JP2008192661A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2008192661A
JP2008192661A JP2007022529A JP2007022529A JP2008192661A JP 2008192661 A JP2008192661 A JP 2008192661A JP 2007022529 A JP2007022529 A JP 2007022529A JP 2007022529 A JP2007022529 A JP 2007022529A JP 2008192661 A JP2008192661 A JP 2008192661A
Authority
JP
Japan
Prior art keywords
silicon
nickel
region
film
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007022529A
Other languages
English (en)
Inventor
Yasunori Uchino
康訓 内野
Kazuo Kawamura
和郎 川村
Shinichi Akiyama
深一 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2007022529A priority Critical patent/JP2008192661A/ja
Publication of JP2008192661A publication Critical patent/JP2008192661A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】 ニッケルシリサイドのタングステン含有率を容易に調整可能な半導体装置の製造方法を提供すること。
【解決手段】シリコン基板1の素子領域1A上にニッケル膜5を形成する工程S1と、シリコン基板1及びニッケル膜5を熱処理し、素子領域1Aの表面をシリサイド化する工程S3と、素子領域1Aの表面をシリサイド化する工程の後に、シリコン基板1上に残留するニッケル膜5を除去する工程S4と、シリコン基板1上に残留するニッケル膜5を除去する工程の後に、6フッ化タングステンガス(WF6)を含む雰囲気中において素子領域1Aの表面を熱処理する工程S6とを含む。
【選択図】 図14

Description

本発明は、シリコン基板に形成されたソース領域及びドレイン領域、もしくはゲート電極にニッケルシリサイドを備えた半導体装置の製造方法に関する。
例えばMOS型半導体集積回路装置などの半導体装置においては、トランジスタのソース/ドレイン/ゲートの電気抵抗を低下させるために、シリコン表面にニッケルシリサイドを形成することがある。シリサイド形成技術としては、シリコン表面にニッケル膜を堆積し、該ニッケル膜を熱処理によりシリコン表面と反応させたのち、未反応のニッケル膜をウェットエッチングにより選択的に除去する方法が知られている。
ところで、ニッケルシリサイドは、ダイニッケルシリサイド(Ni2Si)、ニッケルモノシリサイド(N■S■)、ニッケルダイシリサイド(NiSi2)に分類される。こ
のうち、ニッケルモノシリサイド(N■S■)の電気抵抗が最も低く、ニッケルダイシリ
サイド(NiSi2)の電気抵抗が最も高い。したがって、半導体装置においては、電気抵抗が最も低いニッケルモノシリサイド(N■S■)を使用することが好ましい。
しかしながら、ニッケルモノシリサイド(N■S■)は、熱処理により高抵抗のニッケ
ルダイシリサイド(NiSi2)になりやすい。このため、シリサイド形成直後には低抵抗のニッケルモノシリサイド(N■S■)が形成されていても、後の熱処理、例えば層間
膜の成膜での加熱によって、高抵抗のニッケルダイシリサイド(NiSi2)に変換されることがある。
このような背景から、現在の半導体装置では、ニッケルモノシリサイド(NiSi)の熱処理耐性を向上させることが求められている。ニッケルモノシリサイド(NiSi)の熱処理耐性を向上させるシリサイド形成技術としては、シリコン表面に、例えばタングステン(W)を含有するニッケル−タングステン(Ni−W)合金膜を成膜し、熱処理によりシリサイド化することで、タングステン(W)を含有するニッケルモノシリサイド(NiSi)を形成するシリサイド形成技術が知られている(例えば、下記特許文献1を参照)。
特開2005−19943号公報
しかしながら、特許文献1に開示されたシリサイド形成技術では、ニッケル−タングステン(Ni−W)合金膜の成膜にスパッタ法が使用されるため、タングステン(W)を含有するニッケル(Ni)のターゲットを準備する必要がある。さらに、形成されるニッケルモノシリサイド(NiSi)におけるタングステン(W)含有率は、ターゲット中のタングステン(W)含有率で決まるため、ターゲットを交換しないかぎり、ニッケルモノシリサイド(NiSi)におけるタングステン(W)含有率を変更することできない。熱処理耐性の向上だけを考慮すれば、ターゲット中のタングステン(W)含有率を高めに設定することも考えられる。しかしながら、ニッケルモノシリサイド(NiSi)におけるW含有率が高くなると、コンタクト抵抗が上昇するという問題がある。したがって、ニッケルモノシリサイド(NiSi)におけるタングステン(W)含有量は、デバイスごとに最適なものであることが望まれる。
そこで本発明は、ニッケルシリサイドにおけるタングステン含有率を容易に調整可能な半導体装置の製造方法を提供することを目的とする。
本発明の一観点によれば、シリコン基板のシリコン領域上にニッケル膜を形成する工程と、前記シリコン基板及び前記ニッケル膜を熱処理し、前記シリコン領域の表面をシリサイド化する工程と、前記シリサイド化する工程の後に、前記シリコン基板上に残留する前記ニッケル膜を除去する工程と、前記ニッケル膜を除去する工程の後に、タングステンを含むガス雰囲気中において前記シリコン領域の表面を熱処理する工程と、を含む半導体装置の製造方法が提供される。
本発明の他の観点によれば、シリコン基板に素子分離領域を形成して、前記シリコン基板の表面にシリコン領域を画成する工程と、前記シリコン領域上にゲート絶縁膜を介してゲート電極を形成する工程と、前記シリコン領域にソース領域及びドレイン領域を形成する工程と、前記シリコン基板上に、前記ソース領域及び前記ドレイン領域を覆うニッケル膜を堆積する工程と、前記シリコン基板及び前記ニッケル膜を熱処理し、前記シリコン領域の表面をシリサイド化する工程と、前記シリサイド化する工程の後に、前記シリコン基板上に残留する前記ニッケル膜を除去する工程と、前記ニッケル膜を除去する工程の後に、タングステンを含むガス雰囲気中において前記シリコン領域の表面を熱処理する工程と、を含む半導体装置の製造方法が提供される。
本発明によれば、ニッケルシリサイドのタングステン含有率を容易に調整可能である。
[本実施形態における製造方法]
図1〜図13は本発明の一実施形態におけるnチャネルMOSトランジスタの製造工程の説明図、図14は本発明の一実施形態におけるnチャネルMOSトランジスタの製造工程のフローチャートである。なお、本実施形態では、nチャネルMOSトランジスタの製造工程を説明するが、本発明はpチャネルMOSトランジスタの製造にも適用することができる。
先ず、図1に示すように、シリコン基板1上に、STI(Shallow Trench Isolation;シャロートレンチアイソレーション)型の素子分離領域1Iを形成する。素子分離領域1Iは、シリコン基板1の表面に露出し、nチャネルMOSトランジスタが形成される素子領域1Aを画成する。そして、素子領域1Aに、p型ウェル9を形成する。
次に、図2に示すように、シリコン基板1上に、素子領域1A及び素子分離領域1Iを覆うように、SiO2などのシリコン酸化膜からなる絶縁膜2を、750℃〜900℃の温度で、ジクロロエチレンまたはトリクロロエチレン含有のウェットO2酸化プロセスにより、1〜3nmの膜厚で形成する。絶縁膜2の材料としては、SiO2などのシリコン酸化膜に限定されるものではなく、例えばSiONなどのシリコン酸窒化膜を使用しても良い。
次に、図3に示すように、シランガス(SiH4)を100sccmの流量で供給し、圧力30Pa、温度を600℃として、熱CVD(Chem■cal Vapor De
pos■t■on;化学気相成長)により、絶縁膜2上にポリシリコン膜3を100nm
の膜厚で形成する。
次に、図4に示すように、ポリシリコン膜3及び絶縁膜2をフォトリソグラフィー法によりパターニングし、ポリシリコンゲート電極3G及びゲート絶縁膜2Gを形成する。なお、本実施形態におけるポリシリコンゲート電極3Gのゲート長は35nmである。
