JP2008186928A - 太陽電池および太陽電池モジュール - Google Patents

太陽電池および太陽電池モジュール Download PDF

Info

Publication number
JP2008186928A
JP2008186928A JP2007017980A JP2007017980A JP2008186928A JP 2008186928 A JP2008186928 A JP 2008186928A JP 2007017980 A JP2007017980 A JP 2007017980A JP 2007017980 A JP2007017980 A JP 2007017980A JP 2008186928 A JP2008186928 A JP 2008186928A
Authority
JP
Japan
Prior art keywords
bus bar
solar cell
receiving surface
light
bar electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007017980A
Other languages
English (en)
Inventor
Shinji Kobayashi
真司 小林
Tomoyo Maruyama
朋代 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007017980A priority Critical patent/JP2008186928A/ja
Publication of JP2008186928A publication Critical patent/JP2008186928A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

【課題】太陽電池素子にクラックが入ることを防止できる太陽電池および太陽電池モジュールを提供する。
【解決手段】太陽電池は、シリコン基板1と、非受光面バスバー電極3Nと、受光面バスバー電極3Rと、コネクタ2とを備えている。シリコン基板1は、互いに表裏の関係にある非受光面1Nおよび受光面1Rを有している。非受光面バスバー電極3Nは、シリコン基板1の非受光面1Nの上に形成されている。受光面バスバー電極3Rは、受光面1Rのうちシリコン基板1を挟んで非受光面バスバー電極3Nと正対する領域の外側の領域の上に形成されている。
【選択図】図1

