JP2008159492A - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP2008159492A
JP2008159492A JP2006348782A JP2006348782A JP2008159492A JP 2008159492 A JP2008159492 A JP 2008159492A JP 2006348782 A JP2006348782 A JP 2006348782A JP 2006348782 A JP2006348782 A JP 2006348782A JP 2008159492 A JP2008159492 A JP 2008159492A
Authority
JP
Japan
Prior art keywords
fuel
reducing agent
catalyst layer
electrode catalyst
fuel electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006348782A
Other languages
English (en)
Inventor
Hiroaki Yoshida
宏章 吉田
Kensuke Yoshida
賢介 吉田
Fumio Takei
文雄 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006348782A priority Critical patent/JP2008159492A/ja
Publication of JP2008159492A publication Critical patent/JP2008159492A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】 触媒表面に形成される酸化物被膜を除去して、出力低下を抑制することができる燃料電池を提供する。
【解決手段】 空気極触媒層(12)、固体高分子電解質膜(10)、及び燃料極触媒層(11)がこの順番に積層されて膜−電極接合体(13)が構成されている。燃料供給手段(30,31,32)が燃料極触媒層に燃料を供給する。還元剤供給手段(40,41,42)が燃料極触媒層に還元剤を供給する。
【選択図】 図1

Description

本発明は、燃料電池に関し、特に燃料極触媒層を構成する触媒の酸化による出力の低下を抑制する燃料電池に関する。
近年、携帯電話をはじめとしたポータブル電子機器の高性能化、多機能化が著しい。ポータブル電子機器を小型軽量化し、長時間動作を可能とするために、従来のNi−Cd電池やNi水素電池に代わり、高いエネルギ密度を有するリチウムイオン二次電池が広く採用されている。また、昨今の高度情報通信網の普及によるポータブル電子機器の情報通信機能の高度化や動作時間の増加等から、電池に一層の大容量化が切望されている。大容量の電源として、リチウムイオン電池の数倍の大容量化が期待できる燃料電池が注目されている。
燃料電池は、リン酸型、固体電解質型、溶融炭酸塩型、固体高分子型等に分類される。ポータブル電子機器用の燃料電池には、小型化に適し、室温付近で動作が可能な固体高分子型燃料電池が適している。固体高分子型燃料電池のうち、燃料として有機燃料から改質された水素を必要とせず、メタノール等の有機燃料を電極上に直接供給することによってエネルギ密度を向上させたダイレクトアルコール型燃料電池(DAFC)が、特に、小型軽量化に適している。DAFCは、その動作原理の観点から、酸性型とアルカリ性型に分類される。酸性型のDAFCが、下記の特許文献1に開示されている。
酸性型のDAFCでは、燃料極触媒層においてPt系触媒の存在下で下記の反応式により、アルコール水溶液から陽子と二酸化炭素が生成される。
CHOH+HO→CO+6H+6e
燃料極触媒層で生成された陽子が高分子固体電解質膜中を輸送されて空気極触媒層に達する。空気極触媒層では、下記の反応式により、陽子と酸素とが化合して水が生成される。
(3/2)O+6H+6e→3H
上記化学反応が生じる際に、燃料極触媒層で発生した電子が、外部回路を経由して空気極触媒層まで輸送される。
これに対し、アルカリ型のDAFCでは、空気極触媒層において、触媒の存在下で下記の反応式により、水と酸素とから水酸イオン(OH)が生成される。
3O+6HO+12e→12OH
生成された水酸イオンが、アニオン伝導性の電解質膜内を輸送されて、燃料極触媒層に達する。燃料極触媒層では、下記の反応式により、水酸イオンがアルコールと反応して二酸化炭素と水が生成される。
OH+12OH→2CO+9HO+12e
上記化学反応が生じる際に、燃料極触媒層で発生した電子が、外部回路を通って空気極触媒層まで輸送される。
酸性型のDAFCでは、触媒に高価なPt等が使用されるのに対し、アルカリ型のDAFCにおいては、Ni等の安価な非貴金属触媒を用いることができる。さらに、アルカリ型DAFCは、酸性型DAFCに比べて、開放電圧を高くすることが可能である。例えば、アルカリ型DAFCは、開放電圧を0.9V以上にすることが可能である。このため、酸性型DAFCに比べて高出力化が期待される。
アルカリ型DAFCの燃料極触媒層の触媒として、金属Niの微粒子、この微粒子をカーボン等に担持させた担持触媒、ラネーニッケル、ニッケルフォーム、NiとFe等と他の非貴金属触媒との合金組成物等が挙げられる。空気極触媒層の触媒として、Pt系触媒の他に、Ni、Fe、Co、Ag等の金属、これらの合金組成物、フタロシアニン等の有機錯体系触媒等が挙げられる。特に、貴金属系の触媒以外の触媒を用いる場合には、反応性が低いため、アルコールと酸素との共存下でも、アルコールが直接燃焼することがない。このため、酸性型DAFCで問題となっているアルコールの空気極触媒層へのクロスオーバによる性能低下が発生しない。このため、高出力化に適している。
特開2004−55550号公報
Ni等の非貴金属系の触媒は、Pt等の貴金属系の触媒に比べて、その表面に酸化物被膜等が形成されやすい。触媒の表面に酸化物被膜が形成されると、その表面が不活性になり、出力低下の要因になる。通常、触媒を強アルカリ性の溶液中に浸漬させておくことにより、触媒表面に酸化物被膜が形成されることを防止している。ところが、発電時間が経過するに従って性能が低下し、数時間程度で発電不能になる場合もある。また、燃料を使い切った後に燃料電池を放置しておくと、CO排出口から燃料電池内に空気が侵入し、触媒表面に酸化物被膜が形成される場合もある。
本発明の目的は、触媒表面に形成される酸化物被膜を除去して、出力低下を抑制することができる燃料電池を提供することである。
本発明の一観点によると、
空気極触媒層、固体高分子電解質膜、及び燃料極触媒層がこの順番に積層された膜−電極接合体と、
前記燃料極触媒層に燃料を供給する燃料供給手段と、
前記燃料極触媒層に還元剤を供給する還元剤供給手段と
を有する燃料電池が提供される。
還元剤供給手段により燃料極触媒層に還元剤を供給することにより、燃料極触媒層の触媒表面に形成された酸化物被膜を除去することができる。これにより、酸化物被膜形成に起因する出力の低下を防止することができる。
図1に、実施例による燃料電池の概略断面図を示す。燃料極触媒層11、空気極触媒層12、及び両者の間に挟まれたアニオン伝導型の高分子固体電解質膜10によって、膜−電極接合体(MEA)13が構成されている。
燃料極触媒層11は、Ni微粉末をPTFEディスパージョンと混合して得られたペーストを、Niメッシュ(100メッシュ)に塗布し、ローラまたはプレス機でメッシュ内にペーストを埋め込んで形成される。PTFEディスパージョンとして、ダイキン工業株式会社製のDE4W等を使用することができる。燃料極触媒層11として、その他に、高い比表面積を持つニッケル、例えばラネーニッケル、ニッケルフォーム等を用いることも可能である。燃料極触媒層11の金属触媒にNi合金を用いてもよい。Ni合金のNi濃度は、20重量%以上とすることが好ましい。
空気極触媒層12も、燃料極触媒層11と同じ構成のものを用いた。なお、空気極触媒層12として、Ni、Fe、Co、Ag等の触媒金属の微粉末をカーボンに担持させた触媒微粉末担持カーボン等を用いることも可能である。そのほかに、フタロシアニン錯体等の有機錯体系触媒を用いることも可能である。アルカリ型DAFCに使用される触媒の例が、Journal of Electrochemical Society, 150(3) A398-A402 (2003)に開示されている。
高分子固体電解質膜10は、側鎖末端にアミノ基を有する炭化水素系アニオン交換膜で構成される。例えば、株式会社アストム製のネオセプタを用いることができる。燃料極触媒層11及び空気極触媒層12の面積は、例えば9cmとする。
MEA13が、燃料極集電体15及び空気極集電体16で挟まれている。集電体15及び16として、耐腐食性を高めるために金メッキを施したSUS製のパンチングメタルが用いられる。その開口率は、例えば60%である。なお、パンチングメタルに代えて、金メッキを施したSUS製のメッシュを用いてもよい。燃料極集電体15は燃料極触媒層11に接し、燃料極触媒層11で発生した電子を外部に輸送する。空気極集電体16は空気極触媒層12に接し、空気極触媒層12に電子を供給する。
MEA13、集電体15、16からなる発電部が、一対の板状部材20A及び20Bの間に配置されている。一方の板状部材20Aと燃料極集電体15との間に絶縁性の枠22が挟み込まれている。板状部材20A、燃料極集電体15、及び枠22により、燃料収容空間23が画定される。
他方の板状部材20Bと空気極集電体16との間に、格子状の絶縁部材25が挟まれている。一対の板状部材20Aと20Bとを、ボルトとナット等で相互に固定することにより、両者の間にMEA13、及び集電体15、16を安定的に支持することができる。板状部材20Bに、複数の開口21が形成されている。板状部材20Bの開口21、格子状の絶縁部材25で画定された空洞、及び空気極集電体16に形成された開口を通過して、空気極触媒層12まで空気が輸送される。
ポリエチレン製の燃料輸送管31が、板状部材20Aを貫通して、燃料収容空間23内に導入されている。燃料輸送管31の外側の端部は、マイクロポンプ32を介して燃料容器30に取り付けられている。燃料容器30内に、アルコール燃料が充填されている。アルコール燃料として、例えばメタノール、エタノール、プロパノール、エチレングリコール等を用いることができる。マイクロポンプ32を動作させることにより、燃料容器30から燃料収容空間23内に燃料を供給することができる。
ポリエチレン製の還元剤輸送管41が、板状部材20Aを貫通して燃料収容空間23内に導入されている。還元剤輸送管41の先端は、燃料極集電体15の開口部を経由して燃料極触媒層11に接触している。還元剤輸送管41の、外側の端部は、マイクロポンプ42を介して還元剤容器40に取り付けられている。還元剤容器40内に、還元剤が充填されている。還元剤として、燃料極触媒層の触媒金属の表面に形成された酸化物層を除去することができるものが用いられる。このような還元剤として、例えばNaBH、KBH、ヒドラジン等が挙げられる。これらの還元剤は、アルカリ性水溶液に溶解させておくことにより、安定的に使用することができる。
マイクロポンプ42を動作させることにより、還元剤容器40内の還元剤を、燃料極触媒層11に供給することができる。還元剤輸送管41の先端が燃料極触媒層11に接触しているため、燃料収容空間23内の燃料と混ざることなく、還元剤のみを効率的に燃料極触媒層11に供給することができる。燃料極触媒層11に供給された還元剤は、毛細管現象により、燃料極触媒層11内に浸透する。
なお、マイクロポンプ32、42に代えて、燃料や還元剤を強制的に送り出す他の機構を用いてもよい。たとえば、還元剤容器40内を加圧しておき、還元剤輸送管41に、開閉を行うバルブを取り付けてもよい。還元剤容器40内が加圧されているため、このバルブを開けると、還元剤が還元剤容器40内から還元剤輸送管41を通して燃料極触媒層11に供給される。バルブの開閉機構に、圧電アクチュエータ等を用いることができる。
集電体15、16に昇圧回路18が接続されている。昇圧回路18を通して外部に電力が取り出される。
燃料収容空間23内に燃料を供給することにより、発電を行うことができる。燃料極触媒層11を構成しているニッケルの表面に酸化物被膜が形成されて出力電圧が低下したら、マイクロポンプ42を動作させて還元剤を燃料極触媒層11に供給する。これにより、酸化物被膜が除去されて、出力電圧を回復させることができる。
図2に、0.6Vで定電圧駆動したときの開放出力電圧の経時変化を示す。横軸は経過時間を単位「分」で表し、縦軸は電圧を、ある値を1とした相対値で表す。燃料として、KOHの0.1M(モル/リットル)水溶液とエタノールとの混合液を用いた。エタノールの濃度は20重量%とした。還元剤として、NaOHの1M水溶液に、NaBHを溶解させたものを用いた。NaBHの濃度は10重量%とした。
図2の実線は、還元剤の注入を行わない場合の電圧の変化を示し、破線は、経過時間が20分及び40分のときに、燃料極触媒層11に還元剤を注入した場合の電圧の変化を示す。還元剤の注入量は、1回当たり0.05ml/cmとした。グラフ中の実線で示すように、経過時間と共に電圧が低下していることがわかる。還元剤を注入すると、電圧が回復していることがわかる。
上記実施例では、電圧が低下したときのみ還元剤の注入を行うため、燃料に還元剤を添加しておく場合に比べて、還元剤の消費量を低減させることができる。
上記実施例において、還元剤容器40が燃料容器30に装着される構成としてもよい。例えば、還元剤容器40が燃料容器30に着脱可能に取り付けられた構成としてもよいし、両者を一体不可分の容器で構成してもよい。この場合、燃料電池の使用者が燃料容器30を交換するときに、還元剤容器40も同時に交換される。使用者は、還元剤容器40の存在を意識することなく、燃料の消費量のみに気を配ればよいため、利便性に優れる。
以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
上記実施例から、以下の付記に示された発明が導出される。
(付記1)
空気極触媒層、固体高分子電解質膜、及び燃料極触媒層がこの順番に積層された膜−電極接合体と、
前記燃料極触媒層に燃料を供給する燃料供給手段と、
前記燃料極触媒層に還元剤を供給する還元剤供給手段と
を有する燃料電池。
(付記2)
前記燃料極触媒層は、前記燃料供給手段から供給される燃料と、水酸化イオンとの化学反応を生じさせて、水と二酸化炭素とを生成する第1の触媒を含む付記1に記載の燃料電池。
(付記3)
前記第1の触媒が、Ni濃度20重量%以上の金属触媒を含む付記1または2に記載の燃料電池。
(付記4)
前記空気極触媒層は、酸素と水とを化学反応させて、水酸化イオンを生成する第2の触媒を含む付記1乃至3のいずれか1項または2に記載の燃料電池。
(付記5)
前記固体高分子電解質膜はアニオン伝導性である付記1乃至4のいずれか1項に記載の燃料電池。
(付記6)
前記還元剤供給手段が、
還元剤を格納する還元剤容器と、
該還元剤容器内の還元剤を前記燃料極触媒層まで輸送する還元剤輸送管と、
前記還元剤容器内の還元剤を、前記還元剤輸送管を通して前記燃料極触媒層に輸送する輸送手段とを
含む付記1乃至5のいずれか1項に記載の燃料電池。
(付記7)
前記燃料供給手段は、
燃料を収容する燃料容器と、
前記燃料極触媒層に接する空洞を画定する部材と、
前記燃料容器内の燃料を前記空洞まで輸送する燃料輸送管と
を含み、
前記還元剤輸送管の先端が該燃料極触媒層に接している付記6に記載の燃料電池。
(付記8)
前記還元剤輸送管を通って前記燃料極触媒層まで輸送された還元剤が、前記燃料極触媒層内に毛細管現象によって浸透する付記7に記載の燃料電池。
(付記9)
前記還元剤容器が、前記燃料容器に装着されている付記7または8に記載の燃料電池。
(付記10)
前記還元剤が、NaBH、KBH、及びヒドラジンからなる群より選択された少なくとも1つを含む付記1乃至7のいずれか1項に記載の燃料電池。
実施例による燃料電池の概略断面図である。 実施例による燃料電池の開放電圧の時間変化を示すグラフである。
符号の説明
10 高分子固体電解質膜
11 燃料極触媒層
12 空気極触媒層
13 膜−電極接合体
15 燃料極集電体
16 空気極集電体
18 昇圧回路
20A、20B 板状部材
21 開口
22 枠
23 燃料収容空間
25 絶縁部材
30 燃料容器
31 燃料輸送管
32 マイクロポンプ
40 還元剤容器
41 還元剤輸送管
42 マイクロポンプ

Claims (5)

  1. 空気極触媒層、固体高分子電解質膜、及び燃料極触媒層がこの順番に積層された膜−電極接合体と、
    前記燃料極触媒層に燃料を供給する燃料供給手段と、
    前記燃料極触媒層に還元剤を供給する還元剤供給手段と
    を有する燃料電池。
  2. 前記固体高分子電解質膜はアニオン伝導性である請求項1に記載の燃料電池。
  3. 前記還元剤供給手段が、
    還元剤を格納する還元剤容器と、
    該還元剤容器内の還元剤を前記燃料極触媒層まで輸送する還元剤輸送管と、
    前記還元剤容器内の還元剤を、前記還元剤輸送管を通して前記燃料極触媒層に輸送する輸送手段とを
    含む請求項1または2に記載の燃料電池。
  4. 前記燃料供給手段は、
    燃料を収容する燃料容器と、
    前記燃料極触媒層に接する空洞を画定する部材と、
    前記燃料容器内の燃料を前記空洞まで輸送する燃料輸送管と
    を含み、
    前記還元剤輸送管の先端が該燃料極触媒層に接している請求項3に記載の燃料電池。
  5. 前記還元剤輸送管を通って前記燃料極触媒層まで輸送された還元剤が、前記燃料極触媒層内に毛細管現象によって浸透する請求項4に記載の燃料電池。
JP2006348782A 2006-12-26 2006-12-26 燃料電池 Pending JP2008159492A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006348782A JP2008159492A (ja) 2006-12-26 2006-12-26 燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006348782A JP2008159492A (ja) 2006-12-26 2006-12-26 燃料電池

Publications (1)

Publication Number Publication Date
JP2008159492A true JP2008159492A (ja) 2008-07-10

Family

ID=39660159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006348782A Pending JP2008159492A (ja) 2006-12-26 2006-12-26 燃料電池

Country Status (1)

Country Link
JP (1) JP2008159492A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060604A1 (ja) * 2007-11-07 2009-05-14 Kabushiki Kaisha Toshiba 燃料電池
JP2012221564A (ja) * 2011-04-04 2012-11-12 Dainippon Printing Co Ltd 固体高分子形燃料電池のエージング方法、及び固体高分子形燃料電池の発電システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144745A (ja) * 1997-11-06 1999-05-28 Asahi Glass Co Ltd 固体高分子電解質型メタノール燃料電池
JP2003223919A (ja) * 2002-01-29 2003-08-08 Yuasa Corp 直接メタノール形燃料電池システム
JP2004063200A (ja) * 2002-07-26 2004-02-26 Mitsubishi Pencil Co Ltd 直接メタノール型燃料電池
JP2004192879A (ja) * 2002-12-10 2004-07-08 Matsushita Electric Ind Co Ltd 燃料電池
WO2004070865A1 (ja) * 2003-02-10 2004-08-19 Matsushita Electric Industrial Co. Ltd. 燃料電池システム
JP2006185896A (ja) * 2004-12-02 2006-07-13 Seiko Instruments Inc 燃料電池システムおよび水回収装置
JP2006302770A (ja) * 2005-04-22 2006-11-02 Toshiba Corp 燃料電池システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144745A (ja) * 1997-11-06 1999-05-28 Asahi Glass Co Ltd 固体高分子電解質型メタノール燃料電池
JP2003223919A (ja) * 2002-01-29 2003-08-08 Yuasa Corp 直接メタノール形燃料電池システム
JP2004063200A (ja) * 2002-07-26 2004-02-26 Mitsubishi Pencil Co Ltd 直接メタノール型燃料電池
JP2004192879A (ja) * 2002-12-10 2004-07-08 Matsushita Electric Ind Co Ltd 燃料電池
WO2004070865A1 (ja) * 2003-02-10 2004-08-19 Matsushita Electric Industrial Co. Ltd. 燃料電池システム
JP2006185896A (ja) * 2004-12-02 2006-07-13 Seiko Instruments Inc 燃料電池システムおよび水回収装置
JP2006302770A (ja) * 2005-04-22 2006-11-02 Toshiba Corp 燃料電池システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060604A1 (ja) * 2007-11-07 2009-05-14 Kabushiki Kaisha Toshiba 燃料電池
JP2012221564A (ja) * 2011-04-04 2012-11-12 Dainippon Printing Co Ltd 固体高分子形燃料電池のエージング方法、及び固体高分子形燃料電池の発電システム

Similar Documents

Publication Publication Date Title
Sapkota et al. Zinc–air fuel cell, a potential candidate for alternative energy
JP4296625B2 (ja) 発電デバイス
US7553570B2 (en) Fuel cell
JP2008300215A (ja) 燃料電池
JP2004055307A (ja) 燃料電池搭載機器
JP5135747B2 (ja) 燃料電池および燃料電池システム
JP2007087655A (ja) 燃料電池
JP2003317791A (ja) 液体燃料電池
US20080268310A1 (en) Hydrogen generating apparatus and fuel cell system using the same
JP2008159492A (ja) 燃料電池
JP3846727B2 (ja) 液体燃料電池およびそれを用いた発電装置
JP3746047B2 (ja) 液体燃料電池およびそれを用いた発電装置
US20060078764A1 (en) Dissolved fuel alkaline fuel cell
JP2004127833A (ja) 燃料電池
US8026017B2 (en) High voltage methanol fuel cell assembly using proton exchange membranes and base/acid electrolytes
JP2007165205A (ja) 燃料電池および燃料電池システム
US20080318104A1 (en) Electrolyte solution for hydrogen generating apparatus and hydrogen generating apparatus comprising the same
WO2012007727A1 (en) Fuel cell
JP2010103033A (ja) 燃料電池
JP4018500B2 (ja) 燃料電池
JP2004095208A (ja) 燃料電池
JP4637460B2 (ja) 燃料電池の製造方法
JP2004014149A (ja) 液体燃料電池
JP2005032520A (ja) 燃料電池及びその製造方法
JP2008159493A (ja) 燃料電池及びその制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120626