JP2008172940A - 電力用半導体装置 - Google Patents

電力用半導体装置 Download PDF

Info

Publication number
JP2008172940A
JP2008172940A JP2007004255A JP2007004255A JP2008172940A JP 2008172940 A JP2008172940 A JP 2008172940A JP 2007004255 A JP2007004255 A JP 2007004255A JP 2007004255 A JP2007004255 A JP 2007004255A JP 2008172940 A JP2008172940 A JP 2008172940A
Authority
JP
Japan
Prior art keywords
transistor
output
gate
power supply
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007004255A
Other languages
English (en)
Other versions
JP5067786B2 (ja
Inventor
Takeshi Tanabe
剛 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2007004255A priority Critical patent/JP5067786B2/ja
Priority to US12/007,440 priority patent/US7606015B2/en
Publication of JP2008172940A publication Critical patent/JP2008172940A/ja
Application granted granted Critical
Publication of JP5067786B2 publication Critical patent/JP5067786B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K17/063Modifications for ensuring a fully conducting state in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0822Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K2017/066Maximizing the OFF-resistance instead of minimizing the ON-resistance

Landscapes

  • Electronic Switches (AREA)
  • Power Conversion In General (AREA)

Abstract

【課題】電源電圧低下時であっても、出力トランジスタの発熱による破壊を防ぐこと。
【解決手段】本発明の電力用半導体装置(1)は、出力トランジスタ(M0)と、負荷制御回路(3)と、電源プルアップ回路(7)とを具備している。出力トランジスタ(M0)は、電源電圧が供給される電源端子(Vcc)と、負荷(12)に接続された出力端子(OUT)との間に接続されている。負荷制御回路(3)は、制御信号に応じて、出力トランジスタ(M0)をオンするための負荷制御用ゲート電圧を出力トランジスタ(M0)のゲート(G1)に出力する。電源プルアップ回路(7)は、電源端子(Vcc)と、出力トランジスタ(M0)のゲート(G1)との間に接続され、負荷(12)が短絡し、電源端子(Vcc)に供給される電圧が電源電圧よりも低いときに、出力トランジスタ(M0)のゲート(G1)に蓄積された電荷を電源端子(Vcc)に放電する。
【選択図】図6

Description

本発明は、大電流や高電圧を制御するための電力用半導体装置に関する。
自動車や家電製品等において、大電流や高電圧を制御するための電力用半導体装置として、パワーデバイス(パワーICやパワー半導体とも呼ばれる)が利用されている。半導体装置は、負荷の短絡等の故障により、出力トランジスタに異常に大きな電流(過電流)が流れて破壊する恐れがあるため、このような過電流から出力トランジスタを保護する機能を備えている。
図1に示されるように、特許文献1(特許文献2の背景技術)には、従来の電力用半導体装置として、従来の電力用半導体装置101が記載されている。従来の電力用半導体装置101は、電源端子Vccと、接地端子GNDと、入力端子INと、出力端子OUTとを具備している。接地端子GNDは接地されている。電源端子Vccには、バッテリー111の正電極側が接続され、バッテリー111の負電極側は接地されている。出力端子OUTには、負荷112の一端が接続され、負荷112の他端は接地されている。
従来の電力用半導体装置101は、負荷112よりもバッテリー111側に接続されるため、ハイサイドスイッチとして動作する。従来の電力用半導体装置101は、制御回路102と、スイッチM100とを具備している。スイッチM100は、負荷112に流れる電流を制御するスイッチであり、このスイッチとしては、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)が使用される。以下、スイッチM100を出力MOSトランジスタM100と称する。出力MOSトランジスタM100は、Nチャネル型MOSトランジスタであり、そのドレインが電源端子に接続され、そのソースが出力端子OUTに接続されている。
制御回路102は、チャージポンプ回路103を具備している。チャージポンプ回路103は、その入力が入力端子INに接続され、その出力が出力MOSトランジスタM100のゲートG101に接続されている。また、チャージポンプ回路103は、電源端子Vccに接続され、バッテリー111から電源電圧が供給される。チャージポンプ回路103は、入力端子INに供給される制御信号に応じて、負荷制御用ゲート電圧を出力MOSトランジスタM100のゲートG101に出力し、出力MOSトランジスタM100は、負荷制御用ゲート電圧に応じて、負荷112に流れる電流を制御する。
例えば、制御信号がインアクティブ状態のとき、チャージポンプ回路103は、出力MOSトランジスタM100をオフするための負荷制御用ゲート電圧として、その負荷制御用ゲート電圧のレベルをインアクティブ状態(ロウレベル)にする。出力MOSトランジスタM100は、負荷制御用ゲート電圧(ロウレベル)に応じてオフする。一方、制御信号がアクティブ状態のとき、チャージポンプ回路103は、出力MOSトランジスタM100をオンするための負荷制御用ゲート電圧として、その負荷制御用ゲート電圧のレベルをアクティブ状態(ハイレベル)にする。即ち、チャージポンプ回路103は、制御信号(アクティブ状態)に応じて、バッテリー111から供給される電源電圧を昇圧し、昇圧した電圧を負荷制御用ゲート電圧(ハイレベル)として出力MOSトランジスタM100のゲートG101に出力する。出力MOSトランジスタM100は、負荷制御用ゲート電圧(ハイレベル)に応じてオンする。
上記の負荷112の短絡とは、絶縁皮膜の剥離やコネクタの緩み等によって、出力端子OUTが負荷112を介さずに接地端子GNDに接続されてしまうことである。負荷112が短絡すると、電源端子Vccに供給される電圧は、接地電圧である0V付近まで低下してしまう。これは、バッテリー111と半導体装置101間の配線が長い場合(図5A参照)、出力MOSトランジスタM100のオン抵抗(数m〜数十mΩ)よりも、この配線のインピーダンスが非常に高くなってしまい、負荷112の短絡時、配線によってバッテリー111の電圧がほとんど消費されてしまうためである。また、負荷112によって電流が消費されなくなるため、出力MOSトランジスタM100の出力電流Ioutは異常に大きな電流となる。出力電流Ioutの値が基準電流値を超えるような過電流である場合、出力MOSトランジスタM100は発熱する。このまま過電流の状態が続くと、出力MOSトランジスタM100は熱により破壊されてしまうため、できるだけ早く出力MOSトランジスタM100をオフしなければならない。
そこで、制御回路102は、更に、過電流保護回路104を具備している。過電流保護回路104は、出力MOSトランジスタM100を過電流から保護する。バッテリー111から電源端子Vccに供給される電源電圧は、過電流保護回路104の動作電圧よりも高い。
過電流保護回路104は、出力MOSトランジスタM100の出力電流Ioutを監視する。例えば、出力電流Ioutの値が基準電流値を超えた場合、過電流保護回路104は、出力電流Ioutが過電流であることを検出する。この場合、過電流保護回路104は、出力停止制御信号をチャージポンプ回路103に出力し、出力MOSトランジスタM100のゲートG101と接地端子GNDとを接続する。このとき、チャージポンプ回路103は、出力停止制御信号に応じて、負荷制御用ゲート電圧の出力を停止する。同時に、過電流保護回路104は、出力MOSトランジスタM0のゲートG101に蓄積された電荷を接地端子GNDに放電し、出力MOSトランジスタM100をオフにして、出力MOSトランジスタM100が過電流により破壊されるのを防止する。
過電流保護回路104は、監視回路105と、過電流保護用MOSトランジスタM101とを具備している。過電流保護用MOSトランジスタM101は、Nチャネル型MOSトランジスタであり、そのドレインが出力MOSトランジスタM100のゲートG101に接続され、そのソースが接地端子GNDに接続されている。監視回路105は、電源端子Vccに接続され、接地端子GNDに接続されている。また、監視回路105は、その出力が過電流保護用MOSトランジスタM101のゲートに接続されている。
監視回路105は、出力MOSトランジスタM100の出力電流Ioutを監視し、監視制御用ゲート電圧を過電流保護用MOSトランジスタM101のゲートに出力することにより、出力MOSトランジスタM100が過電流により破壊されるのを防止する。
例えば、出力電流Ioutの値が基準電流値を超えない場合、監視回路105は、過電流保護用MOSトランジスタM101をオフするための監視制御用ゲート電圧として、その監視制御用ゲート電圧のレベルをインアクティブ状態(ロウレベル)にし、過電流保護用MOSトランジスタM101は、監視制御用ゲート電圧(ロウレベル)に応じてオフする。一方、出力電流Ioutの値が基準電流値を超えた場合、監視回路105は、出力電流Ioutが過電流であることを検出し、過電流保護用MOSトランジスタM101をオンするための監視制御用ゲート電圧として、その監視制御用ゲート電圧のレベルをアクティブ状態(ハイレベル)にする。過電流保護用MOSトランジスタM101は、監視制御用ゲート電圧(ハイレベル)に応じてオンし、出力MOSトランジスタM100のゲートG101に蓄積された電荷を接地端子GNDに放電し、出力MOSトランジスタM100をオフにして、出力MOSトランジスタM100が過電流により破壊されるのを防止する。
図2に示されるように、特許文献1(特許文献2の背景技術)には、従来の電力用半導体装置101の応用例として、電力用半導体装置101’が記載されている。この場合、従来の電力用半導体装置101’は、制御回路102、出力MOSトランジスタM100を具備し、制御回路102は、チャージポンプ回路103、過電流保護回路104を具備し、過電流保護回路104は、監視回路105、過電流保護用MOSトランジスタM101を具備している。ここで、従来の電力用半導体装置101’では、電力用半導体装置101に対して、過電流保護用MOSトランジスタM101の接続が異なる。過電流保護用MOSトランジスタM101は、そのドレインが出力MOSトランジスタM100のゲートG101に接続され、そのソースが出力端子OUTに接続されている。監視回路105は、その出力が過電流保護用MOSトランジスタM101のゲートに接続されている。負荷112の短絡時には、出力端子OUTは接地されるため、従来の電力用半導体装置101’は、従来の電力用半導体装置101と同様の動作となる。
