JP2008054440A - 過熱保護装置 - Google Patents

過熱保護装置 Download PDF

Info

Publication number
JP2008054440A
JP2008054440A JP2006229150A JP2006229150A JP2008054440A JP 2008054440 A JP2008054440 A JP 2008054440A JP 2006229150 A JP2006229150 A JP 2006229150A JP 2006229150 A JP2006229150 A JP 2006229150A JP 2008054440 A JP2008054440 A JP 2008054440A
Authority
JP
Japan
Prior art keywords
motor
temperature
current
value
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006229150A
Other languages
English (en)
Other versions
JP4641293B2 (ja
Inventor
Sumitaka Ogawa
純孝 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006229150A priority Critical patent/JP4641293B2/ja
Priority to CA2593889A priority patent/CA2593889C/en
Priority to US11/878,280 priority patent/US7791296B2/en
Publication of JP2008054440A publication Critical patent/JP2008054440A/ja
Application granted granted Critical
Publication of JP4641293B2 publication Critical patent/JP4641293B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

【課題】温度センサを用いずにパワーアシストモータおよびコントローラの温度を精度良く検出して過熱保護の機能を向上させる。
【解決手段】第1推定温度算出部13はモータ電流Iによる発熱量と放熱量との差からモータ82の温度を推定する。第1目標電流値算出部27は推定温度に応じたレシオRcを求め、目標ベース電流値IbをレシオRcに従って制限した第1仮目標値を算出する。第2推定温度算出部14はモータ電流Iによる発熱量と放熱量との差からモータコントローラ93の温度を推定する。第2目標電流値算出部28は推定温度に応じたレシオRcを求め、目標ベース電流値IbをレシオRcに従って制限した第2仮目標値を算出する。目標値選択部30は、第1、第2仮目標値のうち小さい値を選択する。
【選択図】図1