Description

本発明は、太陽電池および太陽電池モジュールに関し、特に、バスバー電極を有する太陽電池および太陽電池モジュールに関するものである。
太陽電池には、シリコン基板などからなる太陽電池素子と、この太陽電池素子上に形成されたフィンガー電極およびバスバー電極を有しているものがある。また、1枚の太陽電池素子のみでは電気出力が小さい場合、コネクタ(インナーリード)により互いに電気的に直並列に接続された複数の太陽電池素子を有する太陽電池モジュールが用いられることがある。
以下に、従来の一般的な太陽電池モジュールについて説明する。
図15は、従来の太陽電池モジュールの受光面を概略的に示す平面図である。なお図16は図15のXVI−XVI線に沿う部分断面図であり、図17はXVII−XVII線に沿う部分断面図である。
図15〜図17を参照して、太陽電池モジュール60Cは複数の太陽電池50Cが連結されて構成されている。1つの太陽電池50Cは、太陽電池素子であるシリコン基板1を有している。シリコン基板1の受光面側(図示されている側)およびその反対側である非受光面側には、通常、バスバー電極3が形成されている。また、受光面側には、このバスバー電極3に垂直な多数のフィンガー電極4が形成されている。フィンガー電極4は光生成キャリアを収集する機能を有している。バスバー電極3はこの収集されたキャリアを集電する機能を有している。
シリコン基板1は、p型半導体基板の受光面側にn型拡散層が形成されているものである。バスバー電極3およびフィンガー電極4は、銀ペースト等がシリコン基板1上にスクリーン印刷され、焼き付けられることにより形成されている。
コネクタ2が半田5によりバスバー電極3に接続されている。このコネクタ2を介して、複数のシリコン基板1が相互に電気的に接続されている。なお、コネクタ2は、半田で被覆された銅箔が所定の長さに切断されて形成されている。コネクタ2の接続は、ホットエア等でこの被覆半田を溶かして熱溶着することにより行なわれる。
シリコン基板1の表裏のそれぞれに位置するバスバー電極3およびコネクタ2は、シリコン基板1を挟んで正対している。
一方、特開2005−317904号公報には、上記の一般的な太陽電池および太陽電池モジュールの課題が記載されている。すなわち、インナーリード(コネクタ)2とバスバー電極3とが熱溶着(半田付け)される際に、バスバー電極3の端部とシリコン基板1との境界部分に大きな応力が生じ、ストレスが集中する課題があると記載されている。この公報で開示された技術では、この応力を低減するために、半田5とバスバー電極3の端部とが直接接合されないような構成がとられている。たとえば図18に示すように被覆体6が覆う構成が用いられている。
他方、特開2004−119687号公報にも、上記の一般的な太陽電池および太陽電池モジュールの課題が記載されている。すなわち、インナーリード(コネクタ)2とバスバー電極3とが熱溶着(半田付け)される際に、両者の熱収縮率の違いが問題となると記載されている。この公報では、上記熱収縮の相違が生じる範囲を小さくする構成がとられている。たとえば図19に示すように、非受光面側(裏面側)において、インナーリード(コネクタ)2がバスバー電極3上ではなくフィンガー電極4上に設けられている。
特開2005−317904号公報 特開2004−119687号公報
図15〜図17に示された一般的な太陽電池および太陽電池モジュールでは、コネクタ2とバスバー電極3とが熱溶着(半田付け)される際に、バスバー電極3の外縁と太陽電池素子(シリコン基板)1との界面の位置C(図17)に大きな応力が生じ、クラックが発生することがあるという問題があった。
また、特開2005−317904号公報で開示されている上記太陽電池および太陽電池モジュールでは、被覆体6が形成されている分だけインナーリード(コネクタ)2とバスバー電極3とが半田付けされる面積が小さくなってしまう。その結果、接合強度が低下するという問題があった。また、被覆体6の付加により製造コストが増大する問題があった。
なお、バスバー電極3の一部が被覆体6に覆われた分だけバスバー電極3が大きくされれば、被覆体6があっても半田付け面積は維持される。しかし、バスバー電極3により光が遮断される面積が大きくなるため、発電効率が低下してしまう。
また、特開2004−119687号公報で開示されている上記太陽電池および太陽電池モジュールでは、バスバー電極3よりも細いフィンガー電極4上にインナーリード(コネクタ)2が半田付けされるため、接合強度が低下するという問題があった。
本発明は、上記の課題に鑑みてなされたものであり、その目的は、コネクタとバスバー電極との接合強度および発電効率を維持しながら、太陽電池素子にクラックが入ることを防止することができる太陽電池および太陽電池モジュールを提供することである。
本発明の一の局面に従う太陽電池は、太陽電池素子と、第1および第2バスバー電極と、第1および第2コネクタとを備えている。太陽電池素子は、互いに表裏の関係にある第1および第2主面を有している。第1バスバー電極は、太陽電池素子の第1主面の上に形成されている。第2バスバー電極は、第2主面のうち太陽電池素子を挟んで第1バスバー電極と正対する領域の外側の領域の上に形成されている。第1および第2コネクタのそれぞれは、第1および第2バスバー電極の各々の上に半田で接合されている。
本発明の一の局面に従う太陽電池では、第2バスバー電極が第2主面のうち太陽電池素子を挟んで第1バスバー電極と正対する領域の外側の領域の上に形成されている。これにより、第2バスバー電極の外縁と、太陽電池素子との界面の位置における引張応力が抑制される。よって、応力によるクラックを防止することができる。
また、第1および第2コネクタのそれぞれが、第1および第2バスバー電極の各々の上に接合されている。これにより、第1または第2コネクタがフィンガー電極上に接合される場合に比して、半田付けの接合面積が大きくなる。よって、接合強度が高められる。
本発明の他の局面に従う太陽電池は、太陽電池素子と、第1および第2バスバー電極と、第1および第2コネクタとを備えている。太陽電池素子は、互いに表裏の関係にある第1および第2主面を有している。第1および第2バスバー電極は、太陽電池素子の第1および第2主面のそれぞれの上に形成されている。第1コネクタは、第1バスバー電極の上にはんだで接合されている。第2コネクタは、第2主面のうち太陽電池素子を挟んで第1バスバー電極と正対する領域の外側の領域の上に設けられ、第2バスバー電極に半田で接合されている。
本発明の他の局面に従う太陽電池では、第2コネクタが第2主面のうち太陽電池素子を挟んで第1バスバー電極と正対する領域の外側の領域の上に設けられている。これにより、第2バスバー電極の外縁と、太陽電池素子との界面の位置における引張応力が抑制される。よって、応力によるクラックの発生を防止することができる。
また、第1および第2コネクタのそれぞれが、第1および第2バスバー電極の各々の上に接合されている。これにより、第1または第2コネクタがフィンガー電極上に接合される場合に比して、半田付けの接合面積が大きくなる。よって、接合強度が高められる。
本発明のさらに他の局面に従う太陽電池は、太陽電池素子と、第1および第2バスバー電極と、第1および第2コネクタとを備えている。太陽電池素子は、互いに表裏の関係にある第1および第2主面を有している。第1および第2バスバー電極は太陽電池素子の第1および第2主面のそれぞれの上に形成されている。第1コネクタは、第1バスバー電極の上に半田で接合されている。第2コネクタは、第2バスバー電極の上に半田で接合され、第1バスバー電極の外縁のうち太陽電池素子の一方側に位置する部分から第1主面の面内方向について一方側へ0.5mm以上離れた位置に外縁の一方側が位置している。