次に、図5に示すように、対象とする素子領域1Aのみを露出させるレジストR及びポリシリコンゲート電極3Gをマスクにして、P+あるいはAs+を、典型的には1〜5keVの加速電圧下、5×1014〜9×1014cm-2のドーズ量でイオン注入する。これにより、シリコン基板1の素子領域1Aに、n型の拡散領域1a,1bを、それぞれソースエクステンション領域及びドレインエクステンション領域として、典型的には20nm以下の接合深さに形成する。
次に、図6に示すように、ビスターシャルブチルアミノシラン(BTBAS)を60sccm、酸素(O2)を240sccmの流量で供給し、温度を530℃、圧力を20Paとして、熱CVDにより、素子分離領域1Iを含むシリコン基板1上にポリシリコン膜を形成する。そして、ポリシリコン膜を異方性エッチングして、ポリシリコンゲート電極3Gの両側壁面に、それぞれ側壁絶縁膜4A,4Bを90nmの膜厚で形成する。
次に、図7に示すように、対象とする素子領域1Aのみを露出させるレジストR、ポリシリコンゲート電極3G、及び側壁絶縁膜4A,4Bをマスクにして、P+を、典型的には6〜15keVの加速電圧下、5×1013〜5×1016cm-2のドーズ量で、あるいはAs+を、典型的には35〜40keVの加速電圧下、5×1013cm-2〜5×1016cm-2のドーズ量でイオン注入する。これにより、シリコン基板1の素子領域1Aに、n+型拡散領域1c,1dを、それぞれソース領域及びドレイン領域として形成する。
次に、図8に示すように、側壁絶縁膜4A,4B、ポリシリコンゲート電極3G、及び素子分離領域1Iを含むシリコン基板1上に、スパッタ法により、ニッケル膜5を、典型的には10〜50nmの膜厚に形成する(図14のステップS1)。さらに、ニッケル膜5上に窒化チタン膜5Nを保護膜として、例えば反応性パッタ法により、例えば5nm〜20nmの膜厚に形成する(図14のステップS2)。窒化チタン膜5Nは、必須の構成ではないが、ニッケル膜5を窒化チタン膜5Nで覆うことで、ニッケル膜5の自然酸化を防止することができる。
次に、図9に示すように、Arなどの不活性ガスの雰囲気中、0.3Pa〜10Paの圧力下、220〜270℃の温度で120秒〜300秒間、好ましくは240℃の温度で120秒〜180秒間だけ熱処理をする。これにより、ニッケル膜5は、ソース領域1c,ドレイン領域1d、及びポリシリコンゲート電極3Gの表面と反応して、ソース領域1c,ドレイン領域1d、及びポリシリコンゲート電極3Gに、それぞれダイニッケルシリサイド(Ni2Si)を主成分とする第1のニッケルシリサイド層6s,6d,6gが、典型的には12〜20nmの膜厚に形成される(図14のステップS3)。
次に、図10に示すように、未反応のニッケル膜5及び窒化チタン膜5Nをウェットエッチングにより除去する(図14のステップS4)。エッチャントとしては、例えば硫酸と過酸化水素水よりなるSPM(Sulfuric acid/hydrogen perox■de m■xture;硫酸過水)を使用する。
未反応のニッケル膜5及び窒化チタン膜5Nをウェットエッチングすると、SPMの酸化成分により、第1のニッケルシリサイド層6s,6d,6gの表面にニッケル酸化膜が形成される。そこで、必要に応じて、図11に示すように、水素ガスの雰囲気中、200℃の温度において、20〜300秒間の還元処理を行い(図14のステップS5)、第1のニッケルシリサイド層6s,6d,6gの表面に形成されたニッケル酸化膜を除去しても良い。本実施形態における還元処理は、水素ガスの雰囲気中において実行しているが、ニッケル酸化膜を還元処理できる雰囲気であれば、他の還元雰囲気中、例えばアンモニアガス(NH3)中において実行しても良い。
次に、図12に示すように、6フッ化タングステンガス(WF6)を含む雰囲気中で、第1のニッケルシリサイド層6s,6d,6gを熱処理して、ニッケルモノシリサイド(NiSi)を主成分とした、タングステン(W)を含有する第2のニッケルシリサイド層6S,6D,6Gに変換する(図14のステップS6)。なお、本熱処理のシーケンスについては、以下の実施例1、実施例2、実施例3において詳細に説明する。
次に、図13に示すように、シランガス(SiH4)を100sccm、酸素(O2)を230sccmの流量で供給し、圧力を2.5mTorrとして、HDP−CVD(H■gh Dens■ty Plasma Chem■cal Vapor Depos■
