JP2008166441A - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP2008166441A
JP2008166441A JP2006353414A JP2006353414A JP2008166441A JP 2008166441 A JP2008166441 A JP 2008166441A JP 2006353414 A JP2006353414 A JP 2006353414A JP 2006353414 A JP2006353414 A JP 2006353414A JP 2008166441 A JP2008166441 A JP 2008166441A
Authority
JP
Japan
Prior art keywords
fuse
layer
gate electrode
forming
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006353414A
Other languages
English (en)
Inventor
Masahiko Azuma
雅彦 東
Naoki Takeguchi
直樹 竹口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spansion LLC
Original Assignee
Spansion LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spansion LLC filed Critical Spansion LLC
Priority to JP2006353414A priority Critical patent/JP2008166441A/ja
Priority to US12/004,969 priority patent/US8749012B2/en
Publication of JP2008166441A publication Critical patent/JP2008166441A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • H01L23/5256Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66833Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a charge trapping gate insulator, e.g. MNOS transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

【課題】製造時に電荷蓄積層に電荷が蓄積されてしまうことを抑制することが可能な半導体装置およびその製造方法を提供すること。
【解決手段】本発明は、半導体基板10上に設けられた電荷蓄積層20と、電荷蓄積層20に電荷をプログラムする際に用いられるゲート電極22と、ゲート電極22と接続するヒューズ56と、を有し、ヒューズ56は、ゲート電極22に電圧が印加される際は電気的に切断されている半導体装置およびその製造方法である。
【選択図】 図7

Description

本発明は半導体装置およびその製造方法に関し、特に、不揮発性メモリを有する半導体装置およびその製造方法に関する。
近年、データの書換えが可能な半導体装置である不揮発性メモリが広く利用されている。代表的な不揮発性メモリであるフラッシュメモリにおいては、メモリセルを構成するトランジスタが電荷蓄積層と呼ばれるフローティングゲートまたは絶縁膜を有している。そして、電荷蓄積層に電荷を蓄積させることにより、データを記憶する。絶縁膜を電荷蓄積層とするフラッシュメモリとして、ONO(Oxide/Nitride/Oxide)膜中のトラップ層に電荷を蓄積するSONOS(Silicon Oxide Nitride Oxide Silicon)型構造を有するフラッシュメモリがある。
特許文献1にはSONOS型フラッシュメモリの1つとして、ソースとドレインを入れ替えて対称的に動作させる仮想接地型メモリセルを有するフラッシュメモリ(従来例)が開示されている。図1は従来例に係るフラッシュメモリの上視図(ONO膜は図示せず)である。半導体基板10内に拡散層からなるビットライン12が設けられている。ビットライン12は図1の縦方向に延在している。ビットライン12の幅方向にワードライン22が延在している。ビットライン12およびワードライン22にはそれぞれ配線層と接続するプラグ金属28および26が接続している。
図2(a)から図2(d)は図1のA−A断面を示す模式図である。P型半導体基板(または半導体基板内のP型領域)10内にビットライン12が設けられている。ビットライン12はソースおよびドレインを兼ねている。半導体基板10上にONO膜20として、酸化シリコン膜からなるトンネル酸化膜14、窒化シリコン膜からなるトラップ層16および酸化シリコン膜からなるトップ酸化膜18が設けられている。ONO膜20上に例えば多結晶シリコンからなるワードライン22が設けられている。ビットライン12間の半導体基板10がチャネルであり、チャネル上のワードライン22がゲート電極22aである。
チャネルのビットライン12に近接する領域上のトラップ層16の2つの電荷蓄積領域C1およびC2に電荷(電子)を蓄積することができる。図2(a)はトラップ層16の両側の電荷蓄積領域C1およびC2に電荷が蓄積された状態を示している。図2(b)および図2(c)は、それぞれ左側および右側の電荷蓄積領域C2またはC1にのみ電荷が蓄積された状態を示している。図2(d)は両側の電荷蓄積領域C1およびC2とも電荷が蓄積されていない状態を示している。トラップ層への電荷の蓄積(プログラム)は、ゲート電極22aを正電圧とし、ビットライン12間(ソースとドレイン間)に加えた電圧により高エネルギーになった電子をトラップ層16に注入させることにより行う。一方、トラップ層16の電荷の消去は、ゲート電極22aを負電圧とし、ビットライン12間(ソースとドレイン間)に加えた電圧により高エネルギーになった電子により電離した電子およびホールのうちホールをトラップ層16に注入することにより行う。そして、ソースとドレインを入れ替えることにより、右側または左側の電荷蓄積領域の電荷を蓄積または消去することができる。
米国特許第6011725号明細書
電荷蓄積層を有する不揮発性メモリは製造時に電荷蓄積層に電荷が蓄積された状態となってしまう場合があった。製造時に電荷蓄積層に電荷が蓄積された状態となった場合の課題について、仮想接地型メモリセルを有するフラッシュメモリを例に説明する。図2(a)から図2(d)を用い説明したように、従来例においては、ビットライン12間で高エネルギーとなった電子やホールを電荷蓄積層であるトラップ層16に注入することにより、電荷の蓄積消去を行っている。このため、チャネルの中央付近(つまりビットライン12間の半導体基板10の中央付近)上のトラップ層16領域(図2(a)におけるC1とC2との間の領域)には電子やホールの注入を行うことができない。このため、製造時にこの領域のトラップ層16に電荷が蓄積されてしまうと、蓄積された電荷を消去させることはできない。よって、メモリセルが誤動作してしまう。
本発明は、上記課題に鑑みなされたものであり、製造時に電荷蓄積層に電荷が蓄積されてしまうことを抑制することが可能な半導体装置およびその製造方法を提供することを目的とする。
本発明は、半導体基板上に設けられた電荷蓄積層と、該電荷蓄積層に電荷をプログラムする際に用いられるゲート電極と、該ゲート電極と接続するヒューズと、を具備し、前記ヒューズは、前記ゲート電極に電圧が印加される際は電気的に切断されている半導体装置である。本発明によれば、製造時にゲート電極が帯電することを抑制し、電荷蓄積層に電荷が蓄積されてしまうことを抑制することができる。また、半導体装置を使用する際はヒューズが電気的に切断されており、ゲート電極に電圧を印加することができる。
上記構成において、前記ヒューズは物理的に切断されている構成とすることができる。この構成によれば、半導体装置を使用する際はヒューズが物理的に切断されており、ゲート電極に電圧を印加することができる。
上記構成において、前記ゲート電極は導電性多結晶シリコン層を含み、前記ヒューズは前記導電性の多結晶シリコン層より抵抗率の高い低導電性多結晶シリコン層を含み、前記導電性多結晶シリコン層および低導電性多結晶シリコン層上に設けられた導電層を有する構成とすることができる。この構成によれば、電圧または電流の印加により低導電性多結晶シリコン層上の導電層を容易に切断することができる。よって、物理的な切断の容易なヒューズを形成することができる。
上記構成において、前記導電層は金属シリサイド層を含む構成とすることができる。この構成によれば、多結晶シリコン層上をシリサイド化することにより導電層を形成することができる。
上記構成において、前記ヒューズは、前記ゲート電極に電圧が印加される温度では非導電性であり、前記ゲート電極に電圧が印加される温度より高温では導電性である材料を含む構成とすることができる。この構成によれば、製造時にゲート電極が帯電することを抑制し、電荷蓄積層に電荷が蓄積されてしまうことを抑制することができる。また、半導体装置を使用する温度ではヒューズが電気的に切断されており、ゲート電極に電圧を印加することができる。
上記構成において、前記ヒューズはNiOおよびCoOの少なくとも一方を含む構成とすることができる。この構成によれば、半導体使用する温度で非導電性となるヒューズを実現することができる。
上記構成において、前記ゲート電極と接続するプラグ金属と、該プラグ金属に接続する配線層と、を具備し、前記ヒューズは、前記プラグ金属とは並列に前記配線層と前記半導体基板との間に接続されている構成とすることができる。この構成によれば、ヒューズが縦方向に形成されるためチップ面積を縮小させることができる。
上記構成において、前記ヒューズは、前記ゲート電極と前記半導体基板との間に接続されている構成とすることができる。この構成によれば、ゲート電極に帯電した電荷をより確実に除去することができる。
上記構成において、前記ゲート電極とプラグ金属を介し接続される配線層を具備する構成とすることができる。この構成によれば、配線層形成時のプラズマ処理に起因したゲート電極の帯電を防止しることができる。
上記構成において、前記半導体基板内に設けられたビットラインを具備し、電荷蓄積層は絶縁膜である構成とすることができる。この構成によれば、電荷蓄積層内の消去ができない領域に電荷が蓄積され、半導体装置が誤動作すること抑制することができる。
本発明は、半導体基板上に電荷蓄積層を形成する工程と、該電荷蓄積層上にゲート電極を形成する工程と、前記ゲート電極と接続するヒューズを形成する工程と、前記ヒューズを切断する工程と、を有することを特徴とする半導体装置の製造方法である。本発明によれば、製造時に電荷蓄積層に電荷が蓄積されてしまうことを抑制することできる。また、ヒューズを切断するため、半導体装置を使用する際は、ゲート電極に電圧を印加することができる。
本発明は、半導体基板上に電荷蓄積層を形成する工程と、該電荷蓄積層上にゲート電極を形成する工程と、前記ゲート電極と接続すべき、前記ゲート電極に電圧が印加される温度では非導電性であり、前記ゲート電極に電圧が印加される温度より高温では導電性である材料を含むヒューズを形成する工程と、を有する半導体装置の製造方法である。本発明によれば、製造時に電荷蓄積層に電荷が蓄積されてしまうことを抑制することができる。また、半導体装置を使用する温度ではヒューズが電気的に切断されており、ゲート電極に電圧を印加することができる。
上記構成において、前記ゲート電極上に層間絶縁膜層を形成する工程と、前記層間絶縁膜層に前記ゲート電極と接続するプラグ金属を形成する工程と、前記層間絶縁膜上に前記プラグ金属に接続する配線層を形成する工程と、を有する構成とすることができる。この構成によれば、配線層形成時のプラズマ処理に起因したゲート電極の帯電を防止することができる。
上記構成において、前記ヒューズを形成する工程は、前記層間絶縁膜層内に前記半導体基板に接続するようにヒューズを形成する工程を含み、前記配線層を形成する工程は、前記ヒューズに接続するように前記配線層を形成する工程を含む構成とすることができる。この構成によれば、ヒューズが縦方向に形成されるためチップ面積を縮小させることができる。
上記構成において、前記ヒューズを形成する工程は、前記プラグ金属を形成する工程より先に行われる構成とすることができる。この構成によれば、ヒューズを形成する際のプラズマ処理によりゲート電極が帯電することがないため、電荷蓄積層に電荷が蓄積されることを一層抑制することができる。
上記構成において、前記ゲート電極を形成する工程は、前記ゲート電極になるべき多結晶シリコン層を形成する工程と、前記多結晶シリコン層内のゲート電極になるべき領域に不純物をイオン注入する工程を含み、前記ゲート電極になるべき多結晶シリコン層はヒューズとなるべき多結晶シリコン層を含み、前記ヒューズを形成する工程は、前記ヒューズとなるべき多結晶シリコン上に金属シリサイド層を形成する工程を含む構成とすることができる。この構成によれば、電圧または電流の印加により低導電性多結晶シリコン層上の導電層を容易に切断することができる。よって、物理的な切断の容易なヒューズを形成することができる。
本発明によれば、製造時に電荷蓄積層に電荷が蓄積されてしまうことを抑制することが可能な半導体装置およびその製造方法を提供することができる。
図3は製造時に電荷蓄積層に電荷が蓄積される原因を説明するための図であり、図1のB−B断面に相当する模式図である。半導体基板10内にビットライン12が設けられている。半導体基板10上にONO膜20が設けられている。ONO膜20上にゲート電極を兼ねるワードライン22が設けられている。ワードライン22、ONO膜20および半導体基板10上には酸化シリコン膜からなる層間絶縁膜24が形成されている。層間絶縁膜24にはワードライン22に接続するコンタクトホールとコンタクトホール内にプラグ金属26が形成されている。層間絶縁膜24上に配線層となるべき金属層として例えばアルミニウム層を形成し、金属層をエッチングし配線層を形成する。このとき、ドライエッチングのためのプラズマ60中には正電荷、負電荷が存在している。そして、プラズマ中の電荷62は、配線層30、プラグ金属26、ワードライン22(ゲート電極)に帯電する。そして、電荷62はワードライン22からONO膜20を通過し半導体基板10に流れようとする。このとき、電荷蓄積層であるトラップ層16に電荷が蓄積されてしまう。そうすると、フラッシュメモリの製造工程が終了したのちも、電荷蓄積層に電荷が蓄積されたままとなってしまう。
図3では、配線層30を形成する際のドライエッチングに起因した帯電について説明したが、例えば、層間絶縁膜24を形成する際のプラズマCVDのプラズマやコンタクトホール形成の際のドライエッチングのプラズマに起因しても、同様の帯電が生じる。また、2層目、3層目の配線層、層間絶縁膜、コンタクトホール形成の際も同様の現象が生じうる。このように、ゲート電極を兼ねるワードライン22に電気的に接続する導電性部が製造工程中のプラズマに曝されることにより、ゲート電極が帯電し、電荷蓄積層に電荷が蓄積してしまうことが起こる。
実施例1は、フラッシュメモリの製造時にゲート電極と接続されたヒューズが、フラッシュメモリの使用時には物理的に切断される例である。図4は実施例1に係るフラッシュメモリの上視図である。配線層、層間絶縁膜、ONO膜は図示していない。図4を参照に、従来例1の図1に対し、ワードライン22に接続するヒューズ40と、ヒューズ40に接続する配線42と、が設けられている。配線42は半導体基板10に接続し接地されている。ヒューズ40は領域48で切断されている。その他の構成は従来例1と同じであり同じ部材は同じ符号を付し説明を省略する。
次に、図5(a)および図6(b)を用い実施例1に係るフラッシュメモリの製造方法について説明する。図5(a)および図6(b)は図4のC−C断面に相当する断面図である。図5(a)を参照し、P型シリコン半導体基板10(または半導体基板内のP型領域)にN型のビットライン12をイオン注入および熱処理により形成する。半導体基板10上にONO膜20として、酸化シリコン膜からなるトンネル酸化膜14、電荷蓄積層であり窒化シリコン膜からなるトラップ層16、酸化シリコン膜からなるトップ酸化膜18を形成する(図ではONO膜20のみ図示した)。ONO膜20上に不純物を添加していない膜厚200nmの非導電性多結晶シリコン層44を例えばCVD法を用い形成する。露光技術、エッチング技術を用い多結晶シリコン層44からワードライン22、ヒューズ40、配線42となるべきパターンを形成する。ヒューズ40となるべき多結晶シリコン層44上にフォトレジスト58を形成する。フォトレジスト58をマスクに例えば砒素イオンをイオンエネルギーが50keV、ドーズ量が5×1015cm−3の条件でイオン注入する。
図5(b)を参照に、フォトレジスト58を除去し、その後熱処理することにより、多結晶シリコン層44のイオン注入した領域は導電性多結晶シリコン層44aおよび44cとなる。一方、イオン注入しない領域は導電性多結晶シリコン層44aおよび44cより抵抗率が高い非導電性多結晶シリコン44bとなる。図5(c)を参照に、多結晶シリコン層44a、44bおよび44c上に例えば膜厚が12nmのコバルトまたはチタン等の金属をスパッタ法を用い形成する。その後、熱処理することにより、金属シリサイド層46を形成する。導電性多結晶シリコン層44aおよび金属シリサイド層46より、電荷蓄積層であるトラップ層を含むONO膜20上にゲート電極を兼ねるワードライン22が形成される。導電性多結晶シリコン層44cおよび金属シリサイド層46より配線42が形成される。さらに、非導電性多結晶シリコン層44bおよび金属シリサイド層46よりゲート電極を兼ねるワードライン22と配線42とを接続するヒューズ40が形成される。
図6(a)を参照に、ワードライン22、ヒューズ40、配線42上に層間絶縁膜24として例えば酸化シリコン膜をTEOS法を用い形成する。層間絶縁膜24にコンタクトホールを形成し、コンタクトホール内に金属シリサイド層46を介しワードライン22に接続するプラグ金属26を形成する。層間絶縁膜24上にプラグ金属26に接続する例えばアルミニウムからなる配線層30を形成する。その後、さらに上層の配線層または保護膜等を形成するが図示しない。図6(b)を参照に、例えば、ウェーハ状態での試験や出荷試験において、配線層30と配線42の間に10から20mA程度の電流を流がす。または、2.5から5V程度の電圧を印加する。これにより、ヒューズ40を領域48で物理的に切断する。以上により実施例1に係るフラッシュメモリが完成する。
実施例1に係るフラッシュメモリは、図4のように、電荷蓄積層であるトラップ層に電荷をプログラムする際に用いられるゲート電極(ワードライン22)と、ワードライン22と接続するヒューズ40と、を有している。そして、ヒューズ40は、ワードライン22(ゲート電極)に電圧が印加される際、すなわちフラッシュメモリを使用する際は電気的および物理的に切断されている。このように、ワードライン22(ゲート電極)と接続するヒューズ40を有し、製造工程中はヒューズ40を半導体基板10に接地させる。これにより、図6(a)のように、例えば、配線層30をドライエッチングし形成する際、コンタクトホールをドライエッチンし形成する際または層間絶縁膜24等の絶縁膜をプラズマCVD法で形成する際のプラズマに起因しゲート電極に帯電する電荷をヒューズ40を通じ逃がすことができる。よって、製造時に電荷蓄積層であるトラップ層16に電荷が蓄積されることを抑制することができる。また、図6(b)のように、ヒューズ40が切断されているため、ゲート電極は半導体基板10とは接続しておらず、フラッシュメモリとして動作することができる。
また、実施例1の図6(b)のように、ワードライン22(ゲート電極)がプラグ金属26を介し配線層30と接続することにより、配線層30を形成する際にワードライン22に帯電する電荷を除電することができる。また、ヒューズ40がワードライン22と半導体基板10との間に接続されていることにより、ワードライン22に帯電した電荷をより効率的に除電することができる。
さらに、実施例1の図5(c)のように、ワードライン22(ゲート電極)は導電性多結晶シリコン層44aを含み、ヒューズ40は導電性の多結晶シリコン層より抵抗率の高い非導電性(低導電性)多結晶シリコン層44bを含み、導電性多結晶シリコン層44aおよび抵抗率の高い多結晶シリコン層44b上に金属シリサイド層46(導電層)を有する構成とすることができる。この構成により、製造中ワードライン22に帯電した電荷は、ヒューズ40の多結晶シリコン層44b上の金属シリサイド層46を通り配線42に流れることができる。また、ヒューズ40を構成する多結晶シリコン層44bは低導電性である。このため、ヒューズ40を断線させる場合、ヒューズ40を流れる電流は主に金属シリサイド層46を流れる。よって、容易にヒューズ40を切断することができる。より金属シリサイド層46に電流を流すためには、低導電性多結晶シリコン層は、非電導性であることが好ましい。
また、図5(a)および図5(b)のように、導電性多結晶シリコン層44aはワードライン22(ゲート電極)になるべき多結晶シリコン層44を形成し、多結晶シリコン層44内のワードライン22になるべき領域に不純物をイオン注入することにより形成される。そして、ワードライン22になるべき多結晶シリコン層44aを形成する工程と同時にヒューズとなるべき多結晶シリコン層44bを形成し、ヒューズ40の非導電性多結晶シリコン層44bは、不純物を注入しないことにより形成している。このように、簡単に、導電性多結晶シリコン層44aと抵抗率の高い多結晶シリコン層44bを形成することができる。
多結晶シリコン層44上に形成する導電層は導電材料であれば良く、金属シリサイド層46に限られないが、金属シリサイド層46を含むことが好ましい。図5(c)のように、多結晶シリコン層44の上部をシリサイド化することにより、容易に多結晶シリコン上に金属シリサイド層46を形成することができるためである。また、ヒューズ40の金属シリサイド層46をワードライン22の低抵抗化のために、ワードライン22の上部に形成される金属シリサイド層と同時に形成できるため、製造工程の短縮を実現することができる。
実施例2は、フラッシュメモリの製造時にゲート電極と電気的に接続されたヒューズが、フラッシュメモリの使用時には電気的に切断される例である。図7(a)ないし図7(c)は実施例2に係るフラッシュメモリの動作を説明するための断面模式図である。図7(a)を参照に、半導体基板10上に電荷蓄積層であるトラップ層を有するONO膜20、ONO膜20上にゲート電極を兼ねるワードライン22が設けられている。なお、図7(a)から図7(c)では、メモリセルは1つのみ図示し、ビットライン等は省略している。ワードライン22および半導体基板10上に層間絶縁膜24が設けられている。層間絶縁膜24内にはワードライン22に接続するプラグ金属26と半導体基板10に接続するヒューズ56とが設けられている。層間絶縁膜24上には配線層30が設けられており、配線層30はプラグ金属26およびヒューズ56と接続している。つまり、ヒューズ56は、プラグ金属26とは並列に配線層30と半導体基板10との間に接続されている。
ヒューズ56は、実施例2に係るフラッシュメモリを動作させる際、つまりゲート電極に電圧が印加される温度では非導電性であり、フラッシュメモリを動作させる温度より高温では導電性となる材料を含んでいる。例えば、フラッシュメモリは一般的には150℃以下の温度で用いられる。一方、製造工程中のドライエッチングやプラズマCVDといったプラズマ中においてはウェーハは400℃程度の温度となる。例えばNiO(酸化ニッケル)またはCoO(酸化コバルト)は、150℃以下では抵抗率は10Ωcmと非導電性であるが、247℃で相変位し導電性となる。そこで、ヒューズ56としてNiOまたはCoOを含む材料を使用することができる。
図7(b)は実施例2の製造工程を示す模式図である。図7(a)と同じ部材は同じ符号を付し説明を省略する。配線層30をドライエッチングする工程を示している。このとき、ウェーハの温度は400℃程度と成っているため、ヒューズ56は低抵抗であり、配線層30に帯電した電荷は矢印のようにヒューズ56を介し半導体基板10に流れる。よって、ワードライン22が帯電することはない。
図7(c)は、製造後、フラッシュメモリとして使用する際の模式図である。配線層30上に層間絶縁膜32に形成され、層間絶縁膜32中に配線層30に電圧を印加するプラグ金属34が設けられている。図7(a)と同じ部材は同じ符号を付し説明を省略する。フラッシュメモリとして使用する際は150℃以下であるため、ヒューズ56は非導通状態となる。よって、電圧は矢印のようにプラグ金属34、配線層30、プラグ金属26を介しワードライン22に印加される。これにより、フラッシュメモリとして動作することができる。
次に、図8(a)から図9(d)を用い、実施例2に係る製造方法について説明する。なお、図8(a)から図9(d)では1つのメモリセルを抜き出して図示している。実際は、図1のように、複数のメモリセルが配置されており、複数のメモリセルに対しヒューズを設けることができる。図8(a)を参照に、シリコン半導体基板10にイオン注入P型ウェル10bを形成する。半導体基板10のP型ウェル10b内にN型のビットライン12を形成する。半導体基板10上に電荷蓄積層であるトラップ層16を含むONO膜20を形成する。ONO膜20上に多結晶シリコンからなるゲート電極を兼ねるワードライン22を形成する。図8(b)を参照に、ワードライン22上、ビットライン12上および半導体基板10のヒューズが接続すべき領域に金属シリサイド層50、51および52を形成する。金属シリサイド層50、51および52は、例えばコバルトまたはチタンを形成した後熱処理することにより形成する。半導体基板10並びに金属シリサイド層50および52上に酸化シリコン層からなる層間絶縁膜24を例えばTEOS法を用い形成する。
図8(c)を参照に、層間絶縁膜24上に開口部を有するフォトレジスト64を形成する。フォトレジスト64をマスクに層間絶縁膜24をエッチングし、金属シリサイド層52に接続するヒューズを形成すべきコンタクトホール54を形成する。図8(d)を参照に、フォトレジスト64を除去する。スパッタ法を用い、例えばNiOまたはCoOをコンタクトホール54内および層間絶縁膜24上に形成する。図8(e)を参照に、層間絶縁膜24上のNiOまたはCoOを例えばCMP法を用い除去する。これにより、層間絶縁膜24内に半導体基板10に接続するようにヒューズ56が形成される。
図9(a)を参照に、層間絶縁膜24上に開口部を有するフォトレジスト66を形成する。フォトレジスト66をマスクに層間絶縁膜24をエッチングし、金属シリサイド層52に接続するヒューズを形成すべきコンタクトホール27を形成する。図9(b)を参照に、フォトレジスト66を除去する。スパッタ法を用い、例えばTi/TiWおよびWをコンタクトホール27内および層間絶縁膜24上に形成する。図9(c)を参照に、層間絶縁膜24上のTi/TiWおよびWを例えばCMP法を用い除去する。これにより、層間絶縁膜24内にビットライン12およびワードライン22にそれぞれ接続するプラグ金属28および26が形成される。図9(d)を参照に、層間絶縁膜24上に例えばアルミニウムからなる層を形成し、所定領域をドライエッチングすることにより、ヒューズ56およびプラグ金属26、28に接続する配線層30を形成する。その後、上層の層間絶縁膜、プラグ金属および配線層等を形成することにより、実施例2に係るフラッシュメモリが完成する。
実施例2に係るフラッシュメモリは、図7(a)のように、ワードライン22(ゲート電極)とプラグ金属26および配線層30を介し接続するヒューズ56を有している。図7(c)で説明したように、フラッシュメモリが使用される際(ゲート電極に電圧が印加される際)、ヒューズ56は、非導電性であり電気的に切断されている。よって、フラッシュメモリとして動作することができる。
ヒューズ56は、ゲート電極に電圧が印加される温度では非導電性であり、ゲート電極に電圧が印加される温度より高温では導電性である材料を含むでいる。これにより、製造時に高温となったときはヒューズ56が導通状態となるため、ワードライン22に電荷が帯電することを抑制し、フラッシュメモリとして動作する際はヒューズ56が非導通状態となる。このため、実施例1と比べ、ヒューズ56を切断する工程を省略することができる。
実施例1のように、ヒューズ56を直接ワードライン22に接続することもできる。しかし、実施例2のように、ヒューズ56をプラグ金属26とは並列に配線層30と半導体基板10との間に接続することが好ましい。これにより、ヒューズ56が縦方向に形成されるため、実施例1に比べチップ面積を縮小させることができる。
図8(e)および図9(c)のように、層間絶縁膜24内に半導体基板10に接続するようにヒューズ56を形成する工程を、プラグ金属26を形成する工程より先に行うことが好ましい。これにより、ヒューズ56を形成する際のプラズマ処理によりワードライン22が帯電することがないため、電荷蓄積層に電荷が蓄積されることを一層抑制することができる。
実施例1のように、ヒューズを製造工程で断線させる場合も、実施例2のように、層間絶縁膜24内のコンラクトホール54内にヒューズ56を形成することもできる。しかし、断線のための電流または電圧が大きくなってしまうため、実施例1のように、ヒューズを平面的に形成することが好ましい。一方、実施例2のように、温度でヒューズの導通または非導通が制御される場合も、実施例1のようにヒューズを平面的に形成することもできる。しかし、層間絶縁膜24内のコンタクトホール54にヒューズ56を形成する方が好ましい。プラズマに曝され温度が上昇しやすい層間絶縁膜24の表面にヒューズ56が近いため、ヒューズ56が確実に導通するためである。
また、実施例1および実施例2は、それぞれ多結晶シリコン層と金属シリサイド層とからなるヒューズ、NiOまたはCoOからなるヒューズを例に説明した。ヒューズはこれらの態様に限られるものではない。製造時に導通し、使用時には電気的に切断できる材料を用いることができる。
実施例1および実施例2は、電荷蓄積層がONO膜20中の絶縁膜であるトラップ層16であり、ビットライン12に近接する電荷蓄積層に電荷蓄積領域を有する仮想接地型フラッシュメモリを例に説明した。本発明は、仮想接地型フラッシュメモリに限られず、その他のSONOS型フラッシュメモリ、フローティングゲートを有するフラッシュメモリにも適用できる。これらに適用した場合も、製造時に電荷蓄積層に電荷が蓄積されることを抑制することができる。特に、SONOS型フラッシュメモリは絶縁膜を電荷蓄積層とするため、一旦蓄積された電荷は、消去を行わない限り電荷蓄積層内の同じ領域に保持されてしまう。そのため、電荷蓄積層内の消去ができない領域に電荷が蓄積されてしまうと、この電荷を消去することができず誤動作の原因となってしまう。SONOS型フラッシュメモリに本発明を適用することにより、このような誤動作を抑制することができる。さらに、仮想接地型フラッシュメモリは、図2(a)から図2(d)を用い説明したように、製造時にチャネルの中央付近上のトラップ層16に電荷が蓄積されてしまうと、この電荷を消去させることはできない。よって、メモリセルが誤動作してしまう。仮想接地型フラッシュメモリに本発明を適用することにより、このような誤動作を抑制することができる。
以上、本発明の好ましい実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
図1は従来例に係るフラッシュメモリの上視図である。 図2(a)から図2(d)は従来例に係るフラッシュメモリの断面模式図であり、電荷の蓄積領域を示す図である。 図3は従来例において、製造時に電荷蓄積層に電荷が蓄積されてしまう原因を説明するための図である。 図4は実施例1に係るフラッシュメモリの上視図である。 図5(a)から図5(c)は実施例1に係るフラッシュメモリの製造工程を示す図(その1)である。 図6(a)および図6(b)は実施例1に係るフラッシュメモリの製造工程を示す図(その2)である。 図7(a)から図7(c)は実施例2に係るフラッシュメモリの断面摸式図であり、実施例2の原理を説明するための図である。 図8(a)から図8(e)は実施例2に係るフラッシュメモリの製造工程を示す図(その1)である。 図9(a)から図9(d)は実施例2に係るフラッシュメモリの製造工程を示す図(その2)である。
符号の説明
10 半導体基板
12 ビットライン
14 トンネル酸化膜
16 トラップ層
18 トップ酸化膜
20 ONO膜
22 ワードライン(ゲート電極)
24 層間絶縁膜
26 プラグ金属
30 配線層
40 ヒューズ
42 配線
44 多結晶シリコン層
46 金属シリサイド層
56 ヒューズ

Claims (16)

  1. 半導体基板上に設けられた電荷蓄積層と、
    該電荷蓄積層に電荷をプログラムする際に用いられるゲート電極と、
    該ゲート電極と接続するヒューズと、を具備し、
    前記ヒューズは、前記ゲート電極に電圧が印加される際は電気的に切断されている半導体装置。
  2. 前記ヒューズは物理的に切断されている請求項1記載の半導体装置。
  3. 前記ゲート電極は導電性多結晶シリコン層を含み、
    前記ヒューズは前記導電性の多結晶シリコン層より抵抗率の高い低導電性多結晶シリコン層を含み、
    前記導電性多結晶シリコン層および低導電性多結晶シリコン層上に設けられた導電層を有する請求項1または2記載の半導体装置。
  4. 前記導電層は金属シリサイド層を含む請求項3記載の半導体装置。
  5. 前記ヒューズは、前記ゲート電極に電圧が印加される温度では導電性であり、前記ゲート電極に電圧が印加される温度より高温では非導電性である材料を含む請求項1記載の半導体装置。
  6. 前記ヒューズはNiOおよびCoOの少なくとも一方を含む請求項5記載の半導体装置。
  7. 前記ゲート電極と接続するプラグ金属と、該プラグ金属に接続する配線層と、を具備し、
    前記ヒューズは、前記プラグ金属とは並列に前記配線層と前記半導体基板との間に接続されている請求項1、2、5および6のいずれか一項記載の半導体装置。
  8. 前記ヒューズは、前記ゲート電極と前記半導体基板との間に接続されている請求項1から6のいずれか一項記載の半導体装置。
  9. 前記ゲート電極とプラグ金属を介し接続される配線層を具備する請求項1から6のいずれか一項記載の半導体装置。
  10. 前記半導体基板内に設けられたビットラインを具備し、電荷蓄積層は絶縁膜である請求項1から9のいずれか一項記載の半導体装置。
  11. 半導体基板上に電荷蓄積層を形成する工程と、
    該電荷蓄積層上にゲート電極を形成する工程と、
    前記ゲート電極と接続するヒューズを形成する工程と、
    前記ヒューズを切断する工程と、を有する半導体装置の製造方法。
  12. 半導体基板上に電荷蓄積層を形成する工程と、
    該電荷蓄積層上にゲート電極を形成する工程と、
    前記ゲート電極と接続すべき、前記ゲート電極に電圧が印加される温度では非導電性であり、前記ゲート電極に電圧が印加される温度より高温では導電性である材料を含むヒューズを形成する工程と、を有する半導体装置の製造方法。
  13. 前記ゲート電極上に層間絶縁膜層を形成する工程と、
    前記層間絶縁膜層に前記ゲート電極と接続するプラグ金属を形成する工程と、
    前記層間絶縁膜上に前記プラグ金属に接続する配線層を形成する工程と、を有する請求項11または12記載の半導体装置の製造方法。
  14. 前記ヒューズを形成する工程は、前記層間絶縁膜層内に前記半導体基板に接続するようにヒューズを形成する工程を含み、
    前記配線層を形成する工程は、前記ヒューズに接続するように前記配線層を形成する工程を含む請求項13記載の半導体装置の製造方法。
  15. 前記ヒューズを形成する工程は、前記プラグ金属を形成する工程より先に行われる請求項14記載の半導体装置の製造方法。
  16. 前記ゲート電極を形成する工程は、前記ゲート電極になるべき多結晶シリコン層を形成する工程と、前記多結晶シリコン層内のゲート電極になるべき領域に不純物をイオン注入する工程を含み、
    前記ゲート電極になるべき多結晶シリコン層はヒューズとなるべき多結晶シリコン層を含み、
    前記ヒューズを形成する工程は、前記ヒューズとなるべき多結晶シリコン上に金属シリサイド層を形成する工程を含む請求項11記載の半導体装置の製造方法。
JP2006353414A 2006-12-27 2006-12-27 半導体装置およびその製造方法 Pending JP2008166441A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006353414A JP2008166441A (ja) 2006-12-27 2006-12-27 半導体装置およびその製造方法
US12/004,969 US8749012B2 (en) 2006-12-27 2007-12-20 Methods and structures for discharging plasma formed during the fabrication of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006353414A JP2008166441A (ja) 2006-12-27 2006-12-27 半導体装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2008166441A true JP2008166441A (ja) 2008-07-17

Family

ID=39695534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006353414A Pending JP2008166441A (ja) 2006-12-27 2006-12-27 半導体装置およびその製造方法

Country Status (2)

Country Link
US (1) US8749012B2 (ja)
JP (1) JP2008166441A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076777A (ja) * 2007-09-21 2009-04-09 Panasonic Corp 半導体装置及びその製造方法
JP2012104587A (ja) * 2010-11-09 2012-05-31 Lapis Semiconductor Co Ltd 半導体装置の製造方法
JP2016105509A (ja) * 2016-02-29 2016-06-09 セイコーエプソン株式会社 記憶装置、集積回路装置及び電子機器
US10566339B2 (en) 2017-02-28 2020-02-18 Toshiba Memory Coporation Semiconductor memory device and method for manufacturing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120286390A1 (en) * 2011-05-11 2012-11-15 Kuei-Sheng Wu Electrical fuse structure and method for fabricating the same
MY188845A (en) 2014-07-14 2022-01-09 Sony Corp Transmission device, transmission method, reception device, and reception method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6607945B2 (en) * 2001-05-24 2003-08-19 Advanced Micro Devices, Inc. Laser-assisted silicide fuse programming
US6661330B1 (en) * 2002-07-23 2003-12-09 Texas Instruments Incorporated Electrical fuse for semiconductor integrated circuits
JP4524176B2 (ja) * 2004-12-17 2010-08-11 パナソニック株式会社 電子デバイスの製造方法
US7576407B2 (en) * 2006-04-26 2009-08-18 Samsung Electronics Co., Ltd. Devices and methods for constructing electrically programmable integrated fuses for low power applications

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076777A (ja) * 2007-09-21 2009-04-09 Panasonic Corp 半導体装置及びその製造方法
JP2012104587A (ja) * 2010-11-09 2012-05-31 Lapis Semiconductor Co Ltd 半導体装置の製造方法
JP2016105509A (ja) * 2016-02-29 2016-06-09 セイコーエプソン株式会社 記憶装置、集積回路装置及び電子機器
US10566339B2 (en) 2017-02-28 2020-02-18 Toshiba Memory Coporation Semiconductor memory device and method for manufacturing same
US10923490B2 (en) 2017-02-28 2021-02-16 Toshiba Memory Corporation Semiconductor memory device and method for manufacturing same
US11672117B2 (en) 2017-02-28 2023-06-06 Kioxia Corporation Semiconductor memory device and method for manufacturing same

Also Published As

Publication number Publication date
US20090026570A1 (en) 2009-01-29
US8749012B2 (en) 2014-06-10

Similar Documents

Publication Publication Date Title
US8039298B2 (en) Phase changeable memory cell array region and method of forming the same
JP4102112B2 (ja) 半導体装置及びその製造方法
US7767522B2 (en) Semiconductor device and a method of manufacturing the same
JP2012164776A (ja) 不揮発性半導体記憶装置
JP5486884B2 (ja) 不揮発性半導体記憶装置、及びその製造方法
JP2008166441A (ja) 半導体装置およびその製造方法
US7626227B2 (en) Semiconductor device with reduced transistor breakdown voltage for preventing substrate junction currents
JP2009272565A (ja) 半導体記憶装置、及びその製造方法
JP5149576B2 (ja) 半導体装置
JP2000286349A (ja) 半導体装置およびその製造方法
EP0614223B1 (en) Non-volatile memory with protection diode
US7072210B2 (en) Memory array
US7670904B2 (en) Nonvolatile memory device and method for fabricating the same
US9299569B2 (en) Manufacturing method of semiconductor device
JP2008047863A (ja) 不揮発性メモリのウェルピックアップ構造を製造する方法
CN114078757A (zh) 半导体元件的制备方法
US20070045713A1 (en) Semiconductor memory device
US7271062B2 (en) Non-volatile memory cell and fabricating method thereof and method of fabricating non-volatile memory
WO2006129341A1 (ja) 半導体装置およびその製造方法
US7847340B2 (en) Semiconductor device and method for manufacturing the same
US20020022323A1 (en) Non-volatile semiconductor memory device and method of manufacturing the same
JP2004193598A (ja) 不揮発性半導体記憶装置及びその製造方法
WO2006080064A1 (ja) 半導体装置及びその製造方法
CN114078859A (zh) 可程序化存储器元件
US20030080374A1 (en) Non-volatile semiconductor memory device and manufacturing method thereof