本発明のさらに他の局面に従う太陽電池では、第2コネクタが第1バスバー電極の外縁のうち太陽電池素子の一方側に位置する部分から第1主面の面内方向について一方側へ0.5mm以上離れた位置に外縁の一方側が位置している。これにより、第2バスバー電極の外縁と、太陽電池素子との界面の位置における引張応力が抑制される。よって、応力によるクラックの発生を防止することができる。
また、第1および第2コネクタのそれぞれが、第1および第2バスバー電極の各々の上に接合されている。これにより、第1または第2コネクタがフィンガー電極上に接合される場合に比して、半田付けの接合面積が大きくなる。よって、接合強度が高められる。
本発明の太陽電池モジュールは、上記のいずれかに記載の太陽電池を複数備え、互いに隣り合う太陽電池の一方の第1コネクタと他方の第2コネクタとが一体となっていることにより複数の太陽電池が互いに電気的に接続されている。
本発明の太陽電池モジュールでは、複数の太陽電池が互いに電気的に接続されている。このため、単一の太陽電池の場合と比して、大きな電気出力を得ることができる。
上記の太陽電池モジュールにおいて好ましくは、複数の太陽電池のそれぞれの太陽電池素子が一の方向に沿って等間隔に並んでおり、この一の方向と鋭角をなすように第1および第2バスバー電極が延びている。
これにより、すべての太陽電池素子に対して同じパターンで第1および第2バスバー電極を形成することができる。
上記の太陽電池モジュールにおいてさらに好ましい一の局面としては、複数の太陽電池のそれぞれにおいて、複数の第1および第2バスバー電極のそれぞれについての上記鋭角が互いに等しい角である。
これにより、複数の第1および第2バスバー電極のそれぞれに接合される第1および第2コネクタの長さを統一化することができる。
上記の太陽電池モジュールにおいてさらに好ましい他の局面としては、複数の太陽電池のそれぞれにおいて、複数の第1および第2バスバー電極が互いに平行に延びている。
これにより、複数の第1および第2バスバー電極に挟まれたフィンガー電極の長さを統一化できる。
以上説明したように本発明によれば、コネクタとバスバー電極との接合強度および発電効率が維持されながら、太陽電池素子にクラックが入ることを防止することができる。
以下、本発明の実施の形態について図に基づいて説明する。
(実施の形態1)
図1および図2は、本発明の実施の形態1における太陽電池の構成を概略的に示す部分断面図および平面図である。なお、図1の断面位置は図2のI−I線に沿う。
図1および図2を参照して、本実施の形態の太陽電池50は、非受光面(第1主面)1Nおよび受光面(第2主面)1Rを表裏に有するシリコン基板(太陽電池素子)1を備えている。シリコン基板1の非受光面1Nには、非受光面バスバー電極(第1バスバー電極)3Nが形成されている。非受光面バスバー電極3Nの上には、非受光面1N側のコネクタ(第1コネクタ)2が半田5で接合されている。シリコン基板1の受光面1Rには、受光面バスバー電極(第2バスバー電極)3Rが形成されている。受光面バスバー電極3Rの上には、受光面1R側のコネクタ(第2コネクタ)2が半田5で接合されている。また、受光面1R上には多数本のフィンガー電極4(図2)が受光面バスバー電極3Rと交差するように多数本形成されている。
図1を参照して、受光面バスバー電極3Rは、受光面1Rのうちシリコン基板1を挟んで非受光面バスバー電極3Nと正対する領域ONの外側の領域の上に形成されている。また、非受光面バスバー電極3Nは、非受光面1Nのうちシリコン基板1を挟んで受光面バスバー電極3Rと正対する領域ORの外側の領域の上に形成されている。
図1および図2を参照して、シリコン基板1は、単結晶または多結晶シリコンからなる。シリコン基板1の内部には、ボロン(B)などの不純物を多く含んだp型半導体層と、リン(P)などの不純物を多く含んだn型半導体層が接しているpn接合が形成されている。シリコン基板1の形状は、たとえば、主面の形状が1辺の長さ寸法が10〜15cmの正方形であり、厚み寸法が0.1〜0.4mmである。
非受光面バスバー電極3Nおよび受光面バスバー電極3Rは、たとえば銀(Ag)からなる。非受光面バスバー電極3Nおよび受光面バスバー電極3Rの形状は、たとえば幅寸法1〜4mmの帯状形状であり、非受光面1Nおよび受光面1Rのそれぞれに2本形成されている。なお、この本数は2本に限らず、3本以上とすることもできる。
コネクタ2は、たとえば半田が厚さ20〜70μmコートされた銅(Cu)からなる。コネクタ2の形状は、たとえば幅寸法1〜4mmの帯状である。
フィンガー電極4は、たとえば銀(Ag)からなる。フィンガー電極4の形状は、たとえば幅寸法0.1〜0.2mmの帯状であり、シリコン基板1の1辺に平行であり、バスバー電極3Rと交差する方向に多数本形成されている。
次に、本実施の形態の太陽電池の製造方法について説明する。
主に図3を参照して、pn接合を有するシリコン基板1に、スクリーン印刷法により銀ペーストのパターンが形成される。その後に焼成が行なわれ、非受光面バスバー電極3N、受光面バスバー電極3Rおよびフィンガー電極4が形成される。
続いて、複数のコネクタ2のそれぞれが、非受光面バスバー電極3Nおよび受光面バスバー電極3Rの各々に沿って接触した状態で固定される。そして、コネクタ2にホットエアが吹き付けられる。これにより半田5が溶解し、コネクタ2が非受光面バスバー電極3Nまたは受光面バスバー電極3Rに熱溶着される。これにより、太陽電池50(図2)が得られる。
次に、本実施の形態の太陽電池と従来の太陽電池との間の熱応力の差異を検討するために、本願発明者により行なわれたシミュレーションについて説明する。なお、この熱応力は、上述した熱溶着の際に生じるものである。
図4(a)〜図4(f)は、応力シミュレーションが行なわれた太陽電池の形状のうち代表的なものの概略断面図である。シミュレーション条件としては、図4(a)に示されるような、非受光面バスバー電極3Nと受光面バスバー電極3Rとがシリコン基板1を挟んで完全に正対する位置を基準位置とした。そして、図4(b)〜図4(f)に示されるように、非受光面バスバー電極3Nと受光面バスバー電極3Rとの、非受光面1Nの面内方向についての相対位置の基準位置からのズレ寸法(ズレ量)Xを変化させた。
この変化の下、受光面バスバー電極3Rの外縁から非受光面1Nの面内方向についてズレ量Xだけ隔てられた非受光面バスバー電極3Nの外縁部分と、シリコン基板1との界面の位置Eにおける応力の計算をおこなった。なお、位置Eはズレ量Xがゼロから増加していくに従い、図4(b)〜図4(d)のように受光面バスバー電極3Rの形成された領域下を通過し、やがて図4(f)のように受光面バスバー電極3Rの形成された領域下から外れる位置である。
また、非受光面バスバー電極3Nおよび受光面バスバー電極3Rの幅寸法は、共に3.1mmとされた。そして、非受光面バスバー電極3Nおよび受光面バスバー電極3Rのそれぞれに沿って、幅2.5mmのコネクタ2が半田5を介して接合されるものとした。コネクタ2の側部からは非受光面バスバー電極3Nまたは受光面バスバー電極3Rが寸法0.3mmに渡ってはみ出す形状とされた。
図5は太陽電池の形状と応力との関係のシミュレーションの結果を概略的に示すグラフである。なお、図中の矢印a〜fのそれぞれは、図4(a)〜図4(f)の状態の各々に対応している。
図4(b)および図5を参照して、ズレ量Xが0.3mmの状態において、引っ張り応力は最大値(約2.6×108MPa)となった。なお、ズレ量Xが0.3mmの状態とは、受光面1R側のコネクタ2の外縁の直下に非受光面バスバー電極3Nの外縁が位置し、かつ非受光面1N側のコネクタ2と受光面1R側のコネクタ2とがシリコン基板1を挟んで部分的に対向する状態である。ズレ量Xが0.3mmから小さくなるに従って引張応力は小さくなり、ズレ量Xがゼロとなると引張応力は1.2×108MPaにまで低下した。
主に図4(e)、図4(f)および図5を参照して、ズレ量Xが3.1mm以上の範囲において、引張応力は最小値(約1×108MPa)でほぼ一定となった。なお、ズレ量Xが3.1mm以上の状態とは、受光面バスバー電極3Rがシリコン基板1を挟んで非受光面バスバー電極3Nと正対する領域ON(図1)の外側の領域に位置している状態である。
本実施の形態によれば、図1に示されように、受光面バスバー電極3Rが受光面1Rのうちシリコン基板1を挟んで非受光面バスバー電極3Nと正対する領域ONの外側の領域の上に形成されている。これにより、非受光面バスバー電極3Nの外縁部分と、シリコン基板1との界面の位置E(図4)における引張応力が低い状態(図5でズレ量Xが矢印eで示す値より大きい状態)とすることができる。よって、応力によるクラックの発生を防止することができる。
また、図5におけるズレ量Xがeより大きい状態における位置E(図4)の引張応力の値は低い値でほぼ一定である。よって、非受光面バスバー電極3Nおよび受光面バスバー電極3Rの相対位置が製造誤差によりばらついても、引張応力のばらつきを低い値で安定的に保つことができる。これにより、非受光面バスバー電極3Nおよび受光面バスバー電極3Rの形成時の銀ペーストの印刷が高精度に行なわれなくても、応力によるクラックの発生を防止することができる。
なお、図15〜図17に示す従来の太陽電池において界面の位置C(図17)でクラックが発生しやすかったのは、製造誤差により図6に示すようなズレ量Xが生じたためと考えられる。このようなズレが生じると、引張応力は図5の矢印aの値から矢印bの値に向かって急激に増大し、クラックが発生しやすくなると考えられる。
(実施の形態2)
図7は、本発明の実施の形態2における太陽電池モジュールの構成を概略的に示す平面図である。以下に、この構成について具体的に説明する。なお、実施の形態1と同一または対応する要素については同一の符号を付し、その説明を省略する。
図7を参照して、本実施の形態の太陽電池モジュール60は、実施の形態1で説明した太陽電池50(図2)とほぼ同じ太陽電池50a、50b、50cを備えている。すなわち、太陽電池モジュール60は、複数のシリコン基板1a、1b、1cを有している。この複数のシリコン基板1a、1b、1cは、一の方向(図中矢印Pの方向)に沿って等間隔(図中矢印Pの長さに対応する間隔)に並んでいる。
シリコン基板1aには、実施の形態1と同様に、コネクタ2a、2bが形成されている。なお、コネクタ2bは受光面1Ra側に配されており、コネクタ2aは非受光面側に配されている。実施の形態1で説明されたズレ量Xの存在のため、コネクタ2bはコネクタ2aに対して、上記一の方向(図中矢印Pの方向)と直交する方向(図中矢印S1)にシフトした位置に配されている。
シリコン基板1bには、実施の形態1と同様に、コネクタ2b、2cが形成されている。なお、コネクタ2cは受光面1Rb側に配されており、コネクタ2bは非受光面側に配されている。コネクタ2bは、太陽電池50aにおいては受光面1Ra側のコネクタ(第2コネクタ)であり、この太陽電池50aと隣り合う太陽電池50bにおいては非受光面1Nb側のコネクタ(第1コネクタ)である。すなわち、コネクタ2bは、互いに隣り合う太陽電池50a、50bの一方の第1コネクタと、他方の第2コネクタとが一体となった構成を有している。これにより、コネクタ2bは、互いに隣り合う太陽電池50aと50bとを電気的に接合する配線(インターコネクタ)としての機能を有している。実施の形態1で説明されたズレ量Xの存在のため、コネクタ2cはコネクタ2bに対して、一の方向(図中矢印Pの方向)と交差する方向に矢印S2のようにシフトした位置に配されている。
本実施の形態において、矢印S2は矢印S1と逆向きとされる。このため、シリコン基板1b上に形成されている非受光面バスバー電極および受光面バスバー電極(図7において図示せず)の相対位置は、シリコン基板1aに形成されているものとは異なっている。よって、非受光面バスバー電極および受光面バスバー電極の形成時に用いるスクリーン印刷のパターンは、シリコン基板1aとシリコン基板1bとでは異なったものが用いられる。
シリコン基板1cには、実施の形態1と同様に、コネクタ2c、2dが形成されている。なお、コネクタ2dは受光面1Rc側に配されており、コネクタ2cは非受光面側に配されている。コネクタ2cは、太陽電池50bにおいては受光面1Rb側のコネクタ(第2コネクタ)であり、この太陽電池50bと隣り合う太陽電池50cにおいては非受光面1Nc側のコネクタ(第1コネクタ)である。すなわち、コネクタ2cは、互いに隣り合う太陽電池50b、50cの一方の第1コネクタと、他方の第2コネクタとが一体となった構成を有している。これにより、コネクタ2cは、互いに隣り合う太陽電池50bと50cとを電気的に接合する配線(インターコネクタ)としての機能を有している。実施の形態1で説明されたズレ量Xの存在のため、コネクタ2dはコネクタ2cに対して、一の方向(図中矢印Pの方向)と交差する方向に矢印S1のようにシフトした位置に配されている。
本実施の形態の太陽電池モジュール60によれば、実施の形態1で説明したように、各太陽電池50a、50b、50cにおけるクラックの発生が防止される。よって、太陽電池モジュール60の信頼性を高めることができる。
また、太陽電池モジュール60が互いに電気的に接続された複数の太陽電池50a、50b、50cを有している。このため、太陽電池が単一の場合に比して、電気出力を高めることができる。
また、非受光面バスバー電極および受光面バスバー電極の形成時に用いるスクリーン印刷のパターンを複数種用いることにより、非受光面側のコネクタ位置に対する受光面側のコネクタ位置のズレ方向を、隣り合う太陽電池間で逆向きに打ち消すことができる。よって、複数のシリコン基板1a、1b、1cが一の方向に沿って並ぶように配することができる。
これにより、太陽電池モジュール60においてシリコン基板1a、1b、1cを密に配列することができる。また、太陽電池モジュール60のベルトコンベアによる移送が行ないやすくなる。
(実施の形態3)
図8は、本発明の実施の形態3における太陽電池モジュールの構成を概略的に示す平面図である。図8を参照して、本実施の形態の太陽電池モジュール60は、実施の形態2と同様に複数のシリコン基板1a、1bが、一の方向(図中矢印Pの方向)に沿って等間隔(図中矢印Pの長さに対応する間隔)に並んでいる。以下に、この構成について具体的に説明する。なお、実施の形態2と同一または対応する要素については同一の符号を付し、その説明を省略する。
コネクタ2a、2b、2cが、上記一の方向(図中矢印Pの方向)に対して鋭角θ1だけ回転された方向に延在している。各コネクタ2a、2b、2cは複数本存在しており、それぞれにおいて、上記一の方向を基準として時計周りに鋭角θ1方向に延在するものと、反時計周りに鋭角θ1方向に延在するものとが混在している。