tion;高密度プラズマ化学気相成長)により、シリコン基板1上に、第2のニッケルシリサイド層6S,6D,6G、側壁絶縁膜4A,4B、及び素子分離領域1Iを覆う層間絶縁膜7を堆積する。層間絶縁膜7の材料としては、特に限定されるものではないが、例えばSiO2などを使用する。そして、層間絶縁膜7に、マグネトロンRIE(Reactive Ion Etching;反応性イオンエッチング)により、第2のニッケルシリサイド層6S,6Dに到達するコンタクトホール8aを形成し、コンタクトホール8aの内壁に、熱CVD方式により、TiNなどのバリアメタルを形成する。バリアメタルとしてTiNを使用する場合、四塩化チタンガス(TiCl4)を170mg/m■n
、アンモニアガス(NH3)を100sccmで供給し、圧力を10Torrとする。次に、シランガス(SiH4)を90sccm、6フッ化タングステンガス(WF6)を30sccmで交互に導入し、熱CVDにより、バリアメタル上にカバレッジの良い第1のタングステン(W)膜を成膜する。そして、さらにフッ化タングステンガス(WF6)を90sccm、水素(H2)を750sccmで同時に導入し、熱CVDにより、第1のタングステン(W)膜上に第2のタングステン(W)膜を成膜する。こうして、コンタクトホール8aにタングステン(W)からなるコンタクト材8bが埋め込まれ、第2のニッケルシリサイド層6S,6Dに電気的に接続されたコンタクト8が完成する。以上で、nチャネルMOSトランジスタの主要な製造工程が終了となる。
以下、実施例1、実施例2、実施例3にかかる熱処理シーケンスついて詳細に説明する。なお、以下の試料(A)、試料(B)、試料(C)は、それぞれ実施例1、実施例2、実施例3における熱処理シーケンスにより作製された第2のニッケルシリサイド層6S,6D,6Gである。
図15は試料(A)、試料(B)、試料(C)に含まれるタングステン含有量の測定結果グラフである。本実施形態における測定では、蛍光X線膜厚装置(X−Ray Fluorescence;XRF)が使用されている。そのため、図15の測定結果グラフにおける縦軸は、試料(A)、試料(B)、試料(C)に含まれるタングステン含有量をタングステン単体の膜厚に換算した数値[nm]である。試料(A)、試料(B)、試料(C)の膜厚は、いずれも20nmである。
図16は試料(A)、試料(B)、試料(C)、及び比較用の試料(ref)のシート抵抗の測定結果グラフである。比較用の試料(ref)は、タングステン(W)を含有していない。
[実施例1]
実施例1においては、先ず、希釈ガスとしてのアルゴンガス(Ar)を2000sccm、窒素ガス(N2)を900sccmで供給しつつ、基板温度を200℃から20度ずつ階段状に上昇させる。そして、基板温度が260℃に到達したら、昇温を停止して、6フッ化タングステンガス(WF6)を30sccmで30秒間だけ供給する。雰囲気の圧力は100Pa程度である。そして、6フッ化タングステンガス(WF6)の供給を停止して、さらに基板温度を400℃に到達するまで20℃ずつ階段状に上昇させる。
これにより、第1のニッケルシリサイド層6s,6d,6gは、6フッ化タングステンガス(WF6)を含む雰囲気中において熱処理されて、ニッケルモノシリサイド(NiSi)を主成分とした、タングステン(W)を含有する、試料(A)としての第2のニッケルシリサイド層6S,6D,6Gに変換される。
図15に示すように、作製された試料(A)は、平均で0.4nm相当分のタングステン(W)を含有している。このことから、6フッ化タングステンガス(WF6)を含む雰囲気中で熱処理をすることで、試料(A)にタングステン(W)が含有されたことがわかる。
図16に示すように、600〜700℃の高温において、試料(A)のシート抵抗は、タングステン(W)を含有しない比較用の試料(ref)のシート抵抗よりも低いことがわかる。このことから、6フッ化タングステンガス(WF6)を含む雰囲気中で熱処理をすることで、ニッケルモノシリサイド(NiSi)のシート抵抗が低下することが確認された。
[実施例2]
実施例2においては、先ず、希釈ガスとしてのアルゴンガス(Ar)を2000sccm、窒素ガス(N2)を900sccmで供給しつつ、基板温度を200℃から20℃ずつ階段状に上昇させる。そして、基板温度が260℃に到達したら、昇温を停止したうえで、6フッ化タングステンガス(WF6)を20sccmで30秒間だけ供給する。そして、6フッ化タングステンガス(WF6)を供給している最中に、さらにシランガス(SiH4)を4sccmで2回に分けて供給する。具体的に説明すると、シランガス(SiH4)を、5秒間だけ供給したのち、5秒間だけ停止し、その後、再び5秒間だけ供給する。雰囲気の圧力は100Pa程度である。そして、6フッ化タングステンガス(WF6)の供給を停止して、さらに基板温度を400℃に到達するまで20℃ずつ階段状に上昇させる。
これにより、第1のニッケルシリサイド層6s,6d,6gは、6フッ化タングステンガス(WF6)を含む雰囲気中において熱処理されるだけでなく、6フッ化タングステンガス(WF6)及びシランガス(SiH4)を含む雰囲気中においても熱処理されて、ニッケルモノシリサイド(NiSi)を主成分とした、タングステン(W)を含有する、試料(B)としての第2のニッケルシリサイド層6S,6D,6Gに変換される。
図15に示すように、作製された試料(B)は、平均で1.3nm相当分のタングステンを含有している。このことから、6フッ化タングステンガス(WF6)及びシランガス(SiH4)を含む雰囲気中で熱処理をすることで、試料(B)に、試料(A)よりも高い含有率でタングステン(W)が含有されたことがわかる。
図16に示すように、600〜700℃の高温において、試料(B)のシート抵抗は、試料(A)のシート抵抗よりも低いことがわかる。このことから、6フッ化タングステンガス(WF6)及びシランガス(SiH4)を含む雰囲気中で熱処理をすることで、ニッケルモノシリサイド(NiSi)のシート抵抗がさらに低下することが確認された。
[実施例3]
実施例3においては、先ず、希釈ガスとしてのアルゴンガス(Ar)を2000sccm、窒素ガス(N2)を900sccmで供給しつつ、基板温度を200℃から20℃ずつ階段状に上昇させる。そして、基板温度が260℃に到達したら、シランガス(SiH4)と6フッ化タングステンガス(WF6)を3秒間ごとに交互に供給する。このとき、シランガス(SiH4)の流量は90sccm、6フッ化タングステンガス(WF6)の流量は30sccmである。雰囲気の圧力は1000Pa程度である。そして、シランガス(SH4)と6フッ化タングステンガス(WF6)とを3回ずつ供給したら、6フッ化タングステンガス(WF6)とシランガス(SiH4)の供給を停止して、さらに基板温度を400℃に到達するまで20℃ずつ階段状に上昇させる。
これにより、第1のニッケルシリサイド層6s,6d,6gは、シランガス(SH4)を含む雰囲気中と、6フッ化タングステンガス(WF6)を含む雰囲気中とで交互に熱処理されて、ニッケルモノシリサイド(NiSi)を主成分とした、タングステン(W)を含有する、試料(C)としての第2のニッケルシリサイド層6S,6D,6Gに変換される。
図15に示すように、作製された試料(C)は、平均で2.1nm相当分のタングステン(W)を含有している。このことから、シランガス(SiH4)を含む雰囲気中と、6フッ化タングステンガス(WF6)を含む雰囲気中とで交互に熱処理をすることで、試料(C)に、試料(B)よりも高い含有率でタングステン(W)が含有されることがわかる。
図16に示すように、600〜700℃の高温において、試料(C)のシート抵抗は、試料(B)のシート抵抗よりも低いことがわかる。このことから、シランガス(SH4)を含む雰囲気中と、6フッ化タングステンガス(WF6)を含む雰囲気中とで交互に熱処理をすることで、ニッケルモノシリサイド(NiSi)のシート抵抗がさらに低下することが確認された。
以上のように、実施例1〜実施例3にて示したとおり、6フッ化タングステンガス(WF6)を含む雰囲気中で熱処理をすることにより、ニッケルシリサイド(NiSi)を主成分とする試料(A),(B),(C)にタングステン(W)を含有させることができる。さらに、6フッ化タングステンガス(WF6)の供給形態を変化させるだけで、第2のニッケルシリサイド層6S,6D,6Gのタングステン(W)含有率を容易に調整することが可能である。すなわち、本実施形態によれば、コンタクト抵抗の上昇などを考慮したうえで、第2のニッケルシリサイド層6S,6D,6Gのタングステン含有率を、デバイスに最適な数値に調整することができる。