図3に示されるように、特許文献2には、従来の電力用半導体装置101”が記載されている。この場合、従来の電力用半導体装置101”は、制御回路102、出力MOSトランジスタM100を具備し、制御回路102は、チャージポンプ回路103、過電流保護回路104を具備し、過電流保護回路104は、監視回路105、106、過電流保護用MOSトランジスタM101を具備している。即ち、過電流保護回路104は、更に、監視回路106を具備している。監視回路106は、電源端子Vccに接続され、接地端子GNDに接続されている。また、監視回路106は、その出力が過電流保護用MOSトランジスタM101のバックゲートに接続されている。
監視回路106は、出力MOSトランジスタM100の出力電流Ioutを監視し、監視制御用ゲート電圧を過電流保護用MOSトランジスタM101のバックゲートに出力することにより、出力MOSトランジスタM100が過電流により破壊されるのを防止する。
例えば、出力電流Ioutの値が基準電流値を超えない場合、監視回路106は、過電流保護用MOSトランジスタM101をオフするための監視制御用バックゲート電圧として、その監視制御用バックゲート電圧のレベルをインアクティブ状態(ロウレベル)にし、過電流保護用MOSトランジスタM101は、監視制御用バックゲート電圧(ロウレベル)に応じてオフする。一方、出力電流Ioutの値が基準電流値を超えた場合、監視回路106は、出力電流Ioutが過電流であることを検出し、過電流保護用MOSトランジスタM101をオンするための監視制御用バックゲート電圧として、その監視制御用バックゲート電圧のレベルをアクティブ状態(ハイレベル)にする。過電流保護用MOSトランジスタM101は、監視制御用バックゲート電圧(ハイレベル)に応じてオンし、出力MOSトランジスタM100のゲートG101に蓄積された電荷を接地端子GNDに放電し、出力MOSトランジスタM100をオフにして、出力MOSトランジスタM100が過電流により破壊されるのを防止する。
監視回路106は、監視回路105と異なる点として、監視回路105よりも低い電圧で動作する。監視回路106は、例えば図4Aに示されるように、電源端子Vccと接地端子GNDの間に直列に接続された抵抗素子R1、過電流保護用MOSトランジスタM102を備えている。抵抗素子R1は、その一端が電源端子Vccに接続されている。過電流保護用MOSトランジスタM102は、Nチャネル型MOSトランジスタであり、そのドレインが抵抗素子R1の他端に接続され、そのゲートが電源端子Vccに接続され、そのソースが接地端子GNDに接続されている。抵抗素子R1と過電流保護用MOSトランジスタM102との間の直列接続点であるノードN101には、過電流保護用MOSトランジスタM101のバックゲートが接続されている。
このように接続することにより、過電流保護用MOSトランジスタM101に寄生トランジスタTr101が寄生する。例えば図4Bに示されるように、半導体基板の表面部にP型ウェル領域120が形成される。P型ウェル領域120上には、過電流保護用MOSトランジスタM101のゲートとして、ゲート電極121が形成される。ゲート電極121の両側のP型ウェル領域120の表面部には、それぞれ、過電流保護用MOSトランジスタM101のドレイン、ソースとして、N+型のドレイン領域122、ソース領域123が形成される。ソース領域123から離れたP型ウェル領域120の表面部には、P+型のバックゲート領域124が形成される。バックゲート領域124は、上述のノードN101に接続される。したがって、ソース領域123(N+)とバックゲート領域124(P+)とドレイン領域122(N+)により、NPN型バイポーラトランジスタである寄生トランジスタTr101が構成される。図4B、4Cに示されるように、過電流保護用MOSトランジスタM101のドレイン、ソース、バックゲートが、それぞれ寄生トランジスタTr101のコレクタ、エミッタ、ベースに相当する。すなわち、寄生トランジスタTr101は、コレクタが出力MOSトランジスタM100のゲートG101に接続され、エミッタが接地端子GNDに接続され、ベースがノードN101に接続されている。
そこで、出力MOSトランジスタM100に過電流が流れて、電源端子Vccに供給される電圧が低い状態である場合、寄生トランジスタTr101は、出力MOSトランジスタM100のゲートG101の電荷を接地端子GNDに放電する。すなわち、電源電圧が低い状態として、ノードN101の電圧が所定のベース−エミッタ電圧(バイポーラ動作して導通するための動作電圧)以上であり、その動作電圧以上により寄生トランジスタTr101にベース電流が流れている場合、寄生トランジスタTr101はオンしてコレクタ−エミッタ間を導通させ、ゲートG101の電荷の放電が行われる。
寄生トランジスタTr101の動作電圧は、過電流保護用MOSトランジスタM101、M102のしきい値電圧(導通するための電圧)や、監視回路105の動作電圧(過電流を検出動作するための電圧)よりも低い電圧であり、例えば、0.6Vである。一般に、電力用の半導体装置では、高電力用にゲート電極が厚い酸化膜となる等、低いしきい値のトランジスタを形成するのは困難である。このため、従来の電力用半導体装置101”では、MOSトランジスタではなく、MOSトランジスタに寄生する寄生トランジスタによって、低い電圧での動作を可能にしている。すなわち、監視回路106は、監視回路105よりも低い電圧で動作させることができる。これにより、過電流発生時、監視回路105が動作して過電流を検出する前に、監視回路106が過電流を検出する。
特開2001−160746号公報 特開2006−86507号公報
従来の電力用半導体装置101、101’において、図5A、5Bに示されるように、負荷112が短絡したものとする。そこで、電源端子Vccに供給される電圧が、接地電圧である0Vのような極端に低い状態では、過電流保護回路104が正常に動作することができない。例えば、電源端子Vccに供給される電圧が監視回路105の動作電圧以下である場合、監視回路105は、出力MOSトランジスタM100の出力電流Ioutの値が基準電流値を超えているか否かを判定することができない。また、電源電圧が過電流保護用MOSトランジスタM101のしきい値電圧以下である場合、過電流保護用MOSトランジスタM101がオンしない。このため、出力MOSトランジスタM100の出力電流Ioutの値が基準電流値を超えるような過電流である場合、従来の電力用半導体装置101、101’では、出力MOSトランジスタM100のゲートG101の電荷を接地端子GNDに放電することができない。したがって、このまま過電流の状態が続いた場合、出力MOSトランジスタM100がオフされず、出力MOSトランジスタM100が発熱により破壊されてしまう。
また、従来の電力用半導体装置101”において、図5A、5Bに示されるように、負荷112が短絡したものとする。この場合でも、電源端子Vccに供給される電圧が、接地電圧である0Vのような極端に低い状態では、過電流保護回路104が正常に動作することができない。例えば、電源端子Vccに供給される電圧が監視回路105の動作電圧以下である場合、監視回路105は、出力MOSトランジスタM100の出力電流Ioutの値が基準電流値を超えているか否かを判定することができない。また、電源電圧が過電流保護用MOSトランジスタM101のしきい値電圧以下である場合、過電流保護用MOSトランジスタM101がオンしない。さらに、電源電圧が監視回路106の寄生トランジスタTr101の動作電圧(0.6V)よりも低い場合、即ち、ノードN101の電圧が寄生トランジスタTr101のベース−エミッタ電圧(動作電圧)を超えず、寄生トランジスタTr101にベース電流が流れていない場合、寄生トランジスタTr101はオフしてコレクタ−エミッタ間を遮断するため、出力MOSトランジスタM100のゲートG101の電荷の放電が行われない。このため、出力MOSトランジスタM100の出力電流Ioutの値が基準電流値を超えるような過電流である場合、従来の電力用半導体装置101”では、出力MOSトランジスタM100のゲートG101の電荷を接地端子GNDに放電することができない。したがって、このまま過電流の状態が続いた場合、出力MOSトランジスタM100がオフされず、出力MOSトランジスタM100が発熱により破壊されてしまう。
このような電力用半導体装置101、101’、101”に対して、更に改良される余地がある。
以下に、[発明を実施するための最良の形態]で使用する番号・符号を用いて、課題を解決するための手段を説明する。これらの番号・符号は、[特許請求の範囲]の記載と[発明を実施するための最良の形態]の記載との対応関係を明らかにするために付加されたものであるが、[特許請求の範囲]に記載されている発明の技術的範囲の解釈に用いてはならない。
本発明の電力用半導体装置(1)(1’)(1”)は、出力トランジスタ(M0)と、負荷制御回路(3)と、電源プルアップ回路(7)とを具備している。