Description

本発明は、過熱保護装置に関し、特に、モータおよびモータ周辺装置の温度を推定し、この推定された温度に従って電流を制限してモータおよびモータ周辺装置を過熱から保護する装置に関する。
ステアリングシャフトを回動させて車両を操舵する際、該ステアリングシャフトに電動モータで回動補助力を付与して操舵を楽にさせる電動パワーステアリングシステムが知られる。
特開2005−324796号公報には、電動モータの過熱を防止するため、モータの巻線温度を推定し、その推定温度に基づいてモータの温度保護制御を行う電動パワーステアリング装置の制御装置が記載されている。
一般に、モータの巻線温度を推定する場合、ジュールの法則に従い、巻線を流れる電流値と巻線の抵抗値を利用する。すなわち、電流値をI、抵抗値をR、通電時間をtとした場合、発熱量Qは、Q=I×I×R×t…(式1)で推定できる。
この式1により発熱量は推定されるが、さらに正確に温度を推定するためには、放熱量も考慮しなければならない。次式2は、放熱量補正項としての定数aを含む熱量推定式である。この式中において累積値Tは温度を代表する。
累積値T=Σ(K×I×I−a)…(式2)。この式2は、パワーステアリングが動作して電動モータに通電されたときの発熱量を通電時間分積算して温度を推定する式であり、放熱量として定数aを減算している。式2おける定数aは、温度を高めに見積もって温度保護を確実にするため、巻線の最高温度から通電を停止した時に常温に戻るまでの時間より長い時間で累積値がゼロに戻るようごく小さい値を設定する。定数aが大きすぎると、累積値Tが小さくなる傾向が大となり、巻線温度を低く見積もり易くなるためである。定数aにより、通電が長時間行われない場合、累積値Tはゼロに復帰する。なお、式2において、係数Kは積算係数であり、計算値を実測値に近づけるように予め実験によって求める数値である。
特開2005−324796号公報
上記式2を使用すれば、温度センサを使用することなく電動モータの温度を推定でき、この推定温度が予め設定した温度以上になれば、電動モータへの電流供給を停止することによって電動モータの保護が図られる。
しかし、電子式パワーステアリング装置では、通電による発熱部位がモータ(モータのコイルやブラシ)に限らず、モータを制御するモータコントローラ(特に、FETなどの電子部品)等、周辺装置にも及ぶので、これら全てが過熱保護の対象となる。そして、複数の要素または部品(以下、統合して「部品」という)を全て過熱保護対象とする場合、これら部品毎の発熱・放熱特性を考慮する必要がある。部品毎に熱容量が異なるので、ある部品は早く発熱し、早く放熱するし、また別の部品はゆっくりと発熱し、ゆっくりと放熱する。
そこで、このような熱容量の相違による発熱・放熱特性を考慮した場合、推定温度が全ての実際の部品温度を下回らないように、つまり推定温度は、発熱時には全ての部品の温度上昇より早めに上昇し、放熱時には全ての部品の温度降下よりゆっくりと降下するように決定されなけらばならない。
しかし、各部品の熱容量が異なっている場合、適切に温度を推定するのが困難であり、例えば、部品が過熱気味と推定されて早めに電流制限等の保護処置が行われることがある。そうすると、部品の温度が実際には下がっているにもかかわらず、保護装置を解除して正常運転に復帰するのが遅れるということがある。また、各部品毎に熱容量だけでなく耐熱温度が異なるので、複数の部品の温度を一つの算出式だけで簡単に推定することができない。
本発明の目的は、複数の部品を過熱から防止するのに適した推定温度を決定して適切に保護することができる過熱保護装置を提供することにある。
上記課題を解決するための本発明は、モータと、該モータの供給電流を予定の上限値以内で制御するモータコントローラとを含む装置の過熱保護装置において、前記モータへの供給電流に基づいて該モータの推定温度を算出する第1温度算出手段と、前記モータへの供給電流に基づいて前記モータコントローラの推定温度を算出する第2温度算出手段と、推定された前記モータの推定温度に応じて前記モータへの供給電流の上限値を決定する第1電流値算出手段と、推定された前記モータコントローラの推定温度に応じて前記モータへの供給電流の上限値を決定する第2電流値算出手段と、前記第1電流値算出手段および前記第2電流値算出手段で算出された電流の上限値のうち、いずれか一方を予め設定された基準で選択する選択手段とを具備した点に第1の特徴がある。
また、本発明は、前記選択手段が、前記第1電流値算出手段および前記第2電流値算出手段で算出された電流の上限値のうち、小さい方を選択するように構成されている点にい第2の特徴がある。
また、本発明は、前記第1温度算出段および前記第2温度算出手段が次式を使用して推定温度を算出するように構成されているとともに、該式中の係数のうち、少なくとも発熱係数Kupおよび放熱係数Kdnを前記モータ用とモータコントローラ用とで個別に設定している点に第3の特徴がある。算出式は次のとおりである。推定温度=Σ((発熱係数Kup×モータ電流I×I)−(放熱係数Kdn×(前回積算温度Td−周囲温度Tm))+初期温度T0。
また、本発明は、前記モータと前記モータコントローラのそれぞれの熱容量に応じて、熱容量が大きい方の発熱係数Kupおよび放熱係数Kdnを熱容量が小さい方の発熱係数Kupおよび放熱係数Kdnより小さく設定している点に第4の特徴がある。
また、本発明は、前記モータに関しては該モータ内のモータ電流供給用ブラシの、前記モータコントローラに関しては該モータコントローラ内のモータ電流スイッチング素子のそれぞれの熱容量により前記発熱係数Kupおよび放熱係数Kdnが決定されている点に第5の特徴がある。
さらに、本発明は、前記モータが、ステアリングシャフトに作用するトルクに応じた操舵補助力を該ステアリングシャフトに付与するパワーステアリング装置用モータであり、前記モータコントローラが、前記トルクの大きさに応じてモータ供給電流を変化させて前記操舵補助力を制御するように構成されている点に第6の特徴がある。
第1〜第6の特徴を有する本発明によれば、モータおよびモータコントローラの双方について個別に推定温度および推定温度に従った電流の上限値が算出されるので、モータおよびモータコントローラの温度特性に応じて適切な電流制限を行うことができる。
特に、第2の特徴によれば、算出された電流の上限値のうち小さい方を選択してモータ供給電流を制御するので、より過熱しにくい方を基準に制御が行われ、確実に装置の過熱保護をすることができる。
また、第3の特徴によれば、発熱係数と放熱係数とを考慮して温度を推定できるとともに、少なくとも発熱係数と放熱係数とをモータとモータコントローラとで別個に設定し、算出式自体は共通にできるので、構成が簡単である。
また、第4の特徴によれば、熱容量の違いによる発熱および放熱を考慮した適切な過熱保護が可能である。
さらに、第5の特徴によれば、モータおよびモータコントローラの構成部品のうち、熱容量が他の部品と比較して小さくて過熱しやすい部品を基準に発熱係数や放熱係数を設定するので、確実に過熱保護を行うことができる。
さらに、第6の特徴によれば、頻繁にパワーステアリングが動作する走行状態においてパワーステアリング装置用のモータの温度をより正確に推定して、過熱から保護することができる。
以下、図面を参照して本発明の一実施形態を説明する。図2は、本発明の一実施形態に係る過熱保護装置付き電動パワーステアリング装置を組み込んだ鞍乗り型車両の左側面図である。鞍乗り型車両(以下、単に「車両」という)1は、小型軽量に構成された車体の前後に、比較的大径の低圧バルーンタイヤである左右の前輪2および3を備え、主に不整地での走行性能を高めたATV(All Terrain Vehicle)である。
車体フレーム4の中央部には、原動機としてのエンジン5が搭載される。エンジン5は水冷単気筒エンジンであり、出力軸を車両1の前後方向に指向させて配置される。エンジン5の下部から前方に導出されたプロペラシャフト8fが、車体フレーム4の前部下側で前減速機構11を介して前輪2に動力伝達可能に接続される。同様に、プロペラシャフト8rが、車体フレーム4の後部下側で後減速機構12を介して後輪3に動力伝達可能に接続される。
エンジン5において、クランクケース6上に立設されるシリンダ部7の後部にはスロットルボディ17が接続され、スロットルボディ17の後部にはエアクリーナ18が接続される。シリンダ部7には排気管19が接続され、排気管19の先端部は車体後部のサイレンサ21に接続される。
車両1の車体上部の車幅方向中央前部には燃料タンク22が設けられ、その後方には搭乗者用のシート23が配置される。シート23の後部下方にはバッテリ94が配置されている。燃料タンク22の前部はステアリングシャフト25を上下に延在可能なように凹部が形成されており、ステアリングシャフト25の上端部にはバー型のステアリングハンドル(以下、単に「ハンドル」という)24が固定されている。ステアリングシャフト25の下部前方にはエンジン冷却用のラジエータ26が配設され、ラジエータ26の前方にはラジエータファン29が設けられる。
車体フレーム4の前部には、車体前部を覆う車体カバー31、前輪2の上方を覆うフロントフェンダ32、並びにフロントプロテクタ33およびフロントキャリア34が取り付けられる。車体フレーム4の後部には、後輪3の上方を覆うリアフェンダ35およびリアキャリア36が取り付けられる。
図3は電動パワーステアリング装置を示す図2の要部拡大側面図である。ステアリングシャフト25の上部および下端部は、車体フレーム4に接合された上部支持ブラケット54および下端部支持ブラケット55でそれぞれ支持される。電動パワーステアリング装置80は、ステアリングシャフト25の中間部に設けられたアクチュエータユニット81と、アクチュエータユニット81に一体化されたパワーアシストモータ82を駆動制御する電子制御装置(ECU)としてのコントロールユニット93とからなる。パワーアシストモータ82はアクチュエータユニット81内に設けられるトルク検出手段としてのトルクセンサ91の検出値に基づいて制御される。
ステアリングシャフト25の下端部はアクチュエータユニット81の入力軸83に同軸で連結されるとともに、これらと同軸をなす出力軸84が、軸受55aを介して下部支持ブラケット55に支持される。入力軸83および出力軸84は、アクチュエータユニット81のハウジング85内において、トルクセンサ91の一部であるトーションバー92を介して互いに接続されている。
前輪2には、接地抵抗が作用しているので、ハンドル24を右または左回りに操作すると、ハンドル24に機械的に連結される入力軸83と、前輪2に機械的に連結される出力軸84との間に、相対回転力が生じる。その結果、トーションバー92が捩れるので、この捩れ量に基づいてハンドル24の操舵トルクを検出できる。操舵トルクの検出値はコントロールユニット93に入力され、この検出値に応じてパワーアシストモータ82が駆動制御される。
これにより、ハンドル24を回動操作する際にステアリングシャフト25(出力軸84)を含むステアリング機構には、ハンドル24からの操作力に加えてパワーアシストモータ82からの回動補助力が付与されるので、ハンドル24の操作量が相対的に軽減される。
図4は、出力軸84の周辺拡大断面図である。図4において、左右一対のタイロッド75は、車両1の車体幅方向に延び、それぞれ左右の前輪2に連結される。これらタイロッド75の端部(前輪2が連結される側と反対側の端部)は車体幅方向中央部でピットマンアーム84aに連結される。ピットマンアーム84aは出力軸84にスプライン嵌合される。
ピットマンアーム84aは、下部支持ブラケット55の直ぐ下方に位置しており、このピットマンアーム84aと軸受55aとでステアリングシャフト25つまりハンドル24の右または左周りの最大転舵位置を規定するハンドルストッパを構成している。すなわち、軸受55aに下側にはストッパ本体55bが突設されるとともに、ピットマンアーム84aの左右前面には当接部84bがそれぞれ形成されており、ハンドル24が転舵角度0度の状態つまり車両直進状態から右または左回りに所定角度θ1回動したときに、当接部84bがストッパ本体55bの側部に当接し、それ以上のハンドル操作が規制された最大転舵状態となる。ストッパ本体55bの側部に最大転舵検出手段としての最大転舵スイッチ10がそれぞれ設けられる。
図5は、パワーアシストモータ82の要部側面断面図、図6は同正面断面図である。パワーアシストモータ82は、ハウジング82aと、ハウジング82aに嵌挿された軸受82bで回動自在に支持されたモータ軸82cと、モータ軸82cに取り付けられたコミュテータ82dと、ブラシホルダ82eに保持されてコミュテータ82dの外周に当接するようにばね82fで付勢されたブラシ82gとを備える。ブラシホルダ82eは絶縁板82hを介してハウジング82aに取り付けられている。
図7は、電動パワーアステアリング用制御装置(モータコントローラ)の断面図、図8は、蓋を取った状態のコントロールユニット93の平面図である。コントロールユニット93は、アルミダイキャスト製のケース95と、ケース95内に絶縁シート96を介して配置されたスイッチング素子としての4個のFET97と、FET97を取り付けた基板98と、ケース95に適合する樹脂製の蓋99とからなる。FET97は、熱伝導性の良好なアルミ製のケース95に接合されて、熱容量が大きくなるように取り付けられている。
図9は、コントロールユニット93の要部機能を示すブロック図である。コントロールユニット93は、最大転舵スイッチ10から入力される最大転舵検出信号並びにパワーアシストモータ82へ供給される電圧および電流の値に基づいてステアリングシャフト25の転舵角度を検出するとともに、検出された転舵角度に基づいてステアリングシャフト25への操舵補助力を制御する。
コントロールユニット93は、ステアリングシャフト25の相対転舵角度(任意位置からの転舵角度)を算出する転舵角度算出部93dと、最大転舵検出信号に基づいてステアリングシャフト25の転舵基準位置(車体に対する転舵基準状態)を推定する基準位置推定部93eとを有する。
目標ベース電流演算部93fは、トルクセンサ91による検出トルクと、前記相対転舵角度および転舵基準位置から知り得るステアリングシャフト25の絶対転舵角度(転舵基準位置からの相対転舵角度)とに基づき、操舵補助力の基準となるモータ電流値である目標ベース電流値を算出する。目標ベース電流値の決定には車速をパラメータに加えるのが望ましい。
目標ベース電流値は目標電流制限部93bに入力される。パワーアシストモータ82に供給される電流を検出する電流センサ93aが設けられ、電流センサ93aによって検出された電流値は目標電流制限部93bおよび電流フィードバック制御部93cに入力される。
目標電流制限部93bは、パワーアシストモータ82とモータ出力部93hを過熱から保護するため、パワーアシストモータ82に供給される電流の制限割合(レシオ)を決定するとともに、このレシオと目標ベース電流値とに基づいて制限された目標電流値を算出する。具体的には、パワーアシストモータ82への供給電流に基づき、パワーアシストモータ82のブラシ温度と、モータ出力部93hのスイッチング回路を構成するFETの温度とを算出し、それらの温度に応じて目標電流値を算出する。なお、目標電流制限部93bや温度推定に使用される算出式に関してはさらに後述する。
目標電流演算部93gは目標電流制限部93から出力される目標電流値にイナーシャ補正やダンパ補正を加える。イナーシャ補正はトルクの変化量をパラメータとして目標電流値を補正する。モータイナーシャを考慮し、転舵開始時にハンドル24を介して運転者が感じる重さを改善し、操舵フィーリングを向上させることができる。ダンパ補正はパワーアシストモータ82の回転数をパラメータとして目標電流値を補正する。補正値は回転数の増大に伴って目標電流値を小さくする方向に設定される。ハンドル24の手応えを適正化して操舵フィーリングを向上させることができる。
バッテリ94からの電流はモータ出力部93hを介してパワーアシストモータ82に供給される。モータ出力部93hは前記FET97をブリッジ構成にしたスイッチング回路であり、FET97のオンデューティによってパワーアシストモータ82へ供給する電流値を変化させる。電流フィードバック制御部93cは、電流センサ93aによる検出電流値を目標電流値に収斂させるようにデューティ指示値を決定し、モータ出力部93hに入力する。
このように、パワーアシストモータ82は、トルクセンサ91からの操舵トルク検出信号だけでなく、ステアリングシャフト25の絶対操舵角度も加味して駆動制御されるので、例えば、車両直進位置からハンドル24を切る時と、車両直進位置にハンドル24を戻す時とで操舵補助力を変化させることができる等、きめ細かな制御が可能となる。また、パワーアシストモータ82に供給される電流はパワーアシストモータ82およびモータコントローラ93の推定温度によって制限され、推定温度が予定の過熱保護温度以上になったときに操舵補助力を低減もしくはゼロにしてパワーアシストモータ82およびその周辺部品であるモータコントローラ(特にFET97)を過熱から保護する。
前記目標電流制限部93bで実行されるパワーアシストモータ82およびモータコントローラ93の温度推定手法を従来技術との対比で説明する。従来はパワーアシストモータの温度を基準に過熱保護を行っていた。本実施形態では、アシストモータに流れる電流と同じ電流が流れるモータコントローラに関しても温度を推定し、両者のうち、高い方の推定温度に従ってモータ電流を制限し、パワーアシストモータおよびモータコントローラを過熱から保護するように構成した。
また、従来、パワーアシストモータ82の温度は、発熱量と放熱量との差の累積値に基づいて推定している。「背景技術」の項で式2に関して説明したように、従来は放熱量を定数aとして設定しており、通電中か否かにかかわらず一定量が放熱されるとしていた。そして、定数aは極めて小さい値であったので、通電が連続するような走行状態では、温度に対応する累積値Tはほとんど減少せずに上昇し続ける傾向となる。したがって、目標電流値は短時間で制限され、操舵補助力が発生しなくなることがあった。
しかし、実際は、例えば、ハンドル24の戻し操作が頻繁なオフロード走行では、発熱と放熱との繰り返しにより温度がほぼ平衡する。図10は、オフロード走行条件で上記式2に基づいて計算された累積値Tと、パワーアシストモータ82のブラシ部での実測温度TBとを示す図である。この図のように、累積値Tは上昇し続けているが、実測温度TBは140°C程度で平衡している。累積値Tが上昇し続けると、実測温度TBが平衡しているにもかかわらず、累積値Tで代表される温度は目標電流値を制限するしきい値温度(耐熱温度)を超えるようになるので、目標電流値が制限されて操舵補助力の付与が停止または低減される。
そこで、計算値で実際のパワーアシストモータ82の温度を代表できるように、式2を修正することを検討した。まず、パワーアシストモータ82とモータコントローラ93の発熱・放熱特性を説明する。図11はパワーアシストモータ82およびモータコントローラ93の発熱・放熱特性図である。なお、パワーアシストモータ82の温度はこのモータのブラシの温度で代表し、モータコントローラ93の温度はこのFET97の温度で代表している。
図11(a)において、パワーアシストモータ82に時間t0で通電開始すると、ブラシは熱容量が小さいので急激に温度Tpmは上昇し、時間t1で耐熱温度Tyに到達する。そして、ブラシの温度Tpmが耐熱温度Tyに到達した時点t1で通電を停止すると急激にブラシの温度Tpmは低下する。
一方、アルミダイキャストケース95のようなヒートシンク部材に装着されているFETブリッジ回路は熱容量が大きいので、図11(b)に示すように、時間t0で通電開始すると、パワーアシストモータ82のブラシとは異なり、温度Tdvはゆっくりと上昇し、時間t2で耐熱温度に到達する。そこで、過熱保護のために時間t2で通電を停止するが、大きい熱容量のために温度Tdvはさらに耐熱温度Tyを超えて上昇を続け、時間t3でようやく下降に転じてゆっくりと温度が下がる。
パワーアシストモータ82とモータコントローラ93のFET97には同じタイミングで通電開始・停止されるので、温度は次に示すように推移する。図12は同じタイミングで通電開始および通電停止した場合のパワーアシストモータ82およびモータコントローラ93の温度変化を示す図である。図12(a)においてパワーアシストモータ82の温度Tpmが時間t1で耐熱温度Tyに到達すると通電を停止し、温度Tpmが時間t4で初期温度T0に下がると通電を開始している。
この通電タイミングと同じタイミングでモータコントローラ93に通電すると、図12(b)のようにモータコントローラ93の温度Tdvは変化する。図12(b)に示すように、熱容量が小さいパワーアシストモータ82の通電タイミングと同じタイミングでは、熱容量が大きいモータコントローラ93は、通電中の温度上昇よりも通電停止中の温度低下の程度が小さいので、パワーアシストモータ82のように適正に温度制御できない。したがって、温度Tdvはやがて時間t5で耐熱温度を超え、この時間t5で過熱保護のために通電が停止される。
この特性に鑑みて早い温度上昇と遅い温度下降とを組み合わせて温度を推定する例を図13に示す。図13において、推定温度Teにパワーアシストモータ82の温度Tpmとモータコントローラ93の温度Tdvを重ねると、推定温度Teは実測温度Tpmおよび温度Tdvの双方を上回っており、この推定温度Teに従って推定温度Teが耐熱温度Tyを超えないよう電流供給停止や低減を行う制御を行えばよい。ところが、パワーアシストモータ82やモータコントローラ93の実際の温度TpmやTdvが初期温度T0に下がる時間よりかなり遅れて推定温度Teは初期温度T0に戻っている。したがって、頻繁にパワーアステアリング動作を行う状況に対応できない場合がある。
そこで、推定温度Teが初期温度T0より高めに設定した基準温度に下がった時点で通電を再開するようにして、頻繁なパワーステアリング動作を可能にすることが考えられる。しかし、その場合には次の不具合がある。図14は推定温度Teが初期温度T0より高い基準温度Trに低下した時点で通電を再開することを想定した推定温度Teを示す図である。図14に示したように、初期温度T0より高めに設定した基準温度Trから通電が再開されるので、短時間でパワーステアリング動作を復帰させられる一方、短時間で推定温度Teが耐熱温度Tyを超えるようになり、再び電流制限が実施される。つまり、電流制限動作の後、短時間でパワーステアリング動作が復帰されるが、再び電流制限されるまでの時間も短くなってしまう。
このように、単一の推定温度では不具合が予想される。そこで、以下に示す実施例では、複数の部品(ここでは、パワーアシストモータ82およびモータコントローラ93)毎に推定温度を計算し、それらの推定温度に応じて決定された目標電流値のうち、小さい方を選択してパワーアシストモータ82およびモータコントローラ93に供給する電流を決定することにした。
