JP2008171774A - 電子顕微鏡 - Google Patents
電子顕微鏡 Download PDFInfo
- Publication number
- JP2008171774A JP2008171774A JP2007006162A JP2007006162A JP2008171774A JP 2008171774 A JP2008171774 A JP 2008171774A JP 2007006162 A JP2007006162 A JP 2007006162A JP 2007006162 A JP2007006162 A JP 2007006162A JP 2008171774 A JP2008171774 A JP 2008171774A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- electron microscope
- light
- optical fiber
- detection element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 45
- 239000013307 optical fiber Substances 0.000 claims abstract description 42
- 230000007246 mechanism Effects 0.000 claims abstract description 38
- 230000001678 irradiating effect Effects 0.000 claims abstract description 9
- 238000001514 detection method Methods 0.000 claims description 50
- 238000010894 electron beam technology Methods 0.000 claims description 23
- 230000005540 biological transmission Effects 0.000 claims description 19
- 239000010409 thin film Substances 0.000 claims description 6
- 238000003384 imaging method Methods 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 abstract description 11
- 238000000034 method Methods 0.000 description 15
- 238000012545 processing Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 241000270295 Serpentes Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/26—Electron or ion microscopes; Electron or ion diffraction tubes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/20—Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/20—Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
- H01J2237/2001—Maintaining constant desired temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/20—Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
- H01J2237/202—Movement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/248—Components associated with the control of the tube
- H01J2237/2482—Optical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/26—Electron or ion microscopes
- H01J2237/28—Scanning microscopes
- H01J2237/2802—Transmission microscopes
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Microscoopes, Condenser (AREA)
Abstract
【課題】
電子顕微鏡において、傾斜・回転・温度変調を同時に達成し、試料の所望の部位を局所的かつ高速に加熱する構成を提供する。
