JP2008136202A - デジタルフィルタ処理されたパルス幅変調 - Google Patents

デジタルフィルタ処理されたパルス幅変調 Download PDF

Info

Publication number
JP2008136202A
JP2008136202A JP2007284558A JP2007284558A JP2008136202A JP 2008136202 A JP2008136202 A JP 2008136202A JP 2007284558 A JP2007284558 A JP 2007284558A JP 2007284558 A JP2007284558 A JP 2007284558A JP 2008136202 A JP2008136202 A JP 2008136202A
Authority
JP
Japan
Prior art keywords
data stream
duty cycle
output
frequency
modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007284558A
Other languages
English (en)
Inventor
John Laurence Melanson
ローレンス メランソン ジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cirrus Logic Inc
Original Assignee
Cirrus Logic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cirrus Logic Inc filed Critical Cirrus Logic Inc
Publication of JP2008136202A publication Critical patent/JP2008136202A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/322Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M3/368Continuously compensating for, or preventing, undesired influence of physical parameters of noise other than the quantisation noise already being shaped inherently by delta-sigma modulators
    • H03M3/37Compensation or reduction of delay or phase error
    • H03M3/372Jitter reduction
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/50Digital/analogue converters using delta-sigma modulation as an intermediate step
    • H03M3/502Details of the final digital/analogue conversion following the digital delta-sigma modulation
    • H03M3/506Details of the final digital/analogue conversion following the digital delta-sigma modulation the final digital/analogue converter being constituted by a pulse width modulator

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

【課題】DACの連続時間ステージは インターシンボル干渉とクロック特性効果の減少をさせる改善が必要とする。
【解決手段】デジタル−アナログ変換器(図1A)は、入力デジタルデータストリーム(101)を変調するノイズシェーピング変調器(102)と、変調器からの変調された出力ストリームからの中間データストリームをマルチプル生成する複数の出力要素(103)と、中間データストリームを合計して出力アナログストリームを生成する出力加算器(106)とを含む。ノイズシェーピング変換器は、出力要素のエッジ遷移レートのバランスを保ち、2つの選択された要素のエッジ遷移レートがほぼ等しくなるようにする。
【選択図】図1A

