JP2008156185A - シリコン単結晶製造用原料とその製造方法ならびにシリコン単結晶の製造方法 - Google Patents

シリコン単結晶製造用原料とその製造方法ならびにシリコン単結晶の製造方法 Download PDF

Info

Publication number
JP2008156185A
JP2008156185A JP2006349563A JP2006349563A JP2008156185A JP 2008156185 A JP2008156185 A JP 2008156185A JP 2006349563 A JP2006349563 A JP 2006349563A JP 2006349563 A JP2006349563 A JP 2006349563A JP 2008156185 A JP2008156185 A JP 2008156185A
Authority
JP
Japan
Prior art keywords
raw material
single crystal
crystal
silicon single
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006349563A
Other languages
English (en)
Inventor
Soichiro Kondo
総一郎 近藤
Yusuke Nomura
祐介 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2006349563A priority Critical patent/JP2008156185A/ja
Publication of JP2008156185A publication Critical patent/JP2008156185A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】シリコン単結晶原料として使用されない原料を簡便に精製して、シリコン単結晶製造用原料を製造する方法、さらにシリコン単結晶を製造する方法を提供する。
【解決手段】CZ法により、シリコン単結晶原料として使用されない原料を溶融してシリコン単結晶製造用の原料結晶を引き上げる。または、CZ法によりシリコン原料結晶を引き上げた後、得られたシリコン原料結晶を溶解してCZ法によりシリコン単結晶19を引き上げる。結晶育成時における不純物の偏析現象を利用して、原料を簡便に効率よく精製でき、原料として、結晶引き上げ後の石英ルツボ内の残存凝固物(ルツボ残シリコン塊9)等を用いることができる。
【選択図】図5

Description

本発明は、チョクラルスキー法(以下、「CZ法」という)によるシリコン単結晶製造用原料の製造方法、およびその方法により得られるシリコン単結晶製造用原料、ならびにCZ法により引き上げたシリコン単結晶製造用の原料結晶を溶解してCZ法により結晶育成するシリコン単結晶の製造方法に関する。
半導体基板に用いられるシリコン単結晶を製造する方法には種々の方法があるが、そのなかでもCZ法が広く採用されている。
図1は、CZ法によるシリコン単結晶の引き上げ方法を実施するのに適した引き上げ装置の要部構成を模式的に示す図である。引き上げ装置の外観は図示しないチャンバーで構成され、その中心部にルツボ1が配設されている。このルツボ1は二重構造であり、有底円筒状をなす石英製の内層保持容器(以下、「石英ルツボ」という)1aと、その石英ルツボ1aの外側を保持すべく適合された同じく有底円筒状の黒鉛製の外層保持容器(以下、「黒鉛ルツボ」という)1bとから構成されている。
ルツボ1は回転および昇降が可能な支持軸6の上端部に固定され、ルツボ1の外側には抵抗加熱式ヒーター2が概ね同心円状に配設されている。前記ルツボ1内に投入された所定重量の半導体用シリコン原料は溶融され、融液3が形成される。
融液3が充填された前記ルツボ1の中心軸上には、支持軸6と同一軸上で逆方向または同方向に所定の速度で回転する引き上げ軸(またはワイヤー、以下両者を合わせて「引き上げ軸」という)5が配設されており、引き上げ軸5の下端には種結晶7が保持されている。
このような引き上げ装置を用いてシリコン単結晶の引き上げを行う際には、石英ルツボ1a内に半導体用のシリコン単結晶原料を投入し、減圧下の不活性ガス雰囲気中でこの原料をルツボ1の周囲に配設したヒーター2にて溶融した後、形成された融液3の表面に引き上げ軸5の下端に保持された種結晶7を浸漬し、ルツボ1および引き上げ軸5を回転させつつ、引き上げ軸5を上方に引き上げて種結晶7の下端面に単結晶4を成長させる。
上記CZ法によって得られるシリコン単結晶インゴットの端材(インゴットの切断処理により発生するスクラップ)は、高純度であることから再度半導体用シリコン単結晶の原料として再利用されている。
一方、シリコン単結晶を引き上げた後に石英ルツボの底に残存するシリコン融液の凝固物(以下、「ルツボ残シリコン塊」という)は、太陽電池の製造原料として利用されている。なお、利用に際し、太陽電池にとって有害な不純物である付着石英片を取り除くために、例えば、特許文献1では、石英が付着したルツボ残シリコン塊のようなシリコンを、回転式粉砕機を用い所定の条件で粉砕した後、石英の多い粒度の小さい部分を篩い分けや比重分離により除去する石英除去方法が提案されている。
太陽電池の製造原料としては、ルツボ残シリコン塊の他に、不純物濃度が高く半導体用のシリコン単結晶原料として要求される純度を満たさないものなども使用されている。これは、太陽電池用原料の品質スペックが半導体用原料のそれに比べて大幅に緩く、原料中の不純物濃度が多少高くても問題ないことによるものである。
近年、半導体用シリコン原料が不足気味の状況にあり、前記ルツボ残シリコン塊や不純物濃度の高い規格外品などをそのまま半導体用原料として使用できれば、安価な原料調達が可能となり、製造コスト低減の観点からも望ましい。
しかし、これらルツボ残シリコン塊等をそのまま半導体用原料として使用した場合、シリコン単結晶中の金属などの不純物濃度が極端に上がるだけでなく、カーボン濃度やライフタイム値が上昇して、規格を満たさない部位が発生する。さらに、不純物濃度が著しく高いシリコン単結晶を後工程へ流した場合、特にウェーハ加工工程等においてはその工程のライン全体が汚染され、ウェーハラインや工場全体に汚染が広がる恐れもある。
特開2002−37617号公報
本発明はこのような状況に鑑みなされたもので、その目的は、シリコン単結晶を引き上げた後に石英ルツボの底に残存するルツボ残シリコン塊や、その他の不純物濃度が高く半導体用シリコン単結晶原料としては使用できないシリコン等を用いるシリコン単結晶製造用原料の製造方法、および前記使用できないシリコン等を用いて得られるシリコン単結晶製造用原料、ならびにCZ法により引き上げたシリコン単結晶製造用の原料結晶を用いるシリコン単結晶の製造方法を提供することにある。
本発明者らは、上記の目的を達成するために検討を重ねる過程で、CZ法による結晶育成中における不純物元素の偏析という現象に着目した。すなわち、引き上げ前のシリコン融液中に含まれる不純物は、引き上げの過程で結晶と残存する融液(この融液が凝固してルツボ残シリコン塊になる)に振り分けられるが、結晶中の不純物濃度は極めて低く、ルツボ残シリコン塊中の不純物濃度は極めて高くなる。
これは、不純物のシリコン固相(結晶)およびシリコン液相(融液)における溶解度が異なることによるもので、その比(固相中の溶解度/液相中の溶解度)は、偏析係数と称され、不純物濃度が小さいときは一定となる。
例えば、不純物が銅、アルミニウム、カーボンの場合、偏析係数は表1に示すとおりである。銅は引き上げ装置の一部に使用されている元素であり、アルミニウムは石英ルツボに不純物として含まれている元素である。また、カーボンは石英ルツボを支える保持容器、ルツボの周囲に配設されたヒーターなど、装置内のホットゾーンの部品として使用されており、これらの元素はいずれも不純物として単結晶中に混入し易い。
Figure 2008156185
図2は、シリコン単結晶育成における固化率と不純物濃度の関係を示す図である。不純物を銅、アルミニウム、カーボンとし、固化率gのときの固相中の不純物濃度〔C〕Sを与える公知の下記(1)式から求めたものである。なお、「固化率」とは、結晶引き上げ前の石英ルツボ内のシリコン融液量(初期融液量)に対するシリコン単結晶の比率(質量比)である。
不純物の固相中での拡散を無視しているので、この(1)式から固化率の変化に対応した固相中の不純物濃度が得られる。(1)式において、k0は各不純物の偏析係数、〔C〕0は固化が始まる前の液相(この場合は、石英ルツボ内のシリコン融液)中の不純物の初期濃度で、銅、アルミニウム、カーボンのいずれについても、1015atoms/cm3とした。
〔C〕S=k0〔C〕0(1−g) k0-1 ・・・(1)
縦軸はシリコン単結晶の不純物濃度であり、横軸は固化率である。
図2から明らかなように、固相(つまり、結晶)中における不純物濃度は、シリコン融液中での不純物濃度(1015atoms/cm3)に比べて著しく低い。また、銅、アルミニウム、カーボンのいずれについても、不純物濃度は、結晶のトップ側(固化率が0に近い側)では低く、固化率の上昇に伴って徐々に高くなり、ボトム側(固化率が1.0に近い側)では急激に高くなっている。
すなわち、CZ法により結晶育成することによって、得られる単結晶の不純物濃度を低下させることができ、しかも、固化率が1.0に近いボトム側を除けば、結晶の平均不純物濃度を極めて低い値にすることができる。
従って、ルツボ残シリコン塊や、その他の不純物濃度が高く半導体用のシリコン単結晶原料としては使用されていないシリコン等をシリコン単結晶引き上げの原料に用いることとすれば、不純物濃度を低下させたシリコン単結晶を得ることができる。言い換えれば、CZ法により、半導体用原料としては使用されていない原料を石英ルツボ内で溶融して、この原料融液から結晶引き上げを行うことにより、当該原料を精製してシリコン単結晶製造用の原料結晶(以下、単に「シリコン原料結晶」ともいう)とすることができる。
さらに、CZ法による結晶引き上げを2回行い、1回目の引き上げでは原料の精製を行い、得られたシリコン原料結晶を再度、石英ルツボ内で溶融して、2回目の引き上げで製品となるシリコン単結晶を得るという操業方法を採用することが可能となる。この操業方法によれば、半導体用の原料としては使用されていない原料を用いて、高純度なシリコン単結晶を製造することができる。
本発明はこのような着想に基づきなされたもので、その要旨は、下記(1)のシリコン単結晶製造用原料の製造方法、(2)のシリコン単結晶の製造方法、および(3)のシリコン単結晶製造用原料にある。
(1)CZ法により、シリコン単結晶原料として使用されない原料を溶融してシリコン単結晶製造用の原料結晶を引き上げることを特徴とするシリコン単結晶製造用原料の製造方法。
(2)CZ法によりシリコン単結晶製造用の原料結晶を引き上げた後、得られたシリコン原料結晶を溶解してCZ法によりシリコン単結晶を引き上げることを特徴とするシリコン単結晶の製造方法。
前記(1)のシリコン単結晶製造用原料の製造方法または(2)のシリコン単結晶の製造方法において、シリコン原料結晶の原料として、シリコン単結晶引き上げ時に発生する石英ルツボ内の残存凝固物、すなわちルツボ残シリコン塊を用いることとすれば、安価な原料の使用により、シリコン単結晶製造用原料またはシリコン単結晶の製造コストを低減することができる。
(3)CZ法により、シリコン単結晶原料として使用されない原料を溶融して引き上げられたシリコン単結晶製造用原料。
本発明のシリコン単結晶製造用原料の製造方法によれば、結晶育成時における不純物の偏析現象を利用して、ルツボ残シリコン塊や、不純物が混在するシリコン等のシリコン単結晶原料としては使用されない原料をCZ法により簡便に効率よく精製し、不純物濃度の低い良質なシリコン単結晶製造用の原料結晶を安価に得ることができる。本発明のシリコン単結晶製造用原料は、このようにして製造された原料で、高純度でかつ安価である。
また、本発明のシリコン単結晶の製造方法によれば、半導体用のシリコン単結晶原料として使用されない原料等を用いて、安価にしかも高純度のシリコン単結晶を製造することができる。
以下に、本発明のシリコン単結晶製造用原料の製造方法と、この方法で得られるシリコン単結晶製造用原料、ならびに本発明のシリコン単結晶の製造方法について、図面を参照して具体的に説明する。
本発明のシリコン単結晶製造用原料の製造方法は、前記のとおり、CZ法により、シリコン単結晶原料として使用されない原料を溶融してシリコン単結晶製造用の原料結晶を引き上げる方法である。
図3は、従来のルツボ残シリコン塊の処理方法の説明図で、ルツボ残シリコン塊を原料として用いる太陽電池用結晶引き上げの概略工程を模式的に示す図である。図3に示すように、石英ルツボ8内に原料としてのルツボ残シリコン塊9を投入し(図3(a)参照)、溶融した後、融液10の表面に引き上げ軸11の下端に保持された種結晶12を浸漬し、引き上げ軸11を上方に引き上げて(同図(b))、製品となる太陽電池用結晶13を成長させる(同図(c))。
図4は、本発明のシリコン単結晶製造用原料の製造方法の概略工程を模式的に例示する図である。図4に示すように、石英ルツボ14内にシリコン単結晶原料として使用されない原料であるルツボ残シリコン塊9を投入し(図4(a))、溶融した後、融液10の表面に種結晶15を浸漬して上方に引き上げ(同図(b))、シリコン単結晶製造用の原料結晶を成長させる。このシリコン原料結晶は、前述のように、CZ法により結晶育成することによって精製され、不純物濃度が低い値になっている。その意味で、以下、このシリコン原料結晶を精製原料結晶16ともいう(同図(c))。
前記の「シリコン単結晶原料として使用されない原料」としては、図4に例示したルツボ残シリコン塊の他、不純物濃度が高く、要求純度を満たさない多結晶シリコン塊、その他シリコン単結晶の原料として直接使用できない様々なシリコン塊を用いることができる。なお、ルツボ残シリコン塊には石英ルツボから剥離した石英片が多く付着しており、使用に際しては、この石英片を除去する必要がある。そのためには、例えば、石英片が付着したルツボ残シリコン塊をフッ酸に浸漬して石英片を溶解し、さらにフッ硝酸でエッチングを行って原料表面に付着している汚染物を取り除き、最後に純水洗浄を行う方法が好適である。これにより、石英片を完全に除去できる。
精製原料結晶を得るための結晶育成(以下、この結晶育成を、シリコン単結晶を得るための結晶育成と区別して、「精製育成」ともいう)時の条件に特に限定はない。高速育成、低速育成のいずれでもよいし、育成により得られる結晶は、有転位、無転位のいずれであってもよい。使用する石英ルツボは、新品の石英ルツボの使用に限定されず、一度、シリコン単結晶引き上げに使用した使用済みの石英ルツボを酸洗浄や高温熱処理を施して再生処理した石英ルツボであってもよい。また、育成する結晶(インゴット)径についてもなんら制約はない。従って、結晶育成効率を高め、製造コストを低減するという観点から、精製育成は、できるだけ速い引き上げ速度で結晶成長を行う高速育成で、かつ育成可能な最大径の結晶が得られる条件で行うのが望ましい。また、育成された結晶はシリコン単結晶製造用の原料として再度溶解されるため、無転位結晶が得られるような引き上げ条件でも、結晶が有転位化するような育成条件であってもよい。
前記図2に示したように、不純物濃度は固化率により大きく変化する。一般に、固化率が低い、すなわちシリコン単結晶のトップ側では、不純物濃度は低く、固化率が高いボトム側では不純物濃度が高くなる。一方、固化率をどの程度に採って引き上げを終了するかにより精製原料結晶の歩留りが左右される。従って、本発明のシリコン単結晶製造用原料の製造方法では、精製原料結晶の不純物濃度および歩留りの両者を勘案しつつ最適の固化率で引き上げを終了するのがよい。
本発明のシリコン単結晶製造用原料の製造方法において、シリコン原料結晶(精製原料結晶)の原料として、ルツボ残シリコン塊を用いることとすれば、不純物濃度は高いが安価な原料を精製して用いることとなるので、原料コストを大幅に削減して製造コストの低減を図ることができ、望ましい。
本発明のシリコン単結晶製造用原料の製造方法においては、精製原料結晶を得るための原料として、ルツボ残シリコン塊や、不純物濃度が高く半導体用シリコン単結晶の原料としての要求純度を満たさないシリコンのみを用いてもよいが、これらにシリコン単結晶の原料(半導体用の原料として通常使用されている多結晶シリコン)を適宜混合して用いてもよい。これにより、結晶育成時の不純物の偏析現象を利用した不純物濃度の低減に加え、原料配合による不純物低減効果を組み合わせることができ、より効率よく不純物濃度の低減を図ることが可能となる。
本発明のシリコン単結晶製造用原料の製造方法において、結晶育成時の固化率を0.94以下とすれば、次に述べるように、高い不純物除去率で、効率的な精製を行うことができる。また、精製育成は、必要に応じて複数回行ってもよい。結晶育成を繰り返すことにより不純物濃度の低減率が大きくなるので、特定の高濃度の不純物を除去するため、あるいは精製原料結晶の純度の一層の向上を図るためには、繰り返し行うことが有効である。
シリコン単結晶引き上げ開始前のシリコン融液中の各不純物(カーボン、銅、アルミニウム)の濃度を1×1015atoms/cm3とすると、結晶中に混入するこれらの元素の中で最も偏析係数の大きいカーボン(C)の場合、前記図2に示したように、固化率0.94(図2中に破線で表示)の部位で、カーボン濃度は引き上げ開始前のシリコン融液中のカーボン濃度と等しくなる。固化率が0.94を超えると、カーボン濃度のより高い部位が発生するので、引き上げの際の固化率の上限は0.94とするのが望ましい。
また、固化率0〜0.94までの固化した全ての部位におけるカーボン濃度の平均値は、2×1014atoms/cm3となり、シリコン融液中のカーボン濃度(1015atoms/cm3)に対し20%に減少している。すなわち、カーボンについては、固化率を0.94として、1回の結晶育成により、結晶中の平均不純物濃度を80%低減することができる。
なお、この結晶育成を繰り返せば、1回行う毎に80%の不純物カーボンの除去が可能となるので、必要に応じて2回以上の結晶育成を行ってもよい。
銅(Cu)については、同じく図2から、固化率0〜0.94までの固化した部位の平均銅濃度は1.3×1012atoms/cm3となる。この値を引き上げ開始前のシリコン融液中での銅の濃度(1015atoms/cm3)と比較すると、1回の結晶育成で、結晶中の平均銅濃度は0.13%に減少している。また、アルミニウム(Al)については、固化率0〜0.94までの固化した部位の平均アルミニウム濃度は6×1012atoms/cm3となり、同じく、結晶中の平均アルミニウム濃度は0.6%に減少する。
このように、固化率を0.94以下としてCZ法により結晶育成を行うことによって、前記いずれの不純物についても高い除去率で不純物を除去した精製原料結晶を得ることができる。なお、固化率を0.94を超えて高くし過ぎると、図2からも予測されるように、その固化率に相当する結晶位置での不純物濃度が急激に上昇し、結晶の平均不純物濃度が高くなるので、精製原料結晶の歩留りにも配慮して適切な固化率で引き上げを終了させるのがよい。
以上述べた本発明のシリコン単結晶製造用原料の製造方法によれば、結晶育成時における不純物の偏析現象を利用して、ルツボ残シリコン塊のような不純物が高濃度で混在するシリコンや、不純物濃度が高く半導体用のシリコン単結晶原料として使用できないその他のシリコン等を簡便に効率よく精製し、不純物濃度の低い良質な半導体用シリコン単結晶製造用の原料を得ることができる。
本発明のシリコン単結晶製造用原料は、CZ法により、シリコン単結晶原料として使用されない原料を溶融して引き上げられた単結晶製造用原料である。
「シリコン単結晶原料として使用されない原料」とは、ルツボ残シリコン塊、半導体用シリコン単結晶原料として要求される純度を満たさない不純物を多量に含有する多結晶シリコン塊、その他シリコン単結晶の原料として直接使用されていないシリコン塊で、いずれも原料として安価である。
このシリコン単結晶製造用原料は、前述のように、シリコン単結晶原料として使用されない原料を用いる本発明のシリコン単結晶製造用原料の製造方法により製造することができる。従って、本発明のシリコン単結晶製造用原料は、通常の半導体用シリコン単結晶の原料と比較して、同程度の高い純度を有し、かつ安価な原料であり、また、必要に応じて、さらに高純度の単結晶製造用原料として供給することも可能である。
次に、本発明のシリコン単結晶の製造方法について説明する。
この方法は、CZ法によりシリコン原料結晶を引き上げた後、得られたシリコン原料結晶を溶解してCZ法によりシリコン単結晶を引き上げることを特徴とするシリコン単結晶の製造方法である。
すなわち、この方法では、CZ法による結晶引き上げを2回行い、1回目の引き上げでは原料の精製を行い、得られたシリコン原料結晶を溶融して、2回目の引き上げで製品となるシリコン単結晶を得るという操業方法を採用する。
図5は、本発明のシリコン単結晶の製造方法の概略工程を模式的に例示する図である。図5に示すように、石英ルツボ14内にルツボ残シリコン塊9を投入し(図4(a))、溶融した後、融液10の表面に種結晶15を浸漬して上方に引き上げ(同図(b))、精製原料結晶16を成長させる。続いて、得られた精製原料結晶16を破砕し、別の石英ルツボ17内に投入して溶融し(同図(d))、融液18の表面に種結晶26を浸漬して、従来行われている方法に従いシリコン単結晶19を成長させる(同図(e))。
なお、この例では、1回目のCZ法による引き上げで、ルツボ残シリコン塊9を原料として使用しているので、図5の(a)〜(c)は、図4に示した(a)〜(c)と変わりはない。
この本発明のシリコン単結晶の製造方法によれば、シリコン単結晶原料として使用されない原料を用い、1回目のCZ法による引き上げにより精製原料結晶16を成長させ、これを溶融して、2回目の引き上げで製品となるシリコン単結晶を得るという操作でシリコン単結晶を製造することができる。
「シリコン単結晶原料として使用されない原料」としては、前記のように、ルツボ残シリコン塊の他、不純物濃度が高く、要求純度を満たさない多結晶シリコン塊、その他シリコン単結晶の原料として直接使用できない様々なシリコン塊を用いることができる。
この本発明のシリコン単結晶の製造方法においては、原料として、シリコン単結晶原料として使用されない原料に、通常使用されている半導体用シリコン原料を混合させて用いることもできる。1回目の引き上げでは原料の精製を行い、2回目の引き上げでシリコン単結晶が得られるので、極めて高純度のシリコン単結晶を製造することが可能となる。
本発明のシリコン単結晶の製造方法において、前記のシリコン単結晶原料として使用されない原料として、図5に例示したルツボ残シリコン塊を用いることとすれば、安価な原料の使用により、シリコン単結晶製造用原料またはシリコン単結晶の製造コストを低減することができ、望ましい。
このように、本発明のシリコン単結晶の製造方法によれば、半導体用のシリコン単結晶として使用されない原料を用いて、安価にしかも高純度のシリコン単結晶を製造することができる。さらに、必要に応じて、極めて高純度のシリコン単結晶を製造することも可能である。
この方法は、例えば、以下に示す装置により容易に実施することができる。
図6は、本発明のシリコン単結晶の製造方法の実施に用いられる装置の要部構成を模式的に示す図である。この装置の特徴は、精製のための結晶育成(精製育成)に用いられるシリコン融液を保持するルツボ14を有する結晶引き上げ部分(これを「精製原料結晶引き上げ部」と記す)と、ここで得られたシリコン原料結晶(精製原料結晶)の融液を保持するルツボ17を有する結晶引き上げ部分(これを「単結晶引き上げ部」と記す)とが組み合わされ、構成されている点にある。すなわち、この装置は、一点鎖線で囲んだ精製原料結晶引き上げ部と単結晶引き上げ部を具備するシリコン単結晶の引き上げ装置20である。
精製原料結晶引き上げ部、単結晶引き上げ部のいずれもCZ法による単結晶の引き上げが可能な構成を有している。精製原料結晶引き上げ部は、ルツボ14と、その外周に配設されたヒーター21と、ルツボ14内に形成される融液の表面に浸漬する種結晶15と、種結晶15およびその下端面に成長させた精製原料結晶16を保持する引き上げ軸22を備えている。ルツボ14は、石英ルツボ14aとそれを支える黒鉛ルツボ14bからなる二重構造であり、回転および昇降が可能な支持軸23の上端部に固定されている。
一方、単結晶引き上げ部も同様の構成を有しており、回転および昇降が可能な支持軸24の上端部に固定されたルツボ17(石英ルツボ17aと黒鉛ルツボ17bからなる二重構造)と、その外周に配設されたヒーター25と、ルツボ17内に形成される融液18の表面に浸漬する種結晶26と、種結晶26およびその下端面に成長させた単結晶19を保持する引き上げ軸27を備えている。
このように構成された引き上げ装置20を用いて本発明のシリコン単結晶を製造するには、精製原料結晶引き上げ部の石英ルツボ14内に精製原料結晶を得るための原料(例えば、ルツボ残シリコン塊)を投入し、ヒーター21で加熱して溶融する。なお、加熱、結晶育成の一連の操作は、通常のシリコン単結晶の引き上げの場合と同様、不活性ガス雰囲気中で行う。
ルツボ残シリコン塊等の原料を溶融した後、融液の表面に種結晶15を浸漬し、上方に引き上げて精製原料結晶16を成長させる。この精製原料結晶16を取り出し、図示した破砕工程で溶融し易い塊状に破砕した後、単結晶引き上げ部の石英ルツボ17内に投入し、ヒーター25で加熱して溶融する。続いて、融液18の表面に種結晶26を浸漬し、従来行われている方法に従いシリコン単結晶19を成長させる。
精製原料結晶引き上げ部と単結晶引き上げ部は、同じ場所に隣接して設置されるのが、被処理物のハンドリングや、装置の総合的な管理等の観点から望ましいと言える。しかし、精製原料結晶を破砕する場所、その他の事情によっては、両引き上げ部が別の場所に設置されていても構わない。
精製原料結晶引き上げ部では、前述のように、結晶育成時における不純物の偏析現象を利用して精製原料結晶を得ることが目的であり、結晶が有転位であるか否かは問わない。従って、石英ルツボ14aは再生ルツボであってもよい。また、CZ法による単結晶の引き上げが可能な構成を有するものであればよく、新規設備を必要とせず、既存の装置の流用も可能である。一方、単結晶引き上げ部は、現用の引き上げ装置をそのまま使用できる。
このシリコン単結晶の引き上げ装置は、本発明のシリコン単結晶の製造方法の実施に好適である。また、既存の装置を活用して安価に精製原料結晶を得ることができるので、シリコン単結晶の製造コストの低減に有効である。
本発明のシリコン単結晶の製造方法により得られるシリコン単結晶、または本発明のシリコン単結晶製造用原料の製造方法で得られる原料を用いて製造されるシリコン単結晶が有している品質特性や経済的利点は、このシリコン単結晶(インゴット)から切り出され、所定の工程を経て得られるシリコンウェーハにも引き継がれるので、極めて高純度の安価なシリコンウェーハを提供することができる。
(実施例1)
内径22インチの石英ルツボを使用し、これにルツボ残シリコン塊120kgを仕込み、加熱溶融して得られたシリコン融液から高速または低速で精製育成を行って、直径200mmのシリコン単結晶を育成した。高速育成条件としては、結晶成長速度が1.3mm/minとなる育成条件を採用し、低速育成条件としては、結晶成長速度が0.4mm/minとなる育成条件を採用した。
得られた結晶の固化率0.94(百分率表示で94%)位置での不純物(銅、アルミニウムおよびカーボン)の濃度を調査した。
表2に調査結果を示す。表2において、不純物濃度は、結晶Aにおける濃度をそれぞれ基準(1.0)として表示した。不純物濃度を表す数値は、結晶A〜結晶Dのいずれも5バッチの精製育成を行って得られた平均値である。
Figure 2008156185
表2から明らかなように、精製育成時の条件、すなわち高速育成、低速育成、有転位結晶、無転位結晶の違いによって、精製後の不純物濃度に差は認められなかった。
(実施例2)
精製原料結晶を得るための原料として全量ルツボ残シリコン塊を使用し(ルツボ残シリコン塊100%)、実施例1の結晶Aの育成に用いた条件で原料となるシリコン単結晶を育成した。このシリコン単結晶を破砕して塊状の原料を製作した後、これを石英ルツボ内に充填し、COP(Crystal Originated Particle:赤外線散乱体欠陥)が存在しない無欠陥結晶領域となる育成条件で製品となるシリコン単結晶を育成した。
得られたシリコン単結晶からサンプルウェーハを採取して品質評価を実施した。具体的には、サンプルウェーハの酸素濃度、比抵抗、OSF(Oxygen Induced Stacking Fault:酸化誘起積層欠陥)密度、LPD(Light Point Defect)密度およびBMD(Bulk Micro Defect:析出欠陥)密度を評価した。なお、比較のため、通常の高純度多結晶シリコンを原料として用いた場合(通常原料)についても同様の評価を行った。
なお、品質評価は、以下の方法によって行った。
酸素濃度:ASTM F121−1979に規定される赤外吸収法に準拠し、フーリエ変換型赤外分光光度計(FTIR:Fouerier Transform Infrared Spectrometer)を用いて測定した。
比抵抗:シリコンウェーハに対してドナーキラー熱処理(650℃×30分)を施した後、比抵抗測定器(四深針接触方式)により測定した。
OSF密度:シリコンウェーハを湿潤酸素(Wet−O2)雰囲気中で1100℃×16時間の熱処理を行った後、ウェーハ表面をエッチングしてウェーハ表面のOSF密度を光学顕微鏡で測定した。
LPD密度:セコエッチングしたウェーハ表面を、光散乱式パーティクルカウンター(KLA−Tencor社製SP1)を用いて、ウェーハ表面に存在する200μmサイズ以上のLPDおよび300μmサイズ以上のLPDの個数をカウントした。
BMD密度:シリコンウェーハに対して780℃×3時間→1000℃×16時間の熱処理を行った後、ウェーハを劈開して、その断面を2μmエッチングするライトエッチングを行った後、その断面におけるBMDの個数を光学顕微鏡でカウントした。
表3に評価結果を示す。
Figure 2008156185
表3の結果から、得られたシリコン単結晶から採取したサンプルウェーハの品質は、精製原料結晶を得るための原料としてルツボ残シリコン塊を使用しても、通常原料を使用した場合と差がないことがわかる。
本発明のシリコン単結晶製造用原料の製造方法によれば、高濃度の不純物が含まれるルツボ残シリコン塊や、不純物濃度が高く、シリコン単結晶原料として使用されない原料を簡便に効率よく精製し、不純物濃度の低い良質な半導体用シリコン原料として使用することが可能となる。本発明のシリコン単結晶製造用原料は、このようにして製造された原料で、高純度でかつ安価である。
また、本発明のシリコン単結晶の製造方法によれば、シリコン単結晶原料として使用されない原料などを用い、CZ法による結晶引き上げを行う操作で、安価にしかも高純度のシリコン単結晶を製造することができる。
従って、本発明のシリコン単結晶製造用原料の製造方法、この方法により得られる本発明のシリコン単結晶製造用原料、さらに本発明のシリコン単結晶の製造方法は、半導体材料の製造分野、さらには半導体デバイスの製造分野において広く利用することができる。
CZ法によるシリコン単結晶の引き上げ方法を実施するのに適した引き上げ装置の要部構成を模式的に示す図である。 シリコン単結晶育成における固化率と不純物濃度の関係を示す図である。 従来のルツボ残シリコン塊の処理方法の説明図で、ルツボ残シリコン塊を原料として用いる太陽電池用結晶引き上げの概略工程を模式的に示す図である。 本発明のシリコン製造用原料の製造方法の概略工程を模式的に例示する図である。 本発明のシリコン単結晶の製造方法の概略工程を模式的に例示する図である。 本発明のシリコン単結晶の製造方法の実施に用いられる装置の要部構成を模式的に示す図である。
符号の説明
1:ルツボ、1a:石英ルツボ、1b:黒鉛ルツボ
2:ヒーター
3:融液
4:単結晶
5:引き上げ軸
6:支持軸
7:種結晶
8:石英ルツボ
9:ルツボ残シリコン塊
10:融液
11:引き上げ軸
12:種結晶
13:態様電池用結晶
14:ルツボ、14a:石英ルツボ、14b:黒鉛ルツボ
15:種結晶
16:精製原料結晶
17:ルツボ、17a:石英ルツボ、17b:黒鉛ルツボ
18:融液
19:シリコン単結晶
20:引き上げ装置
21:ヒーター
22:引き上げ軸
23、24:支持軸
25:ヒーター
26:種結晶
27:引き上げ軸

Claims (5)

  1. チョクラルスキー法により、シリコン単結晶原料として使用されない原料を溶融してシリコン単結晶製造用の原料結晶を引き上げることを特徴とするシリコン単結晶製造用原料の製造方法。
  2. 前記シリコン原料結晶の原料として、シリコン単結晶引き上げ時に発生する石英ルツボ内の残存凝固物を用いることを特徴とする請求項1に記載のシリコン単結晶製造用原料の製造方法。
  3. チョクラルスキー法によりシリコン単結晶製造用の原料結晶を引き上げた後、得られたシリコン原料結晶を溶解してチョクラルスキー法によりシリコン単結晶を引き上げることを特徴とするシリコン単結晶の製造方法。
  4. 前記シリコン原料結晶の原料として、シリコン単結晶引き上げ時に発生する石英ルツボ内の残存凝固物を用いることを特徴とする請求項3に記載のシリコン単結晶の製造方法。
  5. チョクラルスキー法により、シリコン単結晶原料として使用されない原料を溶融して引き上げられたシリコン単結晶製造用原料。
JP2006349563A 2006-12-26 2006-12-26 シリコン単結晶製造用原料とその製造方法ならびにシリコン単結晶の製造方法 Pending JP2008156185A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006349563A JP2008156185A (ja) 2006-12-26 2006-12-26 シリコン単結晶製造用原料とその製造方法ならびにシリコン単結晶の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006349563A JP2008156185A (ja) 2006-12-26 2006-12-26 シリコン単結晶製造用原料とその製造方法ならびにシリコン単結晶の製造方法

Publications (1)

Publication Number Publication Date
JP2008156185A true JP2008156185A (ja) 2008-07-10

Family

ID=39657538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006349563A Pending JP2008156185A (ja) 2006-12-26 2006-12-26 シリコン単結晶製造用原料とその製造方法ならびにシリコン単結晶の製造方法

Country Status (1)

Country Link
JP (1) JP2008156185A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009023851A (ja) * 2007-07-17 2009-02-05 Sumco Corp シリコン単結晶製造用原料の製造方法およびシリコン単結晶の製造方法
JP2012140285A (ja) * 2010-12-28 2012-07-26 Siltronic Japan Corp シリコン単結晶インゴットの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06227888A (ja) * 1993-02-03 1994-08-16 Fujitsu Ltd シリコン単結晶の製造方法
JPH10273310A (ja) * 1997-03-28 1998-10-13 Mitsubishi Materials Corp 石英ルツボに融着した残留多結晶シリコンの回収方法と装置
JP2004315336A (ja) * 2003-04-21 2004-11-11 Sumitomo Mitsubishi Silicon Corp 高抵抗シリコン単結晶の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06227888A (ja) * 1993-02-03 1994-08-16 Fujitsu Ltd シリコン単結晶の製造方法
JPH10273310A (ja) * 1997-03-28 1998-10-13 Mitsubishi Materials Corp 石英ルツボに融着した残留多結晶シリコンの回収方法と装置
JP2004315336A (ja) * 2003-04-21 2004-11-11 Sumitomo Mitsubishi Silicon Corp 高抵抗シリコン単結晶の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009023851A (ja) * 2007-07-17 2009-02-05 Sumco Corp シリコン単結晶製造用原料の製造方法およびシリコン単結晶の製造方法
JP2012140285A (ja) * 2010-12-28 2012-07-26 Siltronic Japan Corp シリコン単結晶インゴットの製造方法

Similar Documents

Publication Publication Date Title
JP3551867B2 (ja) シリコンフォーカスリング及びその製造方法
JP5400782B2 (ja) シリコン結晶を得るためのシリコン粉末の処理方法
JPH11189495A (ja) シリコン単結晶及びその製造方法
JPWO2007013189A1 (ja) シリコンウェーハおよびその製造方法
JP4957385B2 (ja) シリコン単結晶の製造方法
CN114318500A (zh) 一种用于拉制单晶硅棒的拉晶炉、方法及单晶硅棒
JP2006027940A (ja) 金属の精製方法
KR20020019025A (ko) 실리콘 웨이퍼 및 실리콘 단결정의 제조방법
US20090098715A1 (en) Process for manufacturing silicon wafers for solar cell
JP2008156185A (ja) シリコン単結晶製造用原料とその製造方法ならびにシリコン単結晶の製造方法
JP2009023851A (ja) シリコン単結晶製造用原料の製造方法およびシリコン単結晶の製造方法
KR101029141B1 (ko) P(인)도프 실리콘 단결정의 제조방법 및 p도프 n형실리콘 단결정 웨이퍼
JP2009249262A (ja) シリコン単結晶の製造方法
JP5938092B2 (ja) 高純度シリコンの製造方法、及びこの方法で得られた高純度シリコン、並びに高純度シリコン製造用シリコン原料
JP2002198375A (ja) 半導体ウェーハの熱処理方法及びその方法で製造された半導体ウェーハ
WO2016031891A1 (ja) シリコン単結晶の製造方法
JP2009249253A (ja) シリコン単結晶の製造方法
JP4688984B2 (ja) シリコンウエーハ及び結晶育成方法
JP2010042968A (ja) シリコン単結晶の製造方法
JP5262257B2 (ja) 窒素ドープシリコン単結晶の製造方法
JP2004269335A (ja) 単結晶の製造方法
JP3683735B2 (ja) 無転位シリコン単結晶の製造方法および無転位シリコン単結晶インゴット
JP4038750B2 (ja) 結晶成長方法
JP4453756B2 (ja) 結晶育成方法
JP4577320B2 (ja) シリコンウェーハの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111115