体がカルボキシル基、スルホン酸基、及び、炭素数3以下のポリアルキレングリコール基からなる群から選ばれる少なくとも1種の親水性基を有する請求項1〜3のいずれか1項に記載の研磨パッド。
  5. 前記高分子弾性体が架橋構造を有する請求項4に記載の研磨パッド。
  6. 前記高分子弾性体の150℃における貯蔵弾性率[E’(150℃、dry)]が0.1〜100MPaの範囲である請求項5に記載の研磨パッド。
  7. 前記繊維絡合体が、空隙を除いた部分の体積割合が35%以上である請求項1〜6のいずれか1項に記載の研磨パッド。
  8. 50℃の温水で飽和膨潤したときの50℃における貯蔵弾性率[E’(50℃、wet)]が100〜800MPaの範囲である請求項1〜7のいずれか1項に記載の研磨パッド。
  9. 連通孔構造を有する請求項1〜8のいずれか1項に記載の研磨パッド。
  10. 少なくとも一表面に、600本/mm以上の繊維密度で前記極細単繊維が表出している請求項1〜9のいずれか1項に記載の研磨パッド。
  11. 水溶性熱可塑性樹脂5〜50質量%とガラス転移温度が50℃以上で吸水率が4質量%以下の非水溶性熱可塑性樹脂95〜50質量%とを溶融紡糸して得られる海島型複合繊維からなる長繊維ウェブを製造するウェブ製造工程と、
    前記長繊維ウェブを複数枚重ねて絡合させることによりウェブ絡合シートを形成するウェブ絡合工程と、
    前記ウェブ絡合シートを湿熱収縮させることにより、面積収縮率が35%以上になるように収縮させる湿熱収縮処理工程と、
    前記ウェブ絡合シート中の前記水溶性熱可塑性樹脂を熱水中で溶解することにより、極細単繊維からなる繊維絡合体を形成する繊維絡合体形成工程と、
    前記繊維絡合体に吸水率が0.5〜8質量%の範囲の高分子弾性体を形成するための高分子弾性体の水性液を含浸及び乾燥凝固させる高分子弾性体充填工程とを備えることを特徴とする研磨パッドの製造方法。
  12. 前記湿熱収縮処理工程と繊維絡合体形成工程との間に、湿熱収縮されたウェブ絡合シートに高分子弾性体の水性液を含浸及び乾燥凝固させることにより繊維束を結着させる繊維束結着工程をさらに備える請求項11に記載の研磨パッドの製造方法。
  13. 前記水溶性熱可塑性樹脂がポリビニルアルコール系樹脂である請求項11または12に記載の研磨パッドの製造方法。
JP2008023330A 2007-02-01 2008-02-01 研磨パッド及び研磨パッドの製造方法 Active JP5289787B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008023330A JP5289787B2 (ja) 2007-02-01 2008-02-01 研磨パッド及び研磨パッドの製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007023374 2007-02-01
JP2007023374 2007-02-01
JP2008023330A JP5289787B2 (ja) 2007-02-01 2008-02-01 研磨パッド及び研磨パッドの製造方法

Publications (2)

Publication Number Publication Date
JP2008207325A true JP2008207325A (ja) 2008-09-11
JP5289787B2 JP5289787B2 (ja) 2013-09-11

Family

ID=39784063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008023330A Active JP5289787B2 (ja) 2007-02-01 2008-02-01 研磨パッド及び研磨パッドの製造方法

Country Status (1)

Country Link
JP (1) JP5289787B2 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009056585A (ja) * 2007-08-15 2009-03-19 Rohm & Haas Electronic Materials Cmp Holdings Inc ケミカルメカニカルポリッシングのための相互侵入ネットワーク
JP2010167512A (ja) * 2009-01-20 2010-08-05 Toyo Tire & Rubber Co Ltd 研磨パッド及びその製造方法
JP2011073111A (ja) * 2009-09-30 2011-04-14 Fujibo Holdings Inc 研磨パッド
WO2011052173A1 (ja) * 2009-10-30 2011-05-05 株式会社クラレ 研磨パッド及びケミカルメカニカル研磨方法
KR20110111298A (ko) * 2009-01-05 2011-10-10 이노패드, 인코포레이티드 다층 화학-기계적 평탄화 패드
WO2012029547A1 (ja) * 2010-08-31 2012-03-08 東レ株式会社 研磨布およびその製造方法
JP2012517715A (ja) * 2009-02-12 2012-08-02 イノパッド,インコーポレイテッド Cmpパッドにおける3次元ネットワーク
JP2012254493A (ja) * 2011-06-08 2012-12-27 Kuraray Co Ltd 研磨布及び該研磨布を用いた研磨方法
JP2013011040A (ja) * 2011-06-30 2013-01-17 Kuraray Co Ltd 銀付調皮革様シート
JP2013208688A (ja) * 2012-03-30 2013-10-10 Kuraray Co Ltd ガラス系基材の研磨方法
JP2013237107A (ja) * 2012-05-11 2013-11-28 Teijin Ltd 極細繊維及びそれからなる研磨パッド、並びに研磨パッドの製造方法
JP2015063782A (ja) * 2013-08-30 2015-04-09 株式会社クラレ 繊維複合シート、研磨パッド及びその製造方法
JP2015100895A (ja) * 2013-11-26 2015-06-04 株式会社クラレ 研磨パッド及び研磨パッドの製造方法
JP2016196066A (ja) * 2015-04-03 2016-11-24 富士紡ホールディングス株式会社 研磨パッド
KR20190011035A (ko) * 2017-07-24 2019-02-01 주식회사 덕성 곡면 글라스 연마용 연마패드 및 그 제조방법
CN113510613A (zh) * 2021-03-12 2021-10-19 安徽禾臣新材料有限公司 一种显示屏抛光用白垫及其生产方法
WO2023149434A1 (ja) * 2022-02-02 2023-08-10 株式会社クラレ 研磨層、研磨パッド、研磨パッドの製造方法及び研磨方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002103234A (ja) * 2000-09-28 2002-04-09 Jsr Corp 多孔性研磨体
JP2002172555A (ja) * 2000-12-05 2002-06-18 Teijin Ltd 研磨用基布および研磨方法
JP2005068175A (ja) * 2003-08-21 2005-03-17 Toyo Tire & Rubber Co Ltd 研磨パッド
JP2005074577A (ja) * 2003-09-01 2005-03-24 Toray Ind Inc 研磨布

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002103234A (ja) * 2000-09-28 2002-04-09 Jsr Corp 多孔性研磨体
JP2002172555A (ja) * 2000-12-05 2002-06-18 Teijin Ltd 研磨用基布および研磨方法
JP2005068175A (ja) * 2003-08-21 2005-03-17 Toyo Tire & Rubber Co Ltd 研磨パッド
JP2005074577A (ja) * 2003-09-01 2005-03-24 Toray Ind Inc 研磨布