また、複数の太陽電池50a、50bのそれぞれの非受光面バスバー電極3Nおよび受光面バスバー電極3R(図3)の延在方向は、コネクタ2a、2b、2cの延在方向に合わせて形成されている。
なお、これ以外の構成は、実施の形態2の太陽電池モジュール(図7)とほぼ同様であるため、同一または対応の要素については同一の符号を付し、その説明を省略する。
本実施の形態によれば、コネクタ2a、2b、2cが一の方向(図中矢印Pの方向)に対して鋭角をなすように延びている。このため、実施の形態2のシフト(図7のS1、S2)を設ける必要がない。よって、実施の形態2と異なり、すべてのシリコン基板1a、1bに対して同じパターンで非受光面バスバー電極3Nおよび受光面バスバー電極3Rを形成することができる。
また、複数の太陽電池50a、50bにおいて、複数の非受光面バスバー電極3Nおよび受光面バスバー電極3Rのそれぞれが延びる方向と上記一の方向とがなす鋭角が、互いに等しい角(θ1)である。よって、図8に示すように、たとえば複数のコネクタ2cの長さを等しい寸法LCに統一することができる。
なお、図8にはシリコン基板1a、1bが矩形状の場合を示したが、図9に示すように曲線状の外縁を有するシリコン基板1a、1bを用いることもできる。
また、本実施の形態の説明においては、太陽電池が2つの場合について説明したが、太陽電池の数は3つ以上であってもよい。この場合においては、太陽電池モジュールは、3つ以上のシリコン基板が一の方向に沿って等間隔に配列されている構成を有する。
(実施の形態4)
図10は、本発明の実施の形態4における太陽電池モジュールの構成を概略的に示す平面図である。図10を参照して、本実施の形態の太陽電池モジュール60は、実施の形態3と同様に、コネクタ2a、2b、2cのそれぞれが、一の方向(図中矢印Pの方向)に対して鋭角θ1だけ回転された方向に複数延在している。ただし、本実施の形態においては、複数のコネクタ2a、2b、2cが互いに平行に延びている。
また、複数の太陽電池50a、50bのそれぞれの非受光面バスバー電極3Nおよび受光面バスバー電極3Rの延在方向は、コネクタ2a、2b、2cの延在方向に合わせて形成されている。
なお、これ以外の構成は、実施の形態3の太陽電池モジュール60(図8)とほぼ同様であるため、同一または対応の要素については同一の符号を付し、その説明を省略する。
本実施の形態によれば、実施の形態3と同様に、すべてのシリコン基板1a、1bに対して同じパターンで非受光面バスバー電極3Nおよび受光面バスバー電極3Rを形成することができる。
また、複数の非受光面バスバー電極3Nおよび受光面バスバー電極3Rが互いに平行に延びている。これにより、複数の非受光面バスバー電極3Nおよび受光面バスバー電極3Rに挟まれたフィンガー電極4の長さを統一化できる。よって、複数の非受光面バスバー電極3Nおよび受光面バスバー電極3Rに挟まれたフィンガー電極4の抵抗値を容易に統一化できる。この結果、各フィンガー電極4の集電効率のばらつきを抑制することができる。たとえば、図10に示すように、受光面1Rb上の複数のコネクタ2cの下に形成されている受光面バスバー電極3Rに挟まれた範囲に存在するフィンガー電極4の長さは、受光面1Rbのどの部分でも同一となる。
(実施の形態5)
図11は、本発明の実施の形態5における太陽電池モジュールの構成を概略的に示す平面図である。図12は、図11のXII−XII線に沿う部分断面図である。
図11を参照して、本実施の形態の太陽電池モジュール60においては、実施の形態4における鋭角θ1が、より小さな角度である鋭角θ2に置き換えられている。
図12を参照して、鋭角θ2が鋭角θ1よりも小さいことにより、実施の形態4と異なり、非受光面バスバー電極3Naと、受光面バスバー電極3Raとがシリコン基板1aを挟んで一部対向している。
たとえばシリコン基板1aにおいて、受光面1Ra側のコネクタ2bは、受光面1Raのうちシリコン基板1を挟んで非受光面バスバー電極3Naと正対する領域ONの外側の領域の上に形成されている。また、非受光面1Na側のコネクタ2aは、非受光面1Naのうちシリコン基板1aを挟んで受光面バスバー電極3Raと正対する領域ORの外側の領域の上に形成されている。
たとえば、シリコン基板1a、1bの形状は、主面の形状が1辺の長さ寸法が10〜15cmの正方形とすることができる。またコネクタ2a、2b、2cの幅は2.5mmとすることができる。また非受光面バスバー電極および受光面バスバー電極が各コネクタ2a、2b、2cの脇からはみ出す寸法は0.3mmとすることができる。この寸法条件の下で、主面の形状が1辺の長さ寸法が15cmの正方形の場合、θ2が1.06〜1.18°の範囲において、上記構成をとることができる。また、主面の形状が1辺の長さ寸法が10cmの正方形の場合、θ2が1.60〜1.72°の範囲において、上記構成をとることができる。
上記以外の構成については、実施の形態4の太陽電池モジュールとほぼ同様であるため、同一または対応の要素については同一の符号を付し、その説明を省略する。
本実施の形態によれば、図12に示すように、たとえば受光面1Raのコネクタ2bは、受光面1Raのうちシリコン基板1aを挟んで非受光面バスバー電極3Nと正対する領域ONの外側の領域の上に設けられている。このため、受光面バスバー電極と非受光面バスバー電極との位置関係は、図4(d)〜図4(e)のような関係となる。よって、図5に示すように、引張応力を、ズレ量X≧2.8mmの範囲の引張応力である約2.1×108MPa以下の値とすることができ、引張応力が最大値(図5の矢印b)あるいはそれに近い値をとることを避けることができる。
また、実施の形態4の鋭角θ1(図10)に比して、鋭角θ2(図11)を小さくすることができる。これにより、各コネクタ2a、2b、2cのそれぞれからシリコン基板1a、1bの端部側に延びるフィンガー電極4の長さのばらつきを抑えることができる。よって、各フィンガー電極4の集電能力のばらつきを抑えることができる。
(実施の形態6)
図13は、本発明の実施の形態6における太陽電池モジュールの構成を概略的に示す部分断面図である。図13を参照して、本実施の形態の太陽電池モジュールにおいては、非受光面バスバー電極3Naの外縁のうちシリコン基板1aの一方側(図中左側)に位置する部分から、非受光面1Nの面内方向について上記一方側(図中左側)へ寸法Y離れた位置に、受光面1R上のコネクタ2bの外縁の上記一方側(図中左側)が位置している。この寸法Yは、0.5mm以上とされている。
上記以外の構成については、実施の形態5の太陽電池モジュールとほぼ同様であるため、同一または対応の要素については同一の符号を付し、その説明を省略する。
図14は、実施の形態1で説明された本願発明者により行なわれたシミュレーション結果を寸法Yを横軸として表したグラフである。主に図14を参照して、寸法Y=0(図4(b)の状態)において、引張応力が最大値である約2.6×108MPaとなった。寸法Yが増加してくと引張応力が小さくなっていき、寸法Y=0.5mm以上2.5mm以下という広い範囲において引張応力は約2.1×108MPaで安定状態となった。
本実施の形態によれば、寸法Y(図13)が0.5mm以上とされる。これにより、図14のグラフにおいて特に応力が高い範囲である−0.1mm<寸法Y<0.5mmの範囲を避けることができる。よって引張応力によるクラックの発生を防止することができる。
また、寸法Y=0.5mm以上2.5mm以下という広い範囲において応力がほぼ一定となるため、非受光面バスバー電極3Nおよび受光面1Rの形成を高い位置精度で行なう必要がなくなる。よって、コネクタ2bのうねりを、より許容することができる。また、非受光面バスバー電極3N形成のためのスクリーン印刷の位置の公差等を大きくすることができるので、製造装置が有する画像認識機構の精度も、より低いものでも使用可能となり、設備コストを低減することができる。
また、実施の形態5と異なり、0.5mm≦寸法Y≦2.5mmにおいては、非受光面バスバー電極3Nと受光面1R側のコネクタ2bとがシリコン基板1を挟んで対向する構成とすることができる。このため、本実施の形態の構成として、実施の形態5の鋭角θ2(図11)がより小さくされた構成をとることができる。これにより、各コネクタ2a、2b、2cのそれぞれからシリコン基板1a、1bの端部側に延びるフィンガー電極4の長さのばらつきを抑えることができる。よって、各フィンガー電極4の集電能力のばらつきを抑えることができる。
なお、上記各実施の形態においては、非受光面バスバー電極の位置が基準とされた受光面バスバー電極およびこの受光面バスバー電極上のコネクタの位置について説明したが、受光面バスバー電極の位置が基準とされた非受光面バスバー電極およびこの非受光面バスバー電極上のコネクタの位置についても同様の議論が成り立つ。すなわち、本発明は、上記説明した太陽電池および太陽電池モジュールの構成において、受光面と非受光面との関係を入れ替えても成立する。
主に図7を参照して、太陽電池素子として、外形が15cm×15cmの多結晶のシリコン基板1a、1b、1cを用いた。各シリコン基板1a、1b、1cの受光面1Ra、1Rb、1Rcおよび非受光面の上に、スクリーン印刷法により銀ペーストがパターン状に塗布された。非受光面上のパターンは非受光面バスバー電極の形状とされた。また、受光面1Ra、1Rb、1Rc上のパターンは、受光面バスバー電極およびフィンガー電極4の形状とされた。
非受光面バスバー電極および受光面バスバー電極のパターンは、シリコン基板1a、1b、1cの一辺と平行に延在し、その幅寸法は3.1mmとされた。また、非受光面バスバー電極および受光面バスバー電極のパターンは、シリコン基板1aの一辺と平行となるように配置された。これにより、図3に示すような構成を得た。
図3を参照して、シリコン基板1aおよび1cは、寸法LR1=2.2mm、寸法LR2=5.3mm、寸法LN1=5.3mm、寸法LN2=2.3mmとなるようにスクリーン印刷された。シリコン基板1bは、寸法LR1=5.3mm、寸法LR2=2.3mm、寸法LN1=2.2mm、寸法LN2=5.3mmとなるようにスクリーン印刷された。その後に焼成工程が行なわれ、図3に示すような構成を得た。
図7を参照して、続いて、上記のように電極が形成されたシリコン基板1a、1b、1cにコネクタ2a、2b、2cが接続された。コネクタ2a、2b、2cとしては、幅2.5mm、厚さ0.2mmの帯状の銅箔であって、ディップ法により厚み40μmの半田がコートされたものを用いた。接続方法としては、コネクタ2a、2b、2cと、非受光面バスバー電極または受光面バスバー電極とが接する部分の全長に渡ってホットエアが当てられ、この接する部分が半田により熱溶着される方法を用いた。以上により、図7に示す太陽電池モジュール60を得た。
主に図8を参照して、実施例1と類似の方法により、シリコン基板1a、1bのそれぞれに、非受光面バスバー電極および受光面バスバー電極(図8において図示せず)と、フィンガー電極4とが形成された。非受光面バスバー電極および受光面バスバー電極の延在方向は、一の方向(矢印Pの方向)から時計周りにθ1=1.7°回転した方向および反時計周りにθ1=−1.7°回転した方向とされた。
図1に示すように、シリコン基板1を挟んで非受光面バスバー電極3Nおよび受光面バスバー電極3Rが対向する部分が存在しないように、各非受光面バスバー電極、受光面バスバー電極が形成された。その後に、実施例1と同様の方法により、シリコン基板1a、1bにコネクタ2a、2b、2cが接続された。以上により、図8に示す太陽電池モジュール60を得た。
主に図10を参照して、実施例2(図8)と類似の方法により、シリコン基板1a、1bのそれぞれに、非受光面バスバー電極および受光面バスバー電極(図10において図示せず)と、フィンガー電極4とが形成された。非受光面バスバー電極および受光面バスバー電極の延在方向は、一の方向(矢印Pの方向)から時計周りにθ1=1.7°回転した方向とされた。
図1に示すように、シリコン基板1を挟んで非受光面バスバー電極3Nおよび受光面バスバー電極3Rが対向する部分が存在しないように、各非受光面バスバー電極、受光面バスバー電極が形成された。シリコン基板1の主面の面内方向について、非受光面バスバー電極と受光面バスバー電極との間の寸法Lは1.35mmとされた。
その後に、実施例1と同様の方法により、シリコン基板1a、1bにコネクタ2a、2b、2cが接続された。以上により、図10に示す太陽電池モジュール60を得た。
実施例3(図10)と類似の方法により、シリコン基板1a、1bのそれぞれに、非受光面バスバー電極、受光面バスバー電極、フィンガー電極4が形成された。非受光面バスバー電極および受光面バスバー電極の延在方向は、一の方向(矢印Pの方向)から時計周りに0.6°回転した方向とされた。
図13に示すように、シリコン基板1aを挟んで非受光面バスバー電極3Naおよび受光面1Ra上のコネクタ2bが対向する部分が存在するように、各非受光面バスバー電極、受光面バスバー電極が形成された。寸法Yは1.27mmとされた。
その後に、実施例1と同様の方法により、シリコン基板1a、1bにコネクタ2a、2b、2cが接続された。以上により、太陽電池モジュールを得た。
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本発明は、バスバー電極を有する太陽電池および太陽電池モジュールに特に有利に適用され得る。
本発明の実施の形態1における太陽電池の構成を概略的に示す部分断面図である。 本発明の実施の形態1における太陽電池の構成を概略的に示す平面図である。 本発明の実施の形態1における太陽電池の製造方法の一工程を示す概略断面図である。 応力シミュレーションが行なわれた太陽電池の形状のうち代表的なものの概略断面図である。 太陽電池の形状と応力との関係のシミュレーションの結果を概略的に示すグラフである。 従来の太陽電池における製造誤差を示す部分断面図である。 本発明の実施の形態2における太陽電池モジュールの構成を概略的に示す平面図である。 本発明の実施の形態3における太陽電池モジュールの構成を概略的に示す平面図である。 本発明の実施の形態3の変形例における太陽電池モジュールの構成を概略的に示す平面図である。 本発明の実施の形態4における太陽電池モジュールの構成を概略的に示す平面図である。 本発明の実施の形態5における太陽電池モジュールの構成を概略的に示す平面図である。 図11のXII−XII線に沿う部分断面図である。 本発明の実施の形態6における太陽電池モジュールの構成を概略的に示す部分断面図である。 太陽電池の形状と応力との関係のシミュレーションの結果を概略的に示すグラフである。 従来の太陽電池モジュールの受光面を概略的に示す平面図である。 図15のXVI−XVI線に沿う部分断面図である。 図14のXVII−XVII線に沿う部分断面図である。 従来の太陽電池モジュールの構成を概略的に示す部分断面図である。 従来の太陽電池モジュールの非受光面側を概略的に示す平面図である。
符号の説明
1 シリコン基板、1N 非受光面、1R 受光面、2 コネクタ、3N 非受光面バスバー電極、3R 受光面バスバー電極、5 半田。

Claims (7)

  1. 互いに表裏の関係にある第1および第2主面を有する太陽電池素子と、
    前記太陽電池素子の前記第1主面の上に形成された第1バスバー電極と、
    前記第2主面のうち前記太陽電池素子を挟んで前記第1バスバー電極と正対する領域の外側の領域の上に形成された第2バスバー電極と、
    前記第1および第2バスバー電極のそれぞれの上に半田で接合された第1および第2コネクタとを備えた、太陽電池。
  2. 互いに表裏の関係にある第1および第2主面を有する太陽電池素子と、
    前記太陽電池素子の前記第1および第2主面のそれぞれの上に形成された第1および第2バスバー電極と、
    前記第1バスバー電極の上にはんだで接合された第1コネクタと、
    前記第2主面のうち前記太陽電池素子を挟んで前記第1バスバー電極と正対する領域の外側の領域の上に設けられ、前記第2バスバー電極に半田で接合された第2コネクタとを備えた、太陽電池。
  3. 互いに表裏の関係にある第1および第2主面を有する太陽電池素子と、
    前記太陽電池素子の前記第1および第2主面のそれぞれの上に形成された第1および第2バスバー電極と、
    前記第1バスバー電極の上に半田で接合された第1コネクタと、
    前記第2バスバー電極の上に半田で接合され、前記第1バスバー電極の外縁のうち前記太陽電池素子の一方側に位置する部分から前記第1主面の面内方向について前記一方側へ0.5mm以上離れた位置に外縁の前記一方側が位置する第2コネクタとを備えた、太陽電池。
  4. 請求項1〜3のいずれかに記載の太陽電池を複数備え、
    互いに隣り合う前記太陽電池の一方の前記第1コネクタと他方の前記第2コネクタとが一体となっていることにより前記複数の太陽電池が互いに電気的に接続されていることを特徴とする、太陽電池モジュール。
  5. 前記複数の太陽電池のそれぞれの前記太陽電池素子が一の方向に沿って等間隔に並んでおり、前記一の方向と鋭角をなすように前記第1および第2バスバー電極が延びていることを特徴とする、請求項4に記載の太陽電池モジュール。
  6. 前記複数の太陽電池のそれぞれにおいて、複数の前記第1および第2バスバー電極のそれぞれについての前記鋭角が互いに等しい角であることを特徴とする、請求項5に記載の太陽電池モジュール。
  7. 前記複数の太陽電池のそれぞれにおいて、複数の前記第1および第2バスバー電極が互いに平行に延びていることを特徴とする、請求項5に記載の太陽電池モジュール。
JP2007017980A 2007-01-29 2007-01-29 太陽電池および太陽電池モジュール Withdrawn JP2008186928A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007017980A JP2008186928A (ja) 2007-01-29 2007-01-29 太陽電池および太陽電池モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007017980A JP2008186928A (ja) 2007-01-29 2007-01-29 太陽電池および太陽電池モジュール

Publications (1)

Publication Number Publication Date
JP2008186928A true JP2008186928A (ja) 2008-08-14

Family

ID=39729773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007017980A Withdrawn JP2008186928A (ja) 2007-01-29 2007-01-29 太陽電池および太陽電池モジュール

Country Status (1)

Country Link
JP (1) JP2008186928A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125679A1 (ja) * 2009-04-30 2010-11-04 三菱電機株式会社 太陽電池セル
JP2011205152A (ja) * 2011-07-19 2011-10-13 Mitsubishi Electric Corp 太陽電池セル
CN102487091A (zh) * 2010-12-01 2012-06-06 天威新能源控股有限公司 一种新型背接触太阳能电池及其制造方法
CN102637773A (zh) * 2012-03-29 2012-08-15 北京吉阳技术股份有限公司 一种晶硅太阳能mwt电池及制作方法
JP2013248864A (ja) * 2012-06-04 2013-12-12 Mitsubishi Electric Corp 太陽電池の製造方法、印刷マスク、太陽電池および太陽電池モジュール
WO2015045811A1 (ja) * 2013-09-25 2015-04-02 パナソニックIpマネジメント株式会社 太陽電池モジュール
CN112993056A (zh) * 2021-05-08 2021-06-18 浙江晶科能源有限公司 汇流导电连接结构、制备工艺及光伏组件

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125679A1 (ja) * 2009-04-30 2010-11-04 三菱電機株式会社 太陽電池セル
US9136415B2 (en) 2009-04-30 2015-09-15 Mitsubishi Electric Corporation Solar battery cell
CN102487091A (zh) * 2010-12-01 2012-06-06 天威新能源控股有限公司 一种新型背接触太阳能电池及其制造方法
JP2011205152A (ja) * 2011-07-19 2011-10-13 Mitsubishi Electric Corp 太陽電池セル
CN102637773A (zh) * 2012-03-29 2012-08-15 北京吉阳技术股份有限公司 一种晶硅太阳能mwt电池及制作方法
JP2013248864A (ja) * 2012-06-04 2013-12-12 Mitsubishi Electric Corp 太陽電池の製造方法、印刷マスク、太陽電池および太陽電池モジュール
WO2015045811A1 (ja) * 2013-09-25 2015-04-02 パナソニックIpマネジメント株式会社 太陽電池モジュール
JPWO2015045811A1 (ja) * 2013-09-25 2017-03-09 パナソニックIpマネジメント株式会社 太陽電池モジュール
CN112993056A (zh) * 2021-05-08 2021-06-18 浙江晶科能源有限公司 汇流导电连接结构、制备工艺及光伏组件
CN112993056B (zh) * 2021-05-08 2021-07-16 浙江晶科能源有限公司 汇流导电连接结构、制备工艺及光伏组件

Similar Documents

Publication Publication Date Title
JP6139581B2 (ja) 太陽電池モジュール
JP5285880B2 (ja) 光電変換素子、光電変換素子接続体および光電変換モジュール
US9842945B2 (en) Photovoltaic module with flexible circuit
JP6368714B2 (ja) 線状リボン型コネクタストリップを使用した背面接触太陽電池モジュールの製造方法及び各太陽電池モジュール
EP3525246B1 (en) Solar cell module
WO2010122935A1 (ja) 配線シート、配線シート付き太陽電池セルおよび太陽電池モジュール
TW201444103A (zh) 具有特定電極架構之光伏電池元件
JPWO2008090718A1 (ja) 太陽電池セル、太陽電池アレイおよび太陽電池モジュール
JP2008186928A (ja) 太陽電池および太陽電池モジュール
US9331225B2 (en) Solar cell module
EP2302689A1 (en) Photovoltaic system and manufacturing method thereof
US8796534B2 (en) Solar cell and assembly of a plurality of solar cells
WO2016117180A1 (ja) 太陽電池セル、太陽電池モジュール、太陽電池セルの製造方法、太陽電池モジュールの製造方法
JP5819862B2 (ja) 特別な母線形状を有する太陽電池、前記太陽電池を含む太陽電池配列、および太陽電池を製造するための方法
JP5035845B2 (ja) 太陽電池および太陽電池モジュール
JP2010258158A (ja) 配線シート、配線シート付き太陽電池セルおよび太陽電池モジュール
JP2010283052A (ja) 配線シート、裏面電極型太陽電池セル、配線シート付き太陽電池セルおよび太陽電池モジュール
JP5944081B1 (ja) 太陽電池セル、太陽電池モジュール、太陽電池セルの製造方法、太陽電池モジュールの製造方法
JP6785964B2 (ja) 太陽電池セルおよび太陽電池モジュール
JP2002111024A (ja) 太陽電池装置
WO2018207312A1 (ja) 太陽電池セルおよび太陽電池セルの製造方法
JP2014075532A (ja) 太陽電池モジュール
JP4284368B2 (ja) 太陽電池の製造方法
JP6818908B2 (ja) 太陽電池セルおよび太陽電池セルの製造方法
JP4741538B2 (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100406