前記出力トランジスタ(M0)は、電源電圧が供給される電源端子(Vcc)と、負荷(12)に接続された出力端子(OUT)との間に接続されている。
負荷制御回路(3)は、負荷制御用ゲート電圧を前記出力トランジスタ(M0)のゲート(G1)に出力し、前記負荷(12)が短絡したときに前記負荷制御用ゲート電圧の出力を停止する。
電源プルアップ回路(7)は、前記電源端子(Vcc)と、前記出力トランジスタ(M0)のゲート(G1)との間に接続され、前記負荷(12)が短絡し、前記電源端子(Vcc)に供給される電圧が前記電源電圧よりも低いときに、前記出力トランジスタ(M0)のゲート(G1)に蓄積された電荷を前記電源端子(Vcc)に放電する。
以上により、本発明の電力用半導体装置(1)(1’)(1”)では、負荷(12)が短絡して、電源端子(Vcc)に供給される電圧が、接地電圧である0Vのような極端に低い状態(電源電圧低下時)であるとき、電源プルアップ回路(7)は、出力トランジスタ(M0)のゲート(G1)に蓄積された電荷を電源端子(Vcc)に放電する。これにより、本発明の電力用半導体装置(1)(1’)(1”)では、出力トランジスタ(M0)が完全にオフされるため、電源電圧低下時であっても、出力トランジスタ(M0)の発熱による破壊を防ぐことができる。
以下に添付図面を参照して、本発明の電力用半導体装置について詳細に説明する。
(第1実施形態)
図6は、本発明の第1実施形態による電力用半導体装置1が適用されたシステム10の構成を示している。このシステム10は、自動車、バイクなどの車両、家電製品、ロボットに設けられる。
例えば、システム10は、自動車に設けられている。このシステム10は、本発明の電力用半導体装置1と、バッテリー11と、負荷12と、車体金属部であるシャーシー13とを具備している。自動車の他の構成については、省略する。シャーシー13には接地電圧が供給される。即ち、シャーシー13は接地されている。
バッテリー11は、その負電極側がシャーシー13に接続され、その正電極側から電源電圧を供給する。
負荷12は、その一端が本発明の電力用半導体装置1に接続され、その他端がシャーシー13に接続されている。負荷12は、ヘッドライトやパワーウィンドウ、ABSやエンジンのバルブ等であり、本発明の電力用半導体装置1からの出力電流により動作する。
本発明の電力用半導体装置1は、電源端子Vccと、接地端子GNDと、入力端子INと、出力端子OUTとを具備している。接地端子GNDはシャーシー13に接続されている。電源端子Vccには、バッテリー11の正電極側が接続されている。出力端子OUTには、負荷12の一端が接続されている。
本発明の電力用半導体装置1は、負荷12よりもバッテリー11側に設けられ、ハイサイドスイッチとして動作する。本発明の電力用半導体装置1は、制御回路2と、スイッチM0とを具備している。以下、スイッチM0を出力MOSトランジスタM0と称する。
出力MOSトランジスタM0は、Nチャネル型でもPチャネル型でもよい。ハイサイドスイッチの場合、Pチャネル型の場合、チャージポンプ回路等が不要になり回路を単純化できるが、Nチャネル型の場合、駆動能力が高くチップサイズを小さくできるため、Nチャネル型であることが好ましい。以下では、出力MOSトランジスタM0をNチャネル型として説明するが、Pチャネル型とした場合でも極性が反転するのみで同様の動作となる。その出力MOSトランジスタM0は、そのドレインが電源端子Vccに接続され、そのソースが出力端子OUTに接続されている。
制御回路2は、負荷制御回路としてチャージポンプ回路3を具備している。チャージポンプ回路3は、その入力が入力端子INに接続され、その出力が出力MOSトランジスタM0のゲートG1に接続されている。また、チャージポンプ回路3は、電源端子Vccに接続され、バッテリー11から電源電圧が供給される。チャージポンプ回路3は、入力端子INに供給される制御信号に応じて、負荷制御用ゲート電圧を出力MOSトランジスタM0のゲートG1に出力し、出力MOSトランジスタM0は、負荷制御用ゲート電圧に応じて、負荷12に流れる電流を制御する。
例えば、制御信号がインアクティブ状態のとき、チャージポンプ回路3は、出力MOSトランジスタM0をオフするための負荷制御用ゲート電圧として、その負荷制御用ゲート電圧のレベルをインアクティブ状態(ロウレベル)にする。出力MOSトランジスタM0は、負荷制御用ゲート電圧(ロウレベル)に応じてオフする。一方、制御信号がアクティブ状態のとき、チャージポンプ回路3は、出力MOSトランジスタM0をオンするための負荷制御用ゲート電圧として、その負荷制御用ゲート電圧のレベルをアクティブ状態(ハイレベル)にする。即ち、チャージポンプ回路3は、制御信号(アクティブ状態)に応じて、バッテリー11から供給される電源電圧を昇圧し、昇圧した電圧を負荷制御用ゲート電圧(ハイレベル)として出力MOSトランジスタM0のゲートG1に出力する。出力MOSトランジスタM0は、負荷制御用ゲート電圧(ハイレベル)に応じてオンする。
制御回路2は、更に、過電流保護回路4を具備している。この過電流保護回路4は、電源端子Vccと、接地端子GNDと、出力MOSトランジスタM0のゲートG1とに接続され、出力MOSトランジスタM0を過電流から保護する。バッテリー11から電源端子Vccに供給される電源電圧は、過電流保護回路4の動作電圧よりも高い。
過電流保護回路4は、出力MOSトランジスタM0の出力電流Ioutを監視する。例えば、出力電流Ioutの値が基準電流値を超えた場合、過電流保護回路4は、出力電流Ioutが過電流であることを検出する。この場合、過電流保護回路4は、出力停止制御信号をチャージポンプ回路3に出力し、出力MOSトランジスタM0のゲートG1と接地端子GNDとを接続する。このとき、チャージポンプ回路3は、出力停止制御信号に応じて、負荷制御用ゲート電圧の出力を停止する。同時に、過電流保護回路4は、出力MOSトランジスタM0のゲートG1に蓄積された電荷を接地端子GNDに放電し、出力MOSトランジスタM0をオフにして、出力MOSトランジスタM0が過電流により破壊されるのを防止する。
本発明の第1実施形態による電力用半導体装置1において、制御回路2の過電流保護回路4として、例えば、前述の電力用半導体装置101における制御回路102の過電流保護回路104が適用される。この場合、図9に示されるように、過電流保護回路4は、前述の監視回路5、過電流保護用MOSトランジスタM1を具備している。
過電流保護用MOSトランジスタM1は、Nチャネル型でもPチャネル型でもよい。以下では、過電流保護用MOSトランジスタM1をNチャネル型として説明するが、Pチャネル型とした場合でも極性が反転するのみで同様の動作となる。過電流保護用MOSトランジスタM1は、そのドレインが出力MOSトランジスタM0のゲートG1に接続され、そのソースが接地端子GNDに接続されている。監視回路5は、電源端子Vccに接続され、接地端子GNDに接続されている。また、監視回路5は、その出力が過電流保護用MOSトランジスタM1のゲートに接続されている。
監視回路5は、出力MOSトランジスタM0の出力電流Ioutを監視し、監視制御用ゲート電圧を過電流保護用MOSトランジスタM1のゲートに出力することにより、出力MOSトランジスタM0が過電流により破壊されるのを防止する。
例えば、出力電流Ioutの値が基準電流値を超えない場合、監視回路5は、過電流保護用MOSトランジスタM1をオフするための監視制御用ゲート電圧として、その監視制御用ゲート電圧のレベルをインアクティブ状態(ロウレベル)にし、過電流保護用MOSトランジスタM1は、監視制御用ゲート電圧(ロウレベル)に応じてオフする。一方、出力電流Ioutの値が基準電流値を超えた場合、監視回路5は、出力電流Ioutが過電流であることを検出し、過電流保護用MOSトランジスタM1をオンするための監視制御用ゲート電圧として、その監視制御用ゲート電圧のレベルをアクティブ状態(ハイレベル)にする。過電流保護用MOSトランジスタM1は、監視制御用ゲート電圧(ハイレベル)に応じてオンし、出力MOSトランジスタM0のゲートG1に蓄積された電荷を接地端子GNDに放電し、出力MOSトランジスタM0をオフにして、出力MOSトランジスタM0が過電流により破壊されるのを防止する。
しかし、負荷12が短絡して、電源端子Vccに供給される電圧が、接地電圧である0Vのような極端に低い状態である場合、過電流保護回路4が正常に動作することができない。
そこで、本発明の電力用半導体装置1は、更に、電源プルアップ回路7を具備している。電源プルアップ回路7は、電源端子Vccと出力MOSトランジスタM0のゲートG1との間に接続されている。