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009056585A (ja) * 2007-08-15 2009-03-19 Rohm & Haas Electronic Materials Cmp Holdings Inc ケミカルメカニカルポリッシングのための相互侵入ネットワーク
US8790165B2 (en) 2009-01-05 2014-07-29 Fns Tech Co., Ltd. Multi-layered chemical-mechanical planarization pad
US9796063B2 (en) 2009-01-05 2017-10-24 Fns Tech Co., Ltd. Multi-layered chemical-mechanical planarization pad
KR20110111298A (ko) * 2009-01-05 2011-10-10 이노패드, 인코포레이티드 다층 화학-기계적 평탄화 패드
KR101674564B1 (ko) 2009-01-05 2016-11-09 에프엔에스테크 주식회사 다층 화학-기계적 평탄화 패드
JP2012514857A (ja) * 2009-01-05 2012-06-28 イノパッド,インコーポレイテッド 複数層化学機械平坦化パッド
JP2010167512A (ja) * 2009-01-20 2010-08-05 Toyo Tire & Rubber Co Ltd 研磨パッド及びその製造方法
KR101592426B1 (ko) 2009-02-12 2016-02-05 에프엔에스테크 주식회사 화학-기계적 평탄화 연마 패드 및 이의 제조 방법
JP2012517715A (ja) * 2009-02-12 2012-08-02 イノパッド,インコーポレイテッド Cmpパッドにおける3次元ネットワーク
JP2011073111A (ja) * 2009-09-30 2011-04-14 Fujibo Holdings Inc 研磨パッド
JP5629266B2 (ja) * 2009-10-30 2014-11-19 株式会社クラレ 研磨パッド及びケミカルメカニカル研磨方法
WO2011052173A1 (ja) * 2009-10-30 2011-05-05 株式会社クラレ 研磨パッド及びケミカルメカニカル研磨方法
TWI513871B (zh) * 2009-10-30 2015-12-21 Kuraray Co 研磨墊及化學機械研磨方法
TWI575131B (zh) * 2010-08-31 2017-03-21 東麗股份有限公司 研磨布及其製造方法
JP2012071415A (ja) * 2010-08-31 2012-04-12 Toray Ind Inc 研磨布およびその製造方法
WO2012029547A1 (ja) * 2010-08-31 2012-03-08 東レ株式会社 研磨布およびその製造方法
JP2012254493A (ja) * 2011-06-08 2012-12-27 Kuraray Co Ltd 研磨布及び該研磨布を用いた研磨方法
JP2013011040A (ja) * 2011-06-30 2013-01-17 Kuraray Co Ltd 銀付調皮革様シート
JP2013208688A (ja) * 2012-03-30 2013-10-10 Kuraray Co Ltd ガラス系基材の研磨方法
JP2013237107A (ja) * 2012-05-11 2013-11-28 Teijin Ltd 極細繊維及びそれからなる研磨パッド、並びに研磨パッドの製造方法
JP2015063782A (ja) * 2013-08-30 2015-04-09 株式会社クラレ 繊維複合シート、研磨パッド及びその製造方法
JP2015100895A (ja) * 2013-11-26 2015-06-04 株式会社クラレ 研磨パッド及び研磨パッドの製造方法
JP2016196066A (ja) * 2015-04-03 2016-11-24 富士紡ホールディングス株式会社 研磨パッド
KR20190011035A (ko) * 2017-07-24 2019-02-01 주식회사 덕성 곡면 글라스 연마용 연마패드 및 그 제조방법
KR101986110B1 (ko) * 2017-07-24 2019-09-03 주식회사 덕성 곡면 글라스 연마용 연마패드 및 그 제조방법
CN113510613A (zh) * 2021-03-12 2021-10-19 安徽禾臣新材料有限公司 一种显示屏抛光用白垫及其生产方法
CN113510613B (zh) * 2021-03-12 2022-05-13 安徽禾臣新材料有限公司 一种显示屏抛光用白垫及其生产方法
WO2023149434A1 (ja) * 2022-02-02 2023-08-10 株式会社クラレ 研磨層、研磨パッド、研磨パッドの製造方法及び研磨方法

Also Published As

Publication number Publication date
JP5289787B2 (ja) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5289787B2 (ja) 研磨パッド及び研磨パッドの製造方法
JP5204502B2 (ja) 研磨パッド及び研磨パッドの製造方法
JP5411862B2 (ja) 研磨パッド及び研磨パッドの製造方法
KR101146966B1 (ko) 연마 패드 및 연마 패드의 제조 방법
JP5629266B2 (ja) 研磨パッド及びケミカルメカニカル研磨方法
JP6220378B2 (ja) 硬質シート及び硬質シートの製造方法
JP5143518B2 (ja) 繊維複合研磨パッド
JP2010064153A (ja) 研磨パッド
JP5356149B2 (ja) 研磨パッドの表面加工方法およびそれによって得られる研磨パッド
JP5522929B2 (ja) 研磨パッド及び研磨方法
JP5551022B2 (ja) 被研磨物のラッピング方法
JP5415700B2 (ja) 研磨パッド及び研磨パッドの製造方法
JP2010058170A (ja) 研磨パッド
JP5502661B2 (ja) 化合物半導体ウエハの研磨方法
JP5789557B2 (ja) ガラス系基材の研磨方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130605

R150 Certificate of patent or registration of utility model

Ref document number: 5289787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150