前記式2による温度シミュレーション結果では、パワーアシストモータ82の温度と周囲温度との差に拘わらず、計算毎に定数aが減算されていくだけなので、推定温度Teは直線的な下降する。
そこで、本実施形態では、パワーアシストモータ82およびモータコントローラ93の温度と、その周囲温度との差を考慮した推定式を設定した。この推定式の設定に際しては、推定温度Teが実測温度を上回るように発熱係数および放熱係数を設定した。推定式は次の通りである。
累積値TS=Σ((発熱係数Kup×電流I×I)−(放熱係数Kdn×(前回積算温度Td−周囲温度Tm)))+初期温度T0…(式3)。初期温度T0および周囲温度Tmはデフォルト値であり、いずれも予想されるパワーアシストモータ82やモータコントローラ93の周囲温度の最大値より高く設定するのがよい。
図1は、目標電流制限部93bの要部機能を示すブロック図である。第1係数記憶部15には、補正係数としてパワーアシストモータ82の発熱係数Kupと、放熱係数Kdnと、初期温度T0と、モータ周囲温度Tmとが予め記憶されている。第2係数記憶部16には、補正係数としてモータコントローラ93の発熱係数Kup2と、放熱係数Kdn2と、初期温度T02と、モータコントローラ周囲温度Tm2とが予め記憶されている。
第1推定温度算出部13は、モータ電流Iと前記第1係数記憶部15から入力される補正係数とに基づき、前記推定式3を使ってパワーアシストモータ82の推定温度TS1を算出する。第2推定温度算出部14は、モータ電流と前記第2係数記憶部15から入力される補正係数とに基づき、前記推定式3を使ってモータコントローラ93の推定温度TS2を算出する。但し、推定式3中の係数Kup、Kdnや、温度T0、Tmは、それぞれKup2、Kdn2、温度T02、Tm2と読み替える。
第1目標電流値算出部27は、第1推定温度算出部13から入力されるパワーアシストモータ82の推定温度TS1に基づいてモータ電流の第1仮目標値を決定する。第2電流制限値算出部28は、第2推定温度算出部14から入力されるモータコントローラ93の推定温度TS2に基づいてモータ電流の第2仮目標値を決定する。
目標電流値選択部30は、前記第1仮目標値および第2仮目標値のうち小さい方を選択して目標電流値とする。小さい値に従ってモータ電流を制限すれば、パワーアシストモータ82およびモータコントローラ93の双方を過熱から保護できる。選択された目標電流値は目標電流演算部93gでイナーシャ・ダンパ補正されて出力される。
上記目標電流制限部93bをさらに詳細に説明する。図15は、目標電流制限部の詳細ブロック図(その1)である。第1推定温度算出部13は、モータ発熱量算出部131と、モータ発熱量積算値バッファ132と、加算部133,134と、乗算部135とを有する。また、第1目標電流値算出部27は、電流値レシオマップ271と乗算部272とを有する。
電流センサ93aで検出された電流値(モータ電流値)Iは乗算部135で二乗される。モータ電流値Iの二乗された値は発熱係数Kupおよび放熱係数Kdnとともにモータ発熱量算出部131に入力される。モータ発熱量算出部131には、パワーアシストモータ82の周囲温度Tmも入力され、次式4に従ってモータ発熱量Qpmが算出される。モータ発熱量Qpm=Kup×I×I−Kdn×(Td−Tm)…(式4)。モータ発熱量Qpmは加算部133で累算され、モータ発熱量積算値バッファ132に入力される。モータ発熱量Qpmの累積値Tdは積算温度Tdとしてモータ発熱量算出部131にフィードバックされる。さらに、積算温度Tdは加算部134に入力され、初期温度T0と加算して累積値TS1が出力される。この累積値TS1に従って、パワーアシストモータ82に供給される目標電流値が決定される。
累積値TS1は第1目標電流値算出部27に設けられるレシオマップ271に入力され、電流レシオつまり電流制限割合が決定される。レシオマップ271に設定されたレシオは累積値TS1が予定値までは「1.0」であり、この予定値を超えた領域では「0」である。乗算部272では、目標ベース電流値Ibにレシオが乗算される。したがって、レシオが「1.0」以下では目標ベース電流値Ibが制限される。乗算部272から出力される目標電流値つまり制限された目標ベース電流値は目標電流値選択部30に入力される。
図16は、第2推定温度算出部14の詳細ブロック図である。第2推定温度算出部14は、モータコントローラ発熱量算出部141と、モータコントローラ発熱量積算値バッファ142と、加算部143,144と、乗算部145とを有する。また、第2目標電流値算出部28は、電流値レシオマップ281と乗算部282とを有する。
電流センサ93aで検出された電流値(モータ電流値)Iは乗算部145で二乗される。モータ電流値Iの二乗された値は発熱係数Kup2および放熱係数Kdn2とともにモータコントローラ発熱量算出部141に入力される。モータコントローラ発熱量算出部141には、モータコントローラ93の周囲温度Tm2も入力され、次式5に従ってモータコントローラ発熱量Qdvが算出される。モータ発熱量Qdv=Kup2×I×I−Kdn2×(Td2−Tm2)…(式5)。モータコントローラ発熱量Qdvは加算部143で累算され、モータコントローラ発熱量積算値バッファ142に入力される。モータコントローラ発熱量Qdvの累積値つまり積算温度Td2はモータコントローラ発熱量算出部141にフィードバックされる。さらに、積算温度Td2は加算部144に入力され、初期温度T0と加算して累積値TS2が出力される。
第2目標電流値算出部28の構成と動作は第1目標電流値算出部27と同様であるので説明は省略する。
上記実施形態では、周囲温度Tm、Tm2を固定値とした。しかし、熱がこもりやすい空間を想定した場合、周囲温度Tm、Tm2を固定値とすると不都合である。そこで、周囲温度Tm、Tm2を、熱のこもりを考慮にいれて算出することとした。周囲温度Tmの算出式は次式6である。
周囲温度Tm=Σ((発熱係数Kmup×電流I×電流I)−(放熱係数Kmdn×(前回周囲温度Tm−周囲温度Tm0)))+初期温度T0…(式6)。この式6は係数が異なるもの、式3と同様に構成されている。また、周囲温度Tm2も周囲温度Tmと同様にこの式を使って算出される。なお、発熱係数Kmupと放熱係数Kmdnは、前記発熱係数Kupおよび放熱係数Kdnと共通であってもよい。
また、熱容量が小さい場合、つまりパワーアシストモータ82の周囲が比較的開放的な空間である場合は、周囲温度Tmは式7で近似的に計算することができる。周囲温度Tm=Σ((発熱係数Kmup×電流I×電流I−a)…(式7)。式7は、放熱量を定数aとした簡単な式としている。
周囲温度Tmの算出式として式6および式7のいずれを使うかは、パワーアシストモータ82やモータコントローラ93を取り囲む空間の状況(広いか狭いか、または発熱部品が周囲に多いか少ないか等)に応じて決定すればよい。
また、発熱係数Kmupや放熱係数Kmdnを固定値とし、モータ電流Iの関数として周囲温度Tm、Tm2の補正を行ってもよい。図17は、発熱係数Kmupや放熱係数Kmdnを固定値として、モータ電流Iの関数として周囲温度Tm、Tm2を算出するための要部機能を示すブロック図である。図17において、積算係数算出部37は、モータ電流I×Iの関数として積算係数RTOを出力するものでありマップにより構成できる。積算係数算出部37は、モータ電流Iが入力されるとマップから対応する積算係数RTOを算出して加算部38に入力する。加算部38は積算値バッファ39に累積された累積積算係数ΣRTOに、積算係数算出部37から最新に入力された積算係数RTOを加算する。加算された積算係数RTOは新たな累積積算係数ΣRTOとして積算値バッファ39に入力される。
積算値バッファ39に累積された累積積算係数ΣRTOは、乗算部40に入力され、乗算部40はデフォルトのモータ周囲温度Tmに累積積算係数ΣRTOを乗算してモータ周囲温度Tmを補正する。補正されたモータ周囲温度Tmは前記モータ発熱量算出部131に供給される。
モータコントローラ周囲温度Tm2も図17と同様の構成によって補正され、モータコントローラ発熱量算出部141に供給される。
上述の実施形態によれば、温度センサを用いることなく、パワーアシストモータ82やモータコントローラ93の温度を推定して、これらの過熱防止を図ることができる。すなわち、レシオマップ271や281から読み出されたレシオに基づいて決定された目標電流値で電流が制限される。しかしながら、電流が制限されると電流値に基づいて計算されている累算値TS1やTS2が減少するので、レシオマップ271や281に従ってレシオが上がり、電流制限が緩和される。そうすると、電流が増大するので再び累算値TS1,TS2が増大し、レシオが下がって電流が低減されるので、またレシオが上がる。こうして、累積値TS1,TS2に従ってレシオが1.0から低減された後、ある電流値付近で制限電流が小刻みに変動して平衡状態となり、その電流値以下に電流を制限できない。
これを解決するために上述の実施形態を次のように変形することができる。図18は、第2実施形態に係る目標電流制限部の要部機能ブロック図であり、図1と同符号は同一または同等部分である。モータ発熱量算出部42は前記モータ発熱量算出部131と同様であるが、前記算出式5に代えて次式8を使ってパワーアシストモータ82の発熱量Qpmを算出する点で異なる。モータ発熱量Qpm=Kup×(I/Rc)×(I/Rc)−Kdn×(Td−Tm)…(式8)。つまり、モータ発熱量算出部42は前記式4中の「I」を「I/Rc」で置き換えた算出式(式8)を備えている。
非制限電流算出部43は、現在のモータ電流Iを現在のレシオRcで割ることにより、電流レシオで目標電流を制限しなかった場合の電流を算出する。乗算部44は、非制限電流算出部43の出力(I/Rc)を二乗してモータ発熱量算出部42に入力する。
モータ発熱量算出部42は、乗算部44から入力された値(I/Rc)×(I/Rc)と、発熱係数Kup、放熱係数Kdn、周囲温度Tm、電流値I/Rc、および積算値バッファ142からフィードバックされる積算温度Tdを入力されて発熱量Qmを算出し、加算部143に出力する。積算値バッファ142の出力つまり積算温度Tdは加算部144に入力され、初期温度T0と加算して累積値TSmが出力される。こうして、制限しなかった場合の電流I/Rcをもとに計算された累積値TSmは、レシオが低下しても減少することなく増大を続ける。したがって、これに対応してレシオが低下して目標電流は制限される。
レシオ判断部45は、現在のレシオが所定値(ゼロまたは予定の下限レシオ)以下に低下しているか否かを判断する。現在のレシオが所定値以下に低下していない場合は、現在のレシオRcを非制限電流算出部43に入力する。現在のレシオが所定値に低下している場合は、レシオ再設定部46を付勢する。レシオ再設定部46は、レシオRcとして「1.0」を非制限電流算出部43に入力する。このレシオの再設定つまりリセットにより、レシオRc=0で電流Iを割り算する不具合が防止されるとともに、電流が十分に制限されている状態での累積値TS1の増加を防止することができる。
電流制限状態を長時間続けた場合、過剰に累積値TS1が増加してしまい、ハンドル操作を止めた後累積値が減少するのに時間がかかりすぎて電流制限状態から通常状態に復帰するのが遅れるという不具合が起こり得る。レシオRcを「1」にリセットすることにより、適当な時間で電流制限状態から通常状態への復帰が可能になる。
なお、非制限電流算出部43は、現在のモータ電流を現在のレシオで割り算して発熱量算出のための電流値を計算するようにしたが、この非制限電流値算出部は、現実の電流値をレシオを用いて高めに補正するように変形することもできる。
モータコントローラ発熱量算出部141も、モータ発熱量算出部131をモータ発熱量算出部42に変形したように変形できるが、同様に構成できるので、説明は省略する。
上述のように、パワーアシストモータ82およびモータコントローラ93のそれぞれについて異なる算出式を使用して温度を推定して目標電流値を計算し、その目標電流値のうち小さい方に電流を制限するようにした。したがって、計算で求められる個々の推定温度を図12に示した実際温度にそれぞれ近似させることができ、電流制限がかかるのが早すぎることなく、通電再開が遅くなることもなく、適正にパワーアシストモータ82やモータコントローラ93を過熱から保護することができる。
上記各実施形態では、パワーアシストモータ82用とモータコントローラ93用とで互いに異なる発熱係数、放熱係数、周囲温度および初期温度などを予め設定することとした。しかし、これらのうち、熱容量の影響を直接受けるパワーアシストモータ82およびモータコントローラ93の発熱係数および放熱係数を少なくともそれぞれに専用に設定しておき、他は共通の係数としてもよい。また、レシオマップに関しては、パワーアシストモータ82およびモータコントローラ93の温度推定のためにそれぞれに専用に異なるものを設けても良いが、単一のレシオマップを共通で使用してもよい。
上述の実施形態は、本発明を電動パワーステアリング装置に適用した例を示したが、本発明の保護装置は、パワーステアリング装置用に限らず、発熱量と放熱量との差を累積してモータ温度やモータコントローラの温度を推定する手段を備え、その推定温度に基づいてモータやモータコントローラを過熱から保護するシステムに広く適用することができる。さらに、モータコントローラに限らず、モータの周辺装置も含めて個々の温度を推定し、これらに共通の推定温度を決定するようにできる。
本発明の一実施形態に係る電動パワーステアリング用制御装置内の目標電流制限部の要部機能を示すブロック図である。 本発明の電動パワーステアリング用制御装置を組み込んだ鞍乗り型車両の左側面図である。 図2の要部拡大側面図である。 図3におけるA−A断面図である。 パワーアシストモータの側面断面図である。 パワーアシストモータの正面断面図である。 モータコントローラの断面図である。 モータコントローラの内部正面図である。 電動パワーステアリング用制御装置の要部機能を示すブロック図である。 オフロード走行条件でのモータ温度シミュレーション結果である累積値Tとパワーアシストモータのブラシ部での実測温度TBとを示す図である。 パワーステアリング装置に含まれる部品の発熱・放熱特性を示す図である。 断続通電した場合の部品の発熱・放熱特性を示す図である。 共通算出式によって算出された推定温度の変化を示す図である。 断続通電した場合の推定温度の変化を示す図である。 目標電流制限部の詳細なブロック図(その1)である。 目標電流制限部の詳細なブロック図(その2)である。 周囲温度を補正する手段の機能を示すブロック図である。 本発明の第2実施形態に係る目標電流制限部の詳細なブロック図である。
符号の説明
1…鞍乗り型車両、 10…最大操舵スイッチ、 13…第1推定温度算出部、 14…第2推定温度算出部、 25…ステアリングシャフト、 27…第1目標電流値算出部、 28…第2目標電流値算出部、 30…目標電流値選択部、 43…非制限電流算出部、 46…レシオ再設定部、 80…電動パワーステアリング装置、 82…パワーアシストモータ、 91…トルクセンサ、 92…トーションバー、 93…モータコントローラ、 93a…電流センサ、 93b…目標電流制限部、 131…モータ発熱量算出部、 141…モータコントローラ発熱量算出部、 271、281…レシオマップ

Claims (6)

  1. モータと、該モータの供給電流を予定の上限値以内で制御するモータコントローラとを含む装置の過熱保護装置において、
    前記モータへの供給電流に基づいて該モータの推定温度を算出する第1温度算出手段と、
    前記モータへの供給電流に基づいて前記モータコントローラの推定温度を算出する第2温度算出手段と、
    推定された前記モータの推定温度に応じて前記モータへの供給電流の上限値を決定する第1電流値算出手段と、
    推定された前記モータコントローラの推定温度に応じて前記モータへの供給電流の上限値を決定する第2電流値算出手段と、
    前記第1電流値算出手段および前記第2電流値算出手段で算出された電流の上限値のうち、いずれか一方を予め設定された基準で選択する選択手段とを具備したことを特徴とする過熱保護装置。
  2. 前記選択手段が、前記第1電流値算出手段および前記第2電流値算出手段で算出された電流の上限値のうち、小さい方を選択するように構成されていることを特徴とする請求項1記載の過熱保護装置。
  3. 前記第1温度算出段および前記第2温度算出手段が次式を使用して推定温度を算出するように構成されているとともに、該式中の係数のうち、少なくとも発熱係数Kupおよび放熱係数Kdnを前記モータ用とモータコントローラ用とで個別に設定していることを特徴とする請求項1または2記載の過熱保護装置。
    推定温度=Σ((発熱係数Kup×モータ電流I×I)−(放熱係数Kdn×(前回積算温度Td−周囲温度Tm))+初期温度T0
  4. 前記モータと前記モータコントローラのそれぞれの熱容量に応じて、熱容量が大きい方の発熱係数Kupおよび放熱係数Kdnを熱容量が小さい方の発熱係数Kupおよび放熱係数Kdnより小さく設定していることを特徴とする請求項3記載の過熱保護装置。
  5. 前記モータに関しては該モータ内のモータ電流供給用ブラシの、前記モータコントローラに関しては該モータコントローラ内のモータ電流スイッチング素子のそれぞれの熱容量により前記発熱係数Kupおよび放熱係数Kdnが決定されていることを特徴とする請求項4記載の過熱保護装置。
  6. 前記モータが、ステアリングシャフトに作用するトルクに応じた操舵補助力を該ステアリングシャフトに付与するパワーステアリング装置用モータであり、
    前記モータコントローラが、前記トルクの大きさに応じてモータ供給電流を変化させて前記操舵補助力を制御するように構成されていることを特徴とする請求項1〜5のいずれか一つに記載の過熱保護装置。
JP2006229150A 2006-07-26 2006-08-25 鞍乗り型車両の過熱保護装置 Expired - Fee Related JP4641293B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006229150A JP4641293B2 (ja) 2006-08-25 2006-08-25 鞍乗り型車両の過熱保護装置
CA2593889A CA2593889C (en) 2006-07-26 2007-07-16 Motor protection system
US11/878,280 US7791296B2 (en) 2006-07-26 2007-07-23 Motor protection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006229150A JP4641293B2 (ja) 2006-08-25 2006-08-25 鞍乗り型車両の過熱保護装置

Publications (2)

Publication Number Publication Date
JP2008054440A true JP2008054440A (ja) 2008-03-06
JP4641293B2 JP4641293B2 (ja) 2011-03-02

Family

ID=39237950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006229150A Expired - Fee Related JP4641293B2 (ja) 2006-07-26 2006-08-25 鞍乗り型車両の過熱保護装置

Country Status (1)

Country Link
JP (1) JP4641293B2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098625A (ja) * 2009-11-05 2011-05-19 Honda Motor Co Ltd 過熱保護装置
JP2013086544A (ja) * 2011-10-13 2013-05-13 Kyb Co Ltd 電動アシスト台車
JP2013102655A (ja) * 2011-11-10 2013-05-23 Toshiba Corp 車両制御装置
JP2013139869A (ja) * 2011-12-06 2013-07-18 Denso Corp シフトレンジ切替装置
JP2013219846A (ja) * 2012-04-04 2013-10-24 Fanuc Ltd 推定したモータ温度によりモータの過熱保護を行うモータ制御装置
JP2014091373A (ja) * 2012-11-01 2014-05-19 Mitsubishi Electric Corp 電動パワーステアリング制御装置および電動パワーステアリング制御方法
WO2014147694A1 (ja) * 2013-03-18 2014-09-25 日本精工株式会社 電動パワーステアリング装置
JP2015046967A (ja) * 2013-08-27 2015-03-12 株式会社ミクニ 過熱防止装置、過熱防止方法及び過熱防止プログラム
DE102015002667A1 (de) 2014-03-03 2015-09-03 Fanuc Corporation Numerische Steuerung mit Abschätzungseinheit für Wärmestrahlungseigenschaften
JP2016111736A (ja) * 2014-12-02 2016-06-20 オークマ株式会社 モータの制御装置
JP2017220991A (ja) * 2016-06-03 2017-12-14 株式会社安川電機 モータ選定プログラム、モータ選定方法、モータ制御装置選定プログラム、及び機械システム
WO2019072771A1 (de) * 2017-10-13 2019-04-18 Continental Automotive Gmbh Verfahren und vorrichtung zur ansteuerung eines nockenwellenverstellers
JP2020050530A (ja) * 2016-02-25 2020-04-02 フジテック株式会社 乗客コンベア

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014552A (ja) * 2001-06-29 2003-01-15 Nissan Motor Co Ltd 温度検知装置
JP2005319824A (ja) * 2004-05-06 2005-11-17 Favess Co Ltd 電動パワーステアリング装置
JP2005319822A (ja) * 2004-05-06 2005-11-17 Favess Co Ltd 電動パワーステアリング装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014552A (ja) * 2001-06-29 2003-01-15 Nissan Motor Co Ltd 温度検知装置
JP2005319824A (ja) * 2004-05-06 2005-11-17 Favess Co Ltd 電動パワーステアリング装置
JP2005319822A (ja) * 2004-05-06 2005-11-17 Favess Co Ltd 電動パワーステアリング装置

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8253362B2 (en) 2009-11-05 2012-08-28 Honda Motor Co., Ltd. Overheat protection apparatus
JP2011098625A (ja) * 2009-11-05 2011-05-19 Honda Motor Co Ltd 過熱保護装置
US9045152B2 (en) 2011-10-13 2015-06-02 Kayaba Industry Co., Ltd. Electric assist cart
JP2013086544A (ja) * 2011-10-13 2013-05-13 Kyb Co Ltd 電動アシスト台車
JP2013102655A (ja) * 2011-11-10 2013-05-23 Toshiba Corp 車両制御装置
JP2013139869A (ja) * 2011-12-06 2013-07-18 Denso Corp シフトレンジ切替装置
JP2013219846A (ja) * 2012-04-04 2013-10-24 Fanuc Ltd 推定したモータ温度によりモータの過熱保護を行うモータ制御装置
JP2014091373A (ja) * 2012-11-01 2014-05-19 Mitsubishi Electric Corp 電動パワーステアリング制御装置および電動パワーステアリング制御方法
US9604666B2 (en) 2013-03-18 2017-03-28 Nsk Ltd. Electric power steering apparatus
WO2014147694A1 (ja) * 2013-03-18 2014-09-25 日本精工株式会社 電動パワーステアリング装置
JP2015046967A (ja) * 2013-08-27 2015-03-12 株式会社ミクニ 過熱防止装置、過熱防止方法及び過熱防止プログラム
DE102015002667A1 (de) 2014-03-03 2015-09-03 Fanuc Corporation Numerische Steuerung mit Abschätzungseinheit für Wärmestrahlungseigenschaften
DE102015002667B4 (de) * 2014-03-03 2017-10-05 Fanuc Corporation Numerische Steuerung mit Abschätzungseinheit für Wärmestrahlungseigenschaften
US10042346B2 (en) 2014-03-03 2018-08-07 Fanuc Corporation Numerical control device provided with heat radiation characteristic estimation part
JP2016111736A (ja) * 2014-12-02 2016-06-20 オークマ株式会社 モータの制御装置
JP2020050530A (ja) * 2016-02-25 2020-04-02 フジテック株式会社 乗客コンベア
JP2017220991A (ja) * 2016-06-03 2017-12-14 株式会社安川電機 モータ選定プログラム、モータ選定方法、モータ制御装置選定プログラム、及び機械システム
WO2019072771A1 (de) * 2017-10-13 2019-04-18 Continental Automotive Gmbh Verfahren und vorrichtung zur ansteuerung eines nockenwellenverstellers
US11352919B2 (en) 2017-10-13 2022-06-07 Vitesco Technologies GmbH Method and device for actuating a camshaft adjuster

Also Published As

Publication number Publication date
JP4641293B2 (ja) 2011-03-02

Similar Documents

Publication Publication Date Title
JP4641293B2 (ja) 鞍乗り型車両の過熱保護装置
JP5269748B2 (ja) 過熱保護装置
JP4859029B2 (ja) モータ保護装置
US7791296B2 (en) Motor protection system
US8229629B2 (en) Vehicle steering control system and control method therefor
JP5575205B2 (ja) 電動パワーステアリング制御装置および電動パワーステアリング制御方法
KR101562217B1 (ko) 전동식 조향 장치 및 그 구동방법
JP2009012662A (ja) 電動パワーステアリング装置
JP3601967B2 (ja) 電動パワーステアリング装置の制御装置
JP4189664B2 (ja) 電動パワーステアリング制御装置
JP3409756B2 (ja) 車両の電動パワーステアリング装置
JP3662790B2 (ja) 電動パワーステアリング装置
JP3405292B2 (ja) 車両の電動パワーステアリング装置
JP2002078379A (ja) 電動パワーステアリング装置の保護装置
JP4683491B2 (ja) モータ保護装置
JP4356295B2 (ja) 電動パワーステアリング装置
WO2018116144A1 (en) Control system for a vehicle and a control method thereof
JP5134042B2 (ja) 電動パワーステアリング装置
JP2005319824A (ja) 電動パワーステアリング装置
JP3409758B2 (ja) 車両の電動パワーステアリング装置
JP2000072006A (ja) 電動パワーステアリング装置
JP2006335263A (ja) 電動パワーステアリング装置の制御装置
JP4715899B2 (ja) 車両転舵制御装置
JP4333572B2 (ja) 電動パワーステアリング装置
JP2010173376A (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101126

R150 Certificate of patent or registration of utility model

Ref document number: 4641293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees