WO2023149434A1 - 研磨層、研磨パッド、研磨パッドの製造方法及び研磨方法 - Google Patents

研磨層、研磨パッド、研磨パッドの製造方法及び研磨方法 Download PDF

Info

Publication number
WO2023149434A1
WO2023149434A1 PCT/JP2023/003092 JP2023003092W WO2023149434A1 WO 2023149434 A1 WO2023149434 A1 WO 2023149434A1 JP 2023003092 W JP2023003092 W JP 2023003092W WO 2023149434 A1 WO2023149434 A1 WO 2023149434A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polyurethane
polishing layer
water
layer
Prior art date
Application number
PCT/JP2023/003092
Other languages
English (en)
French (fr)
Inventor
梓紗 砂山
佑有子 合志
充 加藤
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2023149434A1 publication Critical patent/WO2023149434A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing layer, a polishing pad, a method for manufacturing a polishing pad, and a polishing method.
  • CMP Chemical Mechanical Polishing (Planarization)
  • CMP is a method of polishing an object to be polished with high precision using a polishing pad while supplying a slurry containing abrasive grains and a reaction liquid to the surface of the object to be polished.
  • Polyurethane is used as a material for forming a polishing layer of a polishing pad used for CMP. Polyurethane has good workability and durability, and is hydrophilic, so it has an advantage of being excellent in affinity with slurry and facilitating a high polishing rate.
  • Patent Document 1 discloses a polishing pad made of a hydrophilic material that satisfies specific physical properties as a polishing pad capable of improving polishing performance.
  • Patent Document 2 discloses a polishing pad having a polyurethane foam sheet as a polishing layer with the object of improving the dressing property of the polishing pad to obtain a high polishing rate, wherein the sheet has an elongation of 100% to 600%, A polishing pad characterized by a breaking strength of 0.1 kgf/mm 2 to 2.0 kgf/mm 2 and a value of elongation/breaking strength of 300 to 1100 is disclosed.
  • Patent Document 2 also discloses a polishing pad whose Shore A hardness is limited to a specific range.
  • the inventors of the present invention have found that the cause of defects when using a conventional polishing pad is that large polishing dust generated from the polishing layer forms aggregates with abrasive grains, and the aggregates come into contact with the surface to be polished and Presuming that this is caused by the application of pressure, the present inventors have found that a polishing layer containing polyurethane having a specific elongation at break can solve the above problems, and completed the present invention.
  • the present invention relates to the following [1] to [13].
  • [1] A polishing layer containing polyurethane, wherein the polyurethane has a breaking elongation of less than 100% at a tensile speed of 50 mm/min after saturated swelling with water at 50°C.
  • [2] The polishing layer of [1] above, wherein the polyurethane has a yield stress of 43 MPa or more at a tensile speed of 50 mm/min after saturated swelling with water at 50°C.
  • [3] The polishing layer according to [1] or [2] above, wherein the polyurethane has a D hardness of 65 or more after saturated swelling with water at 50°C.
  • polishing layer according to any one of [1] to [7] above, which is a molded body of the polyurethane.
  • a polishing pad comprising the polishing layer according to any one of [1] to [10] above.
  • polishing layer capable of achieving a high degree of both polishing uniformity and low defectivity
  • a polishing pad comprising the polishing layer, a method for producing the same, and a polishing method using the polishing pad.
  • the polishing layer of the present invention is a polishing layer containing polyurethane, and the polyurethane has a breaking elongation of less than 100% at a tensile speed of 50 mm/min after saturated swelling with water at 50°C.
  • the polyurethane contained in the polishing layer of the present invention and having a breaking elongation of less than 100% at a tensile speed of 50 mm/min after saturated swelling with water at 50° C. is referred to as “polyurethane (PU)”.
  • Polyurethane (PU) will be described in detail below.
  • Abrasive grains are not included in the components constituting polyurethane (PU). That is, the elongation at break, yield stress, D hardness, and contact angle with water of polyurethane (PU) described below mean values measured using polyurethane (PU) containing no abrasive grains as a measurement object. Accordingly, the polishing layer of the present invention does not exclude an embodiment containing abrasive grains, but the polishing layer of the present invention preferably does not contain abrasive grains.
  • Polyurethane (PU) has a breaking elongation of less than 100% at a tensile speed of 50 mm/min after saturated swelling with water at 50° C. (hereinafter also simply referred to as “breaking elongation after water swelling”). Since the polishing layer of the present invention contains polyurethane (PU) having a breaking elongation of less than 100% after being swollen with water, it is possible to achieve both polishing uniformity and low defectivity in CMP. This is because polyurethane (PU) has a breaking elongation of less than 100% after being swollen with water. It is presumed that this is due to the fact that polishing dust is less likely to occur.
  • the breaking elongation of polyurethane (PU) after swelling with water is less than 100%, preferably 99% or less, more preferably 95% or less, and still more preferably 90% or less.
  • the breaking elongation of the polyurethane (PU) after being swollen with water is within the above range, it is possible to achieve both polishing uniformity and low defectivity at a higher level.
  • the lower limit of the elongation at break after water swelling of polyurethane (PU) is not particularly limited, but from the viewpoint of ease of production, it may be 20% or more, 30% or more, or 40%. or more.
  • the elongation at break after swelling with water can be measured according to the method described in Examples.
  • the breaking elongation of the polyurethane can be adjusted within the above range, for example, by introducing a rigid skeleton having an aliphatic unsaturated bond or an aromatic ring as the molecular structure of the polyurethane derived from the chain extender.
  • yield stress The yield stress of polyurethane (PU) at a tensile speed of 50 mm/min after saturated swelling with water at 50° C. (hereinafter also simply referred to as “yield stress after swelling with water”) is not particularly limited, but is preferably 43 MPa. Above, more preferably 44 MPa or more, still more preferably 45 MPa or more. When the yield stress of polyurethane (PU) after being swollen with water is within the above range, polishing uniformity tends to be further improved.
  • the upper limit of the yield stress after water swelling of polyurethane (PU) is not particularly limited, but from the viewpoint of ease of production, it may be 90 MPa or less, 80 MPa or less, or 70 MPa or less. good too.
  • the yield stress after swelling with water can be measured according to the method described in Examples.
  • the D hardness of polyurethane (PU) after saturation swelling with water at 50° C. (hereinafter also simply referred to as “D hardness after water swelling”) is not particularly limited, but is preferably 65 or more, more preferably 70. 75 or more, more preferably 75 or more.
  • the upper limit of the D hardness of polyurethane (PU) after swelling with water is not particularly limited, but from the viewpoint of ease of production, it may be 95 or less, 90 or less, or 85 or less. good too.
  • the D hardness after swelling with water can be measured according to the method described in Examples.
  • the contact angle of polyurethane (PU) with water is not particularly limited, but is preferably less than 75 degrees, more preferably less than 73 degrees, and even more preferably less than 70 degrees.
  • the lower limit of the contact angle of polyurethane (PU) with water is not particularly limited. There may be.
  • the contact angle with water means the contact angle 2 seconds after water is dropped, and can be specifically measured according to the method described in Examples.
  • Polyurethane (PU) may be thermosetting or thermoplastic, but from the viewpoint of reducing the contact pressure on the surface to be polished and further suppressing the occurrence of defects, it should be thermoplastic. is preferred.
  • Polyurethane (PU) structure Next, the structure of polyurethane (PU) will be described.
  • Polyurethane (PU) preferably contains a structural unit derived from a high-molecular polyol, from the viewpoint that a polishing layer that maintains required properties such as elongation at break, rigidity, hardness and hydrophilicity can be easily obtained.
  • Polymer polyols may be used alone or in combination of two or more.
  • polymeric polyol means a polyol with a molecular weight greater than 300.
  • the "molecular weight" of the polymer polyol and the chain extender described later means the molecular weight calculated from the structural formula when it is a compound having a single molecular weight, and when it is a polymer, the number average means molecular weight.
  • polymer polyols include polyether diols, polycarbonate diols, and polyester diols. Among these, polyether diols and polyester diols are preferred, and polyether diols are more preferred, from the viewpoint of easy availability and excellent reactivity.
  • Polyether diols include, for example, polyethylene glycol (PEG), polypropylene glycol, polytetramethylene glycol (PTMG), poly(methyltetramethylene glycol), glycerin-based polyalkylene ether glycol, and the like. Among these, polyethylene glycol and polytetramethylene glycol are preferred.
  • the content of the polyether diol in the polymer polyol is not particularly limited, but is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 99 mol% or more, and even more preferably 100 mol%. .
  • the hydrophilicity of the polyurethane (PU) tends to be improved.
  • the content of polyethylene glycol in the polymer polyol is not particularly limited, but is preferably 15 mol% or more, more preferably 20 mol% or more, still more preferably 25 mol% or more, and preferably 90 mol% or less. , more preferably 80 mol % or less, still more preferably 70 mol % or less.
  • the hydrophilicity of polyurethane (PU) is further improved, and the discharge and dispersibility of polishing shavings are improved. tend to be more compatible.
  • the content of polyethylene glycol in the polymer polyol can be calculated according to the method described in Examples.
  • Polyester diols include, for example, polyester diols obtained by direct esterification reaction or transesterification reaction of a dicarboxylic acid, an ester-forming derivative thereof such as an ester or an anhydride thereof, and a low-molecular-weight diol.
  • dicarboxylic acids include oxalic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, 2-methylsuccinic acid, 2-methyladipic acid, and 3-methyladipine.
  • Aliphatic dicarboxylic acids having 2 to 12 carbon atoms such as acid, 3-methylpentanedioic acid, 2-methyloctanedioic acid, 3,8-dimethyldecanedioic acid, 3,7-dimethyldecanedioic acid; Fractional distillation of triglycerides Aliphatic dicarboxylic acids such as dimerized aliphatic dicarboxylic acids (dimer acids) having 14 to 48 carbon atoms obtained by dimerizing unsaturated fatty acids obtained by and hydrogenated products thereof (hydrogenated dimer acids); 1,4-cyclohexane alicyclic dicarboxylic acids such as dicarboxylic acids; aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid and orthophthalic acid; and the like.
  • dimerized aliphatic dicarboxylic acids dimerized aliphatic dicarboxylic acids (dimer acids) having 14 to 48 carbon atoms obtained
  • dimer acid and the hydrogenated dimer acid examples include trade names “PRIPOL 1004", “PRIPOL 1006", “PRIPOL 1009” and “PRIPOL 1013” manufactured by Uniqema. These may be used individually by 1 type, and may use 2 or more types together.
  • low-molecular-weight diols examples include ethylene glycol, 1,3-propanediol, 1,2-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1 ,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 2-methyl-1,8-octanediol, 1 , 9-nonanediol and 1,10-decanediol; alicyclic diols such as cyclohexanedimethanol and cyclohexanediol; and the like.
  • diols having 6 to 12 carbon atoms are preferred, diols having 8 to 10 carbon atoms are more preferred, and diols having 9 carbon atoms are even more preferred.
  • polycarbonate diols include those obtained by reacting a low-molecular-weight diol with a carbonate compound.
  • Low-molecular-weight diols for producing polycarbonate diols include the low-molecular-weight diols exemplified above.
  • Carbonate compounds for producing polycarbonate diols include, for example, dialkyl carbonates, alkylene carbonates, diaryl carbonates and the like. Examples of dialkyl carbonates include dimethyl carbonate, diethyl carbonate and the like. Examples of alkylene carbonates include ethylene carbonate and the like. Examples of diaryl carbonates include diphenyl carbonate and the like.
  • the number average molecular weight of the polymeric polyol is greater than 300, preferably 450-3,000, more preferably 500-2,700, and even more preferably 550-2,400. When the number average molecular weight of the polymer polyol is within the above range, it tends to be easy to obtain a polishing layer that maintains the required properties such as rigidity, hardness and hydrophilicity.
  • the number average molecular weight of the polymer polyol means the number average molecular weight calculated based on the hydroxyl value measured according to JIS K 1557-1:2007.
  • the polyurethane (PU) preferably further contains structural units derived from a polyisocyanate and structural units derived from a chain extender.
  • Each of the polyisocyanate and the chain extender may be used alone or in combination of two or more.
  • polyisocyanate As the polyisocyanate, polyisocyanates that are commonly used in the production of polyurethanes can be used. 2,4,4-trimethylhexamethylene diisocyanate, dodecamethylene diisocyanate, isophorone diisocyanate, isopropylidene bis(4-cyclohexyl isocyanate), cyclohexylmethane diisocyanate, methylcyclohexane diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, lysine diisocyanate, 2, 6-diisocyanatomethylcaproate, bis(2-isocyanatoethyl)fumarate, bis(2-isocyanatoethyl)carbonate, 2-isocyanatoethyl-2,6-diisocyanatohexanoate, cyclohexylene diisocyanate, aliphatic or alicyclic diis
  • chain extender means a compound having a molecular weight of 300 or less, which is used for the purpose of increasing the molecular weight of polyurethane.
  • chain extender a chain extender that is commonly used for production of polyurethane can be used.
  • 300 or less diamines, etc. are mentioned. Among these, diols having a molecular weight of 300 or less are preferable.
  • the chain extender used in the production of polyurethane (PU) preferably contains a diol having a molecular weight of 300 or less. It is more preferable to include a diol having a saturated bond or an aromatic ring (hereinafter also simply referred to as "a diol having an aliphatic unsaturated bond or an aromatic ring").
  • a diol having an aliphatic unsaturated bond or an aromatic ring it is possible to adjust the breaking elongation of polyurethane (PU) to be low after swelling with water.
  • diols having aliphatic unsaturated bonds or aromatic rings examples include cis-2-butene-1,4-diol (CBD), trans-2-butene-1,4-diol (TBD), trans-2, Diols having aliphatic unsaturated bonds in the molecule such as 3-dibromo-2-butene-1,4-diol; 1,4-benzenedimethanol (BDM), 1,4-bis( ⁇ -hydroxyethoxy)benzene , bis( ⁇ -hydroxyethyl) terephthalate, m-xylylene glycol, p-xylylene glycol, and other diols having an aromatic ring in the molecule;
  • CBD, TBD, and BDM are preferable from the viewpoint of easy adjustment of physical properties such as elongation at break, and CBD is more preferable from the viewpoint of ease of production.
  • the content of the diol having an aliphatic unsaturated bond or an aromatic ring in the chain extender is not particularly limited, but is preferably 10-70. % by mass, more preferably 20 to 60% by mass, still more preferably 25 to 50% by mass.
  • the content of the diol having an aliphatic unsaturated bond or an aromatic ring is within the above range, it tends to be easy to adjust the breaking elongation after swelling with water to be low.
  • diols having a molecular weight of 300 or less include those listed above, as well as ethylene glycol, diethylene glycol (DEG), 1,2-propanediol, 1,3-propanediol, 2,2-diethyl-1,3 -propanediol, 2,2,4-trimethyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 2, 3-butanediol, 1,4-butanediol (BD), 1,5-pentanediol (PD), neopentyl glycol, 1,6-hexanediol, 2,5-dimethyl-2,5-hexanediol, 3 -Methyl-1,5-pentanediol (MPD), 1,4-cyclohexanediol, cyclo
  • diamines having a molecular weight of 300 or less examples include ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, and dodecamethylenediamine.
  • the blending ratio of these raw materials when producing the polyurethane (PU) is not particularly limited, but the amount of isocyanate groups possessed by the polyisocyanate is preferably 0.7 to The compounding ratio is 1.3 mol, more preferably 0.8 to 1.2 mol, and still more preferably 0.9 to 1.1 mol.
  • the “functional group containing active hydrogen of the chain extender” means a hydroxyl group when the chain extender is a diol, and an amino group when the chain extender is a diamine.
  • the compounding ratio of the chain extender in producing the polyurethane (PU) is not particularly limited.
  • a compounding ratio in which the functional group containing active hydrogen possessed by the chain extender is preferably 1 to 30 mol, more preferably 4 to 20 mol, and still more preferably 8 to 15 mol, per 1 mol of the active hydroxyl group of the molecular polyol. is.
  • the compounding ratio of the chain extender is within the above range, it tends to be easy to obtain a polishing layer that maintains the required properties such as elongation at break, rigidity, hardness and hydrophilicity.
  • Polyurethane (PU) may contain structural units other than structural units derived from polymeric polyols, structural units derived from polyisocyanates, and structural units derived from chain extenders, but may not contain such structural units. preferable.
  • the total content of the structural units derived from the polymer polyol, the structural units derived from the polyisocyanate, and the structural units derived from the chain extender with respect to all structural units contained in the polyurethane (PU) is not particularly limited, but is preferably 80% by mass or more, more preferably 85% by mass or more, still more preferably 90% by mass or more, even more preferably 95% by mass or more, and most preferably 100% by mass.
  • Additive Polyurethane may or may not contain additives as required.
  • Additives include, for example, cross-linking agents, fillers, cross-linking accelerators, cross-linking aids, softeners, tackifiers, anti-aging agents, foaming agents, processing aids, adhesion-imparting agents, inorganic fillers, and organic fillers. , crystal nucleating agents, heat stabilizers, weather stabilizers, antistatic agents, colorants, lubricants, flame retardants, flame retardant aids (antimony oxide, etc.), anti-blooming agents, release agents, thickeners, antioxidants , a conductive agent, and the like.
  • the additive is also part of the components constituting the polyurethane (PU), and the breaking elongation, yield stress, D hardness,
  • the contact angle with water and the density are values measured using polyurethane (PU) containing an additive as a component.
  • abrasive grains are not included in the additives that constitute polyurethane (PU).
  • the total content of additives in the polyurethane (PU) is not particularly limited, but is preferably 50% by mass or less, more preferably 20% by mass or less, and still more preferably 10% by mass, based on the solid content of the polyurethane (PU). Below, more preferably 1% by mass or less.
  • Polyurethane (PU) is obtained by polymerizing the raw materials described above through a urethanization reaction using a known prepolymer method or one-shot method. More specifically, in the absence of a solvent substantially, the above-described components are blended in a predetermined ratio and melt-mixed using a single-screw or multi-screw extruder by melt polymerization. and a method of producing by polymerization by a prepolymer method in the presence of a solvent. In addition, you may perform melt polymerization continuously. In the present invention, it is preferable to use melt polymerization from the viewpoint of stably producing polyurethane (PU).
  • the content of polyurethane (PU) in the polishing layer of the present invention is not particularly limited, but is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass or more, and even more preferably 100% by mass. % by mass.
  • the density of the polishing layer of the present invention is not particularly limited, it is preferably 0.7 g/cm 3 or more, more preferably 0.8 g/cm 3 or more, and still more preferably 1.0 g/cm 3 or more.
  • the density of the polishing layer is within the above range, there is a tendency that both polishing uniformity and defect reduction can be achieved at a higher level.
  • the upper limit of the density of the polishing layer of the present invention is not particularly limited, it may be 1.4 g/cm 3 or less, or 1.3 g/cm 3 or less from the viewpoint of ease of manufacture. , 1.25 g/cm 3 or less. Density can be determined as weight (g) with respect to external dimensions (cm 3 ), and specifically, it can be measured according to the method described in the Examples.
  • the polishing layer of the present invention is preferably a polyurethane (PU) molding.
  • the polishing layer of the present invention is a polyurethane (PU) molded body
  • the molded body may be either a foamed molded body or a non-foamed molded body, preferably a non-foamed molded body.
  • the polishing layer of the present invention is a non-foaming molded article, the uniformity of polishing is high, and variations due to the distribution of foams and the occurrence of defects caused by aggregates in the foams can be further suppressed.
  • the thickness of the polishing layer of the present invention is not particularly limited, it is preferably 0.5 to 5.0 mm, more preferably 1.0 to 3.0 mm, still more preferably 1.2 to 2.5 mm.
  • productivity and handleability tend to improve, and the stability of polishing performance tends to improve.
  • the polishing layer of the present invention preferably includes concave portions on the polishing surface.
  • the recess may or may not penetrate the polishing layer.
  • the shape of the recess is not particularly limited, but a shape such as a groove or hole is preferable.
  • the term “groove” as used herein means a recess formed linearly in a plan view of the polishing layer, and the term “hole” as used herein means a non-linear shape such as a circular shape in the plan view of the polishing layer. It means a formed recess. It is preferable that the grooves are formed in a predetermined pattern such as concentric circles, lattice, spiral, or radial pattern in plan view of the polishing layer. The grooves preferably do not penetrate the polishing layer.
  • the holes are preferably formed in a predetermined pattern such as circular, elliptical, or polygonal shapes in plan view of the polishing layer.
  • the holes are preferably recessed and do not penetrate the polishing layer. Such recesses serve to uniformly and sufficiently supply the slurry to the polishing surface, to discharge polishing debris that causes defects, and to prevent damage to the wafer due to adsorption of the polishing layer.
  • the spacing between the grooves is not particularly limited, but is preferably 1.0 to 50 mm, more preferably 1.5 to 30 mm. , more preferably 2.0 to 15 mm.
  • the width of the groove is not particularly limited, but preferably 0.1 to 3.0 mm, more preferably 0.2 to 2.0 mm.
  • the depth of the groove is not particularly limited, but is less than the thickness of the polishing layer, preferably 0.2 to 1.8 mm, more preferably 0.4 to 1.5 mm.
  • the cross-sectional shape of the groove for example, a rectangular shape, a trapezoidal shape, a triangular shape, a semicircular shape, or the like is appropriately selected according to the purpose.
  • the depth of the holes is not particularly limited, but is less than or equal to the thickness of the polishing layer, preferably 0.2 to 5.0 mm. More preferably 0.4 to 3.0 mm, still more preferably 0.4 to 2.5 mm.
  • the polishing layer of the present invention can be produced, for example, by obtaining a molded body containing polyurethane (PU) and, if necessary, processing the molded body.
  • a molded article containing polyurethane (PU) can be obtained by, for example, pelletizing the polyurethane (PU) obtained by the above method, and then subjecting it to various molding methods such as extrusion molding, injection molding, blow molding, and calendar molding. It is obtained by molding by In particular, according to extrusion molding using a T-die, it is easy to obtain a sheet-like molding with a uniform thickness. After that, if necessary, the shape, thickness, etc.
  • a molding containing polyurethane (PU) may be formed by grinding, laser processing, stamping with a heated mold, or the like. may be transferred with a mold during injection molding.
  • a polishing pad of the present invention is a polishing pad comprising the polishing layer of the present invention.
  • the polishing pad of the present invention may consist of only the polishing layer of the present invention, or may be a laminate obtained by laminating a cushion layer on the non-polishing surface of the polishing layer of the present invention.
  • the cushion layer is preferably a layer having hardness lower than that of the polishing layer. When the hardness of the cushion layer is lower than that of the polishing layer, the hard polishing layer follows local irregularities on the surface to be polished, and the cushion layer follows warpage and undulation of the entire substrate to be polished. Therefore, polishing can be performed with an excellent balance between global flatness (a state in which large-cycle unevenness of the wafer substrate is reduced) and local flatness (a state in which localized unevenness is reduced).
  • Materials used as the cushion layer include, for example, a composite of non-woven fabric impregnated with polyurethane (eg, "Suba400" (manufactured by Nitta Haas Co., Ltd.); rubber such as natural rubber, nitrile rubber, polybutadiene rubber, and silicone rubber.
  • thermoplastic elastomers such as polyester-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, fluorine-based thermoplastic elastomers; foamed plastics; polyurethanes, and the like.
  • polyurethane having a foamed structure is preferable from the viewpoint that it is easy to obtain flexibility preferable for the cushion layer.
  • the thickness of the cushion layer is not particularly limited, it is preferably 0.5 to 5 mm.
  • the thickness of the cushion layer is at least the above lower limit, the effect of following the warp, undulation, etc. of the entire surface to be polished is sufficient, and the global flatness tends to be better.
  • the polishing pad as a whole has an appropriate hardness, and the polishing stability tends to be better.
  • the preferred thickness of the polishing pad of the present invention is the same as the above preferred thickness of the polishing layer of the present invention when the polishing pad of the present invention does not have a cushion layer. Moreover, the thickness of the polishing pad of the present invention is preferably 1 to 10 mm when the polishing pad of the present invention has a cushion layer.
  • the method for producing a polishing pad of the present invention includes one or more steps selected from the group consisting of the step of forming the polishing layer of the present invention and the step of processing the polishing layer of the present invention. .
  • Examples of the step of forming the polishing layer of the present invention include the method described in ⁇ Method for producing polishing layer> above.
  • the polishing pad of the present invention consists of only the polishing layer of the present invention
  • the polishing pad of the present invention can be manufactured by the process of forming the polishing layer of the present invention.
  • the step of processing the polishing layer of the present invention includes, for example, a step of laminating a cushion layer on the non-polishing surface of the polishing layer of the present invention.
  • the cushion layer can be laminated by, for example, using a double-sided adhesive sheet and attaching it to the non-polishing side of the polishing layer of the present invention.
  • the polishing method of the present invention is a polishing method using the polishing pad of the present invention.
  • An embodiment in which the polishing method using the polishing pad of the present invention is performed by CMP will be described with reference to FIG.
  • a CMP apparatus 10 having a circular rotating platen 2, a slurry supply nozzle 3, a holder 4, and a pad conditioner 6 shown in FIG. 1 is used.
  • the polishing pad 1 having the above-described polishing layer is attached to the surface of the rotating platen 2 with double-sided tape or the like.
  • the holder 4 supports the object 5 to be polished.
  • the rotating platen 2 is rotated in the direction indicated by the arrow (clockwise) by a motor (not shown). Further, the holder 4 is rotated in the direction indicated by the arrow (clockwise) by a motor (not shown) in the plane of the rotating platen 2 .
  • the pad conditioner 6 is also rotated in the direction indicated by the arrow (clockwise) by a motor (not shown) within the plane of the rotating platen 2 .
  • a CMP pad conditioner 6 having diamond particles fixed to the carrier surface by nickel electrodeposition or the like is pressed. Then, the polishing surface of the polishing pad 1 is conditioned. Conditioning adjusts the surface to be polished to a surface roughness suitable for polishing the surface to be polished.
  • the slurry 7 is supplied from the slurry supply nozzle 3 to the polishing surface of the rotating polishing pad 1 .
  • lubricating oil, coolant, etc. may be used together with the slurry, if necessary.
  • slurries include acidic slurries, alkaline slurries, and near-neutral slurries.
  • the slurry includes, for example, liquid media such as water and oil; abrasive grains such as silica, alumina, cerium oxide, zirconium oxide, and silicon carbide; A slurry used for CMP containing a chelating agent or the like is preferably used.
  • the object to be polished 5 fixed to the holder 4 and rotating is pressed against the polishing pad 1 in which the slurry 7 is spread evenly over the polishing surface of the polishing layer.
  • the polishing process is then continued until the desired flatness is obtained.
  • the finishing quality is affected by adjusting the pressing force applied during polishing and the speed of relative movement between the rotating platen 2 and the holder 4 .
  • the polishing conditions are not particularly limited, but in order to perform polishing efficiently, the rotational speed of each of the rotating surface plate and the holder is preferably 300 rpm or less, and the pressure applied to the object to be polished is such that scratches are generated after polishing. It is preferable to set it to 150 kPa or less so as not to During polishing, slurry is preferably continuously supplied to the polishing surface by a pump or the like. The amount of slurry to be supplied is not particularly limited, but it is preferable to supply so that the polishing surface is always covered with slurry.
  • the CMP described above can be suitably used for polishing various semiconductor materials such as silicon wafers.
  • Example 1 Polytetramethylene glycol (PTMG850) with a number average molecular weight of 850 and polyethylene glycol (PEG600) with a number average molecular weight of 600 as polymer polyols, cis-2-butene-1,4-diol (CBD) and 1 as chain extenders ,5-pentanediol (PD) and 4,4'-diphenylmethane diisocyanate (MDI) as a polyisocyanate were mixed in the proportions shown in Table 1 to prepare a prepolymer. Further, the obtained prepolymer was kneaded with a small kneader at 240° C.
  • PTMG850 polytetramethylene glycol
  • PEG600 polyethylene glycol
  • CBD cis-2-butene-1,4-diol
  • MDI 4,4'-diphenylmethane diisocyanate
  • polyurethane pellets were supplied to a single screw extruder and extruded through a T-die to form a sheet. Then, the surface of the obtained sheet was ground to form a uniform sheet with a thickness of 2.0 mm, and then a circular shape with a diameter of 740 mm was cut out to form a polyurethane sheet, which is a non-foamed molded body of thermoplastic polyurethane, as a polishing layer. obtained as
  • Example 2 to 12 Comparative Examples 1 to 6
  • a polyurethane sheet which is a non-foamed molded body of thermoplastic polyurethane, was obtained as a polishing layer in the same manner as in Example 1, except that the raw material composition of polyurethane was changed to the raw material composition shown in Table 1. .
  • Comparative Example 7 The polyurethane sheet obtained in Comparative Example 6 was immersed in a 0.25% by mass aqueous solution of sorbic acid (SBA) at 50° C., allowed to stand for 24 hours, then taken out, washed with water and dried. A polyurethane sheet modified in this way was obtained as a polishing layer.
  • SBA sorbic acid
  • the polyurethane sheet as the polishing layer obtained in each example was sandwiched between two metal plates and hot press-molded with a hot press molding machine (desktop test press manufactured by Shindo Kinzoku Kogyo Co., Ltd.). Hot press molding was performed by preheating at a heating temperature of 230° C. for 2 minutes and then pressing for 1 minute at a press pressure to give a thickness of 500 ⁇ m. Then, the two metal plates with the polyurethane sheets interposed therebetween were removed from the hot press molding machine and cooled, and then the press-molded polyurethane sheets having a thickness of 500 ⁇ m were released from the metal plates on both sides.
  • a hot press molding machine desktop test press manufactured by Shindo Kinzoku Kogyo Co., Ltd.
  • a water swelling measurement sample was prepared by immersing the press-molded polyurethane sheet obtained above in water at 50° C. for 48 hours to saturate it with water.
  • the water swelling measurement sample was subjected to a tensile test according to JIS K 7311: 1995 using Autograph SHIMADZU AGS-H manufactured by Shimadzu Corporation, except that the tensile speed was set to 50 mm / min. Elongation and yield stress were measured. The breaking elongation is calculated by the following formula.
  • Breaking elongation (%) ⁇ (L ⁇ L 0 )/L 0 ⁇ 100
  • L distance between gauge lines at break
  • L 0 distance between gauge lines before test
  • Table 1 elongation at break (wet) and yield stress (wet).
  • the polyurethane sheet as the polishing layer obtained in each example was arranged so that at least one side was in contact with the polyimide film in order to obtain a smooth surface to be measured, and was then sandwiched between two metal plates. It was hot-press molded with a tabletop test press manufactured by the company Shindo Kinzoku Kogyo. Hot press molding was carried out by preheating at a heating temperature of 230° C. for 2 minutes and then pressing for 1 minute at a press pressure to give a thickness of 200 ⁇ m.
  • the press-molded polyurethane sheet obtained above was allowed to stand under conditions of room temperature (23°C) and 50% RH for 3 days. Two seconds after 2.5 ⁇ L of water at room temperature (23° C.) was dropped on the surface, the contact angle with water was measured using DropMaster 500 manufactured by Kyowa Interface Science Co., Ltd. The results are shown in Table 1 as contact angles (immediately after).
  • a sample piece was obtained by cutting a polyurethane sheet as a polishing layer obtained in each example into a rectangular shape (50 mm long ⁇ 50 mm wide) in a plan view.
  • ⁇ Polishing test> The resulting polishing pad was mounted on a polishing apparatus "F-REX300" manufactured by Ebara Corporation. Then, a slurry prepared by diluting Cabot Microelectronics' slurry "SEMI-SPERSE25" by two times was prepared, and the platen rotation speed was 100 rpm, the head rotation speed was 99 rpm, and the polishing pressure was 20.0 kPa. While supplying the slurry to the polishing surface of the polishing pad at , a silicon wafer having a diameter of 12 inches and having a silicon oxide film having a thickness of 2,000 nm on its surface was polished for 60 seconds.
  • the surface to be polished of the tenth silicon wafer was inspected using a defect inspection apparatus manufactured by KLA Corporation, and the number of defects having a size of 160 nm or more was counted.
  • ⁇ Measurement of coefficient of variation of polishing rate> The film thickness of the silicon oxide film before and after polishing of the tenth silicon wafer was measured at 49 points within the wafer surface (edge exclusion 3 mm), and the polishing rate (nm/min) at each point was determined. , the average value and standard deviation 1 ⁇ of the polishing rate at the 49 points were calculated, and the coefficient of variation (unit: %) was obtained from the average value and standard deviation 1 ⁇ , which was used as an index of polishing uniformity. A smaller coefficient of variation indicates better polishing uniformity.
  • PU polyurethane

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

ポリウレタンを含む研磨層であり、前記ポリウレタンの、50℃の水で飽和膨潤させた後の引張速度50mm/minにおける破断伸度が、100%未満である、研磨層、該研磨層を備える研磨パッド及びその製造方法、並びに該研磨パッドを用いる研磨方法に関する。

Description

研磨層、研磨パッド、研磨パッドの製造方法及び研磨方法
 本発明は、研磨層、研磨パッド、研磨パッドの製造方法及び研磨方法に関する。
 半導体ウェハの表面を平坦化するための研磨方法として、CMP(化学的機械的研磨;Chemical Mechanical Polishing(Planarization))が適用されている。CMPは被研磨物の表面に対して、砥粒及び反応液を含むスラリーを供給しながら研磨パッドで被研磨物を高精度に研磨する方法である。
 CMPに用いられる研磨パッドの研磨層を構成する材料としてはポリウレタンが用いられている。ポリウレタンは、加工性及び耐久性が良好であり、親水性を有するため、スラリーとの親和性に優れ、高い研磨速度が得られ易いという利点を有する。
 ところで、半導体ウェハの高集積化及び多層配線化は益々進展しており、これに伴い、半導体ウェハのCMPに対しても、従来よりも高い研磨精度が要求されつつある。このような要求を満たすべく、研磨パッドの性能を向上させるための検討が行われている。
 例えば、特許文献1には、研磨性能を改善できる研磨パッドとして、特定の物性を充足する親水性材料からなる研磨パッドが開示されている。
 特許文献2には、研磨パッドにおけるドレス性を改善して高い研磨レートを得ることを課題として、ポリウレタン発泡シートを研磨層として有する研磨パッドにおいて、前記シートが、伸度を100%~600%、破断強度を0.1kgf/mm~2.0kgf/mmとし、かつ伸度/破断強度の値を300~1100とすることを特徴とする研磨パッドが開示されている。
国際公開第99/07515号 特開2016-68250号公報
 CMPにおける研磨速度及び研磨精度、特に、被研磨面内における研磨速度の均一性(以下、「研磨均一性」ともいう)を高めるためには、研磨層の硬度を高める方法が有効である。当該観点から、特許文献2には、ショアA硬度を特定の範囲に限定した研磨パッドも開示されている。
 しかしながら、本発明者等の検討によると、研磨層の硬度を高めると、被研磨物の被研磨面にディフェクト(欠陥)が発生し易くなることが判明している。そのため、研磨均一性の向上と、ディフェクト数を低く抑える少ディフェクト性とを両立させることは困難であった。
 本発明は、上記従来の問題に鑑みてなされたものであって、CMPにおいて、研磨均一性と少ディフェクト性とを高度に両立し得る研磨層、該研磨層を備える研磨パッド及びその製造方法、並びに該研磨パッドを用いる研磨方法を提供することを課題とする。
 本発明者等は、従来の研磨パッドを用いる際におけるディフェクトの発生原因について、研磨層から発生する大きい研磨屑が砥粒と凝集体を形成し、該凝集体が被研磨面に対して接触及び加圧されることが原因であると推定し、特定の破断伸度を有するポリウレタンを含む研磨層が、上記課題を解決し得ることを見出し、本発明を完成させた。
 本発明は、下記[1]~[13]に関する。
[1]ポリウレタンを含む研磨層であり、前記ポリウレタンの、50℃の水で飽和膨潤させた後の引張速度50mm/minにおける破断伸度が、100%未満である、研磨層。
[2]前記ポリウレタンの、50℃の水で飽和膨潤させた後の引張速度50mm/minにおける降伏応力が、43MPa以上である、上記[1]に記載の研磨層。
[3]前記ポリウレタンの、50℃の水で飽和膨潤させた後のD硬度が65以上である、上記[1]又は[2]に記載の研磨層。
[4]前記ポリウレタンの、水との接触角が75度未満である、上記[1]~[3]のいずれかに記載の研磨層。
[5]前記ポリウレタンが、高分子ポリオールに由来する構造単位を含み、前記高分子ポリオールがポリエチレングリコールを15モル%以上含む、上記[1]~[4]のいずれかに記載の研磨層。
[6]前記ポリウレタンが、熱可塑性である、上記[1]~[5]のいずれかに記載の研磨層。
[7]密度が0.7g/cm以上である、上記[1]~[6]のいずれかに記載の研磨層。
[8]前記ポリウレタンの成形体である、上記[1]~[7]のいずれかに記載の研磨層。
[9]前記成形体が、非発泡成形体である、上記[8]に記載の研磨層。
[10]前記研磨層が、研磨面に凹部を含む、上記[1]~[9]のいずれかに記載の研磨層。
[11]上記[1]~[10]のいずれかに記載の研磨層を備える、研磨パッド。
[12]上記[11]に記載の研磨パッドを製造する方法であって、前記研磨層を形成する工程及び前記研磨層を加工する工程からなる群から選択される1以上の工程を含む、研磨パッドの製造方法。
[13]上記[11]に記載の研磨パッドを用いる、研磨方法。
 本発明によると、CMPにおいて、研磨均一性と少ディフェクト性とを高度に両立し得る研磨層、該研磨層を備える研磨パッド及びその製造方法、並びに該研磨パッドを用いる研磨方法を提供することができる。
本発明の研磨パッドを用いた研磨方法を説明するための模式図である。
 以下、本発明の実施形態の一例に基づいて説明する。ただし、以下に示す実施態様は、本発明の技術思想を具体化するための例示であって、本発明は以下の記載に限定されない。
 本明細書における記載事項を任意に選択した態様又は任意に組み合わせた態様も本発明に含まれる。
 本明細書において、好ましいとする規定は任意に選択でき、好ましいとする規定同士の組み合わせはより好ましいといえる。
 本明細書において、「XX~YY」との記載は、「XX以上YY以下」を意味する。
 本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。
[研磨層]
 本発明の研磨層は、ポリウレタンを含む研磨層であり、前記ポリウレタンの、50℃の水で飽和膨潤させた後の引張速度50mm/minにおける破断伸度が、100%未満である。
 以下、本発明の研磨層に含まれる、50℃の水で飽和膨潤させた後の引張速度50mm/minにおける破断伸度が、100%未満であるポリウレタンを「ポリウレタン(PU)」と称する。
<ポリウレタン(PU)>
 以下、ポリウレタン(PU)について詳細に説明する。
 なお、ポリウレタン(PU)を構成する成分には、砥粒は含めないものとする。すなわち、以下で説明するポリウレタン(PU)の破断伸度、降伏応力、D硬度及び水との接触角は、砥粒を含まないポリウレタン(PU)を測定対象として測定された値を意味する。このことによって、本発明の研磨層から、砥粒を含む態様は排除されないが、本発明の研磨層は、砥粒を含まないものであることが好ましい。
(破断伸度)
 ポリウレタン(PU)は、50℃の水で飽和膨潤させた後の引張速度50mm/minにおける破断伸度(以下、単に「水膨潤後の破断伸度」ともいう)が100%未満である。
 本発明の研磨層は、水膨潤後の破断伸度が100%未満であるポリウレタン(PU)を含むことによって、CMPにおいて、研磨均一性と少ディフェクト性とを高度に両立し得る。これは、ポリウレタン(PU)は、水膨潤後の破断伸度が100%未満であるため、該ポリウレタン(PU)を含む本発明の研磨層は、CMPにおいて、ディフェクトの発生原因と推定される大きな研磨屑が発生し難いことによると推測される。
 ポリウレタン(PU)の水膨潤後の破断伸度は、100%未満であり、好ましくは99%以下、より好ましくは95%以下、さらに好ましくは90%以下である。
 ポリウレタン(PU)の水膨潤後の破断伸度が上記範囲であると、研磨均一性と少ディフェクト性とをより高度に両立させることができる。
 ポリウレタン(PU)の水膨潤後の破断伸度の下限値は、特に限定されないが、製造容易性等の観点から、20%以上であってもよく、30%以上であってもよく、40%以上であってもよい。
 水膨潤後の破断伸度は、実施例に記載の方法に従って測定することができる。
 ポリウレタンの破断伸度は、例えば、鎖伸長剤に由来するポリウレタンの分子構造として脂肪族不飽和結合又は芳香環を有する、剛直な骨格を導入する方法によって、上記範囲に調整することができる。
(降伏応力)
 ポリウレタン(PU)の、50℃の水で飽和膨潤させた後の引張速度50mm/minにおける降伏応力(以下、単に「水膨潤後の降伏応力」ともいう)は、特に限定されないが、好ましくは43MPa以上、より好ましくは44MPa以上、さらに好ましくは45MPa以上である。
 ポリウレタン(PU)の水膨潤後の降伏応力が上記範囲であると、研磨均一性をより向上できる傾向にある。
 ポリウレタン(PU)の水膨潤後の降伏応力の上限値は、特に限定されないが、製造容易性等の観点から、90MPa以下であってもよく、80MPa以下であってもよく、70MPa以下であってもよい。
 水膨潤後の降伏応力は、実施例に記載の方法に従って測定することができる。
(D硬度)
 ポリウレタン(PU)の、50℃の水で飽和膨潤させた後のD硬度(以下、単に「水膨潤後のD硬度」ともいう)は、特に限定されないが、好ましくは65以上、より好ましくは70以上、さらに好ましくは75以上である。
 ポリウレタン(PU)の水膨潤後のD硬度が上記範囲であると、研磨均一性をより向上できる傾向にある。
 ポリウレタン(PU)の水膨潤後のD硬度の上限値は、特に限定されないが、製造容易性等の観点から、95以下であってもよく、90以下であってもよく、85以下であってもよい。
 水膨潤後のD硬度は、実施例に記載の方法に従って測定することができる。
(水との接触角)
 ポリウレタン(PU)の水との接触角は、特に限定されないが、好ましくは75度未満、より好ましくは73度未満、さらに好ましくは70度未満である。
 ポリウレタン(PU)の水との接触角が上記範囲であると、研磨面の親水性が向上し、研磨屑の排出性及び分散性が向上することから、研磨均一性と少ディフェクト性とをより高度に両立できる傾向にある。
 ポリウレタン(PU)の水との接触角の下限値は、特に限定されないが、製造容易性等の観点から、30度以上であってもよく、40度以上であってもよく、50度以上であってもよい。
 なお、本明細書において、水との接触角は、水を滴下してから2秒後の接触角を意味し、具体的には、実施例に記載の方法に従って測定することができる。
<ポリウレタン(PU)の性状>
 ポリウレタン(PU)は、熱硬化性であってもよく、熱可塑性であってもよいが、被研磨面に対する接触圧力を低減し、ディフェクトの発生をより抑制するという観点から、熱可塑性であることが好ましい。
(ポリウレタン(PU)の構造)
 次に、ポリウレタン(PU)の構造について説明する。
 ポリウレタン(PU)は、破断伸度、剛性、硬度、親水性等の要求特性を維持した研磨層が得られ易いという観点から、高分子ポリオールに由来する構造単位を含むものが好ましい。
 高分子ポリオールは、1種を単独で用いてもよく、2種以上を併用してもよい。
〔高分子ポリオール〕
 本明細書において「高分子ポリオール」とは、分子量が300を超えるポリオールを意味する。
 なお、高分子ポリオール及び後述する鎖伸長剤の「分子量」とは、単一の分子量を有する化合物である場合は、構造式から算出される分子量を意味し、重合体である場合は、数平均分子量を意味する。
 高分子ポリオールとしては、例えば、ポリエーテルジオール、ポリカーボネートジオール、ポリエステルジオール等が挙げられる。これらの中でも、入手容易性及び反応性に優れるという観点から、ポリエーテルジオール、ポリエステルジオールが好ましく、ポリエーテルジオールがより好ましい。
{ポリエーテルジオール}
 ポリエーテルジオールとしては、例えば、ポリエチレングリコール(PEG)、ポリプロピレングリコール、ポリテトラメチレングリコール(PTMG)、ポリ(メチルテトラメチレングリコール)、グリセリンベースポリアルキレンエーテルグリコール等が挙げられる。これらの中でも、ポリエチレングリコール、ポリテトラメチレングリコールが好ましい。
 高分子ポリオール中におけるポリエーテルジオールの含有量は、特に限定されないが、好ましくは90モル%以上、より好ましくは95モル%以上、さらに好ましくは99モル%以上、よりさらに好ましくは100モル%である。
 ポリエーテルジオールの含有量が上記範囲であると、ポリウレタン(PU)の親水性が良好になり易い傾向にある。
 高分子ポリオール中におけるポリエチレングリコールの含有量は、特に限定されないが、好ましくは15モル%以上、より好ましくは20モル%以上、さらに好ましくは25モル%以上であり、また、好ましくは90モル%以下、より好ましくは80モル%以下、さらに好ましくは70モル%以下である。
 ポリエチレングリコールの含有量が上記下限値以上であると、ポリウレタン(PU)の親水性がより一層向上し、研磨屑の排出性及び分散性が向上することから、研磨均一性と少ディフェクト性とをより高度に両立できる傾向にある。また、ポリエチレングリコールの含有量が上記上限値以下であると、過度な吸湿が抑制されると共に、乾燥時と水膨潤時における樹脂硬度の変化が小さくなり、研磨性能の安定性がより良好になる傾向にある。
 高分子ポリオール中におけるポリエチレングリコールの含有量は、実施例に記載の方法に従って計算することができる。
{ポリエステルジオール}
 ポリエステルジオールとしては、例えば、ジカルボン酸、そのエステル又は無水物等のエステル形成性誘導体と、低分子ジオールとを、直接エステル化反応又はエステル交換反応させることにより得られるポリエステルジオール等が挙げられる。
 ジカルボン酸としては、例えば、シュウ酸,コハク酸,グルタル酸,アジピン酸,ピメリン酸,スベリン酸,アゼライン酸,セバシン酸,ドデカンジカルボン酸,2-メチルコハク酸,2-メチルアジピン酸,3-メチルアジピン酸,3-メチルペンタン二酸,2-メチルオクタン二酸,3,8-ジメチルデカン二酸,3,7-ジメチルデカン二酸等の炭素数2~12の脂肪族ジカルボン酸;トリグリセリドの分留により得られる不飽和脂肪酸を二量化した炭素数14~48の二量化脂肪族ジカルボン酸(ダイマー酸)及びこれらの水素添加物(水添ダイマー酸)等の脂肪族ジカルボン酸;1,4-シクロヘキサンジカルボン酸等の脂環族ジカルボン酸;テレフタル酸,イソフタル酸,オルトフタル酸等の芳香族ジカルボン酸;等が挙げられる。また、ダイマー酸及び水添ダイマー酸としては、ユニケマ社製の商品名「プリポール1004」、「プリポール1006」、「プリポール1009」、「プリポール1013」等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 また、低分子ジオールとしては、例えば、エチレングリコール,1,3-プロパンジオール,1,2-プロパンジオール,2-メチル-1,3-プロパンジオール,1,4-ブタンジオール,ネオペンチルグリコール,1,5-ペンタンジオール,3-メチル-1,5-ペンタンジオール,1,6-ヘキサンジオール,1,7-ヘプタンジオール,1,8-オクタンジオール,2-メチル-1,8-オクタンジオール,1,9-ノナンジオール,1,10-デカンジオール等の脂肪族ジオール;シクロヘキサンジメタノール,シクロヘキサンジオール等の脂環式ジオール;等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。これらの中でも、炭素数6~12のジオールが好ましく、炭素数8~10のジオールがより好ましく、炭素数9のジオールがさらに好ましい。
{ポリカーボネートジオール}
 ポリカーボネートジオールとしては、例えば、低分子ジオールと、カーボネート化合物との反応により得られるものが挙げられる。
 ポリカーボネートジオールを製造するための低分子ジオールとしては先に例示した低分子ジオールが挙げられる。
 ポリカーボネートジオールを製造するためのカーボネート化合物としては、例えば、ジアルキルカーボネート、アルキレンカーボネート、ジアリールカーボネート等が挙げられる。
 ジアルキルカーボネートとしては、例えば、ジメチルカーボネート、ジエチルカーボネート等が挙げられる。
 アルキレンカーボネートとしては、例えば、エチレンカーボネート等が挙げられる。
 ジアリールカーボネートとしては、例えば、ジフェニルカーボネート等が挙げられる。
{高分子ポリオールの数平均分子量}
 高分子ポリオールの数平均分子量は、300超であり、好ましくは450~3,000、より好ましくは500~2,700、さらに好ましくは550~2,400である。
 高分子ポリオールの数平均分子量が上記範囲であると、剛性、硬度、親水性等の要求特性を維持した研磨層が得られ易い傾向にある。
 高分子ポリオールの数平均分子量は、JIS K 1557-1:2007に準拠して測定した水酸基価に基づいて算出された数平均分子量を意味する。
 ポリウレタン(PU)は、さらに、ポリイソシアネートに由来する構造単位及び鎖伸長剤に由来する構造単位を含むことが好ましい。
 ポリイソシアネート及び鎖伸長剤は、各々について、1種を単独で用いてもよく、2種以上を併用してもよい。
〔ポリイソシアネート〕
 ポリイソシアネートとしては、通常のポリウレタンの製造に用いられるポリイソシアネートを使用することができ、例えば、エチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、イソホロンジイソシアネート、イソプロピリデンビス(4-シクロヘキシルイソシアネート)、シクロヘキシルメタンジイソシアネート、メチルシクロヘキサンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、リジンジイソシアネート、2,6-ジイソシアナトメチルカプロエート、ビス(2-イソシアナトエチル)フマレート、ビス(2-イソシアナトエチル)カーボネート、2-イソシアナトエチル-2,6-ジイソシアナトヘキサノエート、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート、ビス(2-イソシアナトエチル)-4-シクロへキセン等の脂肪族又は脂環式ジイソシアネート;2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート(MDI)、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、m-キシリレンジイソシアネート、p-キシリレンジイソシアネート、1,5-ナフチレンジイソシアネート、4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトジフェニルメタン、クロロフェニレン-2,4-ジイソシアネート、テトラメチルキシリレンジイソシアネート等の芳香族ジイソシアネート;等が挙げられる。これらの中でも、研磨層の耐摩耗性を向上させるという観点から、4,4’-ジフェニルメタンジイソシアネート(MDI)が好ましい。
〔鎖伸長剤〕
 本明細書において「鎖伸長剤」とは、ポリウレタンを高分子量化する目的で使用される、分子量が300以下の化合物を意味する。
 鎖伸長剤としては、通常のポリウレタンの製造に用いられる鎖伸長剤を使用することができる。具体的には、イソシアネート基と反応し得る活性水素原子を分子中に2個以上有する、分子量が300以下の低分子化合物を使用することができ、例えば、分子量が300以下のジオール類、分子量が300以下のジアミン類等が挙げられる。これらの中でも、分子量が300以下のジオール類が好ましい。
{分子量が300以下のジオール類}
 ポリウレタン(PU)の製造に用いる鎖伸長剤は、分子量が300以下のジオール類を含むことが好ましく、該分子量が300以下のジオール類として、分子量が300以下であって、分子内に脂肪族不飽和結合又は芳香環を有するジオール(以下、単に「脂肪族不飽和結合又は芳香環を有するジオール」ともいう)を含むことがより好ましい。
 鎖伸長剤が、脂肪族不飽和結合又は芳香環を有するジオールを含むことによって、ポリウレタン(PU)の、水膨潤後の破断伸度を低く調整することができる。
 脂肪族不飽和結合又は芳香環を有するジオールとしては、例えば、cis-2-ブテン-1,4-ジオール(CBD)、trans-2-ブテン-1,4-ジオール(TBD)、trans-2,3-ジブロモ-2-ブテン-1,4-ジオール等の分子内に脂肪族不飽和結合を有するジオール;1,4-ベンゼンジメタノール(BDM)、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、ビス(β-ヒドロキシエチル)テレフタレート、m-キシリレングリコール、p-キシリレングリコール等の分子内に芳香環を有するジオール;等が挙げられる。
 脂肪族不飽和結合又は芳香環を有するジオールの中でも、破断伸度の物性を良好に調整し易いという観点からCBD、TBD、BDMが好ましく、製造容易性の観点から、CBDがより好ましい。
 鎖伸長剤が脂肪族不飽和結合又は芳香環を有するジオールを含む場合、鎖伸長剤中における脂肪族不飽和結合又は芳香環を有するジオールの含有量は、特に限定されないが、好ましくは10~70質量%、より好ましくは20~60質量%、さらに好ましくは25~50質量%である。
 脂肪族不飽和結合又は芳香環を有するジオールの含有量が上記範囲であると、水膨潤後の破断伸度を低く調整し易い傾向にある。
 分子量が300以下のジオール類としては、上記で挙げたものの他、例えば、エチレングリコール、ジエチレングリコール(DEG)、1,2-プロパンジオール、1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2,2,4-トリメチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール(BD)、1,5-ペンタンジオール(PD)、ネオペンチルグリコール、1,6-ヘキサンジオール、2,5-ジメチル-2,5-ヘキサンジオール、3-メチル-1,5-ペンタンジオール(MPD)、1,4-シクロヘキサンジオール、シクロヘキサンジメタノール(1,4-シクロヘキサンジメタノール等)、1,9-ノナンジオール(ND)、トリエチレングリコール等のジオール類等が挙げられる。これらの中でも、1,4-ブタンジオール(BD)、1,5-ペンタンジオール(PD)、3-メチル-1,5-ペンタンジオール(MPD)が好ましい。
{分子量が300以下のジアミン類}
 分子量が300以下のジアミン類としては、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、3-メチルペンタメチレンジアミン、1,2-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、1,2-ジアミノプロパン、ヒドラジン、キシリレンジアミン、イソホロンジアミン、ピペラジン、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、トリレンジアミン、キシレンジアミン、アジピン酸ジヒドラジド、イソフタル酸ジヒドラジド、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフォン、3,4-ジアミノジフェニルスルフォン、3,3’-ジアミノジフェニルスルフォン、4,4’-メチレン-ビス(2-クロロアニリン)、3,3’-ジメチル-4,4’-ジアミノビフェニル、4,4’-ジアミノジフェニルスルフィド、2,6-ジアミノトルエン、2,4-ジアミノクロロベンゼン、1,2-ジアミノアントラキノン、1,4-ジアミノアントラキノン、3,3’-ジアミノベンゾフェノン、3,4-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、4,4’-ジアミノビベンジル、2,2’-ジアミノ-1,1’-ビナフタレン、1,3-ビス(4-アミノフェノキシ)アルカン、1,4-ビス(4-アミノフェノキシ)アルカン、1,5-ビス(4-アミノフェノキシ)アルカン等の1,n-ビス(4-アミノフェノキシ)アルカン(nは3~10)、1,2-ビス[2-(4-アミノフェノキシ)エトキシ]エタン、9,9-ビス(4-アミノフェニル)フルオレン、4,4’-ジアミノベンズアニリド等が挙げられる。
〔ポリウレタン(PU)の原料の配合比〕
 ポリウレタン(PU)が、高分子ポリオールに由来する構造単位、ポリイソシアネートに由来する構造単位及び鎖伸長剤に由来する構造単位を含む場合、ポリウレタン(PU)を製造する際におけるこれらの原料の配合比は、特に限定されないが、高分子ポリオールが有する活性水酸基及び鎖伸長剤が有する活性水素を含む官能基の合計1モルに対して、ポリイソシアネートが有するイソシアネート基の量が、好ましくは0.7~1.3モル、より好ましくは0.8~1.2モル、さらに好ましくは0.9~1.1モルとなる配合比である。
 各成分の配合比が上記下限値以上であると、ポリウレタン(PU)の機械的強度及び耐摩耗性が向上すると共に、研磨層の寿命も長くなる傾向にある。また、各成分の配合比が上記上限値以下であると、ポリウレタン(PU)の生産性及び保存安定性が向上し、研磨層を製造し易くなる傾向にある。
 なお、「鎖伸長剤が有する活性水素を含む官能基」とは、鎖伸長剤がジオール類である場合は水酸基を意味し、鎖伸長剤がジアミン類である場合はアミノ基を意味する。
 ポリウレタン(PU)が、高分子ポリオールに由来する構造単位及び鎖伸長剤に由来する構造単位を含む場合、ポリウレタン(PU)を製造する際における鎖伸長剤の配合比は、特に限定されないが、高分子ポリオールの活性水酸基1モルに対して、鎖伸長剤が有する活性水素を含む官能基が、好ましくは1~30モル、より好ましくは4~20モル、さらに好ましくは8~15モルとなる配合比である。
 鎖伸長剤の配合比が上記範囲であると、破断伸度、剛性、硬度及び親水性等の要求特性を維持した研磨層が得られ易い傾向にある。
〔その他の構造単位〕
 ポリウレタン(PU)は、高分子ポリオールに由来する構造単位、ポリイソシアネートに由来する構造単位及び鎖伸長剤に由来する構造単位以外のその他の構造単位を含んでいてもよいが、含んでいないことが好ましい。
 ポリウレタン(PU)に含まれる全構造単位に対する、高分子ポリオールに由来する構造単位、ポリイソシアネートに由来する構造単位及び鎖伸長剤に由来する構造単位の合計含有量は、特に限定されないが、好ましくは80質量%以上、より好ましくは85質量%以上、さらに好ましくは90質量%以上、よりさらに好ましくは95質量%以上、最も好ましくは100質量%である。
(添加剤)
 ポリウレタン(PU)は、必要に応じて、添加剤を含有していてもよく、含有していなくてもよい。
 添加剤としては、例えば、架橋剤、充填剤、架橋促進剤、架橋助剤、軟化剤、粘着付与剤、老化防止剤、発泡剤、加工助剤、密着性付与剤、無機充填剤、有機フィラー、結晶核剤、耐熱安定剤、耐候安定剤、帯電防止剤、着色剤、滑剤、難燃剤、難燃助剤(酸化アンチモン等)、ブルーミング防止剤、離型剤、増粘剤、酸化防止剤、導電剤等が挙げられる。
 ポリウレタン(PU)が、添加剤を含有する場合、該添加剤もポリウレタン(PU)を構成する成分の一部であるものとし、上記したポリウレタン(PU)の破断伸度、降伏応力、D硬度、水との接触角及び密度は、添加剤を構成成分として含むポリウレタン(PU)を測定対象として測定された値を意味する。但し、上記の通り、砥粒は、ポリウレタン(PU)を構成する添加剤に含めない。
 ポリウレタン(PU)中における添加剤の合計含有量は、特に限定されないが、ポリウレタン(PU)の固形分基準で、好ましくは50質量%以下、より好ましくは20質量%以下、さらに好ましくは10質量%以下、よりさらに好ましくは1質量%以下である。
(ポリウレタン(PU)の製造方法)
 ポリウレタン(PU)は、前述の原料を用いて公知のプレポリマー法又はワンショット法を用いたウレタン化反応によって重合することにより得られる。より具体的には、実質的に溶剤の不存在下で、上述した各成分を所定の比率で配合して単軸又は多軸スクリュー型押出機を用いて溶融混合しながら溶融重合により製造する方法や、溶剤存在下でプレポリマー法により重合にて製造する方法等が挙げられる。なお、溶融重合は連続的に行ってもよい。
 本発明においては、ポリウレタン(PU)の製造を安定的に行う観点から、溶融重合を用いることが好ましい。
(ポリウレタン(PU)の含有量)
 本発明の研磨層中における、ポリウレタン(PU)の含有量は、特に限定されないが、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量%以上、よりさらに好ましくは100質量%である。
<研磨層の密度>
 本発明の研磨層の密度は、特に限定されないが、好ましくは0.7g/cm以上、より好ましくは0.8g/cm以上、さらに好ましくは1.0g/cm以上である。
 研磨層の密度が上記範囲であると、研磨均一性と少ディフェクト性とをより高度に両立できる傾向にある。
 本発明の研磨層の密度の上限値は、特に限定されないが、製造容易性等の観点から、1.4g/cm以下であってもよく、1.3g/cm以下であってもよく、1.25g/cm以下であってもよい。
 密度は、外形寸法(cm)に対する重量(g)として求めることができ、具体的には、実施例に記載の方法に従って測定することができる。
<研磨層の形態等>
 本発明の研磨層は、ポリウレタン(PU)の成形体であることが好ましい。
 本発明の研磨層が、ポリウレタン(PU)の成形体である場合、該成形体は、発泡成形体又は非発泡成形体のいずれであってもよいが、非発泡成形体であることが好ましい。本発明の研磨層が、非発泡成形体であると、研磨均一性が高く、発泡の分布によるばらつき、発泡内の凝集物に起因するディフェクトの発生等をより抑制することができる。
 本発明の研磨層の厚さは、特に限定されないが、好ましくは0.5~5.0mm、より好ましくは1.0~3.0mm、さらに好ましくは1.2~2.5mmである。
 研磨層の厚さが上記範囲であると、生産性及び取り扱い性が向上すると共に、研磨性能の安定性が向上する傾向にある。
 本発明の研磨層は、研磨面に凹部を含むことが好ましい。凹部は、研磨層を貫通していてもよいし、貫通していなくともよい。
 凹部の形状は特に限定されないが、溝、穴等の形状が好ましい。なお、ここでの「溝」とは、研磨層の平面視で線状に形成された凹部を意味し、「穴」とは、研磨層の平面視で、例えば、円形等の非線状に形成された凹部を意味する。
 溝は、研磨層の平面視において、例えば、同心円状、格子状、螺旋状、放射状等の所定のパターンで形成されることが好ましい。溝は、研磨層を貫通していないことが好ましい。
 穴は、研磨層の平面視において、例えば、円状、楕円状、多角形状の所定のパターンで形成されることが好ましい。穴は、研磨層を貫通していない窪んだ形状であることが好ましい。
 このような凹部は、研磨面にスラリーを均一かつ充分に供給すると共に、ディフェクトの発生原因となる研磨屑の排出、研磨層の吸着によるウェハ破損の防止等に役立つものである。
 本発明の研磨層が、例えば、研磨面に同心円状又は螺旋状の溝を有する場合、溝間の間隔は、特に限定されないが、好ましくは1.0~50mm、より好ましくは1.5~30mm、さらに好ましくは2.0~15mmである。また、溝の幅は、特に限定されないが、好ましくは0.1~3.0mm、より好ましくは0.2~2.0mmである。また、溝の深さは、特に限定されないが、研磨層の厚さ未満であって、好ましくは0.2~1.8mm、より好ましくは0.4~1.5mmである。
 溝の断面形状としては、例えば、長方形、台形、三角形、半円形等の形状が目的に応じて適宜選択される。
 本発明の研磨層が、例えば、研磨面に穴を有する場合、穴の深さは、特に限定されないが、研磨層の厚さ未満又は同等であって、好ましくは0.2~5.0mm、より好ましくは0.4~3.0mm、さらに好ましくは0.4~2.5mmである。
<研磨層の製造方法>
 本発明の研磨層は、例えば、ポリウレタン(PU)を含む成形体を得て、必要に応じて、該成形体に対して加工を施す方法によって製造することができる。
 ポリウレタン(PU)を含む成形体は、例えば、上記の方法によって得られたポリウレタン(PU)をペレット化した後、押出成形法、射出成形法、ブロー成形法、カレンダー成形法等の各種の成形法により成形することによって得られる。特には、Tダイを用いた押出成形によれば、均一な厚さのシート状の成形体が得られ易い。
 その後、必要に応じて、ポリウレタン(PU)を含む成形体に対して、切削、スライス、打ち抜き加工等の加工を施すことによって、成形体の形状、厚さ等を適宜調整することができる。
 研磨層に凹部を形成する場合は、例えば、ポリウレタン(PU)を含む成形体に対して、研削加工、レーザー加工、加熱された型をスタンプする処理等を施して形成してもよいし、ポリウレタンを射出成形する際に金型で転写して形成してもよい。
[研磨パッド]
 本発明の研磨パッドは、本発明の研磨層を備える、研磨パッドである。
 本発明の研磨パッドは、本発明の研磨層のみからなるものであってもよく、本発明の研磨層の研磨面ではない側の面にクッション層を積層した積層体であってもよい。
 クッション層は、研磨層の硬度よりも低い硬度を有する層であることが好ましい。クッション層の硬度が研磨層の硬度よりも低い場合、被研磨面の局所的な凹凸には硬質の研磨層が追従し、被研磨基材全体の反りやうねりに対してはクッション層が追従するためにグローバル平坦性(ウェハ基板の大きな周期の凹凸が低減している状態)とローカル平坦性(局所的な凹凸が低減している状態)とのバランスに優れた研磨が可能になる。
 クッション層として用いられる素材としては、例えば、不織布にポリウレタンを含浸させた複合体(例えば、「Suba400」(ニッタ・ハース株式会社製));天然ゴム、ニトリルゴム、ポリブタジエンゴム、シリコーンゴム等のゴム;ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、フッ素系熱可塑性エラストマー等の熱可塑性エラストマー;発泡プラスチック;ポリウレタン等が挙げられる。
 これらの中でも、クッション層として好ましい柔軟性が得られ易いという観点から、発泡構造を有するポリウレタンが好ましい。
 クッション層の厚さは、特に限定されないが、0.5~5mmが好ましい。クッション層の厚さが上記下限値以上であると、被研磨面の全体の反り、うねり等に対する追従効果が十分になり、グローバル平坦性がより良好になる傾向にある。また、クッション層の厚さが上記上限値以下であると、研磨パッド全体が適度な硬さを有し、研磨安定性がより良好になる傾向にある。
 本発明の研磨パッドの好適な厚さは、本発明の研磨パッドがクッション層を有しない場合は、上記した本発明の研磨層の好適な厚さと同じである。また、本発明の研磨パッドの厚さは、本発明の研磨パッドがクッション層を有する場合は、1~10mmが好ましい。
[研磨パッドの製造方法]
 本発明の研磨パッドの製造方法は、本発明の研磨層を形成する工程及び本発明の研磨層を加工する工程からなる群から選択される1以上の工程を含む、研磨パッドの製造方法である。
 本発明の研磨層を形成する工程としては、例えば、上記<研磨層の製造方法>に記載の方法が挙げられる。本発明の研磨パッドが、本発明の研磨層のみからなるものである場合、本発明の研磨パッドは、本発明の研磨層を形成する工程によって製造することができる。
 本発明の研磨層を加工する工程としては、例えば、本発明の研磨層の研磨面ではない側の面にクッション層を積層する工程が挙げられる。クッション層は、例えば、両面粘着シートを用いて、本発明の研磨層の研磨面ではない側の面に貼り付けることによって、積層することができる。
[研磨方法]
 本発明の研磨方法は、本発明の研磨パッドを用いる研磨方法である。
 本発明の研磨パッドを用いた研磨方法をCMPにより行う場合の実施形態について図1を用いて説明する。
 CMPにおいては、図1に示す円形の回転定盤2と、スラリー供給ノズル3と、ホルダ4と、パッドコンディショナー6とを備えたCMP装置10が用いられる。回転定盤2の表面に上述した研磨層を備えた研磨パッド1を両面テープ等により貼付ける。また、ホルダ4は被研磨物5を支持する。
 CMP装置10においては、回転定盤2は図略のモータにより矢印に示す方向(時計回り)に回転する。また、ホルダ4は、回転定盤2の面内において、図略のモータにより例えば矢印に示す方向(時計回り)に回転する。パッドコンディショナー6も回転定盤2の面内において、図略のモータにより例えば矢印に示す方向(時計回り)に回転する。
 はじめに、回転定盤2に固定されて回転する研磨パッド1の研磨面に蒸留水を流しながらに、例えば、ダイヤモンド粒子をニッケル電着等により担体表面に固定したCMP用のパッドコンディショナー6を押し当てて、研磨パッド1の研磨面のコンディショニングを行う。コンディショニングにより、研磨面を被研磨面の研磨に好適な表面粗さに調整する。次に、回転する研磨パッド1の研磨面にスラリー供給ノズル3からスラリー7が供給される。またCMPを行うに際し、必要に応じ、スラリーと共に、潤滑油、冷却剤等を併用してもよい。
 スラリーとしては、例えば、酸性のスラリー、アルカリ性のスラリー、中性近傍のスラリー等が挙げられる。スラリーは、例えば、水、オイル等の液状媒体;シリカ、アルミナ、酸化セリウム、酸化ジルコニウム、炭化ケイ素等の砥粒;塩基、酸、界面活性剤、過酸化水素水等の酸化剤、還元剤、キレート剤等を含有しているCMPに用いられるスラリーが好ましく用いられる。
 そして、研磨層の研磨面にスラリー7が満遍なく行き渡った研磨パッド1に、ホルダ4に固定されて回転する被研磨物5を押し当てる。そして、所定の平坦度が得られるまで、研磨処理が続けられる。研磨時に作用させる押し付け力や回転定盤2とホルダ4との相対運動の速度を調整することにより、仕上がり品質が影響を受ける。
 研磨条件は特に限定されないが、効率的に研磨を行うためには、回転定盤とホルダのそれぞれの回転速度は300rpm以下の低回転が好ましく、被研磨物にかける圧力は、研磨後に傷が発生しないように150kPa以下とすることが好ましい。研磨している間、研磨面には、スラリーをポンプ等で連続的に供給することが好ましい。スラリーの供給量は特に限定されないが、研磨面が常にスラリーで覆われるように供給することが好ましい。
 そして、研磨終了後の被研磨物を流水でよく洗浄した後、スピンドライヤ等を用いて被研磨物に付着した水滴を払い落として乾燥させることが好ましい。このように、被研磨面をスラリーで研磨することによって、被研磨面全面にわたって平滑な面を得ることができる。なお、上述のCMPは、シリコンウェハ等の各種半導体材料等の研磨に好適に用いることができる。
 以下に本発明の一例を実施例により説明する。なお、本発明の範囲は以下の実施例により限定されるものではない。
[実施例1]
 高分子ポリオールとしての数平均分子量850のポリテトラメチレングリコール(PTMG850)及び数平均分子量600のポリエチレングリコール(PEG600)、鎖伸長剤としてのcis-2-ブテン-1,4-ジオール(CBD)及び1,5-ペンタンジオール(PD)、並びにポリイソシアネートとしての4,4’-ジフェニルメタンジイソシアネート(MDI)を、表1に記載の割合で混合し、プレポリマーを調製した。
 さらに、得られたプレポリマーを小型ニーダーで、240℃、スクリュー回転数100rpmの条件で5分間混練した後、ペレタイザーで細断してポリウレタンのペレットを得た。得られたペレットを単軸押出機に供給し、T-ダイから押出して、シート状に成形した。そして、得られたシートの表面を研削して厚さ2.0mmの均一なシートとした後、直径740mmの円形状に切り抜くことにより、熱可塑性ポリウレタンの非発泡成形体であるポリウレタンシートを研磨層として得た。
[実施例2~12、比較例1~6]
 実施例1において、ポリウレタンの原料組成を、表1に記載の原料組成としたこと以外は、実施例1と同様にして、熱可塑性ポリウレタンの非発泡成形体であるポリウレタンシートを研磨層として得た。
[比較例7]
 比較例6で得たポリウレタンシートを、50℃のソルビン酸(SBA)の0.25質量%水溶液に浸漬させ、24時間放置した後取り出し、水洗、乾燥した。このようにして改質処理されたポリウレタンシートを研磨層として得た。
 なお、表1に記載の原料は以下のとおりである。
(高分子ポリオール)
 ・PTMG850:数平均分子量850のポリテトラメチレングリコール
 ・PEG600:数平均分子量600のポリエチレングリコール
(鎖伸長剤)
 ・CBD:cis-2-ブテン-1,4-ジオール
 ・TBD:trans-2-ブテン-1,4-ジオール
 ・BDM:1,4-ベンゼンジメタノール
 ・BD:1,4-ブタンジオール
 ・PD:1,5-ペンタンジオール
 ・MPD:3-メチル-1,5-ペンタンジオール
(ポリイソシアネート)
 ・MDI:4,4’-ジフェニルメタンジイソシアネート
[評価方法]
 各例で得られた、研磨層としてのポリウレタンシートについて以下の方法に従って、各評価を行った。
<破断伸度及び降伏応力>
 各例で得た研磨層としてのポリウレタンシートを2枚の金属板の間に挟み、熱プレス成形機(株式会社神藤金属工業所製の卓上用テストプレス)で熱プレス成形した。熱プレス成形は、加熱温度230℃で2分間予熱した後、厚さ500μmになるプレス圧で1分間プレスした。そして、熱プレス成形機からポリウレタンシートを介在させた2枚の金属板を取り出して冷却した後、両面の金属板から、厚さ500μmにプレス成形したポリウレタンシートを離型した。
 上記で得られたプレス成形後のポリウレタンシートを、50℃の水に48時間浸漬して水で飽和膨潤させた水膨潤測定サンプルを作製した。該水膨潤測定サンプルについて、株式会社島津製作所製のオートグラフSHIMADZU AGS-Hを用いて、引張速度を50mm/minとした点以外は、JIS K 7311:1995に準拠して引張試験を行い、破断伸度及び降伏応力を測定した。なお、破断伸度は、以下の式によって算出される。
 破断伸度(%)={(L-L)/L}×100
 L=破断時の標線間距離
 L=試験前の標線間距離
 結果を、破断伸度(wet)及び降伏応力(wet)として表1に示す。
<D硬度>
 各例で得た研磨層としてのポリウレタンシートを50℃の水に48時間浸漬して水で飽和膨潤させた水膨潤サンプルを用いて、JIS K 7311:1995に準拠して、D硬度(JIS-D硬度)を測定した。結果を、D硬度(wet)として表1に示す。
<水との接触角>
 各例で得た研磨層としてのポリウレタンシートを、測定面を平滑な面とするため、少なくとも片面がポリイミドフィルムと接するように配置し、さらに2枚の金属板の間に挟み、熱プレス成形機(株式会社神藤金属工業所製の卓上用テストプレス)で熱プレス成形した。熱プレス成形は、加熱温度230℃で2分間予熱した後、厚さが200μmになるプレス圧で1分間プレスした。そして、熱プレス成形機からポリウレタンシートを介在させた2枚の金属板を取り出して冷却した後、両面の金属板から、厚さ200μmにプレス成形したポリウレタンシートを離型した。
 上記で得られたプレス成形後のポリウレタンシートを、室温(23℃)、50%RHの条件下に3日間放置した後、直接風が当たらない環境下において、ポリイミドフィルムと接していた側の表面に室温(23℃)の水2.5μLを滴下した2秒後に、協和界面科学株式会社製DropMaster500を用いて水との接触角を測定した。結果を、接触角(直後)として表1に示す。
<高分子ポリオール中のPEG比率>
 高分子ポリオール中のPEG比率は、各高分子ポリオールの数平均分子量及び表1における高分子ポリオールの質量%の数値を用いて算出した。例えば、実施例1については、「(7.5÷600)÷((7.1÷850)+(7.5÷600))×100=60」との計算式により算出した。結果を表1に示す。
<研磨層の密度>
 各例で得た研磨層としてのポリウレタンシートを、平面視で長方形(縦50mm×横50mm)に切り出したものを試料片とした。該試料片の外形寸法(すなわち、縦50mm×横50mm×厚さ2.0mm)から試料片の見掛け体積(cm)を算出すると共に、試料片の重量(g)を測定し、下記式によって密度を算出した。結果を表1に示す。
 密度(g/cm)=試料片の重量(g)/試料片の見掛け体積(cm
<研磨パッドの作製>
(溝加工)
 各例で得た研磨層としてのポリウレタンシートの研磨面となる一面に、螺旋状のパターンを有する溝を切削加工で形成した。
(クッション層の積層)
 次に、ポリウレタンシートの上記溝を形成した面とは反対側の面にクッション層を両面粘着シートで貼り合わせて複層型の研磨パッドを作製した。クッション層は、株式会社イノアックコーポレーション製の「ポロンH48」(厚さ0.8mmの発泡ポリウレタン製シート)を用いた。
<研磨試験>
 得られた研磨パッドを株式会社荏原製作所製の研磨装置「F・REX300」に装着した。そして、Cabot Microelectronics製のスラリー「SEMI-SPERSE25」を2倍に希釈して調製したスラリーを準備し、プラテン回転数100rpm、ヘッド回転数99rpm、研磨圧力20.0kPaの条件において、200mL/分の速度でスラリーを研磨パッドの研磨面に供給しながら、膜厚2,000nmの酸化ケイ素膜を表面に有する直径12インチのシリコンウェハを60秒間研磨した。
 そして、パッドコンディショナー(旭ダイヤモンド工業株式会社製のダイヤモンドドレッサー(ダイヤモンド番手#100ブロッキー、台金直径11.6cm))を用い、ドレッサー回転数70rpm、研磨パッド回転数100rpm、ドレッサー荷重35Nの条件で、150mL/分の速度で純水を流しながら、研磨パッドの表面を30秒間コンディショニングした。そして、別のシリコンウェハを60秒間研磨し、さらに、30秒間コンディショニングを行った。このようにして10枚のシリコンウェハを研磨した。
<ディフェクト数の計測>
 10枚目に研磨したシリコンウェハの被研磨面を、KLA Corporation製の欠陥検査装置を用いて検査し、160nm以上の大きさであるディフェクトの数を計測した。
<研磨速度の変動係数の測定>
 10枚目に研磨したシリコンウェハの研磨前及び研磨後の酸化ケイ素膜の膜厚をウェハ面内(エッジエクスクルージョン3mm)で49点測定し、各点における研磨速度(nm/min)を求め、該49点における研磨速度の平均値及び標準偏差1σを算出し、該平均値及び標準偏差1σから変動係数(単位:%)を求め、これを研磨均一性の指標とした。変動係数が小さいほど、研磨均一性に優れていることを示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかな通り、実施例1~12で製造した、水膨潤後の破断伸度が100%未満であるポリウレタン(PU)を含む本発明の研磨層を備える研磨パッドは、研磨均一性と少ディフェクト性とを高度に両立していることが分かる。一方、比較例1~7で製造した、水膨潤後の破断伸度が100%以上であるポリウレタンを用いた研磨層を備える研磨パッドは、研磨均一性及び少ディフェクト性が、実施例1~12より劣っていた。
 1  研磨パッド
 2  回転定盤
 3  スラリー供給ノズル
 4  ホルダ
 5  被研磨物
 6  パッドコンディショナー
 7  スラリー
 10 CMP装置

Claims (13)

  1.  ポリウレタンを含む研磨層であり、前記ポリウレタンの、50℃の水で飽和膨潤させた後の引張速度50mm/minにおける破断伸度が、100%未満である、研磨層。
  2.  前記ポリウレタンの、50℃の水で飽和膨潤させた後の引張速度50mm/minにおける降伏応力が、43MPa以上である、請求項1に記載の研磨層。
  3.  前記ポリウレタンの、50℃の水で飽和膨潤させた後のD硬度が、65以上である、請求項1又は2に記載の研磨層。
  4.  前記ポリウレタンの、水との接触角が、75度未満である、請求項1~3のいずれか1項に記載の研磨層。
  5.  前記ポリウレタンが、高分子ポリオールに由来する構造単位を含み、前記高分子ポリオールがポリエチレングリコールを15モル%以上含む、請求項1~4のいずれか1項に記載の研磨層。
  6.  前記ポリウレタンが、熱可塑性である、請求項1~5のいずれか1項に記載の研磨層。
  7.  密度が、0.7g/cm以上である、請求項1~6のいずれか1項に記載の研磨層。
  8.  前記ポリウレタンの成形体である、請求項1~7のいずれか1項に記載の研磨層。
  9.  前記成形体が、非発泡成形体である、請求項8に記載の研磨層。
  10.  前記研磨層が、研磨面に凹部を含む、請求項1~9のいずれか1項に記載の研磨層。
  11.  請求項1~10のいずれか1項に記載の研磨層を備える、研磨パッド。
  12.  請求項11に記載の研磨パッドを製造する方法であって、前記研磨層を形成する工程及び前記研磨層を加工する工程からなる群から選択される1以上の工程を含む、研磨パッドの製造方法。
  13.  請求項11に記載の研磨パッドを用いる、研磨方法。
PCT/JP2023/003092 2022-02-02 2023-01-31 研磨層、研磨パッド、研磨パッドの製造方法及び研磨方法 WO2023149434A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-015063 2022-02-02
JP2022015063 2022-02-02

Publications (1)

Publication Number Publication Date
WO2023149434A1 true WO2023149434A1 (ja) 2023-08-10

Family

ID=87552487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003092 WO2023149434A1 (ja) 2022-02-02 2023-01-31 研磨層、研磨パッド、研磨パッドの製造方法及び研磨方法

Country Status (2)

Country Link
TW (1) TW202337635A (ja)
WO (1) WO2023149434A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207325A (ja) * 2007-02-01 2008-09-11 Kuraray Co Ltd 研磨パッド及び研磨パッドの製造方法
JP2017185566A (ja) * 2016-04-01 2017-10-12 富士紡ホールディングス株式会社 研磨パッド
WO2019216279A1 (ja) * 2018-05-11 2019-11-14 株式会社クラレ ポリウレタンの改質方法,ポリウレタン,研磨パッド及び研磨パッドの改質方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207325A (ja) * 2007-02-01 2008-09-11 Kuraray Co Ltd 研磨パッド及び研磨パッドの製造方法
JP2017185566A (ja) * 2016-04-01 2017-10-12 富士紡ホールディングス株式会社 研磨パッド
WO2019216279A1 (ja) * 2018-05-11 2019-11-14 株式会社クラレ ポリウレタンの改質方法,ポリウレタン,研磨パッド及び研磨パッドの改質方法

Also Published As

Publication number Publication date
TW202337635A (zh) 2023-10-01

Similar Documents

Publication Publication Date Title
KR102170859B1 (ko) 연마 패드 및 그것을 사용한 연마 방법
JP6518680B2 (ja) 研磨層用非多孔性成形体,研磨パッド及び研磨方法
KR101084808B1 (ko) 금속 막 연마용 패드 및 그것을 이용하는 금속 막의 연마 방법
KR102398128B1 (ko) 연마층용 성형체 및 연마 패드
EP1927605A1 (en) Polymer material, foam obtained from same, and polishing pad using those
TWI450794B (zh) Polishing pad
JP2008235508A (ja) 研磨パッド、それを用いた研磨方法および半導体デバイスの製造方法
WO2023048266A1 (ja) 研磨パッド
WO2021117834A1 (ja) ポリウレタン、研磨層、研磨パッド及び研磨方法
WO2023149434A1 (ja) 研磨層、研磨パッド、研磨パッドの製造方法及び研磨方法
WO2023054331A1 (ja) 研磨層用熱可塑性ポリウレタン、研磨層、及び研磨パッド
WO2023048265A1 (ja) 研磨パッド
TWI838883B (zh) 研磨墊

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749750

Country of ref document: EP

Kind code of ref document: A1