なお、実施例2、実施例3のように、熱処理中にモノシラン(SiH4)ガスが供給されると、第1のニッケルシリサイド層6s,6d,6gから第2のニッケルシリサイド層6S,6D,6Gへの変換反応が、シリコン基板1と第1のニッケルシリサイド層6s,6d,6gとの界面からだけでなく、第1のニッケルシリサイド層6s,6d,6gの表面からも進行する。そのため、変換反応に使用されるシリコン基板1のシリコン量が抑制されるから、ソース領域1c及びドレイン領域1dにおける深い位置まで第2のニッケルシリサイド層6S,6D,6Gが形成されることがない。
しかも、事前の還元処理により第1のニッケルシリサイド層6s,6d,6gの表面からニッケル酸化膜が除去されていれば(図14のステップS5)、第1のニッケルシリサイド層6s,6d,6gの表面から進行する第2のニッケルシリサイド層6S,6D,6Gへの変換反応が阻害されることがない。
なお、本実施形態では、モノシランガス(SiH4)を使用しているが、これに限定されるものではなく、例えばジシラン(Si26)ガスを使用しても良い。
また、本実施形態においては、ニッケル膜5を形成するためのターゲット中にプラチナ(Pt)を含有させても良い。プラチナ(Pt)は、ニッケルモノシリサイド(NiSi)の熱処理耐性を向上させる性質があるので、第2のニッケルシリサイド層6S,6D,6Gの熱処理耐性をさらに向上させることができる。
また、本実施形態では、シリコン上に形成されるソース領域1c及びドレイン領域1dをシリサイド化しているが、例えばシリコンゲルマニウム上に形成されるソース領域及びドレイン領域をシリサイド化しても良い。
本発明の一実施形態におけるnチャネルMOSトランジスタの製造工程の説明図(その1)。 本発明の一実施形態におけるnチャネルMOSトランジスタの製造工程の説明図(その2)。 本発明の一実施形態におけるnチャネルMOSトランジスタの製造工程の説明図(その3)。 本発明の一実施形態におけるnチャネルMOSトランジスタの製造工程の説明図(その4)。 本発明の一実施形態におけるnチャネルMOSトランジスタの製造工程の説明図(その5)。 本発明の一実施形態におけるnチャネルMOSトランジスタの製造工程の説明図(その6)。 本発明の一実施形態におけるnチャネルMOSトランジスタの製造工程の説明図(その7)。 本発明の一実施形態におけるnチャネルMOSトランジスタの製造工程の説明図(その8)。 本発明の一実施形態におけるnチャネルMOSトランジスタの製造工程の説明図(その9)。 本発明の一実施形態におけるnチャネルMOSトランジスタの製造工程の説明図(その10)。 本発明の一実施形態におけるnチャネルMOSトランジスタの製造工程の説明図(その11)。 本発明の一実施形態におけるnチャネルMOSトランジスタの製造工程の説明図(その12)。 本発明の一実施形態におけるnチャネルMOSトランジスタの製造工程の説明図(その13)。 本発明の一実施形態におけるnチャネルMOSトランジスタの製造工程のフローチャート。 試料(A)、試料(B)、試料(C)に含まれるタングステン含有量の測定結果グラフ。 試料(A)、試料(B)、試料(C)、及び比較用の試料(ref)のシート抵抗の測定結果グラフ。
符号の説明
1…シリコン基板、1A…素子領域(シリコン領域)、1I…素子分離領域、2G…ゲート絶縁膜(ゲート絶縁膜)、3G…ポリシリコンゲート電極(ゲート電極)、5…ニッケル膜。

Claims (6)

  1. シリコン基板のシリコン領域上にニッケル膜を形成する工程と、
    前記シリコン基板及び前記ニッケル膜を熱処理し、前記シリコン領域の表面をシリサイド化する工程と、
    前記シリサイド化する工程の後に、前記シリコン基板上に残留する前記ニッケル膜を除去する工程と、
    前記ニッケル膜を除去する工程の後に、タングステンを含むガス雰囲気中において前記シリコン領域の表面を熱処理する工程と、
    を含むことを特徴とする半導体装置の製造方法。
  2. シリコン基板に素子分離領域を形成して、前記シリコン基板の表面にシリコン領域を画成する工程と、
    前記シリコン領域上にゲート絶縁膜を介してゲート電極を形成する工程と、
    前記シリコン領域にソース領域及びドレイン領域を形成する工程と、
    前記シリコン基板上に、前記ソース領域及び前記ドレイン領域を覆うニッケル膜を堆積する工程と、
    前記シリコン基板及び前記ニッケル膜を熱処理し、前記シリコン領域の表面をシリサイド化する工程と、
    前記シリサイド化する工程の後に、前記シリコン基板上に残留する前記ニッケル膜を除去する工程と、
    前記ニッケル膜を除去する工程の後に、タングステンを含むガス雰囲気中において前記シリコン領域の表面を熱処理する工程と、
    を含むことを特徴とする半導体装置の製造方法。
  3. 前記タングステンを含むガス雰囲気は、さらにシリコンを含むことを特徴とする請求項1又は2に記載の半導体装置の製造方法。
  4. 前記タングステンを含むガス雰囲気中において前記シリコン領域の表面を熱処理する工程の前もしくは後の少なくとも一方に、シリコンを含むガス雰囲気中で前記シリコン領域の表面を熱処理する工程をさらに含むことを特徴とする請求項1又は2に記載の半導体装置の製造方法。
  5. 前記タングステンを含むガス雰囲気中において前記シリコン領域の表面を熱処理する工程は、前記シリコンを含むガスが排気された状態で実行されることを特徴とする請求項4に記載の半導体装置の製造方法。
  6. 前記ニッケル膜を除去する工程の後で、かつ、前記タングステンを含むガス雰囲気中において前記シリコン領域の表面を熱処理する工程の前に、前記シリコン領域上に形成される酸化物を還元処理する工程をさらに含むことを特徴とする請求項1乃至5のいずれか一に記載の半導体装置の製造方法。
JP2007022529A 2007-02-01 2007-02-01 半導体装置の製造方法 Withdrawn JP2008192661A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007022529A JP2008192661A (ja) 2007-02-01 2007-02-01 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007022529A JP2008192661A (ja) 2007-02-01 2007-02-01 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2008192661A true JP2008192661A (ja) 2008-08-21

Family

ID=39752513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007022529A Withdrawn JP2008192661A (ja) 2007-02-01 2007-02-01 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2008192661A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032679A1 (ja) * 2008-09-22 2010-03-25 昭和電工株式会社 ニッケル含有膜形成材料およびニッケル含有膜の製造方法
US7769935B2 (en) 2006-12-27 2010-08-03 Kabushiki Kaisha Yaskawa Denki Communication system with master and slave exchanging control data in predetermined communication period
WO2014162998A1 (ja) * 2013-04-01 2014-10-09 富士フイルム株式会社 圧電体膜のエッチング方法および圧電素子の製造方法
JP2021082711A (ja) * 2019-11-19 2021-05-27 株式会社デンソー 半導体装置の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7769935B2 (en) 2006-12-27 2010-08-03 Kabushiki Kaisha Yaskawa Denki Communication system with master and slave exchanging control data in predetermined communication period
WO2010032679A1 (ja) * 2008-09-22 2010-03-25 昭和電工株式会社 ニッケル含有膜形成材料およびニッケル含有膜の製造方法
WO2014162998A1 (ja) * 2013-04-01 2014-10-09 富士フイルム株式会社 圧電体膜のエッチング方法および圧電素子の製造方法
JP2014203839A (ja) * 2013-04-01 2014-10-27 富士フイルム株式会社 圧電体膜のエッチング方法および圧電素子の製造方法
US9620704B2 (en) 2013-04-01 2017-04-11 Fujifilm Corporation Method for etching piezoelectric film and method for manufacturing piezoelectric element
JP2021082711A (ja) * 2019-11-19 2021-05-27 株式会社デンソー 半導体装置の製造方法

Similar Documents

Publication Publication Date Title
JP5211503B2 (ja) 半導体装置の製造方法
US7279413B2 (en) High-temperature stable gate structure with metallic electrode
JP5672334B2 (ja) 半導体装置の製造方法
US20070052034A1 (en) Integrated circuit containing polysilicon gate transistors and fully silicidized metal gate transistors
JP2007214538A (ja) 半導体装置およびその製造方法
US8889505B2 (en) Method for manufacturing semiconductor device
JP2005175121A (ja) 半導体装置の製造方法および半導体装置
JP2009033032A (ja) 半導体装置及び半導体装置の製造方法
JP5598145B2 (ja) 半導体装置の製造方法及び半導体装置
KR100836763B1 (ko) 반도체 소자 및 그 형성 방법
JP4191000B2 (ja) 半導体装置及びその製造方法
JP2008192661A (ja) 半導体装置の製造方法
KR100758112B1 (ko) 반도체 장치 및 그 제조 방법
US20070202695A1 (en) Method for fabricating a semiconductor device
KR20210130237A (ko) 반도체 소자를 위한 금속 규화물을 선택적으로 형성하는 방법
JPWO2008117430A1 (ja) 半導体装置の製造方法、半導体装置
JP2011187498A (ja) 半導体装置の製造方法
JP2006165469A (ja) 半導体装置及びその製造方法
JP5119696B2 (ja) 半導体装置の製造方法
JP3987046B2 (ja) 半導体装置の製造方法
JP2009049207A (ja) 半導体装置の製造方法
JP5195421B2 (ja) 半導体装置
TW201214575A (en) Metal gate transistor and method for fabricating the same
KR20100108419A (ko) 박막 및 그 박막을 이용한 반도체 장치의 제조 방법
JP2005522035A (ja) 伝導性のシリコン含有領域に対する改善された金属シリサイド接触を形成する方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080731

A621 Written request for application examination

Effective date: 20091109

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Effective date: 20101201

Free format text: JAPANESE INTERMEDIATE CODE: A761