電源プルアップ回路7は、プルアップ用MOSトランジスタMと、ダイオードD1とを具備している。プルアップ用MOSトランジスタMは、Nチャネル型である。プルアップ用MOSトランジスタMは、そのソースとバックゲートとが電源端子Vccに接続され、そのゲートは接地端子GNDに接続されている。ダイオードD1は、その負電極側(カソード)がプルアップ用MOSトランジスタMのドレインに接続され、その正電極側(アノード)が出力MOSトランジスタM0のゲートG1に接続されている。
プルアップ用MOSトランジスタMは、Nチャネル型、且つ、デプレッション型のMOSトランジスタであり、図7に示されるように、ゲート電圧がマイナス数Vである場合、ドレイン−ソース間電圧にかかわらず一定のドレイン電流を流す特性を有している。本発明の電力用半導体装置1では、このプルアップ用MOSトランジスタMを使用した場合、電源端子Vccに供給される電圧が、接地電圧である0Vのような極端に低い状態であっても、出力MOSトランジスタM0のゲートG1に蓄積された電荷を電源端子Vccに放電することができる。
プルアップ用MOSトランジスタMは、通常時、即ち、負荷12が正常である場合、そのゲートに接地電圧が供給され、そのソースに電源電圧が供給されるため、動作しない。プルアップ用MOSトランジスタMは、負荷12が短絡して、電源端子Vccに供給される電圧が、接地電圧である0Vのような極端に低い状態である場合、出力MOSトランジスタM0のゲートG1に蓄積された電荷を電源端子Vccに放電する。
出力MOSトランジスタM0は、負荷制御用ゲート電圧のレベルがロウレベルである場合、オフするため、ダイオードD1は、プルアップ用MOSトランジスタMから出力MOSトランジスタM0のゲートG1に電流が流れないよう、逆流防止として使用されている。
電源プルアップ回路7の動作について説明する。電源プルアップ回路7の動作としては、(A)電源プルアップ回路7により出力MOSトランジスタM0を完全にオフする場合と、(B)電源プルアップ回路7により過電流保護回路4を介して出力MOSトランジスタM0を完全にオフする場合とを含んでいる。
まず、上記(A)の場合について説明する。
いま、図8に示されるように、負荷12が短絡して、電源端子Vccに供給される電圧が、接地電圧である0Vのような極端に低い状態であるものとする。この場合、プルアップ用MOSトランジスタMのソース−ゲート間電圧が低下する。このとき、プルアップ用MOSトランジスタMは、ドレイン電流を流し、出力MOSトランジスタM0のゲートG1に蓄積された電荷を電源端子Vccに放電する。これにより、プルアップ用MOSトランジスタMは、出力MOSトランジスタM0の出力電流Ioutを低下させ、出力MOSトランジスタM0のゲートG1の電圧を電源端子Vccにプルアップする。
このように、(A)の場合として、電源プルアップ回路7は、出力MOSトランジスタM0のゲートG1に蓄積された電荷を電源端子Vccに放電することにより、出力MOSトランジスタM0を完全にオフすることができる。
次に、上記(B)の場合について説明する。
まず、上記(A)の場合について実行される。そこで、電源端子Vccに供給される電圧が、過電流保護回路4が正常に動作する動作電圧から、電源電圧までの範囲に復帰したものとする。このとき、過電流保護回路4は、その電圧により動作し、出力MOSトランジスタM0の出力電流Ioutが基準電流値を超えるような過電流である場合、出力MOSトランジスタM0のゲートG1と接地端子GNDとを接続し、出力MOSトランジスタM0のゲートG1に蓄積された電荷を接地端子GNDに放電する。
このように、(B)の場合として、電源プルアップ回路7は、過電流保護回路4が動作するように、出力MOSトランジスタM0のゲートG1に蓄積された電荷を電源端子Vccに放電する。このとき、過電流保護回路4が動作し、ゲートG1に蓄積された電荷を接地端子GNDに放電することにより、出力MOSトランジスタM0を完全にオフすることができる。
以上の説明により、本発明の第1実施形態による電力用半導体装置1では、負荷12が短絡して、電源端子Vccに供給される電圧が、接地電圧である0Vのような極端に低い状態(電源電圧低下時)であるとき、(A)の場合として、電源プルアップ回路7は、出力MOSトランジスタM0のゲートG1に蓄積された電荷を電源端子Vccに放電する。これにより、本発明の第1実施形態による電力用半導体装置1では、出力MOSトランジスタM0が完全にオフされるため、電源電圧低下時であっても、出力MOSトランジスタM0の発熱による破壊を防ぐことができる。
また、本発明の第1実施形態による電力用半導体装置1では、負荷12が短絡して、電源端子Vccに供給される電圧が、接地電圧である0Vのような極端に低い状態(電源電圧低下時)であるとき、(B)の場合として、電源プルアップ回路7は、過電流保護回路4が動作するように、出力MOSトランジスタM0のゲートG1に蓄積された電荷を電源端子Vccに放電する。これにより、本発明の第1実施形態による電力用半導体装置1では、過電流保護回路4が動作し、ゲートG1に蓄積された電荷を接地端子GNDに放電することにより、出力MOSトランジスタM0が完全にオフされるため、電源電圧低下時であっても、出力MOSトランジスタM0の発熱による破壊を防ぐことができる。
(第2実施形態)
本発明の第2実施形態による電力用半導体装置1’では、第1実施形態と重複する説明を省略する。
本発明の第2実施形態による電力用半導体装置1’において、制御回路2の過電流保護回路4として、例えば、前述の電力用半導体装置101’における制御回路102の過電流保護回路104が適用される。この場合、図10に示されるように、過電流保護回路4は、前述の監視回路5、過電流保護用MOSトランジスタM1を具備している。
この場合、過電流保護用MOSトランジスタM1は、そのドレインが出力MOSトランジスタM0のゲートG1に接続され、そのソースが出力端子OUTに接続されている。監視回路5は、その出力が過電流保護用MOSトランジスタM1のゲートに接続されている。負荷12の短絡時には、出力端子OUTは接地されるため、本発明の電力用半導体装置1’は、本発明の電力用半導体装置1と同様の動作となる。
以上の説明により、本発明の第2実施形態による電力用半導体装置1’では、負荷12が短絡して、電源端子Vccに供給される電圧が、接地電圧である0Vのような極端に低い状態(電源電圧低下時)であるとき、(A)の場合として、電源プルアップ回路7は、出力MOSトランジスタM0のゲートG1に蓄積された電荷を電源端子Vccに放電する。これにより、本発明の第2実施形態による電力用半導体装置1’では、出力MOSトランジスタM0が完全にオフされるため、電源電圧低下時であっても、出力MOSトランジスタM0の発熱による破壊を防ぐことができる。
また、本発明の第2実施形態による電力用半導体装置1’では、負荷12が短絡して、電源端子Vccに供給される電圧が、接地電圧である0Vのような極端に低い状態(電源電圧低下時)であるとき、(B)の場合として、電源プルアップ回路7は、過電流保護回路4が動作するように、出力MOSトランジスタM0のゲートG1に蓄積された電荷を電源端子Vccに放電する。これにより、本発明の第2実施形態による電力用半導体装置1’では、過電流保護回路4が動作し、ゲートG1に蓄積された電荷を接地端子GNDに放電することにより、出力MOSトランジスタM0が完全にオフされるため、電源電圧低下時であっても、出力MOSトランジスタM0の発熱による破壊を防ぐことができる。
(第3実施形態)
本発明の第3実施形態による電力用半導体装置1”では、第1、第2実施形態と重複する説明を省略する。
本発明の第3実施形態による電力用半導体装置1”において、制御回路2の過電流保護回路4として、例えば、前述の電力用半導体装置101”における制御回路102の過電流保護回路104が適用される。この場合、図11に示されるように、過電流保護回路4は、前述の監視回路5、6、過電流保護用MOSトランジスタM1を具備している。即ち、過電流保護回路4は、更に、監視回路6を具備している。
監視回路6は、電源端子Vccに接続され、接地端子GNDに接続されている。また、監視回路6は、その出力が過電流保護用MOSトランジスタM1のバックゲートに接続されている。
監視回路6は、出力MOSトランジスタM0の出力電流Ioutを監視し、監視制御用ゲート電圧を過電流保護用MOSトランジスタM1のバックゲートに出力することにより、出力MOSトランジスタM0が過電流により破壊されるのを防止する。