【解決手段】
試料ホルダーとして試料28を片側で支持し、別の片方は空間である試料ホルダー13、25を用い、その別の片方の空間から試料近傍に試料28を加熱するためのレーザー光照射機構部を導入し、収束したレーザー光16によって試料28を加熱する。その際、収束したレーザー光16の照射位置の調節を、試料ホルダー13、25に設けた光位置検出素子27の出力を用いてレーザー光16を試料台近傍に導入する光ファイバー微動機構を用いて調節する。
【選択図】 図2
電子顕微鏡において、傾斜・回転・温度変調を同時に達成し、試料の所望の部位を局所的かつ高速に加熱する構成を提供する。
【解決手段】
試料ホルダーとして試料28を片側で支持し、別の片方は空間である試料ホルダー13、25を用い、その別の片方の空間から試料近傍に試料28を加熱するためのレーザー光照射機構部を導入し、収束したレーザー光16によって試料28を加熱する。その際、収束したレーザー光16の照射位置の調節を、試料ホルダー13、25に設けた光位置検出素子27の出力を用いてレーザー光16を試料台近傍に導入する光ファイバー微動機構を用いて調節する。
【選択図】 図2
Description
本発明は試料に電子ビームを照射または走査して透過した電子線を検出し画像化する電子顕微鏡に関する。
近年、様々なデバイス、先端機器に使用される各種材料の特性を向上させるために、ナノメートルレベルの空間分解能でその構造や成分を評価することが重要になってきている。透過型電子顕微鏡(TEM;Transmission Electron Microscope)は材料を薄膜化した試料に加速した電子線を照射し、試料の微細構造をサブナノメートルの高い空間分解能で可視化する評価技術であるが、試料による電子線のエネルギー損失や電子線照射によって試料から放出されるX線などを検出することで試料に含まれる元素をも可視化することができる。
その中で、このような材料の構造、成分元素、電磁気特性の温度特性を評価したいという要求が高まっている。さらに、これら材料の特性を知る上で重要な知見を与える可能性として、材料が局所的に加熱された場合の特性評価がある。例えば誘電材料の場合、その一部が加熱され誘電性を失ってから加熱を止め、冷却され誘電性を回復していく過程は加熱された部分との相互作用に大きく依存しており、この過程を観察することは、この相互作用に関する大きな知見を与える可能性がある。そして、このような相互作用を観察するためには試料を局所的かつ急速に加熱する必要がある。
これらの要求に対して従来技術では、電子顕微鏡用の試料ホルダーの試料メッシュを配置する場所に小型のヒータを組み込んでヒータに接触している試料を熱伝導により加熱する手法が用いられている(特許文献1)。
さらに、観察に際して、試料の傾斜や回転を行う必要性がある。このような試料の傾斜や回転の調節を可能とする全方位試料ホルダーが知られている(特許文献2)。しかしながら当然のことながら全方位試料ホルダーの構造は既に複雑であり、さらに上述したような方式による加熱機構を組み込むことは容易ではない。電子顕微鏡の対物レンズ内部において試料が配置される空間は所望される空間分解能が高いほど一般に小さく、数ミリメートル以下にしなければならないとの要請があるからである。
一方、上述した熱伝導による加熱ではなく、レーザー光を試料に照射して加熱する透過電子顕微鏡用の試料ホルダーが知られている(特許文献3)。
従来のレーザー光を用いる試料ホルダーにおいては、試料積載部上部にミラーを挿入するため、試料ホルダーの試料積載部に大きな空間が必要となる。一般に、このような空間が存在すると、対物レンズのギャップが大きくなるために高い空間分解能を得ることは容易ではない。また、従来のレーザー光を用いた方式では電子線と同じ方向に光が進行するため、結像に影響があった。更に、局所的に加熱するために、加熱する部位の位置合わせが必要となるが、そのような位置合わせを行う機構は開示されていない。
本発明は、高い分解能を維持しながら、試料の加熱する部位の位置合わせを行い、レーザー光を用いて局所的に過熱することが可能な電子顕微鏡を提供することを目的とする。
上記目的を達成するため、本発明においては、試料に電子ビームを照射または走査して透過した電子線を検出し画像化する電子顕微鏡であって、試料及びこの試料を保持する試料台を片側側面で支持し、もう片方の側面は空間である試料ホルダーと、試料あるいは試料台をその側面近傍から照射する収束光によって加熱する収束光照射部とを有する電子顕微鏡を提供する。
また、本発明においては、試料に電子ビームを照射または走査して透過した電子線を検出し画像化する透過型電子顕微鏡であって、試料を保持する試料台を片側で支持する試料片ホルダーと、試料片ホルダーによって支持された試料台の側面近傍から照射する収束光によって、試料を加熱する収束光照射部と、試料片ホルダーの片側の側面に形成された光位置検出素子と、光位置検出素子の出力を用いて、試料への収束光の照射位置を調節する位置微動機構とを備えた透過型電子顕微鏡を提供する。
すなわち、本発明では、試料ホルダーとしてTEM/STEM(走査透過電子顕微鏡)観察装置及びFIB(Focused Ion Beam、集束イオンビーム)加工装置で共用できる試料ホルダーであって試料を片側側面で支持し、別の片側側面は空間である試料ホルダーを用い、光を試料あるいは試料台に収束して導入し、その局部を加熱する。照射光としてレーザー光の方が光強度が大きく、微小な光ファイバーによって伝達でき、更に光ファイバー先端にレンズを組み込むことも容易なことからレーザー光のほうが優れている。試料を局所的に加熱すると、所望の観察部位のみを加熱することができるため、温度を素早く上げることができ、観察の時間分解能が向上する。
次に加熱された部位と観察部位との位置合わせに関しては、試料ホルダーの試料保持部下方に光位置検出素子を用意しておき、まず試料ホルダーの光位置検出素子中央に精密に光を照射するよう調節する。試料と光位置検出素子の距離は予めFIB加工装置で試料を加工する際に精密に測定しておくことが可能であり、光位置検出素子の中央から予め測定しておいた距離だけ光の照射位置を移動させることによって試料の任意の位置を局所的に加熱することが可能となる。
本発明によれば、試料の形状等に制約無く傾斜・回転・温度変調を同時に達成することが可能である。また、試料の所望の場所を局所的に加熱することができる。さらに所望の観察部位の温度を急速に上昇させることが可能となる。
以下、本発明の実施形態を図面を用いて説明する。
図1は、本発明の第一の実施例である透過型電子顕微鏡の構成を示し、特に透過型電子顕微鏡による試料観察を模式的に説明する図である。まず電子源1から出た電子線8はコンデンサレンズ2によって試料ホルダー3により電子顕微鏡の試料室に導入された試料に入射される。試料は対物レンズコイル8に電流を流して励起される磁場を磁路9により試料近傍に形成される強い磁場中に置かれ、その強いレンズ作用により結像される。対物レンズにより結ばれた試料の像は結像レンズ10によって拡大され、蛍光板12に結像し、観察が行なわれる。特に本実施例では以下で詳しく説明するように、光照射機構4、試料ホルダー3に組み込んだ光位置検出素子からの出力信号線5、制御装置6、及び光照射機構調節信号線7とを有することを特徴とする。
図2は図1に示した透過型電子顕微鏡の試料室内部に配置された試料ホルダーの先端部を拡大した模式図である。これを用いて本発明の第一の実施例を詳細に説明する。試料ホルダー13はTEM/STEM観察装置及びFIB加工装置で共用できる試料ホルダーであり、試料を片側で支持し、別の片側は空間である構成を有する。(なお、このような試料ホルダーの構成などについては、特開2006−156263号公報を参照されたい。)本実施例にあっては、この試料を支持していない側から光を試料に照射する。光の導入はその先端に収束用のレンズを組み込んだ微小な光ファイバーなどによっておこなえばよい。
図2(a)では試料ホルダー13、試料台として機能するメッシュ14、光ファイバー18、及びレンズ17を上から見た図であり、電子線の進行方向に沿って見た図になっている。一方、図2(b)は試料ホルダー20及びメッシュ21を横から見た図である。ここで光ファイバー及びレンズの断面24は輪郭のみを表示した。光は電子線と垂直な方向から試料に照射される。ここで問題となるのが収束した光を試料の所望の位置に照射する調節であるが、これには水平方向19、22と垂直方向23に光ファイバー18の位置の微動をおこなう機構が必要であり、光ファイバー18を保持するホルダーに予め設けておく。この微動機構は以下で説明するように電気的信号によって制御できるものを使用すると調節を自動化することが可能となるが、もちろん、手動で機械的に調節する機構であってもよい。
さらに図2(c)は図2(b)の試料ホルダーとメッシュを横から拡大して見た図であるが、試料ホルダー25上のメッシュ26上に積載された試料28の下方近傍に光を検出できる光位置検出素子27を設けておく。これには半導体で作られた光位置検出素子を用いればよい。光位置検出素子としては四分割型を用いるのが簡便であるが、2次元のアレイ検出素子を用いても良い。光位置検出素子からの出力信号線15及び29は後述するように光照射機構の調節に利用される。
図3では、微動機構及び四分割型光位置検出素子を用いて光スポットの位置を調節する方法を詳しく説明する。真空外部から導入された光のスポット位置は試料ホルダー30の試料を配置する位置においてメッシュ31及び試料32の下方近傍にくるように予め設計されているものとする。調節前の状態では光のスポットは図3(a)中の位置34、35、36、37、38、39あるいは40などの位置にあるが、上記光ファイバー微動機構の調節によって光位置検出素子33に光が入射するように光位置検出素子33の出力信号線41を利用して光ファイバー微動機構の調節をおこなう。光位置検出素子33からの出力が確認されたら、次に光位置検出素子33の中心に位置するように光位置検出素子から出力される信号41を元に調節を継続する。なお、位置調節機構には粗調節をおこなう機構と微調節をおこなう機構とを併せて準備しておくと調節が容易であることはいうまでもない。このようにして光スポットの位置を光位置検出素子の中央に調節する作業の完了後、試料ホルダー42、メッシュ43、試料44、光位置検出素子46、及び光スポット47の相対的な位置関係を示したのが図3(b)である。予め光位置検出素子46の中央と試料を配置してある位置の距離を計測しておき、その距離だけ光スポット位置を移動させることによって試料44の所望の位置に光スポット45を照射させることができる。本実施例で想定する試料ホルダーはTEM/STEM観察装置及びFIB加工装置で共用できる試料ホルダーであるので、試料を薄膜化するFIB加工の際、光位置検出素子と試料の薄膜加工部との距離は精密に計測しておくことができる。
たとえば、図4はFIB加工時における観察画面を模式的に示したものであるが、観察倍率を数百倍程度にすると、このように試料ホルダー49、メッシュ50、試料51、及び光位置検出素子52の全体を同時に観察することができる。市販されているFIB加工装置は画面上で2点間の距離を測定する機能を有しているのが通常であるので、この画面上で試料ホルダーに組み込まれた光位置検出素子52の中心と試料51との距離SX、SYを精密に計測しておけばよい。2点間距離の計測精度は観察倍率に依存するが、例えば100倍の観察倍率の場合、画面上の1画素は約3.6ミクロンとなり、300倍の観察倍率の場合、画面上の1画素は約1.2ミクロンとなる。このようにして、光位置検出素子52の中心から試料51への移動量であるSX及びSYが決定される。さて、光位置検出素子として四分割光位置検出素子を用いる場合には、図5(a)に示すように四分割光位置検出素子53の4つの出力信号をそれぞれIUR、IUL,ILR,及びILLとすると四分割光位置検出素子53の中心からの光スポットの位置DX、DYは次式で与えられる。
DX=(IUR−IUL+ILR―ILL)/(IUR+IUL+ILR+ILL)×KX
DY=(IUR+IUL―ILR―ILL)/(IUR+IUL+ILR+ILL)×KY
ここで、KXとKYは比例係数である。そこで、光ファイバーの微動信号MX及びMYを
MX=SX―DX
MY=SY―DY
となるように設定すれば光スポットが試料位置に照射されることになる。図5(b)はこれらの信号の関係を模式的に表したものでそれぞれの信号は適当な演算器により変換されることを示している。ここで図6で示したような操作画面を用意しておき、四分割光位置検出素子からの信号IUR、IUL,ILR,及びILLから光スポットの中心位置DX及びDYを計算し、画面に表示させる。光スポットの中心位置を四分割光位置検出素子の中心に調節するために、自動調節ボタンを押す。本自動調節ボタンは以下の手順を自動的に実行する。すなわち、信号を差分して光ファイバーのX方向及びY方向微動機構の駆動信号MX及びMYとして入力することで光スポット中心を四分割光位置検出素子の中心に調節する。次に予め測定した四分割光位置検出素子と試料との距離信号を光ファイバーのX方向及びY方向微動機構の駆動電圧として入力することで光スポットを試料中心に照射するように自動的に調節することができる。
DX=(IUR−IUL+ILR―ILL)/(IUR+IUL+ILR+ILL)×KX
DY=(IUR+IUL―ILR―ILL)/(IUR+IUL+ILR+ILL)×KY
ここで、KXとKYは比例係数である。そこで、光ファイバーの微動信号MX及びMYを
MX=SX―DX
MY=SY―DY
となるように設定すれば光スポットが試料位置に照射されることになる。図5(b)はこれらの信号の関係を模式的に表したものでそれぞれの信号は適当な演算器により変換されることを示している。ここで図6で示したような操作画面を用意しておき、四分割光位置検出素子からの信号IUR、IUL,ILR,及びILLから光スポットの中心位置DX及びDYを計算し、画面に表示させる。光スポットの中心位置を四分割光位置検出素子の中心に調節するために、自動調節ボタンを押す。本自動調節ボタンは以下の手順を自動的に実行する。すなわち、信号を差分して光ファイバーのX方向及びY方向微動機構の駆動信号MX及びMYとして入力することで光スポット中心を四分割光位置検出素子の中心に調節する。次に予め測定した四分割光位置検出素子と試料との距離信号を光ファイバーのX方向及びY方向微動機構の駆動電圧として入力することで光スポットを試料中心に照射するように自動的に調節することができる。
図7の流れ図は第一の実施例における試料観察手順を示したものである。まず、試料を電子顕微鏡に挿入し、試料室内に試料を導入する。ここで光の光源をオンにして上述したスポット位置の粗調節と微調節をおこなう。この位置調節において実際に試料を加熱したくない場合には光の出力を小さくして行なえばよい。ここで一旦光源をオフにして、試料を電子顕微鏡で観察し、所望の観察部位を決定する。観察部位を決定したら、光源をオンにして、収束された光スポットの照射により試料が加熱される状態を観察する。もちろん、試料の変化を観察しながら光スポットの位置を微調節することも可能である。以上のようにして所望の部位の観察が終了し、別の部位を観察する場合には、必要ならば試料が加熱されないように光源をオフにして再度視野を選択後、光源をオンにして加熱観察を繰り返すとよい。もちろん、光源をオンにしたままで試料を加熱したまま視野を変更することも可能である。すべての観察が終了したら光源をオフにして実験を終了する。ここで、収束された光のスポットの大きさは光の波長と収束用レンズの設計に依存するが、波長程度が可能と考えられる。
本実施例では加熱される部位は光の集光された数ミクロン〜数10ミクロン程度の領域であって、温度上昇に要する時間は極めて短く、光の強度を大きくすることで瞬時に試料温度を上げることが可能である。本実施例で用いるレーザーとしては光ファイバーでロスなく伝送可能であれば種類を問わないが、例えば一般的なNd−YAGレーザーなどを利用することができる。さらに本実施例ではレンズにより集光をおこなうため、材質によってはこれよりも低い出力のレーザーを用いることも可能で、さらに連続発振に限らずパルス状の光源を用いることも可能である。
また、光が電子線に及ぼす影響は電子線のそれに比較して無視できるほど小さく、収束した電子線によって生じる試料の汚染の問題もないという利点がある。蛇足であるが、加熱する部位を観察部位ではなく、その近傍に調節することも可能である。この場合には光が照射された部分からの熱伝導によって観察部位の温度が決まる。
本実施例では、実施例1の試料ホルダとは別形態の試料ホルダを用いた電子顕微鏡の構成例について説明する。装置の全体構成は、図1に示す装置と同様であるとする。
図8は実施例1に記載したメッシュに積載した試料を用いずに、ピラー状試料の観察に適用した本発明の第二の実施例を示す。ピラー状の試料とすることの利点は試料を傾斜させることで3次元の観察が可能なことである。図8(a)では試料ホルダー54及び試料55を上から見た図であり、電子線の進行方向に沿って見た図になっている。ここで試料55は支持台57に固定された試料片56の先端を電子線が透過するようなピラー状の形状に加工した試料であって、FIB加工装置等のTEMあるいはSTEM試料用の加工装置によって作成される。実施例1と同様に光ファイバー61の先端に形成したレンズ60によって収束した光59のスポットを試料55に照射することで加熱をおこなう。ここでは、光検出素子は描かれていないが、試料55先端の図中上方に位置しており、該光検出素子からの信号は信号線58によって出力される。
一方、図8(b)は試料ホルダー62及び試料63を横から見た図である。図8(b)では光スポットの位置調節に必要な光位置検出素子67は、試料ホルダー62の一部分であって、ピラー状試料63の近傍に位置している。図中に示された点線の丸枠は、レンズ60および光ファイバ61断面のピラー状試料63に対する相対位置を示す。実際には、ピラー状試料63の紙面に対して手前側にレンズ60および光ファイバ61断面が位置しており、紙面に対して奥向きに光が照射される。また、図8(a)と同様に、前記光検出素子からの信号は信号線68によって出力される。位置調節は実施例1と同様の手順で実行される。この場合も試料を薄膜化するFIB加工の際、光位置検出素子67と試料63の観察部位との距離は精密に計測しておくことができる。
図8は実施例1に記載したメッシュに積載した試料を用いずに、ピラー状試料の観察に適用した本発明の第二の実施例を示す。ピラー状の試料とすることの利点は試料を傾斜させることで3次元の観察が可能なことである。図8(a)では試料ホルダー54及び試料55を上から見た図であり、電子線の進行方向に沿って見た図になっている。ここで試料55は支持台57に固定された試料片56の先端を電子線が透過するようなピラー状の形状に加工した試料であって、FIB加工装置等のTEMあるいはSTEM試料用の加工装置によって作成される。実施例1と同様に光ファイバー61の先端に形成したレンズ60によって収束した光59のスポットを試料55に照射することで加熱をおこなう。ここでは、光検出素子は描かれていないが、試料55先端の図中上方に位置しており、該光検出素子からの信号は信号線58によって出力される。
一方、図8(b)は試料ホルダー62及び試料63を横から見た図である。図8(b)では光スポットの位置調節に必要な光位置検出素子67は、試料ホルダー62の一部分であって、ピラー状試料63の近傍に位置している。図中に示された点線の丸枠は、レンズ60および光ファイバ61断面のピラー状試料63に対する相対位置を示す。実際には、ピラー状試料63の紙面に対して手前側にレンズ60および光ファイバ61断面が位置しており、紙面に対して奥向きに光が照射される。また、図8(a)と同様に、前記光検出素子からの信号は信号線68によって出力される。位置調節は実施例1と同様の手順で実行される。この場合も試料を薄膜化するFIB加工の際、光位置検出素子67と試料63の観察部位との距離は精密に計測しておくことができる。
図9は本発明の第一、第二の実施例で使用する光ファイバーの導入方法及び位置微動機構の一実施例を示す図である。なお、本図で描かれている位置微動機構は図1における光照射機構4の一部を構成する要素であって、図1に示す電子顕微鏡の真空隔壁外壁面の、試料ホルダに対応する位置に取り付けられている。ここでは試料ホルダーは紙面に垂直に、対物レンズ上部磁極71と対物レンズ下部磁極72の間隙に挿入される。本図では試料ホルダーの断面75を点線で示した。この間隙は高い空間分解能を得るためにはできるだけ小さい必要があり、コイル74に電流を流して発生させた磁場を試料に集中させる必要があるが、本発明で使用する光ファイバーは該間隙よりも十分に小さいものが利用できる。本発明において光ファイバーはホルダー70によって保持され、その先端73を試料近傍に導入する。該光ファイバーのホルダー70は光ファイバーを垂直方向に移動するための微動機構79及び水平方向に移動するための微動機構80を備える。これらの微動機構に、それぞれ粗動用と微動用の2種類の微動機構を用意しておくと操作性が向上する。試料ホルダーに組み込んだ光位置検出素子からの出力信号は信号線76を経由して制御装置77に接続され、微動機構制御に変換された後、信号線78を経由して、これらの微動機構79及び80に入力される。なお、本図中に描かれている制御装置77は図1中の制御装置6に対応し、また本図信号線76及び信号線78は各々図1中の信号線5及び信号線7に対応している。光位置検出素子と試料の薄膜加工部との距離の情報は制御装置77内の記憶手段に格納されており、制御装置77による光スポットの位置制御の際には、当該距離情報が参照される。また、加熱に使用する光は光源82から光ファイバーを内部に含むケーブル81を介して光ファイバーホルダー70に接続される。なお、本発明で使用する光ファイバー及びその先端は電子線の照射によって帯電など電子顕微鏡の結像に影響が出ないように可能な限り金などの金属薄膜など導電性の材料を蒸着しておくことが好ましいことは上述の通りである。
1…電子源、2…コンデンサレンズ、3…試料ホルダー、4…光照射機構、5…光位置検出素子出力信号線、6…制御装置、7…光照射機構調節信号線、8…対物レンズコイル、9…対物レンズ磁路、10…結像レンズ、11…電子線、12…蛍光板、13…TEM/STEM−FIB共用試料ホルダ、14…メッシュ、15…光位置検出素子出力信号線、16…収束光、17…レンズ、18…光ファイバー、19…光ファイバーの水平方向の微動機構、20…TEM/STEM−FIB共用試料ホルダ、21…メッシュ、22…光ファイバーの水平方向の微動機構、23…光ファイバーの垂直方向の微動機構、24…光ファイバー及びレンズの断面、25…TEM/STEM−FIB共用試料ホルダ、26…メッシュ、27…光位置検出素子、28…試料(片)、29…光位置検出素子出力信号線、30…TEM/STEM−FIB共用試料ホルダ、31…メッシュ、32…試料(片)、33…光位置検出素子、34〜40…光スポット照射位置、41…光位置検出素子出力信号線、42…TEM/STEM−FIB共用試料ホルダ、43…メッシュ、44…試料(片)、45…試料片の所望位置に位置調節された光スポット、46…光位置検出素子、47…光位置検出素子の中央位置に位置を調節された光スポット、48…光位置検出素子出力信号線、49…TEM/STEM−FIB共用試料ホルダ、50…メッシュ、51…試料(片)、52…光位置検出素子、53…光位置検出素子、54…TEM/STEM−FIB共用試料ホルダ、55…ピラー状に加工した試料、56…試料(片)、57…支持台、試料台、58…光位置検出素子出力信号線、59…収束光、60…レンズ、61…光ファイバー、62…TEM/STEM−FIB共用試料ホルダ、63…試料、64…試料(片)、65…試料台、66…光ファイバー及びレンズの断面、67…光位置検出素子、68…光位置検出素子出力信号線、69…電子顕微鏡筐体断面、70…試料室の位置に挿入した光ファイバーホルダー、71…対物レンズ上部磁極、72…対物レンズ下部磁極、73…光ファイバー先端、74…対物レンズコイル、75…試料ホルダー断面、76…光位置検出素子出力信号線、77…制御装置、78…微動機構調節信号、79…光ファイバー垂直方向微動機構、80…光ファイバー水平方向微動機構、81…ケーブル、82…光源。
Claims (10)
- 試料に電子ビームを照射または走査して透過した電子線を検出し画像化する電子顕微鏡であって、
前記試料及び前記試料を保持する試料台を片側側面で支持し、もう片方の側面は空間である試料ホルダーと、
前記試料あるいは前記試料台をその側面近傍から照射する収束光によって加熱する収束光照射部とを有する
電子顕微鏡。 - 請求項1記載の電子顕微鏡であって、
前記試料ホルダーは前記片側側面に光位置検出素子を有し、
前記光位置検出素子の出力により、前記試料への前記収束光の照射位置の水平及び垂直方向への調節を行う位置微動機構を有する
電子顕微鏡。 - 請求項1記載の電子顕微鏡であって、
前記収束光照射部は前記収束光としてレーザー光を用いる
電子顕微鏡。 - 請求項3記載の電子顕微鏡であって、
前記収束光照射部は、前記レーザー光を伝送する光ファイバーと前記光ファイバーの先端に設置されたレンズとを含む
電子顕微鏡。 - 請求項4記載の電子顕微鏡であって、
前記光ファイバーの先端部と前記レンズには金属薄膜が蒸着されている電子顕微鏡。 - 試料に電子ビームを照射または走査して透過した電子線を検出し画像化する透過型電子顕微鏡であって、
試料を保持する試料台を片側で支持する試料片ホルダーと、
前記試料片ホルダーによって支持された前記試料台の側面近傍から照射する収束光によって、前記試料を加熱する収束光照射部と、
前記試料片ホルダーの前記片側の側面に形成された光位置検出素子と、
前記光位置検出素子の出力を用いて、前記試料への前記収束光の照射位置を調節する位置微動機構とを備えた
透過型電子顕微鏡。 - 請求項6記載の透過型電子顕微鏡であって、
前記位置微動機構は、前記試料台の前記側面上の垂直、水平方向で前記収束光を微動させる
透過型電子顕微鏡。 - 請求項6記載の透過型電子顕微鏡であって、
前記収束光照射部は前記収束光としてレーザー光を用いる
透過型電子顕微鏡。 - 請求項8記載の透過型電子顕微鏡であって、
前記収束光照射部は、前記レーザー光を伝送する光ファイバーと前記光ファイバーの先端に設置されたレンズとを含む
透過型電子顕微鏡。 - 請求項9記載の透過型電子顕微鏡であって、
前記光ファイバーの先端部と前記レンズには金属薄膜が蒸着されている透過型電子顕微鏡。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007006162A JP2008171774A (ja) | 2007-01-15 | 2007-01-15 | 電子顕微鏡 |
US12/003,374 US20080283748A1 (en) | 2007-01-15 | 2007-12-21 | Electron microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007006162A JP2008171774A (ja) | 2007-01-15 | 2007-01-15 | 電子顕微鏡 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008171774A true JP2008171774A (ja) | 2008-07-24 |
Family
ID=39699653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007006162A Withdrawn JP2008171774A (ja) | 2007-01-15 | 2007-01-15 | 電子顕微鏡 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20080283748A1 (ja) |
JP (1) | JP2008171774A (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5268324B2 (ja) * | 2007-10-29 | 2013-08-21 | 株式会社日立ハイテクノロジーズ | 荷電粒子線顕微装置及び顕微方法 |
US8143593B2 (en) * | 2008-10-20 | 2012-03-27 | Brookhaven Science Associates, Llc | Transmission electron microscope sample holder with optical features |
US20120293791A1 (en) * | 2008-10-20 | 2012-11-22 | Brookhaven Science Associates, Llc | Sample Holder with Optical Features for Holding a Sample in an Analytical Device for Research Purposes |
WO2010120238A1 (en) * | 2009-04-15 | 2010-10-21 | Nanofactory Instruments Ab | Optical probing in electron microscopes |
US8698098B2 (en) | 2010-07-30 | 2014-04-15 | E.A. Fischione Instruments, Inc. | In situ holder assembly |
US8178851B2 (en) * | 2010-07-30 | 2012-05-15 | E.A. Fischione Instruments, Inc. | In situ holder assembly |
US8791438B2 (en) * | 2012-07-27 | 2014-07-29 | Gatan Inc. | Ion beam sample preparation apparatus and methods |
US20140034829A1 (en) * | 2012-08-06 | 2014-02-06 | Peter Crozier | System and method for irradiating an etem-sample with light |
JP6914978B2 (ja) * | 2019-02-26 | 2021-08-04 | 日本電子株式会社 | 試料交換装置及び荷電粒子線装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01117259A (ja) * | 1987-10-30 | 1989-05-10 | Fuji Photo Film Co Ltd | 電子顕微鏡 |
US7339391B2 (en) * | 2005-05-27 | 2008-03-04 | United Microelectronics Corp. | Defect detection method |
-
2007
- 2007-01-15 JP JP2007006162A patent/JP2008171774A/ja not_active Withdrawn
- 2007-12-21 US US12/003,374 patent/US20080283748A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20080283748A1 (en) | 2008-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008171774A (ja) | 電子顕微鏡 | |
JP5227643B2 (ja) | 高分解能でかつ高コントラストな観察が可能な電子線応用装置 | |
JP6286270B2 (ja) | 透過型電子顕微鏡内で位相版を用いる方法 | |
CN103681190A (zh) | 用于激光束和带电粒子束的重合对准的方法 | |
JP5606791B2 (ja) | 荷電粒子線装置 | |
NL2007475C2 (en) | Particle beam device having a sample holder. | |
US10483084B2 (en) | Object preparation device and particle beam device having an object preparation device and method for operating the particle beam device | |
JP4826632B2 (ja) | X線顕微鏡およびx線顕微方法 | |
JP4650330B2 (ja) | 光学顕微鏡とx線分析装置の複合装置 | |
US10319561B2 (en) | Object preparation device and particle beam device with an object preparation device and method for operating the particle beam device | |
JP5155224B2 (ja) | 荷電粒子線装置 | |
JPH0579814A (ja) | 走査プローブ型顕微鏡装置 | |
JP2008130483A (ja) | 電子線溶融装置 | |
JP6450153B2 (ja) | X線像撮像用ユニット、電子顕微鏡及び試料像取得方法 | |
JP5544439B2 (ja) | 荷電粒子線装置 | |
JPH08329870A (ja) | 走査電子顕微鏡 | |
JP4221817B2 (ja) | 投射型イオンビーム加工装置 | |
JP2008181778A (ja) | 荷電粒子ビーム装置の自動軸合わせ方法及び荷電粒子ビーム装置 | |
JP2007096011A (ja) | 試料検査方法 | |
JP5174483B2 (ja) | 荷電粒子ビーム装置、及び試料の表面の帯電状態を知る方法 | |
JP2009109323A (ja) | 断面試料作製装置 | |
JP3746641B2 (ja) | 透過型電子顕微鏡 | |
US20230260744A1 (en) | Method for producing a sample on an object, computer program product, and material processing device for carrying out the method | |
JP7068069B2 (ja) | 電子顕微鏡 | |
JP3401158B2 (ja) | 超高真空表面観察装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090713 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20100105 |