Description

本発明は一般にはデルタ−シグマデータ変換器に関係し、特に、デジタルフィルタ処理
されたパルス幅変調出力ステージを有するデータ変換器、ならびにそれを使用する方法お
よびシステムに関係する。
デルタ−シグマ変調器は、デジタル−アナログおよびアナログ−デジタル変換器(DA
CおよびADC)において特に有用である。オーバーサンプリングを用いて、デルタ−シ
グマ変調器は、量子化雑音電力をオーバーサンプリング周波数帯域に拡散させる。オーバ
ーサンプリング周波数帯域は、典型的に入力信号帯域幅よりもずっと大きい。さらに、デ
ルタ−シグマ変調器は、出力信号の低域フィルタおよびノイズの高域フィルタとして作用
し、ノイズシェーピングを行う。それによってほとんどの量子化雑音電力は信号帯域から
シフトされる。
典型的なデルタ−シグマ変調器は、入力信号を負帰還で合計する加算器、ループフィル
タ、量子化器、量子化器出力に結合し、加算器の入力を反転させるフィードバックループ
を含む。第一次変調器において、ループフィルタは単一の積分器または他のフィルタステ
ージを含む一方、より大きな次数の変調器のループフィルタはフィルタステージの対応す
る数のカスケードを有する。より高次の変調器は、より低い次数のものよりも量子化雑音
遷移特徴を改善するが、次数が大きくなるに従って、安定性がより決定的な設計要素にな
る。量子化器は1ビット量子化器またはマルチプル・ビット量子化器のどちらかであり得
る。
低帯域外(low out−of−band)ノイズDACというようなDACアプリ
ケーションでは、量子化された変調器出力を比較的スムーズなアナログ信号に変換させる
電流加算器などのような連続時間出力ステージは、スイッチキャパシタ出力ステージのよ
うな離散時間出力ステージに比べて多くの利点がある。たとえば、変調器の出力が多くの
レベルに量子化される(たとえば、8以上のビットで表される64以上のレベル)DAC
システムにおいて、連続時間出力ステージは比較的容易に設計、構成される。さらに、多
くの量子化レベルで操作する連続時間出力ステージは、ジッターおよび帯域から離れた(
far out−of−band)エネルギーのサンプリングの問題に対して比較的影響
を受ける。これらの利点により、連続時間出力ステージは、大きなデジタルチップに集積
されるための最善の選択肢になる。より小さなデータ変換器およびコーダ・デコーダ(C
odecs)に関しては、高周波数エネルギーのサンプリングを回避することによって、
クロック管理スキームが単純化できるようになる。
そのような利点があるにもかかわらず、連続時間出力ステージはまた、インターシンボ
ル干渉への感受性などのような顕著な欠陥を負いやすい。(ここではISI(Inter
−symbol interference)とするインターシンボル干渉は、通常、連
続時間要素またはアナログメモリからの出力信号の立上りおよび立下りエッジの非対称の
原因によって起こる。非対称では各シンボルが前のシンボルに依存する。)たとえ多くの
連続時間変換要素が多くの量子化レベルを有してデータサンプルで操作したとしても、I
SIはノイズおよび連続時間データ変換器の出力アナログストリームにおけるひずみ要素
を支配する。ISIがゼロ復帰(RTZ)技術を用いて最小化される一方で、RTZ技術
は通常、制御クロックの特性に対する回路の感受性を高める。
それゆえ、連続時間出力ステージが、一方でISIを最小化するのと同時に回路効レー
トにおけるクロック特性の効果を減少させ、DACのようなアプリケーションで利用され
ることを可能にする改善された回路および方法が必要とされる。
(発明の要約)
特定の一実施態様によると、入力デジタルデータストリームを変調させるノイズシェー
ピング変調器、変調器からの変調された出力ストリームからの複数の中間データストリー
ムを生成する複数の出力要素、中間データストリームを合計して出力アナログストリーム
を生成する出力アナログ加算器を含むデジタル−アナログ変換器が開示されている。ノイ
ズシェーピング変換器は出力要素のエッジ遷移レートのバランスを保ち、2つの選択され
た要素のエッジ遷移レートがほぼ等しくなるようにする。要素のエッジ変遷レートのバラ
ンスをとることで、ISIの影響は大きく削減される。
本発明的な原理は、ISIおよびクロックの不測の変化(vagary)に最小の感受
性を有する連続時間出力要素を利用して、デジタルデータ変換器の設計および構成、特に
DACに適用される。一般的に、デューティサイクル変調器はデジタル入力ストリームを
受信して、デューティサイクル、データストリームにコード化されているパルス幅変調(
PWM)を生成する。FIR(finite impulse response)フィ
ルタは、デューティサイクル変調ストリームから基本周波数およびPWMレートの高調波
を取り除く。連続時間、または離散時間様式において、複数のデジタル−アナログ変換要
素を有するFIRフィルタのステージをタッピングすることで、アナログ出力信号が生成
され、ISIのジッターによるひずみが減少される。特定の一実施態様において、マルチ
プル(multiple)のパルス幅変調器ステージが、時間内にインタリーブしてマル
チプルの時間オーバーラップPWMコード化されたデータストリームを生成する。これら
のオーバーラップPWMコード化されたデータストリームは、マッチした利用および遷移
レートを有するマルチプルの変換要素を駆動する。インタリーブされたPWMステージの
前のマルチプルの減衰帯域を有するデルタ−シグマ変調器は、ノイズを弱める。さもなけ
ればノイズは、アナログステージ間での不一致(mismatch)によって復調される
であろう。それぞれのインタリーブされたPWMステージの後に結合されたFIRフィル
タは、PWM処理によって引き起こされたエネルギーを帯域外に取り除く。
本発明の原理および利点は図1〜5に図示される実施形態を参照することでもっとも理
解される。図において、同様の番号は同様の部分を示す。
図1Aは、本発明の原理を実証するのに適した例示的なデジタル−アナログ変換システ
ム100のハイレベルな機能的ブロック図である。考察するためには、CD(コンパクト
ディスク)またはDVD(Digital Versatile Disk)プレーヤー
のようなソース101からのデジタルオーディオ上で操作するオーディオアプリケーショ
ンが記載されているが、以下に記載される概念は、デジタル−アナログ変換を必要とする
幅広い回路およびシステムで利用される。システム100において、デジタルソース10
1からのデータ出力はマルチプル・ビットオーディオデータで、ベースサンプリング周波
数(レート)fsおよびオーバーサンプリングによってオーバーサンプルされた要素Kを
有する。たとえば、図示された実施形態では、オーディオストリームは、64倍(64x
)のオーバーサンプリング(すなわちK=64)のもと、48kHzのベースサンプリン
グ周波数(fs)を有するデジタルオーディオソース101からの出力である。
システム100は、ノイズ伝達関数(NTF)にマルチプルの減衰帯域を有するマルチ
プル・ビットノイズシェーパー102(たとえば、デルタ−シグマ変調器)に基づいてい
る。ノイズシェーパー102は以下で詳細が考察されるが、一般的にNTFは信号通過帯
域でノイズを弱める1つの減衰帯域およびノイズを弱めるためのさらなる減衰帯域を含む
。さもなければ、以下に記載されるマルチプルのPWMステージ実施形態での以下のパル
ス幅変調器(PWM)ステージ104間での非ゼロ不一致によって復調される。
図示される実施形態においてノイズシェーパー102はオーバーサンプリング周波数L
・fsで量子化されたサンプルのマルチプル・ビットを出力する。オーバーサンプリング
周波数L・fsにおいて、Lはノイズシェーパー102のオーバーサンプリングレートで
ある。ノイズシェーパー102のMI(Modulation Index)は、好まし
くは、フルスケールの出力量子化レベルが次のPWMステージ104に出力されないこと
を確実にするように、設定される。しかしながら、出力ストリームにおけるISIのある
レベルは、耐性がある別の実施形態では、フルスケールの出力量子化レベルが利用される
ノイズシェーパー102からの各1ビットサンプル出力は、1〜Nインタリーブ回路1
03によってインタリーブされて、N並列のPWMステージセットの1つに対応される。
Nは整数で1より大きいか1に等しい。図1Aでは、代表的なパルス幅変調(PWM)ス
テージ104a〜104Nが考察のために示されている。従って各PWMステージ104
a〜104Nは、L/N・fsレートで入力サンプルで効果的に動作する。システム10
0のPWMステージ104a〜104Nでの使用に適する例示的なPWMステージが、次
の、本願と同一出願人(coassigned)である、米国特許第6,150,969
号、Melanson、「Correction of Nonlinear Outp
ut Distortion In a Delta Sigma DAC」および米国
特許第5,815,102号、Melanson、「Delta Sigma PWM
DAC to Reduce Switching」に記載されている。これらは、ここ
で援用される。インタリーブ回路103は例示的な回路である。PWMステージ104a
、104bの典型的な実行は、それらをノイズシェーパー102に接続して、ノイズシェ
ーパー102からの適切なサンプルに応答することができるのみにし得ることである。た
とえば、Nが2である場合、PWMステージ104aはノイズシェーパー102からの偶
数のサンプルのみに応答し、PWMステージ104bは奇数サンプルのみに応答するのみ
である。
システム100の図示された実施形態では、PWMステージ104a〜104Nのそれ
ぞれは、オーバーサンプリング係数(factor)Mおよびオーバーサンプリング周波
数M・(L/N)・fsでのオーバーサンプリングのクロック信号を用いて動作する。従
って各PWMステージは、インタリーブ回路103から受信する1サンプルあたり(M+
1レベル)を表すN/(M・L)クロック周期の長い(clock period lo
ng)PWMパターンのM数を出力する。信号ベースバンド(およそ0〜fs/2)での
エネルギーに加えて、PWMステージ104a〜104Nのそれぞれは、また基本周波数
で著しいエネルギーおよびL/N・fsのPWMの反復レートの高調波を出力する。従っ
て、PWMステージ104a〜104Nのそれぞれの後に、これらの高調波に対応する減
衰帯域を有するデジタルイン、デジタルアウトFIR(finite impulse
response)フィルタが続く。代表的なFIRフィルタ105a〜105Nが図1
Aに示されている。FIRフィルタからのアナログ出力は出力加算器106に合計されて
、アナログ出力が生成される。
この動作の連続によって、デルタ−シグマノイズシェーパー102(以下で考察)のマ
ルチプルNTFゼロによって保証されているように、システム100は、FIRフィルタ
105a〜105N(以下で考察)の111a、...、Nすべての出力要素の使用はお
よそ同一であるということを確実にする。別の実施形態では、独立のデルタ−シグマ変調
器のような他の技術が使用され得る。さらに、システム100のこの構成によって、すべ
ての要素111a〜111bのエッジレートはまたほぼ等しい。この結果は、連結したデ
ルタ−シグマ変調器の固定したエッジレートのサイド効果および一般的にパルス幅変調器
によるものである。まとめると、これらの2つの規制は、アナログ出力ステージにおける
ひずみ源の大部分を取り除く。直接的にエッジレートのバランスを保つための他の技術も
別の実施形態において可能である。例として、エッジレートはモニターされ、遷移は応答
で修正される得る。
図1Bは、デジタルイン、アナログアウトFIRフィルタ105a〜105Nの詳細の
例示的な実施形態を示している。105a〜105Nの各フィルタは、X数の出力タップ
を有する単純な係数のボックスカーフィルタなどの従来のFIRフィルタを含む。各FI
Rフィルタ105a〜105Nの長さ(ステージの数)は、フィルタ出力伝達関数におい
て、PWMの反復周波数の基礎に対応するノッチを導入する、前述のPWMステージ10
4a〜104NからのPWMパターン幅よりも長いか等しい。すなわち、各FIRフィル
タ105a〜105Nの長さは、FIRフィルタの入力周波数に対するFIRフィルタの
出力周波数の比率に比例する。より長いFIRフィルタ105a〜105N(たとえば、
より多くのステージを有するFIRフィルタ)は、要素の数が増えた犠牲によって帯域エ
ネルギーからより弱められる。PWMのパターンの長さに等しいタップの数である等しい
ウエイトを有するFIRフィルタ105a〜105Nを使用することは、帯域エネルギー
から著しく減らすのに易しい技術である。
フィルタタップの各x番号は(xが整数で1よりも大きい)電流源または同様の単一ビ
ットデジタル−アナログ変換要素に関連し、その2つのが、111aおよび各フィルタ1
05a〜105Nに示されている。電流源111a、...、Nは単純な構成で、電圧ソ
ースおよび抵抗、または定電流領域またはカスケードトランジスタで作動するトランジス
タなどである。電流源からの出力は、シングルエンドまたは差動的なソースである。図示
される実施形態では、単一ビットデジタル−アナログ変換器が電流源111a、...、
Nによって実行されるとき、出力加算器106は電流−電圧変換器を含む。電流は、ボッ
クスカーフィルタにおけるように等しくあり得るか、または不規則に偏っていることがあ
り得る。有利なことに、等しいタップを有するFIRフィルタ105a〜105Nのボッ
クスカーの実施形態は実現するのにもっとも単純であり、ほとんどの目的にとって適切で
ある。
オーディオシステム100では、加算器106によって生成させられるアナログ出力信
号が、アナログフィルタリングおよび増幅回路ブロック107でさらなる従来のアナログ
フィルタリングおよび増幅の対象になる。ヘッドセットまたはスピーカー108のセット
は、可聴の出力を提供する。
4つに(つまりN=4)インタリーブされたシステム100でのノイズシェーパー10
2の動作が図2Aおよび図2Bで図示されている。N=4の場合、ノイズシェーパー10
2は、量子化されたサンプルを出力し、各周波数がL・fs/4である4つのサンプルス
トリームに分けられる。この例では、ノイズシェーパー102がオーバーサンプリング周
波数128fsでデータサンプルを出力し、それゆえ、インタリーブ回路103はノイズ
シェープされたデータストリームを各ストリームが周波数32fsである4つのストリー
ムに分ける。それゆえ、次のPWMステージ104a〜104N間の不一致(misma
tch)は復調器帯域128・fs/4、128・fs/2および128・3fs/4(
各32fs、64fsおよび96fs)でノイズを復調する。有利なことに、各出力でP
WMステージ105a〜105Nを用いると、以下のDAC要素の一致の正確さが増すの
は、出力不一致の効果がPWMアップサンプリング(up−sampling)において
のスロット数により減少されることによる。
図2Aに示されるように、PWMステージ104a、...、N間での非ゼロ不一致の
影響を受けるノイズは、3つのさらなる減衰帯域によって最小にされる。3つのさらなる
減衰帯域は、信号ベースバンドと同様、周波数32fs、64fs、96fsについての
ノイズシェーパー102のノイズ伝達関数(NTF)に含まれる。信号帯域での減衰レベ
ルの平均と周波数32fs、64fs、96fsでの減衰レベルの平均の違いは、以下の
PWMステージ104a〜104N間の不一致によるものである。より多くの不一致が存
在する場合、より多くの変調器ノイズが32fs、64fs、96fsの周波数帯域で復
調され、周波数32fs、64fs、96fs周辺の変調器NTFでより多くの減衰が必
要とされる。しかしながら、周波数32fs、64fs、96fsで減衰が高まる結果、
信号帯域での減衰が減少する。(通常、図2Aのx軸の下の領域は、x軸の上の領域と等
しくなければならない。)このように、変調器出力周波数範囲に渡るNTFのグローバル
ノイズシェーピングと周波数32fs、64fs、96fs周辺のローカル減衰レベルと
の間でバランスがとられなければならない。
信号帯域における減衰レベルの平均と周波数32fs、64fs、96fsの減衰の平
均で特定の違いを有するノイズシェーパー102におけるNTFが生成される必要がある
。NTF信号帯域減衰を設定する極−ゼロ組(pair)の1セットおよび周波数32f
s、64fs、96fsについてより少ない極のセットを生成するノイズシェーパートポ
ロジーが必要とされる。1つのそのようなノイズシェーパーを特徴づける極とゼロのz平
面プロットが図2Bに示されている。この例では、11次のノイズシェーパーが特徴づけ
られていて、NTFの低周波数(信号帯域)ノイズ減衰のシェープを限定する5つの極−
ゼロ組の第1のセット20を含む。この図示される実施形態において、極−ゼロ組セット
20は、バターワース(Butteworth)ロケーションに4つの極−ゼロ組と1つ
の実際の極−ゼロ組を含む。極の3つのさらなる21,22,23セットはそれぞれ周波
数32fs、64fs、96fsのノイズ減衰帯域のシェープを限定する。各セット20
〜23の極とゼロの数は、所望の望ましいノイズシェーピングおよび、NTF信号帯域で
の減衰レベルとNTFの周波数帯域32fs、64fs、96fsでの減衰レベルの間と
の関係によって、実施形態例の間で変わり得る。図2Bでは、周波数32fs、64fs
、96fsでのNTFゼロは、z平面での単位円に沿って分かれている。別の実施形態で
は、これらのゼロは分かれないで(共通に位置して)、ノイズシェーパー102を実行す
るのに必要なハードウエアの量を減らし得る。
複数の減衰帯域をNTFで生成し、ノイズシェーパー102で用いるのに適切な例示的
なデルタシグマ変調器(ノイズシェーパー)トポロジーが、同時係属で、本願と同一出願
人である、特許出願「DELTA−SIGMA MODULATION CIRCUIT
S AND METHODS UTILIZING MULTIPLE NOISE A
TTENUATION BANDS AND DATA CONVERTERS USI
NG THE SAME」(U.S.Serial No.0/191,016、Att
oney Docket Number 1354−CA{2836−P194US})に
記載され、ここで援用される。たとえば、図2Bに示されるz平面極−ゼロプロットは、
図2Cおよび図2Dに示されるインタリーブされた変調器トポロジー200を用いること
によって達成され得て、以下に簡潔に考察され得る。あるいは、フィードフォワード設計
が利用され得る。フィードフォワード設計は1/(1−Z−1)の伝達関数を備える5つ
のフィルタステージを有し、極とゼロをZ=0ポイントに設置し、1/(1−Z−4)の
伝達関数を備える1組のフィルタステージを設置するフィードバックループに関連し、極
とゼロをZ=1、−1、j、−jに設置するフィードバックループに関連している。フィ
ードバック変調器は他の実施形態でも用いられ得るが、フィードバックトポロジーはより
正確な係数およびさらなるハードウエアを必要とする。フィードフォワード設計を含むデ
ルタ−シグマ変調器トポロジーの一般的な考察は、Norsworthyら著による「D
elta−Sidma Data Converters、Theory、Design
and Simulation」、IEEE Press、1996年などの出版物に
見られる。
図2Cに示される例示的な変調器トポロジー200では、周波数fs/4(z平面ポイ
ントRe=0、Im=j)、fs/24(z平面ポイントRe=−1、Im=0)、3f
s/4(z平面ポイントRe=0、Im=−j)でのローカルノイズシェーピングが独立
したループフィルタステージ201a〜201dの4つのそれぞれのセットを用いて実行
される。その出力は、スイッチ(”SW”)202によって以下に考察されるメインノイ
ズシェーピングループ209に時間的にインタリーブされる。図2Dに詳細が示される独
立したフィルタステージ201a〜201dのセットのそれぞれは、ローカル極を設定す
る係数CおよびCを有するフィードフォワードステージ204aおよび204bに対
応するフィルタステージ203aおよび203bの1組、フィードバックループ205(
1つのディレイZ−1およびゲインg1を有する)、ローカルゼロを設定する加算器20
6を含む。(独立フィルタステージ201a〜201dのそれぞれの構成は、単一フィル
タステージ203から3つ以上のフィルタステージ203で変わり得、ローカル極および
ゼロの望ましい数とロケーションによって1つ以上のフィードバックループが含まれ得る
。)独立ループフィルタステージ201a〜201dのゲインステージ204a〜204
bからの出力は対応するスイッチ(SW)207a〜207bのセットによって変調器出
力加算器208にインタリーブされる。
DC((直流またはゼロ周波数)(z平面ポイントRe=0、Im=0))のグローバ
ル(ベースバンド)ノイズシェーピングはメイン(共通の)ノイズシェーピングループ2
09である第5次(5th)よって特徴づけられる。メインノイズシェーピングループ2
09は図2Eに詳細が示されていて、5つのグローバルフィルタステージ210a〜21
0e、およびそれぞれ係数C〜Cを有して出力加算器208(図2Cを参照)にフィ
ードフォワードする関連したフィードフォワードステージ211a〜211eを含む。(
グローバルフィルタステージ210a〜210eの数はまた、NTFのグローバル極−ゼ
ロ組の望ましい数とロケーションによって、実施形態から実施形態で変わり得る。)z平
面単位回路上のグローバルノイズシェーピングゼロをDCポイント(Re=0、Im=0
)から動かすためにフィードバックループ212a〜212b(g2のゲインおよびディ
レイZ−1を含む)および加算器213a〜213bが示される。
PWMステージ105a〜105Nのそれぞれのエネルギーが通常時間をかけて入力エ
ネルギーをトラックする一方で(たとえば、入力エネルギーの第1の積分は入力エネルギ
ーの第1の積分をトラックする)、PWM出力で明らかなひずみが起こるのは、PWM出
力エネルギーの瞬間が異なるPWMパターンで変わるからである(たとえば、PWM出力
エネルギーの第2次およびそれより高次の積分値は入力エネルギーのより高次の積分値を
トラックしない)。特に、特定のPWM出力パターンの第2次およびより高次の瞬間のロ
ケーションは、変換される特定のデジタルワード、パターンのロジックハイおよびロジッ
クロースロットの対応する数、これらのスロットをパターンの時間に渡って分配すること
に依るからである。スロットをそれぞれのパターンで分配することは、たとえば、そのパ
ターン(たとえば、grow right,grow leftなど)を生成するのに用
いられる技術によって影響を受ける。
図2Cのデルタ−シグマ変調器102では、量子化器214の出力に含まれるフィード
バック補償ブロック220は、第2次のループフィルタ201(図2D参照)の積分器ス
テージ203a〜203bおよび/または第5次の整数ループフィルタ209(図2E参
照)の積分器ステージ210a〜210eに非線形フィードバックを提供する。フィード
バック補償ブロック220によって提供される非線形フィードバックは、先に援用された
援用米国特許6,150,969および5,815,102に記載されている。通常、修
正要素(factor)は、フィードバック補償ブロック220から、デルタ−シグマ変
調器ループフィルタ201a〜201dおよび209の積分器ステージ203a〜203
bおよび210a〜210bにフィードバックされる。対応する積分器ステージに入力を
選択的に修正することによって、以下のPWMステージ105a〜105Nにデータが入
力される瞬間は変えられる。次いで、PWM出力の瞬間はひずみを減少させるために修正
され、そうでなければ、出力エネルギー瞬間を変える時間を起因とする。たとえば、特定
のPWM出力パターンで第2の瞬間の変化に対して修正するために、非線形修正要素は、
少なくともデルタ−シグマ変調器ループフィルタ201a〜201dおよび209の第2
の積分器ステージにフィードバックされる。
図2Cに戻ると、単一ビット量子化器214およびディレイ要素(Z−1)215は、
変調器200の出力を生成することが好ましい。結果として生じる出力信号は、変調器入
力加算器216の反転入力にフィードバックされる。独立したフィルタステージ201a
〜201dのセット間でインタリーブすることで、フィルタステージ201a〜201d
のそれぞれのセットは、変調器入力時にサンプリングレートfsの4分の1(1/4)で
加算器208の入力に導く。したがって、フィルタセット201a〜201dによって設
定される極とゼロは、図2Bに示されるz平面ポイントに変換される。
図1のデータ変換器100の4つ(N=4)にインターリーブされた実施形態を続ける
と、インターリービング回路103からの32fs量子化された4つのサンプルストリー
ム出力は、それぞれ4つのPWMステージ104a〜104Nにパスされる。この例では
、PWMステージ104a〜104Nのそれぞれは、256fsオーバーサンプリングク
ロック信号(つまりM=8)から8倍(8x)のオーバーサンプリングを実行する。結果
として生じるPWMコード化された出力パルスストリームは、図3に示されるように時間
的にオーバーラップする。
図3のタイミング図は、128fsオーバーサンプリング周波数のノイズシェーパー1
02から任意に選択された1ビット量子化されたサンプル出力の多くを、256fsオー
バーサンプリング周波数のマルチプルPWMストリームに変換することを示す。図3では
、ノイズシェーパー102の出力からの8つの代表的なビットまたはサンプル(1〜8)
がNSOUTとラベルされたトレースによって示されている。4つのインタリーブの後、
PWMステージ104a〜104Nのそれぞれは、PWM、PWM、PWM、PW
とラベルされるオーバーラップするストリームによってそれぞれ示されるように、3
2fsレートで新しいオペランド(サンプル)で動作する。
8倍オーバーサンプリングの間、PWMステージ104a〜104Nのそれぞれは、3
2fsオーバーサンプリング周波数で受信する各対応するサンプルを、図3でPWM10
ut、PWM20ut、PWM30ut、PWM40utとラベルされるストリームによ
って表されるように、256fsオーバーサンプリングクロック信号の8期間である、P
WMコード化されたパルスにコード化する。たとえば、PWM10utストリームは、イ
ンターリービング回路103による4つのインタリーブの後のノイズシェーパー102の
出力サンプル1および5、および、対応するPWMステージ104a〜104Nによって
8倍のオーバーサンプリングを表す。これは、PWM変調期間(パルス)1−1から1−
8、および5−1から5−8として示されている。
PWMコード化されたビットストリームPWM10ut、PWM20ut、PWM30
ut、PWM40utは、256fsPWMオーバーサンプリングクロック(または等し
くは、128fsノイズシェーパーオーバーサンプリングクロックの1つの期間)の2つ
の期間によって時間的にオフセットされている。これらの時間のオーバーラップしたスト
リームはそれぞれ、図4の出力ゲイン対周波数プロットのトレース401に示されるよう
に、反復周波数32fs(たとえば、32fs、64fs、96fsなど)の高調波での
著しいエネルギーと同様に約0〜fs/2の単一ベースバンドでエネルギーを変調する。
したがって、4つのPWMステージ104a〜104Nのそれぞれは出力FIRフィルタ
105a〜105Nに関連し、応答は通常図4のトレース402によって示される。特に
、各FIRフィルタ105a〜105Nの応答は、同一周波数で対応するPWMステージ
104a〜104Nの出力応答でのピークに対応する32fsの高調波のノッチをつける
。FIR応答402は、たとえば、単純な係数(coefficient)を有する16
ステージボックスカーFIRフィルタを用いることで達成される。
それぞれが16ステージボックスカーフィルタを有する4つのデジタルイン、アナログ
アウトFIRフィルタ105a〜105Nを備える実施形態において、64のアナログ出
力が出力加算器106に提供されている。64のアナログ出力は時間的にオーバーラップ
し、用法と遷移レート(遷移密度)が一致している。その結果は、ISIのために最小の
ノイズおよびひずみを有する連続時間アナログ出力である。有利には、すべてのDAC要
素が同一エッジレートおよび同一デューティサイクルを有するように構成される。著しい
程度に、この有利点はすべてのひずみとノイズ生成をキャンセルさせる。
本発明の原理はまた図5に示される例示的なデルタ−シグマデータ変換器500に具体
化される。図5では、デルタ−シグマ変換器(ノイズシェーパー)501a〜501Nの
N番号は時間的にインタリーブされ、その結果として生じるデインタリーブされた(de
−interleaved)出力ストリームは、出力デジタルインアナログアウトFIR
フィルタ105a〜105Nに直接パスされる。図5では、Lは、各ノイズシェーピング
ステージ501a〜501Nのオーバーサンプリング係数(factor)である。ノイ
ズシェーピングステージ501a〜501Nからの量子化されたデータストリームは、ノ
イズシェーパー501a〜501Nのオーバーサンプリング周波数L・(K/N)fsよ
り大きいかまたは等しい周波数で、FIRフィルタ105a、...、Nに向けられる。
それゆえ、有利なことに、FIRフィルタ105a、...、NのDAC要素は、すでに
述べられたように、デューティサイクル(用法)および遷移レートが一致する。
本発明は特定の実施形態を参照しながら述べられてきたが、これらの記述は限定された
意味で解釈されるべきではない。開示された実施形態のさまざまな修正、また本発明の代
替の実施態様は、本発明の記述を参照することによって当業者にとって明らかになるであ
ろう。開示された概念およびある実施態様は、本発明と同じ目的を実行するために他の構
成に修正、または設計するための基として容易に利用されるということが、当業者によっ
て認められるべきである。また、そのような同様の構成は、付属の請求項に述べられてい
る本発明の精神および範囲から逸脱していないことが当業者によって認識されるべきであ
る。
それゆえ、請求項は、発明の真の範囲に含まれるそのような修正または実施態様を網羅
すると考えられる。
発明的な原理に従って、マルチプル減衰帯域およびインタリーブされたパルス幅変調器を有するデルタ−シグマ変調器を利用するデジタル−アナログ変換器を含む、例示的なデジタルオーディオシステムのハイレベルなブロック図である。 図1Aに示される例示的なアナログイン、デジタルアウトブロックで用いられるのに適した例示的なデジタルイン、アナログアウトFIR(finite impulse response)フィルタの詳細なブロック図である。 4つのインタリーブされたパルス幅変調器を利用する図1に示されるデータ変換器の選択された実施形態で使用するのに適した4つのノイズ減衰帯域を有する例示的なデルタ−シグマ変調器の、ノイズ伝達関数(NTF)のゲイン対周波数プロットである。 図2Aに示されるノイズ減衰帯域に対応するマルチプルNTFノイズ減衰帯域を有するデルタ−シグマ変調器の、z平面における極およびゼロのプロットである。 図2Bに示される極−ゼロ配置を製造するのに適した例示的なフィードフォワードデルタ−シグマ変調器のブロック図である。 図2Bに示される極−ゼロ配置を製造するのに適した例示的なフィードフォワードデルタ−シグマ変調器のブロック図である。 図2Bに示される極−ゼロ配置を製造するのに適した例示的なフィードフォワードデルタ−シグマ変調器のブロック図である。 例示的な4つのインタリーブされたパルス幅変調器を示す図1で示されるデルタ−シグマ変調器およびパルス幅変調器の代表的動作の単一タイミングを図示するタイミング図である。 例示的な4つのインタリーブされたPWMおよび関連するFIR出力フィルタを示す図1のパルス幅変調器の選択された1つの出力のゲイン対周波数プロットである。 発明的な原理に従ったインタリーブされたノイズシェーパーおよび対応するデジタル出力フィルタを利用する例示的なデジタル−アナログ変換器のハイレベルな動作上のブロック図である。

Claims (17)

  1. 周波数を有する受信されたデータストリームをデューティサイクル変調されたデータストリームに変換するデューティサイクル変調器と、
    該デューティサイクル変調されたデータストリームからの該受信されたデータストリームの該周波数の高調波をフィルタリングする有限インパルス応答フィルタと
    を備えた、データ変換器。
  2. 前記有限インパルス応答フィルタは、前記デューティサイクル変調されたデータストリームの反復レートでヌルを有する、請求項1に記載のデータ変換器。
  3. 前記有限インパルス応答フィルタの対応するタップに結合されている複数のデジタル−アナログ変換要素をさらに備えている、請求項1に記載のデータ変換器。
  4. 前記複数のデジタル−アナログ変換要素は、複数の連続時間変換要素を含む、請求項3に記載のデータ変換器。
  5. 前記複数のデジタル−アナログ変換要素は、複数の制御された電流源を含む、請求項4に記載のデータ変換器。
  6. 前記複数のデジタル−アナログ変換要素は、複数の抵抗を含む、請求項4に記載のデータ変換器。
  7. 周波数を有する第2のデータストリームを第2のデューティサイクル変調されたデータストリームに変換する第2のデューティサイクル変調器と、
    該第2のデューティサイクル変調されたデータストリームからの該第2のデータストリームの該周波数の高調波をフィルタリングする第2の有限インパルス応答フィルタと
    をさらに備えている、請求項1に記載のデータ変換器。
  8. 第1および第2の出力を組み合わせる合成回路をさらに備えている、請求項7に記載のデータ変換器。
  9. 入力データストリームを前記受信されたデータストリームと前記第2のデータストリームとにデインタリーブするデインタリーブ回路をさらに備えている、請求項7に記載のデータ変換器。
  10. 前記入力データストリームをノイズシェーピングするデルタ−シグマ変調器をさらに備え、該デルタ−シグマ変調器は、前記デューティサイクル変調器と前記第2のデューティサイクル変調器との間の不一致に影響を受けるノイズを低減する複数の減衰帯域を有するノイズ伝達関数を有する、請求項9に記載のデータ変換器。
  11. 前記受信されたデータストリームは、少なくとも1つの積分器と、該少なくとも1つの積分器への非線形フィードバックとを有するデルタ−シグマ変調器によって生成される、請求項1に記載のデータ変換器。
  12. 前記非線形フィードバックは、前記デューティサイクル変調されたデータストリームの選択された瞬間の変化を修正する、請求項11に記載のデータ変換器。
  13. 前記非線形フィードバックは、複数の非線形フィードバック動作のうちの選択された1つによって提供される、請求項12に記載のデータ変換器。
  14. 周波数を有するデータストリームをデューティサイクル変調されたデータストリームに変換することと、
    有限インパルス応答フィルタを用いて、該デューティサイクル変調されたデータストリームからのデータストリームの該周波数の高調波をフィルタリングすること
    を包含する、データ変換の方法。
  15. より高いスロット周波数の前記デューティサイクル変調されたデータストリームに変換する前に、前記周波数で前記データストリームをノイズシェーピングすることをさらに包含する、請求項14に記載の方法。
  16. 前記高調波をフィルタリングすることは、前記スロット周波数以上の周波数で、デューティサイクル変調されたデータパターンのストリームをフィルタリングすることをさらに包含する、請求項15に記載の方法。
  17. 入力された信号と、
    該入力された信号に応答する第1および第2のデューティサイクル変調された信号と、
    該第1のデューティサイクル信号に応答する第1の制御可能な電流源と、
    該第2のデューティサイクル信号に応答する第2の制御可能な電流源と、
    両方の制御された電流源に応答する加算器と
    を備えた、データ変換器。
JP2007284558A 2002-11-27 2007-10-31 デジタルフィルタ処理されたパルス幅変調 Pending JP2008136202A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/306,598 US6727832B1 (en) 2002-11-27 2002-11-27 Data converters with digitally filtered pulse width modulation output stages and methods and systems using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004557157A Division JP4185495B2 (ja) 2002-11-27 2003-11-04 デジタルフィルタ処理されたパルス幅変調

Publications (1)

Publication Number Publication Date
JP2008136202A true JP2008136202A (ja) 2008-06-12

Family

ID=32107696

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2004557157A Expired - Fee Related JP4185495B2 (ja) 2002-11-27 2003-11-04 デジタルフィルタ処理されたパルス幅変調
JP2007284558A Pending JP2008136202A (ja) 2002-11-27 2007-10-31 デジタルフィルタ処理されたパルス幅変調
JP2007284559A Pending JP2008136203A (ja) 2002-11-27 2007-10-31 デジタルフィルタ処理されたパルス幅変調

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2004557157A Expired - Fee Related JP4185495B2 (ja) 2002-11-27 2003-11-04 デジタルフィルタ処理されたパルス幅変調

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2007284559A Pending JP2008136203A (ja) 2002-11-27 2007-10-31 デジタルフィルタ処理されたパルス幅変調

Country Status (6)

Country Link
US (2) US6727832B1 (ja)
EP (1) EP1568139A4 (ja)
JP (3) JP4185495B2 (ja)
CN (3) CN101335526B (ja)
AU (1) AU2003291759A1 (ja)
WO (1) WO2004051856A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525642A (ja) * 2006-01-31 2009-07-09 ディー2オーディオ コーポレイション パルス幅変調の非対称的な信号レベルに係るシステム及び方法
US9019017B2 (en) 2010-08-13 2015-04-28 Fujitsu Limited Digitally controlled oscillator and digital PLL including the same

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6738003B2 (en) * 2002-07-08 2004-05-18 Cirrus Logic, Inc. Delta-sigma modulation circuits and methods utilizing multiple noise attenuation bands and data converters using the same
CA2401482C (en) * 2002-09-06 2009-06-30 Francois J. Paquet Highly accurate digital to analog converter
EP1489430B1 (en) * 2003-06-17 2006-10-04 Agilent Technologies Inc Sigma-delta modulator with pulse width modulation output
US7561635B2 (en) * 2003-08-05 2009-07-14 Stmicroelectronics Nv Variable coder apparatus for resonant power conversion and method
US7308032B2 (en) * 2003-12-31 2007-12-11 Hrl Laboratories, Llc Oversampling D/A converter and method for shaping nonlinear intersymbol interference in an oversampling D/A converter
US7440821B1 (en) * 2004-01-02 2008-10-21 Sauer-Danfoss Inc. Method of determining average current in a PWM drive
US7706438B1 (en) * 2004-01-29 2010-04-27 Cirrus Logic, Inc. Circuits and methods for reducing noise and distortion in pulse width modulation systems
US7023371B2 (en) * 2004-04-12 2006-04-04 Broadcom Corporation Method and apparatus for an image canceling digital-to-analog converter (DAC)
JP4622423B2 (ja) * 2004-09-29 2011-02-02 日本テキサス・インスツルメンツ株式会社 パルス幅変調信号発生回路
EP1655713A1 (en) * 2004-10-29 2006-05-10 Barco N.V. Asynchronous video capture for insertion into high resolution image
JP4852837B2 (ja) * 2004-11-01 2012-01-11 日本テキサス・インスツルメンツ株式会社 Pwmドライバおよびこれを用いたd級増幅器
US6950050B1 (en) * 2005-04-08 2005-09-27 Pi (Physik Instrumente) L.P. Method and apparatus for increasing effective resolution of analog output of digital-to-analog converter (DAC) having predetermined digital word size, where DAC drives plant
JP4636926B2 (ja) * 2005-04-22 2011-02-23 三洋電機株式会社 マルチビットδς変調型daコンバータ
US7289050B1 (en) * 2005-06-27 2007-10-30 Qualcomm Incorporated Amplification method and apparatus
EP1900102A2 (en) * 2005-06-27 2008-03-19 Qualcomm Flarion Technologies, Inc. Methods and apparatus for implementing and/or using amplifiers and/or for performing various amplification related operations
EP1748564B1 (en) * 2005-07-27 2008-05-14 Verigy (Singapore) Pte. Ltd. Method and system for digital to analog conversion using multi-purpose current summation
US7570693B2 (en) * 2005-09-26 2009-08-04 Ess Technology, Inc. Low noise digital to pulse width modulated converter with audio applications
US7327295B1 (en) 2005-10-24 2008-02-05 Cirrus Logic, Inc. Constant edge-rate ternary output consecutive-edge modulator (CEM) method and apparatus
US7167118B1 (en) 2005-12-08 2007-01-23 Cirrus Logic, Inc. Centered-pulse consecutive edge modulation (CEM) method and apparatus
US7209067B1 (en) 2005-12-08 2007-04-24 Cirrus Logic, Inc. Extended dynamic range consecutive edge modulation (CEM) method and apparatus
US7307565B1 (en) 2005-12-22 2007-12-11 Cirrus Logic, Inc. Signal processing system with delta-sigma modulation and FIR filter post processing to reduce near out of band noise
US7183957B1 (en) * 2005-12-30 2007-02-27 Cirrus Logic, Inc. Signal processing system with analog-to-digital converter using delta-sigma modulation having an internal stabilizer loop
US7327296B1 (en) * 2006-03-03 2008-02-05 Cirrus Logic, Inc. Signal processing system with modified delta sigma modulator quantizer output signals to spread harmonic frequencies of pulse width modulator output signals
US20080000431A1 (en) * 2006-06-29 2008-01-03 Stephen Longo Dog leash assembly
JP4660444B2 (ja) * 2006-09-08 2011-03-30 パナソニック株式会社 デルタシグマ変調器の制御方法およびデルタシグマ変調器
JP4952239B2 (ja) * 2006-12-26 2012-06-13 ヤマハ株式会社 D級増幅器
US8362838B2 (en) * 2007-01-19 2013-01-29 Cirrus Logic, Inc. Multi-stage amplifier with multiple sets of fixed and variable voltage rails
US7372392B1 (en) * 2007-02-26 2008-05-13 National Semiconductor Corporation Charge balancing method in a current input ADC
US8174204B2 (en) 2007-03-12 2012-05-08 Cirrus Logic, Inc. Lighting system with power factor correction control data determined from a phase modulated signal
US8076920B1 (en) 2007-03-12 2011-12-13 Cirrus Logic, Inc. Switching power converter and control system
US7667408B2 (en) * 2007-03-12 2010-02-23 Cirrus Logic, Inc. Lighting system with lighting dimmer output mapping
US8018171B1 (en) 2007-03-12 2011-09-13 Cirrus Logic, Inc. Multi-function duty cycle modifier
US7667512B2 (en) * 2007-03-29 2010-02-23 Standard Microsystems Corporation Duty cycle comparator
US7696913B2 (en) 2007-05-02 2010-04-13 Cirrus Logic, Inc. Signal processing system using delta-sigma modulation having an internal stabilizer path with direct output-to-integrator connection
US7554473B2 (en) * 2007-05-02 2009-06-30 Cirrus Logic, Inc. Control system using a nonlinear delta-sigma modulator with nonlinear process modeling
US8102127B2 (en) 2007-06-24 2012-01-24 Cirrus Logic, Inc. Hybrid gas discharge lamp-LED lighting system
KR100949880B1 (ko) * 2007-10-31 2010-03-26 주식회사 하이닉스반도체 반도체 소자 및 그 제조 방법
US7804697B2 (en) * 2007-12-11 2010-09-28 Cirrus Logic, Inc. History-independent noise-immune modulated transformer-coupled gate control signaling method and apparatus
US8576589B2 (en) * 2008-01-30 2013-11-05 Cirrus Logic, Inc. Switch state controller with a sense current generated operating voltage
US8008898B2 (en) * 2008-01-30 2011-08-30 Cirrus Logic, Inc. Switching regulator with boosted auxiliary winding supply
US7755525B2 (en) * 2008-01-30 2010-07-13 Cirrus Logic, Inc. Delta sigma modulator with unavailable output values
US8022683B2 (en) * 2008-01-30 2011-09-20 Cirrus Logic, Inc. Powering a power supply integrated circuit with sense current
US7535396B1 (en) 2008-03-20 2009-05-19 Cirrus Logic, Inc. Digital-to-analog converter (DAC) having filter sections with differing polarity
US7759881B1 (en) 2008-03-31 2010-07-20 Cirrus Logic, Inc. LED lighting system with a multiple mode current control dimming strategy
US8008902B2 (en) * 2008-06-25 2011-08-30 Cirrus Logic, Inc. Hysteretic buck converter having dynamic thresholds
US8344707B2 (en) * 2008-07-25 2013-01-01 Cirrus Logic, Inc. Current sensing in a switching power converter
US8014176B2 (en) * 2008-07-25 2011-09-06 Cirrus Logic, Inc. Resonant switching power converter with burst mode transition shaping
US8212491B2 (en) * 2008-07-25 2012-07-03 Cirrus Logic, Inc. Switching power converter control with triac-based leading edge dimmer compatibility
US8487546B2 (en) * 2008-08-29 2013-07-16 Cirrus Logic, Inc. LED lighting system with accurate current control
US8179110B2 (en) * 2008-09-30 2012-05-15 Cirrus Logic Inc. Adjustable constant current source with continuous conduction mode (“CCM”) and discontinuous conduction mode (“DCM”) operation
US8222872B1 (en) 2008-09-30 2012-07-17 Cirrus Logic, Inc. Switching power converter with selectable mode auxiliary power supply
US8288954B2 (en) * 2008-12-07 2012-10-16 Cirrus Logic, Inc. Primary-side based control of secondary-side current for a transformer
US8362707B2 (en) * 2008-12-12 2013-01-29 Cirrus Logic, Inc. Light emitting diode based lighting system with time division ambient light feedback response
US8299722B2 (en) 2008-12-12 2012-10-30 Cirrus Logic, Inc. Time division light output sensing and brightness adjustment for different spectra of light emitting diodes
US7994863B2 (en) * 2008-12-31 2011-08-09 Cirrus Logic, Inc. Electronic system having common mode voltage range enhancement
US8362833B2 (en) 2009-01-05 2013-01-29 Freescale Semiconductor, Inc. Amplifier circuitry, integrated circuit and communication unit
CN102379088B (zh) * 2009-03-31 2015-04-29 艾格瑞系统有限责任公司 通过使用△-∑调制器直接合成rf信号的方法和装置
US8482223B2 (en) 2009-04-30 2013-07-09 Cirrus Logic, Inc. Calibration of lamps
US8198874B2 (en) * 2009-06-30 2012-06-12 Cirrus Logic, Inc. Switching power converter with current sensing transformer auxiliary power supply
US8248145B2 (en) * 2009-06-30 2012-08-21 Cirrus Logic, Inc. Cascode configured switching using at least one low breakdown voltage internal, integrated circuit switch to control at least one high breakdown voltage external switch
US8212493B2 (en) * 2009-06-30 2012-07-03 Cirrus Logic, Inc. Low energy transfer mode for auxiliary power supply operation in a cascaded switching power converter
US8963535B1 (en) 2009-06-30 2015-02-24 Cirrus Logic, Inc. Switch controlled current sensing using a hall effect sensor
US9155174B2 (en) 2009-09-30 2015-10-06 Cirrus Logic, Inc. Phase control dimming compatible lighting systems
US9178415B1 (en) 2009-10-15 2015-11-03 Cirrus Logic, Inc. Inductor over-current protection using a volt-second value representing an input voltage to a switching power converter
US8654483B2 (en) * 2009-11-09 2014-02-18 Cirrus Logic, Inc. Power system having voltage-based monitoring for over current protection
JP5735981B2 (ja) * 2009-12-16 2015-06-17 シントロピー システムズSyntropy Systems 離散時間量子化信号の連続時間連続可変信号への変換
CN102122918B (zh) * 2010-01-08 2014-11-12 英特赛尔美国股份有限公司 减小pwm放大器中空闲信道电流和噪声最低值的系统和方法
US9097646B1 (en) * 2010-06-23 2015-08-04 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Modulated sine waves for differential absorption measurements using a CW laser system
US8217820B2 (en) * 2010-11-04 2012-07-10 Maxim Integrated Products, Inc. Using multi-level pulse width modulated signal for real time noise cancellation
US8674866B2 (en) 2012-06-21 2014-03-18 Broadcom Corporation Interleaved return-to-zero, high performance digital-to-analog converter
US8836560B2 (en) * 2012-12-05 2014-09-16 Maxim Integrated Products, Inc. Digital to analog converters with adjustable output resolution
JP6247761B2 (ja) 2013-08-06 2017-12-13 ベドロック・オートメーション・プラットフォームズ・インコーポレーテッド 産業用制御システムのモジュール種別を強化する方法
JP6401929B2 (ja) * 2014-04-01 2018-10-10 ローム株式会社 Δσd/aコンバータおよびそれを用いた信号処理回路および電子機器
US10254405B2 (en) 2014-08-15 2019-04-09 The United States Of America As Represented By The Administrator Of Nasa Hyperfine interpolated range finding for CW lidar, radar, and sonar using repeating waveforms and fourier transform reordering
US10527717B2 (en) 2014-09-19 2020-01-07 United States Of America As Represented By The Administrator Of Nasa Binary phase shift keying (BPSK) on orthogonal carriers for multi-channel IM-CW CO2 absorption or Lidar/Radar/Sonar mapping applications
JP6567941B2 (ja) 2015-10-06 2019-08-28 日立建機株式会社 建設機械
JP6772542B2 (ja) * 2015-10-27 2020-10-21 セイコーエプソン株式会社 回路装置、発振器、電子機器及び移動体
US10200053B2 (en) * 2016-04-14 2019-02-05 Cirrus Logic, Inc. Magnitude compensation technique for processing single-bit wide data
US10418044B2 (en) 2017-01-30 2019-09-17 Cirrus Logic, Inc. Converting a single-bit audio stream to a single-bit audio stream with a constant edge rate
US10509624B2 (en) * 2017-01-30 2019-12-17 Cirrus Logic, Inc. Single-bit volume control
US10833687B1 (en) * 2019-06-17 2020-11-10 Dialog Semiconductor (Uk) Limited Digital to analog circuit
JP7072734B2 (ja) * 2019-12-10 2022-05-20 三菱電機株式会社 フィルタ回路、信号処理方法、制御回路およびプログラム記憶媒体
US11522553B2 (en) 2020-05-05 2022-12-06 Stmicroelectronics International N.V. Sigma-delta analog-to-digital converter circuit with real time correction for digital-to-analog converter mismatch error
US20230139547A1 (en) 2021-11-03 2023-05-04 Cirrus Logic International Semiconductor Ltd. Finite impulse response input digital-to-analog converter

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287218A (ja) * 1987-05-20 1988-11-24 Sony Corp D/a変換装置
JPH02168728A (ja) * 1988-09-29 1990-06-28 Victor Co Of Japan Ltd Pwm型d/a変換器
JPH04160822A (ja) * 1990-10-25 1992-06-04 Sony Corp D/a変換装置
JPH04160821A (ja) * 1990-10-25 1992-06-04 Sony Corp パルス幅変調装置
US5815102A (en) * 1996-06-12 1998-09-29 Audiologic, Incorporated Delta sigma pwm dac to reduce switching
JPH1131971A (ja) * 1997-07-12 1999-02-02 Kenwood Corp D/a変換回路
JP2000183749A (ja) * 1998-12-14 2000-06-30 Alcatel ベ―スバンド伝送システム用のディジタル/アナログ変換電子回路
US6150969A (en) * 1996-06-12 2000-11-21 Audiologic, Incorporated Correction of nonlinear output distortion in a Delta Sigma DAC

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4686490A (en) * 1986-04-07 1987-08-11 Hayes Microcomputer Products, Inc. Digital data modulator and digital-to-analog converter
US4901077A (en) * 1988-04-18 1990-02-13 Thomson Consumer Electronics, Inc. Sigma-delta modulator for D-to-A converter
GB2313004A (en) * 1996-05-07 1997-11-12 Advanced Risc Mach Ltd Digital to analogue converter
JP4279410B2 (ja) * 1999-07-06 2009-06-17 株式会社アドバンテスト 信号処理装置およびその装置を用いた半導体デバイス試験装置
US6414613B1 (en) * 2000-01-05 2002-07-02 Motorola, Inc. Apparatus for noise shaping a pulse width modulation (PWM) signal and method therefor
US6435037B1 (en) * 2000-01-06 2002-08-20 Data Sciences International, Inc. Multiplexed phase detector
US6920182B2 (en) * 2001-01-09 2005-07-19 Microtune (Texas), L.P. Delta-sigma modulator system and method
US6466143B2 (en) * 2001-04-03 2002-10-15 International Business Machines Corporation Non-return-to-zero DAC using reference sine wave signals
US6677876B1 (en) * 2002-08-27 2004-01-13 Motorola, Inc. Differential sigma-delta DAC with dynamic spectral shaping

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287218A (ja) * 1987-05-20 1988-11-24 Sony Corp D/a変換装置
JPH02168728A (ja) * 1988-09-29 1990-06-28 Victor Co Of Japan Ltd Pwm型d/a変換器
JPH04160822A (ja) * 1990-10-25 1992-06-04 Sony Corp D/a変換装置
JPH04160821A (ja) * 1990-10-25 1992-06-04 Sony Corp パルス幅変調装置
US5815102A (en) * 1996-06-12 1998-09-29 Audiologic, Incorporated Delta sigma pwm dac to reduce switching
US6150969A (en) * 1996-06-12 2000-11-21 Audiologic, Incorporated Correction of nonlinear output distortion in a Delta Sigma DAC
JPH1131971A (ja) * 1997-07-12 1999-02-02 Kenwood Corp D/a変換回路
JP2000183749A (ja) * 1998-12-14 2000-06-30 Alcatel ベ―スバンド伝送システム用のディジタル/アナログ変換電子回路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525642A (ja) * 2006-01-31 2009-07-09 ディー2オーディオ コーポレイション パルス幅変調の非対称的な信号レベルに係るシステム及び方法
JP4878376B2 (ja) * 2006-01-31 2012-02-15 ディー2オーディオ コーポレイション パルス幅変調の非対称的な信号レベルに係るシステム及び方法
US9019017B2 (en) 2010-08-13 2015-04-28 Fujitsu Limited Digitally controlled oscillator and digital PLL including the same

Also Published As

Publication number Publication date
EP1568139A4 (en) 2009-05-27
CN1717870A (zh) 2006-01-04
US6727832B1 (en) 2004-04-27
CN101335526A (zh) 2008-12-31
WO2004051856A3 (en) 2005-06-09
WO2004051856A2 (en) 2004-06-17
CN100446424C (zh) 2008-12-24
JP4185495B2 (ja) 2008-11-26
US20040189503A1 (en) 2004-09-30
EP1568139A2 (en) 2005-08-31
US6967607B2 (en) 2005-11-22
CN101335526B (zh) 2011-07-06
CN101335527A (zh) 2008-12-31
JP2008136203A (ja) 2008-06-12
AU2003291759A8 (en) 2004-06-23
AU2003291759A1 (en) 2004-06-23
JP2006508607A (ja) 2006-03-09

Similar Documents

Publication Publication Date Title
JP4185495B2 (ja) デジタルフィルタ処理されたパルス幅変調
EP1661251B1 (en) Data converters with ternary pulse width modulation output stages and methods and systems using the same
Adams et al. A 113-dB SNR oversampling DAC with segmented noise-shaped scrambling
US5369403A (en) Dual quantization oversampling digital-to-analog converter
US5357252A (en) Sigma-delta modulator with improved tone rejection and method therefor
US6965335B1 (en) Methods for output edge-balancing in pulse width modulation systems and data converters using the same
US6980144B1 (en) Method for reducing DAC resolution in multi-bit sigma delta analog-to digital converter (ADC)
US10547323B2 (en) Signal processing device and method
US20050040979A1 (en) Computer program product for performing digital-to-analog conversion
JPH04229723A (ja) 高次シグマ・デルタアナログ/デジタル変換器
JP2009510920A (ja) オーディオ用途における低ノイズディジタル・パルス幅変調変換器
US5610606A (en) 1-bit D/A conversion circuit
Kumar et al. Reset-free memoryless delta–sigma analog-to-digital conversion
JP2009510919A (ja) オーディオ用途における低ノイズディジタル・信号間隔変換器
WO2016004122A1 (en) Asynchronous electrical circuitry techniques for producing stationary carrier signal
US20020018012A1 (en) Method and apparatus for analog-to-digital converting signal modulated in frequency domain
US7706438B1 (en) Circuits and methods for reducing noise and distortion in pulse width modulation systems
KR100330976B1 (ko) 완전차동 준디지털 포스트필터를 사용한 시그마-델타 디지털-아날로그 변환기
Pelgrom Time-Discrete Σ Δ Modulation
O'Brien et al. High order mismatch noise shaping for bandpass DACs
Chiang et al. A novel wideband low-distortion cascaded sigma-delta ADC
Hawksford Signal conversion techniques in digital audio applications
Li et al. A structure of cascading multi-bit modulators without dynamic element matching or digital correction
Hawksford Digital discourse
Hawksford Techniques in Digital-to-Analogue Conversion

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101210