例えば、出力電流Ioutの値が基準電流値を超えない場合、監視回路6は、過電流保護用MOSトランジスタM1をオフするための監視制御用バックゲート電圧として、その監視制御用バックゲート電圧のレベルをインアクティブ状態(ロウレベル)にし、過電流保護用MOSトランジスタM1は、監視制御用バックゲート電圧(ロウレベル)に応じてオフする。一方、出力電流Ioutの値が基準電流値を超えた場合、監視回路6は、出力電流Ioutが過電流であることを検出し、過電流保護用MOSトランジスタM1をオンするための監視制御用バックゲート電圧として、その監視制御用バックゲート電圧のレベルをアクティブ状態(ハイレベル)にする。過電流保護用MOSトランジスタM1は、監視制御用バックゲート電圧(ハイレベル)に応じてオンし、出力MOSトランジスタM0のゲートG1に蓄積された電荷を接地端子GNDに放電し、出力MOSトランジスタM0をオフにして、出力MOSトランジスタM0が過電流により破壊されるのを防止する。
監視回路6は、監視回路5と異なる点として、監視回路5よりも低い電圧で動作する。監視回路6は、例えば図12Aに示されるように、電源端子Vccと接地端子GNDの間に直列に接続された抵抗素子R1、過電流保護用MOSトランジスタM2を備えている。
過電流保護用MOSトランジスタM2は、Nチャネル型でもPチャネル型でもよい。以下では、過電流保護用MOSトランジスタM2をNチャネル型として説明するが、Pチャネル型とした場合でも極性が反転するのみで同様の動作となる。抵抗素子R1は、その一端が電源端子Vccに接続されている。過電流保護用MOSトランジスタM2は、そのドレインが抵抗素子R1の他端に接続され、そのゲートが電源端子Vccに接続され、そのソースが接地端子GNDに接続されている。抵抗素子R1と過電流保護用MOSトランジスタM2との間の直列接続点であるノードN1には、過電流保護用MOSトランジスタM1のバックゲートが接続されている。
このように接続することにより、過電流保護用MOSトランジスタM1に寄生トランジスタTr1が生成される。例えば図12Bに示されるように、半導体基板の表面部にP型ウェル領域20が形成される。P型ウェル領域20上には、過電流保護用MOSトランジスタM1のゲートとして、ゲート電極21が形成される。ゲート電極21の両側のP型ウェル領域20の表面部には、それぞれ、過電流保護用MOSトランジスタM1のドレイン、ソースとして、N+型のドレイン領域22、ソース領域23が形成される。ソース領域23から離れたP型ウェル領域20の表面部には、P+型のバックゲート領域24が形成される。バックゲート領域24は、上述のノードN1に接続される。したがって、ソース領域23(N+)とバックゲート領域24(P+)とドレイン領域22(N+)により、NPN型バイポーラトランジスタである寄生トランジスタTr1が構成される。図12B、12Cに示されるように、過電流保護用MOSトランジスタM1のドレイン、ソース、バックゲートが、それぞれ寄生トランジスタTr1のコレクタ、エミッタ、ベースに相当する。すなわち、寄生トランジスタTr1は、コレクタが出力MOSトランジスタM0のゲートG1に接続され、エミッタが接地端子GNDに接続され、ベースがノードN1に接続されている。
そこで、出力MOSトランジスタM0に過電流が流れて、電源端子Vccに供給される電圧が低い状態である場合、寄生トランジスタTr1は、出力MOSトランジスタM0のゲートG1の電荷を接地端子GNDに放電する。すなわち、電源電圧が低い状態として、ノードN1の電圧が所定のベース−エミッタ電圧(バイポーラ動作して導通するための動作電圧)以上であり、その動作電圧以上により寄生トランジスタTr1にベース電流が流れている場合、寄生トランジスタTr1はオンしてコレクタ−エミッタ間を導通させ、ゲートG1の電荷の放電が行われる。
寄生トランジスタTr1の動作電圧は、過電流保護用MOSトランジスタM1、M2のしきい値電圧(導通するための電圧)や、監視回路5の動作電圧(過電流を検出動作するための電圧)よりも低い電圧であり、例えば、0.6Vである。一般に、電力用の半導体装置では、高電力用にゲート電極が厚い酸化膜となる等、低いしきい値のトランジスタを形成するのは困難である。このため、本発明の電力用半導体装置1”では、MOSトランジスタではなく、MOSトランジスタに寄生する寄生トランジスタによって、低い電圧での動作を可能にしている。すなわち、監視回路6は、監視回路5よりも低い電圧で動作させることができる。これにより、過電流発生時、監視回路5が動作して過電流を検出する前に、監視回路6が過電流を検出する。
以上の説明により、本発明の第3実施形態による電力用半導体装置1”では、負荷12が短絡して、電源端子Vccに供給される電圧が、接地電圧である0Vのような極端に低い状態(電源電圧低下時)であるとき、(A)の場合として、電源プルアップ回路7は、出力MOSトランジスタM0のゲートG1に蓄積された電荷を電源端子Vccに放電する。これにより、本発明の第3実施形態による電力用半導体装置1”では、出力MOSトランジスタM0が完全にオフされるため、電源電圧低下時であっても、出力MOSトランジスタM0の発熱による破壊を防ぐことができる。
また、本発明の第3実施形態による電力用半導体装置1”では、負荷12が短絡して、電源端子Vccに供給される電圧が、接地電圧である0Vのような極端に低い状態(電源電圧低下時)であるとき、(B)の場合として、電源プルアップ回路7は、過電流保護回路4が動作するように、出力MOSトランジスタM0のゲートG1に蓄積された電荷を電源端子Vccに放電する。これにより、本発明の第3実施形態による電力用半導体装置1”では、過電流保護回路4が動作し、ゲートG1に蓄積された電荷を接地端子GNDに放電することにより、出力MOSトランジスタM0が完全にオフされるため、電源電圧低下時であっても、出力MOSトランジスタM0の発熱による破壊を防ぐことができる。
図1は、従来の電力用半導体装置101の構成を示している。 図2は、従来の電力用半導体装置101’の構成を示している。 図3は、従来の電力用半導体装置101”の構成を示している。 図4Aは、図3の制御装置102の過電流保護回路104内の監視回路106の構成を示している。 図4Bは、図4Aの監視回路106内の過電流保護用MOSトランジスタM102の断面図と、それに生成される寄生トランジスタTr101とを示している。 図4Cは、図4A、4Bの監視回路106の構成を示している。 図5Aは、従来の電力用半導体装置101、101’、101”の問題点を説明するための構成図である。 図5Bは、従来の電力用半導体装置101、101’、101”の問題点を説明するためのタイミングチャート図である。 図6は、本発明の電力用半導体装置1、1’、1”が適用されたシステム10の構成を示している。(第1〜第3実施形態) 図7は、本発明の電力用半導体装置1、1’、1”における制御装置2の電源プルアップ回路7内のプルアップ用MOSトランジスタM(デプレッション型)の特性を示している。(第1〜第3実施形態) 図8は、本発明の電力用半導体装置1、1’、1”における制御装置2の電源プルアップ回路7の動作を説明するためのタイミングチャート図である。(第1〜第3実施形態) 図9は、本発明の電力用半導体装置1の構成を示している。(第1実施形態) 図10は、本発明の電力用半導体装置1’の構成を示している。(第2実施形態) 図11は、本発明の電力用半導体装置1”の構成を示している。(第3実施形態) 図12Aは、図11の制御装置2の過電流保護回路4内の監視回路6の構成を示している。 図12Bは、図12Aの監視回路6内の過電流保護用MOSトランジスタM2の断面図と、それに生成される寄生トランジスタTr1とを示している。 図12Cは、図12A、12Bの監視回路6の構成を示している。
符号の説明
1、101 半導体装置、
1’、101’ 半導体装置、
1”、101” 半導体装置、
2、102 制御回路、
3、103 チャージポンプ、
4、104 過電流保護回路、
5、105 監視回路、
6、106 監視回路、
7 電源プルアップ回路、
10 システム(自動車)、
11、111 バッテリー、
12、112 負荷、
13 シャーシー、
20、120 P型ウェル領域、
21、121 ゲート電極、
22、122 ドレイン領域、
23、123 ソース領域、
24、124 バックゲート領域、
D1 ダイオード、
M プルアップ用MOSトランジスタ、
G1、G101 ゲート、
M0、M100 出力MOSトランジスタ(スイッチ)、
M1、M101 過電流保護用MOSトランジスタ、
M2、M102 過電流保護用MOSトランジスタ、
N1、N101 ノード、
R1、R101 抵抗素子、
Vcc 電源端子、
GND 接地端子、
IN 入力端子、
OUT 出力端子、
Iout 出力電流、

Claims (14)

  1. 電源電圧が供給される電源端子と負荷に接続された出力端子との間に接続された出力トランジスタと、
    負荷制御用ゲート電圧を前記出力トランジスタのゲートに出力し、前記負荷が短絡したときに前記負荷制御用ゲート電圧の出力を停止する負荷制御回路と、
    前記電源端子と前記出力トランジスタのゲートとの間に接続され、前記負荷が短絡し、前記電源端子に供給される電圧が前記電源電圧よりも低いときに、前記出力トランジスタのゲートに蓄積された電荷を前記電源端子に放電する電源プルアップ回路と
    を具備する電力用半導体装置。
  2. 請求項1に記載の電力用半導体装置において、
    更に、
    前記電源端子と、接地された接地端子と、前記出力トランジスタのゲートとに接続され、前記出力トランジスタの出力電流を監視し、前記負荷が短絡し、前記出力電流が基準電流値を超える場合、出力停止制御信号を前記負荷制御回路に出力し、前記出力トランジスタのゲートと前記接地端子とを接続する過電流保護回路を具備し、
    前記負荷制御回路は、前記出力停止制御信号に応じて、前記負荷制御用ゲート電圧の出力を停止し、
    前記電源プルアップ回路は、前記負荷が短絡し、前記電源端子に供給される電圧が前記電源電圧よりも低いときに、前記過電流保護回路が動作するように、前記出力トランジスタのゲートに蓄積された電荷を前記電源端子に放電する
    電力用半導体装置。
  3. 請求項1又は2に記載の電力用半導体装置において、
    前記電源プルアップ回路は、
    前記電源端子と前記出力トランジスタのゲートとの間に接続されたプルアップ用トランジスタと、
    前記プルアップ用トランジスタと、前記出力トランジスタのゲートとの間に接続されたダイオードと
    を具備する電力用半導体装置。
  4. 請求項3に記載の電力用半導体装置において、
    前記プルアップ用トランジスタは、Nチャネル型であり、そのソースとバックゲートとが前記電源端子に接続され、そのゲートは接地され、
    前記ダイオードは、そのカソードが前記プルアップ用トランジスタのドレインに接続され、そのアノードが前記出力トランジスタのゲートに接続されている
    電力用半導体装置。
  5. 請求項4に記載の電力用半導体装置において、
    前記負荷が短絡し、前記電源端子に供給される電圧が前記電源電圧よりも低く、前記プルアップ用トランジスタのソース−ゲート間電圧が低下したとき、
    前記プルアップ用トランジスタは、ドレイン電流を流し、前記出力トランジスタのゲートに蓄積された電荷を前記電源端子に放電して、前記出力トランジスタの前記出力電流を低下させ、前記出力トランジスタのゲートの電圧を前記電源端子にプルアップする
    電力用半導体装置。
  6. 請求項4又は5に記載の電力用半導体装置において、
    前記プルアップ用トランジスタは、デプレション型のMOSトランジスタである
    電力用半導体装置。
  7. 請求項2に記載の電力用半導体装置において、
    前記過電流保護回路は、
    前記出力トランジスタのゲートと前記接地端子との間に接続された過電流保護用トランジスタと、
    前記出力トランジスタの前記出力電流を監視する監視回路とを具備し、
    前記監視回路は、前記負荷が短絡し、前記出力電流が基準電流値を超える場合、前記過電流保護用トランジスタをオンするための監視制御用ゲート電圧を前記過電流保護用トランジスタのゲートに出力する
    電力用半導体装置。
  8. 請求項2に記載の電力用半導体装置において、
    前記過電流保護回路は、
    前記出力トランジスタのゲートと前記出力端子との間に接続された過電流保護用トランジスタと、
    前記出力トランジスタの前記出力電流を監視する監視回路とを具備し、
    前記監視回路は、前記負荷が短絡し、前記出力電流が基準電流値を超える場合、前記過電流保護用トランジスタをオンするための監視制御用ゲート電圧を前記過電流保護用トランジスタのゲートに出力する
    電力用半導体装置。
  9. 請求項2に記載の電力用半導体装置において、
    前記過電流保護回路は、
    前記出力トランジスタのゲートと前記接地端子との間に接続された過電流保護用トランジスタと、
    前記出力トランジスタの前記出力電流を監視する第1及び第2監視回路とを具備し、
    前記第1、第2監視回路は、前記負荷が短絡し、前記出力電流が基準電流値を超える場合、それぞれ、前記過電流保護用トランジスタをオンするための監視制御用ゲート電圧、監視制御用バックゲート電圧を前記過電流保護用トランジスタのゲート、バックゲートに出力し、
    前記第2監視回路は、その内部の寄生トランジスタにより、前記第1監視回路よりも低い電圧で動作する
    電力用半導体装置。
  10. 請求項9に記載の電力用半導体装置において、
    前記第2監視回路は、
    前記電源端子と前記接地端子との間に接続された抵抗素子と、
    前記抵抗素子と前記接地端子との間に接続された第2過電流保護用トランジスタとを具備し、
    前記抵抗素子と前記第2過電流保護用トランジスタとの間の直列接続点であるノードに、前記第1過電流保護用トランジスタのバックゲートが接続されることにより、前記第1過電流保護用トランジスタに前記寄生トランジスタが生成される
    電力用半導体装置。
  11. 請求項1〜10のいずれかに記載の電力用半導体装置において、
    前記電源電圧は、バッテリーにより供給される
    電力用半導体装置。
  12. 請求項1〜10のいずれかに記載の電力用半導体装置と、
    前記電力用半導体装置に電源電圧を供給するバッテリーと、
    前記電力用半導体装置の出力電流が供給される負荷と
    を具備するシステム。
  13. 電力用半導体装置と、
    前記電力用半導体装置に電源電圧を供給するバッテリーと、
    前記電力用半導体装置の出力電流が供給される負荷と、
    シャーシとを具備し、
    前記電力用半導体装置は、
    前記電源電圧が供給される電源端子と前記負荷に接続された出力端子との間に接続された出力トランジスタと、
    前記出力トランジスタのゲートに接続された負荷制御回路と、
    前記電源端子と前記出力トランジスタのゲートとの間に接続され、前記電源端子と前記出力トランジスタのゲートとの間に接続されたプルアップ用トランジスタと、前記プルアップ用トランジスタと前記出力トランジスタのゲートとの間に接続されたダイオードから構成される電源プルアップ回路とを備え、
    前記プルアップ用トランジスタは、Nチャネル型かつデプレッション型であり、そのソースとバックゲートとが前記電源端子に接続され、そのゲートは接地され、前記ダイオードは、そのカソードが前記プルアップ用トランジスタのドレインに接続され、そのアノードが前記出力トランジスタのゲートに接続されていることを特徴とするシステム。
  14. 請求項13に記載のシステムにおいて、
    前記シャーシは前記負荷と共に接地端子に接続されることを特徴とするシステム。
JP2007004255A 2007-01-12 2007-01-12 電力用半導体装置 Expired - Fee Related JP5067786B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007004255A JP5067786B2 (ja) 2007-01-12 2007-01-12 電力用半導体装置
US12/007,440 US7606015B2 (en) 2007-01-12 2008-01-10 Power semiconductor device architecture for output transistor protection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007004255A JP5067786B2 (ja) 2007-01-12 2007-01-12 電力用半導体装置

Publications (2)

Publication Number Publication Date
JP2008172940A true JP2008172940A (ja) 2008-07-24
JP5067786B2 JP5067786B2 (ja) 2012-11-07

Family

ID=39617580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007004255A Expired - Fee Related JP5067786B2 (ja) 2007-01-12 2007-01-12 電力用半導体装置

Country Status (2)

Country Link
US (1) US7606015B2 (ja)
JP (1) JP5067786B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018960A (ja) * 2009-07-07 2011-01-27 Renesas Electronics Corp 異常検出時急速放電回路
CN102045047A (zh) * 2009-10-23 2011-05-04 瑞萨电子株式会社 半导体器件
JP2011239242A (ja) * 2010-05-11 2011-11-24 Renesas Electronics Corp 負荷駆動回路
WO2012137651A1 (ja) * 2011-04-04 2012-10-11 ルネサスエレクトロニクス株式会社 電力用半導体装置
JP2016046543A (ja) * 2014-08-19 2016-04-04 富士電機株式会社 半導体装置
WO2021033630A1 (ja) * 2019-08-22 2021-02-25 株式会社オートネットワーク技術研究所 スイッチ装置
JP7118977B2 (ja) 2017-01-03 2022-08-16 シナプティクス インコーポレイテッド ハム低減回路及び方法
US11689195B2 (en) 2021-07-28 2023-06-27 Kabushiki Kaisha Toshiba Semiconductor device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5217849B2 (ja) * 2008-09-29 2013-06-19 サンケン電気株式会社 電気回路のスイッチング装置
JP2011061891A (ja) * 2009-09-07 2011-03-24 Renesas Electronics Corp 負荷駆動回路
JP5562781B2 (ja) * 2010-09-21 2014-07-30 ラピスセミコンダクタ株式会社 保護装置、相補型保護装置、信号出力装置、ラッチアップ阻止方法、及びプログラム
US9112494B2 (en) * 2011-07-28 2015-08-18 Infineon Technologies Ag Charge pump driven electronic switch with rapid turn off
DE102012216185A1 (de) * 2012-09-12 2014-03-13 Robert Bosch Gmbh Begrenzerschaltung für einen Halbleitertransistor und Verfahren zum Begrenzen der Spannung über einen Halbleitertransistor
US8872552B2 (en) 2012-09-29 2014-10-28 Infineon Technologies Austria Ag High-side semiconductor-switch low-power driving circuit and method
JP6117640B2 (ja) * 2013-07-19 2017-04-19 ルネサスエレクトロニクス株式会社 半導体装置及び駆動システム
US9035687B2 (en) 2013-10-09 2015-05-19 Infineon Technologies Ag Gate clamping
DE102013113218A1 (de) * 2013-11-29 2015-06-03 Hella Kgaa Hueck & Co. Vorrichtung zum Bereitstellen eines Spannungssignals für eine Treiberstufe eines Halbleiterschalters, Halbleiterschalter sowie Verfahren zum Bereitstellen eines Spannungssignals für eine Treiberstufe eines Halbleiterschalters
JP6978419B2 (ja) * 2016-08-08 2021-12-08 日本電産サーボ株式会社 モータ駆動回路
JP7031983B2 (ja) * 2018-03-27 2022-03-08 エイブリック株式会社 ボルテージレギュレータ
JP2021034838A (ja) * 2019-08-22 2021-03-01 株式会社オートネットワーク技術研究所 出力装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086507A (ja) * 2004-08-20 2006-03-30 Nec Electronics Corp 半導体装置
JP2007028747A (ja) * 2005-07-14 2007-02-01 Nec Electronics Corp 過電圧保護回路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561391A (en) * 1995-08-31 1996-10-01 Motorola, Inc. Clamp circuit and method for detecting an activation of same
JP3814958B2 (ja) * 1997-07-09 2006-08-30 日産自動車株式会社 半導体集積回路
JP2001160746A (ja) 1999-12-01 2001-06-12 Yazaki Corp 半導体スイッチング装置
DE10061371B4 (de) * 2000-12-09 2004-04-08 Infineon Technologies Ag Schaltungsanordnung mit einer steuerbaren Strombegrenzungsschaltung zur Ansteuerung einer Last
DE10339689B4 (de) * 2003-08-28 2005-07-28 Infineon Technologies Ag Schaltungsanordnung mit einem Lasttransistor und einer Spannungsbegrenzungsschaltung und Verfahren zur Ansteuerung eines Lasttransistors
JP4390515B2 (ja) * 2003-09-30 2009-12-24 Necエレクトロニクス株式会社 出力mosトランジスタの過電圧保護回路
JP4401183B2 (ja) * 2004-02-03 2010-01-20 Necエレクトロニクス株式会社 半導体集積回路
JP2006178539A (ja) * 2004-12-20 2006-07-06 Freescale Semiconductor Inc 過電流保護回路及び直流電源装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086507A (ja) * 2004-08-20 2006-03-30 Nec Electronics Corp 半導体装置
JP2007028747A (ja) * 2005-07-14 2007-02-01 Nec Electronics Corp 過電圧保護回路

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018960A (ja) * 2009-07-07 2011-01-27 Renesas Electronics Corp 異常検出時急速放電回路
CN102045047A (zh) * 2009-10-23 2011-05-04 瑞萨电子株式会社 半导体器件
JP2011239242A (ja) * 2010-05-11 2011-11-24 Renesas Electronics Corp 負荷駆動回路
WO2012137651A1 (ja) * 2011-04-04 2012-10-11 ルネサスエレクトロニクス株式会社 電力用半導体装置
JP5539587B2 (ja) * 2011-04-04 2014-07-02 ルネサスエレクトロニクス株式会社 電力用半導体装置
JPWO2012137651A1 (ja) * 2011-04-04 2014-07-28 ルネサスエレクトロニクス株式会社 電力用半導体装置
US8884682B2 (en) 2011-04-04 2014-11-11 Renesas Electronics Corporation Power semiconductor device
US9503073B2 (en) 2011-04-04 2016-11-22 Renesas Electronics Corporation Power semiconductor device
JP2016046543A (ja) * 2014-08-19 2016-04-04 富士電機株式会社 半導体装置
JP7118977B2 (ja) 2017-01-03 2022-08-16 シナプティクス インコーポレイテッド ハム低減回路及び方法
WO2021033630A1 (ja) * 2019-08-22 2021-02-25 株式会社オートネットワーク技術研究所 スイッチ装置
US11689195B2 (en) 2021-07-28 2023-06-27 Kabushiki Kaisha Toshiba Semiconductor device

Also Published As

Publication number Publication date
JP5067786B2 (ja) 2012-11-07
US7606015B2 (en) 2009-10-20
US20080170345A1 (en) 2008-07-17

Similar Documents

Publication Publication Date Title
JP5067786B2 (ja) 電力用半導体装置
JP4483751B2 (ja) 電源逆接続保護回路
US8116051B2 (en) Power supply control circuit
US8054106B2 (en) Load driving device
US7768752B2 (en) Overvoltage protection circuit
JP4271169B2 (ja) 半導体装置
JP4597044B2 (ja) 逆流防止回路
US8351172B2 (en) Power supply control apparatus
JP5383426B2 (ja) 異常検出時急速放電回路
JP5274823B2 (ja) 電力供給制御回路
US8116052B2 (en) Power supply control circuit including overvoltage protection circuit
US8390340B2 (en) Load driving device
JP5759831B2 (ja) 電力用半導体装置及びその動作方法
US20140362484A1 (en) Load driving device
US20140307354A1 (en) Esd protection circuit
US20130188287A1 (en) Protection circuit, charge control circuit, and reverse current prevention method employing charge control circuit
JP2005137190A (ja) 電力用スイッチのためのバッテリ逆接続の保護回路
JP2020014356A (ja) 半導体装置および電子制御装置
US7973593B2 (en) Reference voltage generation circuit and start-up control method therefor
US20230223746A1 (en) Clamper, input circuit, and semiconductor device
JP2023167424A (ja) ハイサイドスイッチ、電子機器、車両
JP2020010551A (ja) 半導体装置
JP2008269066A (ja) 電源回路および電源供給回路システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120808

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees