JP2008037183A - 車両用サスペンションシステム - Google Patents

車両用サスペンションシステム Download PDF

Info

Publication number
JP2008037183A
JP2008037183A JP2006211360A JP2006211360A JP2008037183A JP 2008037183 A JP2008037183 A JP 2008037183A JP 2006211360 A JP2006211360 A JP 2006211360A JP 2006211360 A JP2006211360 A JP 2006211360A JP 2008037183 A JP2008037183 A JP 2008037183A
Authority
JP
Japan
Prior art keywords
force
vehicle
warp
vehicle height
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006211360A
Other languages
English (en)
Other versions
JP4797869B2 (ja
Inventor
Kazuo Ogawa
一男 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006211360A priority Critical patent/JP4797869B2/ja
Publication of JP2008037183A publication Critical patent/JP2008037183A/ja
Application granted granted Critical
Publication of JP4797869B2 publication Critical patent/JP4797869B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

【課題】各車輪ごとに、流体スプリングと、電磁式アブソーバのようなアクチュエータとを備えたサスペンションシステムの実用性を向上させる。
【解決手段】流体スプリングによる車高変更(S14〜S16)に起因して発生するワープ力を推定し(S17)、そのワープ力を解消するためのワープ解消力をアクチュエータに発揮させる。具体的には、ワープ力が設定閾値以上となる場合に、ワープ解消力を発揮させた状態での車両の走行を許容し(S20)、あるいは、ワープ解消力を発揮させた状態で(S22)、流体スプリングによる再度の車高変更を実施する。車体に作用するワープ力が解消されることで、車両の乗り心地や、走行安定性が向上することになる。なお、ワープ力の推定において、アクチュエータ力を利用すれば、各流体スプリングに対して圧力センサを設ける必要がない。
【選択図】 図7

Description

本発明は、サスペンションスプリングとして流体スプリングを備え、かつ、車体と車輪とを上下方向において接近・離間させる力を発揮するアクチュエータを備えた車両用サスペンションシステムに関する。
エアスプリング等の流体スプリングを備えた車両用サスペンションシステムでは、例えば、下記特許文献1に記載されているように、流体スプリングに対して流体を流入・流出させて車高を変更する機能を有するものが存在している。一方で、車両用サスペンションシステムは、特許文献2に記載されているように、車体と車輪とを上下方向において接近・離間させる力を発揮するアクチュエータを備えるシステムも検討されており、その特許文献に記載されたシステムでは、流体スプリングに対する流体の流入・流出と、アクチュエータの力とによって、迅速な車高変更を可能としている。
特願平10−338015号公報 特開2006−117210号公報
流体スプリングを利用した車高変更を行った場合、例えば、車両が停車している路面,,順次車輪ごとに車高変更する場合におけるその順序等、諸々の影響により、車体を捩じるような力、つまり、ワープ力が残存する場合がある。このようなワープ力は、車両の乗り心地、走行安定性等を低下させる一因となるため、除去することが望ましい。上記特許文献1に記載のシステムでは、流体スプリングに対する流体の流入・流出のプロセスの適正化によりワープ現象を抑制しているが、その文献に記載された適正化手法は煩雑であり、簡便な手法によるワープ力の除去が可能となれば、車高変更可能な流体スプリングを有するシステムの実用性を向上させることが可能である。本発明は、そのような実情に鑑みてなされたものであり、上述した流体スプリングおよびアクチュエータを備えたシステムの実用性を向上させることを課題とする。
上記課題を解決するため、本発明の車両用サスペンションシステムは、車高を変更可能な流体スプリングと、車体と車輪とを接近・離間させる力を発揮するアクチュエータとを備えたサスペンションシステムであって、そのアクチュエータの力を利用して、車高変更に起因するワープ力を解消するように構成されたことを特徴とする。
本発明の車両用サスペンションシステムによれば、上記アクチュエータ力を利用することで、簡便に、ワープ力を解消することが可能である。したがって、本発明の車両用サスペンションシステムは、実用性の高いシステムとなる。
発明の態様
以下に、本願において特許請求が可能と認識されている発明(以下、「請求可能発明」という場合がある)の態様をいくつか例示し、それらについて説明する。各態様は請求項と同様に、項に区分し、各項に番号を付し、必要に応じて他の項の番号を引用する形式で記載する。これは、あくまでも請求可能発明の理解を容易にするためであり、それらの発明を構成する構成要素の組み合わせを、以下の各項に記載されたものに限定する趣旨ではない。つまり、請求可能発明は、各項に付随する記載,実施例の記載等を参酌して解釈されるべきであり、その解釈に従う限りにおいて、各項の態様にさらに他の構成要素を付加した態様も、また、各項の態様から何某かの構成要素を削除した態様も、請求可能発明の一態様となり得るのである。
なお、下記(1)項が、請求項1に相当し、(2)項が請求項2に、(3)項が請求項3に、(4)項と(5)項とを合わせたものが請求項4に、(6)項が請求項5に、それぞれ相当する。
(1)前後左右の4つの車輪に対応して設けられ、それぞれが、自身に対応する車輪と車体とを弾性的に連結するとともに、自身に対する流体の流入・流出によって、自身に対応する車輪と車体との上下方向における距離である車体車輪間距離を変更な4つの流体スプリングと、
それら4つの流体スプリングの各々に対して、流体を流入・流出させる流体流入・流出装置と、
前記4つの車輪に対応して設けられ、それぞれが、自身に対応する車輪と車体とを上下方向において接近・離間させる力であるアクチュエータ力を発揮する4つのアクチュエータと、
前記流体流入・流出装置および前記4つのアクチュエータの作動を制御する装置であって、(a)前記流体流入・流出装置の作動を制御し、4つの車輪の各々についての車体車輪間距離を変更することで車高を変更する車高変更制御部と、(b)前記4つのアクチュエータの作動を制御して、車高の変更に起因して車体に作用するワープ力を打ち消すためのアクチュエータ力を、前記4つのアクチュエータに発揮させるワープ解消制御部とを有する制御装置と
を備えた車両用サスペンションシステム。
本項の態様によれば、アクチュエータの発揮する力を利用するため、簡便に、流体スプリングによる車高変更に起因するワープ力を解消することが可能となる。
本項の態様における「流体スプリング」は、その具体的な構造が特に限定されるものではなく、例えば、流体としての圧縮空気が圧力室に封入されたダイヤフラム式のエアスプリング、流体としての作動油が充満するシリンダとそのシリンダと連通するアキュムレータとをとを含んで構成される油圧式スプリング等、種々の構造のものを採用することが可能である。また、「流体流入・流出装置」も、その具体的な構造が特に限定されるものではなく、コンプレッサ,ポンプ等、採用する流体に応じた適切な流体供給装置,排出装置等を含んで構成されるものであればよい。
本項の態様における「アクチュエータ」は、油圧式,電磁式等、種々の方式のものを採用可能である。例えば、電磁式アクチュエータを採用すれば、それの良好な制御性等の利点を活かして、当該アクチュエータによる振動減衰制御,車体の姿勢制御を実行可能であり、容易に、アクティブサスペンションを構築することができる。また、「制御装置」は、それに種々の機能を備えさせることに鑑み、例えば、コンピュータを主体に構成されるようなものを採用することが可能である。
(2)前記制御装置が、前記車高制御部による車高の変更の後に前記ワープ解消制御部による前記4つのアクチュエータの作動の制御を実行可能とされた(1)項に記載の車両用サスペンションシステム。
本項の態様は、平たく言えば、一旦車高変更を実施した後、その実施によって生じるワープ力を事後的に解消可能な態様である。本項の態様によれば、発生したワープ力の迅速な解消が可能となる。
(3)前記制御装置が、前記ワープ解消制御部による前記4つのアクチュエータの作動の制御の実行中において前記車高変更制御部による車高の変更を実行可能とされた(1)項または(2)項に記載の車両用サスペンションシステム。
本項の態様は、平たく言えば、車高変更後に生じるであろうワープ力を見越して車高変更を実施可能な態様である。車高変更後に生じるワープ力を解消するためのアクチュエータ力を予め発揮させた状態で車高変更を実施すれば、車高変更後にそのアクチュエータ力を解除することで、車高変更後にワープ力の残存を防止することが可能となる。本項の態様によれば、車高変更後の車両走行においてワープ力を解消するためのアクチュエータ力を必要としないことから、省エネルギの観点において優れたシステムが実現可能となる。なお、本項の態様は、例えば、制御装置が、一旦、車高変更制御部による車高変更を実行し、その車高変更によって発生したワープ力を把握しておき、その把握されたワープ力を解消するためのアクチェータ力を発揮させるワープ解消制御を実行し、その制御の実行下、再度、車高変更制御部による車高変更を実行するように構成された態様であってもよい。
(4)当該車両用サスペンションシステムが、ワープ力を推定するワープ力推定装置を備え、前記制御装置が、そのワープ力推定装置の推定結果に基づいて、前記ワープ解消制御を実行するものとされた(1)項ないし(3)項のいずれかに記載の車両用サスペンションシステム。
本項の態様における「ワープ力推定装置」は、それによるワープ力推定プロセスが特に限定されるものではない。例えば、後に説明する車体車輪間距離の変動に基づいて推定する装置であってもよい。また、例えば、流体スプリング内の流体圧力に基づいてワープ力を推定するうな装置であってもよい。
(5)前記制御装置が、
前記4つのアクチュエータの各々に設定された大きさのアクチュエータ力を発揮させるとともに、そのことによる前記4つの車輪の各々についての車体車輪間距離の変動に基づいてワープ力を推定するワープ力推定部を有し、
前記ワープ力推定装置が、そのワープ力推定部を含んで構成された(4)項に記載の車両用サスペンションシステム。
本項の態様は、アクチュエータ力を利用してワープ力を推定することを可能とする態様である。具体的には、上記車体車輪間距離の変動に基づき、例えば、その時点での流体スプリング間の特性差(例えば、左右の流体スプリングにおけるそれら内部の流体量の差異等の影響による特性差等である)を把握して、その時点でのワープ力の推定を可能とする態様である。流体スプリング内の流体圧力に基づいてワープ力を推定する場合には、その流体圧力を検出するための圧力センサを必要とするため、当該システムの構造がその分複雑化する。本項の態様は、そのような圧力センサを必要としないため、システムの構造を簡素化することが可能となる。なお、本項の態様における「設定さた大きさのアクチュエータ力」は、すべてのアクチュエータに対して同じ大きさに設定された力であってもよく、アクチュエータごとに異なる大きさに設定された力であってもよい。
(6)前記ワープ力推定部が、前記4つの車輪の各々についての車体車輪間距離の変動に基づいて前記4つの流体スプリングの各々ばね定数を推定し、その推定されたばね定数に基づいてワープ力を推定するものである(5)項に記載の車両用サスペンションシステム。
流体スプリングのばね定数は、流体スプリングの特性を示す典型的なパラメータであり、各流体スプリングのばね定数を把握すれば、各車輪の車体車輪間距離に基づき、容易に、車体に作用するワープ力を推定可能である。
(7)当該車両用サスペンションシステムが、前記4つの車輪に対応して設けられてそれぞれが自身に対応する車輪についての車体車輪間距離を検出する4つの車体車輪間距離センサを備えた(1)項ないし(6)項のいずれかに記載の車両用サスペンションシステム。
本項の態様における「車体車輪間距離センサ」は、その構造が特に限定されるものではなく、既に種々のサスペンションシステムにおいて採用されているあるいは検討されている構造のものを広く採用することが可能である。当該センサによる検出値は、上述した車高変更制御部による制御、ワープ力推定部による推定等に利用可能である。
(8)前記制御装置が、前記4つのアクチュエータの各々の作動を制御して、それら各々のアクチュエータ力をばね上振動とばね下振動との少なくとも一方に対する減衰力として発揮させる振動減衰制御部を有する(1)項ないし(7)項のいずれかに記載の車両用サスペンションシステム。
本項の態様は、上記アクチュエータを、いわゆるショックアブソーバとして機能させることを可能とする態様である。本項の態様によれば、例えば、スカイフックダンパ理論に基づく振動減衰制御等、アクティブな減衰力の制御が実行可能となる。
(9)前記制御装置が、前記4つのアクチュエータの各々の作動を制御して、それら各々のアクチュエータ力を車体のロールとピッチとの少なくとも一方を抑制するための力として発揮させる姿勢制御部を有する(1)項ないし(8)項のいずれかに記載の車両用サスペンションシステム。
本項の態様は、上記アクチュエータによって、例えば、車両旋回時,車両加減速時に生じる車体の傾斜を抑制することを可能とする態様である。本項の態様によれば、例えば、車速,操舵角,車体に発生する横加速度,前後加速度等に応じてアクティブな車体の姿勢制御が実行可能となる。
(10)前記アクチュエータが、電動モータを有して、その電動モータの発生させる力に依拠するアクチュエータ力を発揮するものである(1)項ないし(9)項のいずれかに記載の車両用サスペンションシステム。
本項の態様は、アクチュエータとして、電磁式のアクチュエータを採用する態様である。電磁式アクチュエータは、制御性が良好であり、当該アクチュエータによれば、アクティブな振動減衰制御,車体姿勢制御が容易に実行可能である。なお、電動モータは、回転モータであってもよく、リニアモータであってもよい。
(11)前記アクチュエータが、(a)ばね上部材とばね下部材との一方に対して相対移動不能とされた雄ねじ部と、(b)前記ばね上部材と前記ばね下部材との他方に対して相対移動不能とされ、前記雄ねじ部と螺合するとともに、上下方向における車体と車輪との接近・離間に伴って前記雄ねじ部と相対回転する雌ねじ部とを有し、前記電動モータにより前記雄ねじ部と前記雌ねじ部とに相対回転力を付与することによって、アクチュエータ力を発揮する構造とされた(10)項に記載の車両用サスペンションシステム。
本項に記載の態様は、いわゆるねじ機構を利用した電磁式アクチュエータに関する態様である。ねじ機構を採用すれば、簡便に、電磁式アクチュエータを構成することが可能である。
以下、請求可能発明の実施例を、図を参照しつつ詳しく説明する。なお、請求可能発明は、下記実施例の他、前記〔発明の態様〕の項に記載された態様を始めとして、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することができる。
≪サスペンションシステムの構成および機能≫
図1に、実施例の車両用サスペンションシステム10を模式的に示す。本サスペンションシステム10は、前後左右の車輪12の各々に対応する独立懸架式の4つのサスペンション装置を備えており、それらサスペンション装置の各々は、サスペンションスプリングとショックアブソーバとが一体化されたスプリング・アブソーバAssy20を有している。車輪12,スプリング・アブソーバAssy20は総称であり、4つの車輪のいずれに対応するものであるかを明確にする必要のある場合には、図に示すように、車輪位置を示す添え字として、左前輪,右前輪,左後輪,右後輪の各々に対応するものにFL,FR,RL,RRを付す場合がある。
スプリング・アブソーバAssy20は、図2に示すように、車輪12を保持するばね下部材としてのサスペンションロアアーム22と、車体に設けられたばね上部材としてのマウント部24との間に、それらを連結するようにして配設された電磁式アブソーバとしてのアクチュエータ26と、それと並列的に設けられた流体スプリングとしてのエアスプリング28とを備えている。
アクチュエータ26は、アウターチューブ30と、そのアウターチューブ30に嵌入して上部がアウターチューブ30の上端部から上方に突出するインナチューブ32とを含んで構成されている。アウターチューブ30は、それの下端部に設けられた取付部材34を介してロアアーム22に連結され、一方、インナチューブ32は、それの上端部に形成されたフランジ部36においてマウント部24に連結されている。アウターチューブ30には、その内壁面にアクチュエータ26の軸線の延びる方向(以下、「軸線方向」という場合がある)に延びるようにして1対のガイド溝38が設けられるとともに、それらのガイド溝38の各々には、インナチューブ32の下端部に付設された1対のキー40の各々が嵌まるようにされており、それらガイド溝38およびキー40によって、アウターチューブ30とインナチューブ32とが、相対回転不能、軸線方向に相対移動可能とされている。ちなみに、アウターチューブ30の上端部には、シール42が付設されており、後に説明する圧力室44からのエアの漏れが防止されている。
また、アクチュエータ26は、ねじ溝が形成された雄ねじ部としてのねじロッド50と、ベアリングボールを保持してそのねじロッド50と螺合する雌ねじ部としてのナット52とを含んで構成されたボールねじ機構と、電動モータ54(3相のDCブラシレスモータであり、以下、単に「モータ54」という場合がある)とを備えている。モータ54はモータケース56に固定して収容されるとともに、そのモータケース56の鍔部がマウント部24の上面側に固定されており、モータケース56の鍔部にインナチューブ32のフランジ部36が固定されていることで、インナーチューブ32は、モータケース56を介してマウント部24に連結されている。モータ54の回転軸であるモータ軸58は、ねじロッド50の上端部と一体的に接続されている。つまり、ねじロッド50は、モータ軸58を延長する状態でインナチューブ32内に配設され、モータ54によって回転させられる。一方、ナット52は、ねじロッド50と螺合させられた状態で、アウタチューブ30の内底部に付設されたナット支持筒60の上端部に固定支持されている。
エアスプリング28は、マウント部24に固定されたハウジング70と、アクチュエータ26のアウタチューブ30に固定されたエアピストン72と、それらを接続するダイヤフラム74とを備えている。ハウジング70は、概して有蓋円筒状をなし、蓋部76に形成された穴にアクチュエータ26のインナチューブ32を貫通させた状態で、蓋部76の上面側においてマウント部24の下面側に固定されている。エアピストン72は、概して円筒状をなし、アウタチューブ30を嵌入させた状態で、アウタチューブ30の上部に固定されている。それらハウジング70とエアピストン72とは、ダイヤフラム74によって気密性を保ったまま接続されており、それらハウジング70とエアピストン72とダイヤフラム74とによって圧力室44が形成されている。その圧力室44には、流体としての圧縮エアが封入されている。このような構造から、エアスプリング28は、その圧縮エアの圧力によって、ロアアーム22とマウント部24、つまり、車輪12と車体とを相互に弾性的に支持しているのである。
車体と車輪12とが接近・離間する場合、アウターチューブ30とインナチューブ32とは、軸線方向に相対移動する。その相対移動に伴って、ねじロッド50とナット52とが軸線方向に相対移動するとともに、ねじロッド50がナット52に対して回転する。モータ54は、ねじロッド50に回転トルクを付与可能とされ、この回転トルクによって、車体と車輪12との接近・離間に対して、その接近・離間を阻止する方向の抵抗力を発生させることが可能とされている。この抵抗力が車体と車輪12との接近・離間に対する減衰力となることで、アクチュエータ26は、いわゆるアブソーバ(「ダンパ」と呼ぶこともできる)として機能するものとなっている。言い換えれば、アクチュエータ26は、自身が発揮する軸線方向の力であるアクチュエータ力によって、車体と車輪12との相対移動に対して減衰力を付与する機能を有しているのである。また、アクチュエータ26は、アクチュエータ力によって、車体と車輪12とを接近・離間させる機能をも有している。すなわち、アクチュエータ力を、車体と車輪12との相対移動に対する推進力つまり駆動力として作用させることが可能とされているのである。この機能により、ばね上絶対速度に基づくスカイフック制御を実行すること、旋回時の車体のロール,加速・減速時の車体のピッチ等を効果的に抑制すること、車両の高さ、つまり、車高を変更すること等が可能とされているのである。
なお、アウタチューブ30の上端内壁面には環状の緩衝ゴム77が貼着されており、アウタチューブ30の内部底壁面にも緩衝ゴム78が貼着されている。車体と車輪12とが接近・離間する際、それらが離間する方向(以下、「リバウンド方向」という場合がある)にある程度相対移動した場合には、キー40が緩衝ゴム77を介してアウターチューブ30の縁部79に当接し、逆に、車体と車輪12とが接近する方向(以下、「バウンド方向」という場合がある)にある程度相対移動した場合には、ねじロッド50の下端が緩衝ゴム78を介してアウタチューブ30の内部底壁面に当接するようになっている。つまり、スプリング・アブソーバAssy20は、車体と車輪12との接近・離間に対するストッパ(いわゆるバウンドストッパおよびリバウンドストッパ)を有しているのである。
サスペンションシステム10は、各スプリング・アブソーバAssy20が有するエアスプリング28に対して流体としてのエア(空気)を流入・流出させるための流体・流入流出装置、詳しく言えば、エアスプリング28の圧力室44に接続されて、その圧力室44にエアを供給し、圧力室44からエアを排出するエア供給・排出装置80を備えている。図3に、そのエア供給・排出装置80の模式図を示す。エア供給・排出装置80は、圧縮エアを圧力室44に供給するコンプレッサ82を含んで構成される。コンプレッサ82は、ポンプ84と、そのポンプ84を駆動するポンプモータ86とを備え、そのポンプ84によって、フィルタ88,逆止弁90を経て大気からエアを吸入し、そのエアを加圧して逆止弁92を介して吐出するものである。そのコンプレッサ82は、個別制御弁装置100を介して前記4つのエアスプリング28の圧力室44に接続されている。個別制御弁装置100は、各エアスプリング28の圧力室44に対応して設けられてそれぞれが常閉弁である4つの個別制御弁102を備え、各圧力室44に対する流路の開閉を行うものである。なお、それらコンプレッサ82と個別制御弁装置100とは、圧縮エアの水分を除去するドライヤ104と、絞り106と逆止弁108とが互いに並列に設けられた流通制限装置110とを介して、共通通路112によって接続されている。また、その共通通路112は、コンプレッサ82とドライヤ104との間から分岐しており、その分岐する部分に圧力室44からエアを排気するための排気制御弁114が設けられている。
上述の構造から、本サスペンションシステム10は、エア供給・排出装置80によって、各エアスプリング28の圧力室44内のエア量を調整することが可能とされており、エア量の調整によって、上下方向における車体と車輪12との距離(以下、「車体車輪間距離」という場合がある)を変化させることが可能とされている。具体的に言えば、圧力室44のエア量を増加させて車体車輪間距離を増大させ、エア量を減少させて車体車輪間距離を減少させることが可能とされている。
本サスペンションシステム10は、サスペンション電子制御ユニット(ECU)140によって、スプリング・アブソーバAssy20の作動、つまり、アクチュエータ26およびエアスプリング28の制御が行われる。詳しくは、アクチュエータ26のモータ54およびエア供給・排出装置80の作動の制御が行われる。ECU140は、CPU,ROM,RAM等を備えたコンピュータを主体として構成されたコントローラ142と、エア供給・排出装置80の駆動回路としてのドライバ144と、各アクチュエータ26が有するモータ54に対応する駆動回路としてのインバータ146とを有している。そのドライバ144およびインバータ146は、コンバータ148を介して電力供給源としてのバッテリ150に接続されており、エア供給・排出装置80が有する各制御弁102,ポンプモータ86等、および、各アクチュエータ26のモータ54には、そのバッテリ150から電力が供給される。なお、モータ54は定電圧駆動されることから、モータ54への供給電力量は、供給電流量を変更することによって変更され、モータ54の力は、その供給電流量に応じた力となる。ちなみに、供給電流量は、各インバータ146がPWM(Pulse Width Modulation)によるパルスオン時間とパルスオフ時間との比(デューティ比)を変更することによって行われる。
車両には、イグニッションスイッチ[I/G]160,車両走行速度(以下、「車速」と略す場合がある)を検出するための車速センサ[v]162,各車輪12についての車体車輪間距離を検出する4つのストロークセンサ[St]164,車高変更指示のために運転者によって操作される車高変更スイッチ[HSw]166,車高変更に関するモードを切り換えるための車高変更モード切換スイッチ[MSw]168,ステアリングホイールの操作角を検出するための操作角センサ[δ]170,車体に実際に発生する前後加速度である実前後加速度を検出する前後加速度センサ[Gx]172,車体に実際に発生する横加速度である実横加速度を検出する横加速度センサ[Gy]174,各車輪12に対応する車体の各マウント部24の縦加速度(上下加速度)を検出する4つの縦加速度センサ[GzU]176,各車輪12の縦加速度を検出する4つの縦加速度センサ[GzL]178,アクセルスロットルの開度を検出するスロットルセンサ[Sr]180,ブレーキのマスタシリンダ圧を検出するブレーキ圧センサ[Br]182,モータ54の回転角を検出する回転角センサ[ω]184等が設けられ、それらがコントローラ142に接続されており、ECU140は、それらのスイッチ,センサからの信号に基づいて、スプリング・アブソーバAssy20の作動の制御を行うものとされている。ちなみに、[ ]の文字は、上記スイッチ,センサ等を図面において表わす場合に用いる符号である。
コントローラ142のコンピュータが備えるROMには、後に説明するところの車高調整に関するプログラム,アクチュエータ力の制御に関するプログラム,各種のデータ等が記憶されている。なお、本サスペンションシステム10では、運転者の選択可能な設定車高として、設定標準車高(N車高),設定標準車高より高い設定高車高(Hi車高),設定標準車高より低い設定低車高(Low車高)の3つが設定されており、運転者の車高変更スイッチ166の操作によって所望の設定車高に選択的に変更される。この車高変更スイッチ166は、設定車高を段階的に高い側の設定車高あるいは低い側の設定車高にシフトさせるような指令、つまり、車高増加指令あるいは車高減少指令が発令される構造とされている。
≪サスペンションシステムの基本的な制御≫
本サスペンションシステム10では、4つのスプリング・アブソーバAssy20をそれぞれ独立して制御することが可能となっている。それらスプリング・アブソーバAssy20の各々において、アクチュエータ26のアクチュエータ力が独立して制御されて、車体および車輪12の振動、つまり、ばね上振動およびばね下振動を減衰するための制御(以下、「振動減衰制御」という場合がある)が実行され、また、車体のロールを抑制する制御(以下「ロール抑制制御」という場合がある)および車体のピッチを抑制する制御(以下、「ピッチ抑制制御」という場合がある)、つまり、それらを併せた制御として、車体の姿勢制御が実行される。それら振動減衰制御,ロール抑制制御,ピッチ抑制制御は、アクチュエータ力を、それぞれ、減衰力,ロール抑制力,ピッチ抑制力として作用させることによって実行される。詳しく言えば、振動減衰制御,ロール抑制制御,ピッチ抑制制御の各制御ごとのアクチュエータ力の成分である減衰力成分,ロール抑制力成分,ピッチ抑制力成分を合計して目標アクチュエータ力を決定し、アクチュエータ26が、その目標アクチュエータ力を発揮するように制御されることで一元的に実行される。また、本サスペンションシステム10では、エアスプリング28によって、各車輪12についての車体車輪間距離を変更することで、車両の車高を変更する制御(以下、「車高変更制御」という場合がある)が実行される。なお、以下の説明において、アクチュエータ力およびそれの成分は、車体と車輪12とを離間させる方向(リバウンド方向)のものが正の値,車体と車輪12とを接近させる方向(バウンド方向)のものが負の値となるものとして扱うこととする。
i)振動減衰制御
振動減衰制御では、車体および車輪12の振動を減衰するためにその振動の速度に応じた大きさのアクチュエータ力を発揮させるべく、減衰力成分FVが決定される。具体的には、車体のマウント部24に設けられた縦加速度センサ176によって検出され計算される車体のマウント部24の上下方向の動作速度、いわゆる、ばね上速度VUと、ロアアーム22に設けられた縦加速度センサ178によって検出され計算される車輪の上下方向の動作速度、いわゆる、ばね下速度VLとに基づいて、次式に従って、減衰力成分FVが演算される。
V=CU・VU−CL・VL
ここで、CUは、車体のマウント部24の上下方向の動作速度に応じた減衰力を発揮させるためのゲインであり、CLは、車輪12の上下方向の動作速度に応じた減衰力を発揮させるためのゲインである。つまり、CU,CLは、いわゆるばね上,ばね下絶対振動に対する減衰係数である。なお、減衰力成分FVは、他の手法で決定することも可能である。例えば、ばね上ばね下相対速度に基づく減衰力を発揮する制御を実行すべく、車体と車輪12との相対速度の指標値として、モータ54に設けられている回転角センサ184の検出値から得られたモータ54の回転速度Vに基づき、次式に従って決定することも可能である。
V=C・V(C:減衰係数)
ii)ロール抑制制御
ロール抑制制御では、車両の旋回時において、その旋回に起因するロールモーメントに応じて、旋回内輪側のアクチュエータ26にバウンド方向のアクチュエータ力を、旋回外輪側のアクチュエータ26にリバウンド方向のアクチュエータ力を、それぞれ、ロール抑制力として発揮させる。具体的に言えば、まず、車体が受けるロールモーメントを指標する横加速度として、ステアリングホイールの操舵角δと車速vに基づいて推定された推定横加速度Gycと、横加速度センサ174によって実測された実横加速度Gyrとに基づいて、制御に利用される横加速度である制御横加速度Gy*が、次式に従って決定される。
Gy*=K1・Gyc+K2・Gyr (K1,K2:ゲイン)
そのように決定された制御横加速度Gy*に基づいて、ロール抑制力成分FRが、次式に従って決定される。
R=K3・Gy* (K3:ゲイン)
iii)ピッチ抑制制御
ピッチ抑制制御では、車体の制動時等に発生する車体のノーズダイブに対しては、そのノーズダイブを生じさせるピッチモーメントに応じて、前輪側のアクチュエータ26FL,FRにリバウンド方向のアクチュエータ力を、後輪側のアクチュエータ26RL,RRにバウンド方向のアクチュエータ力をそれぞれピッチ抑制力として発揮させる。また、車体の加速時等に発生する車体のスクワットに対しては、そのスクワットを生じさせるピッチモーメントに応じて、後輪側のアクチュエータ26RL,RRにリバウンド方向のアクチュエータ力を、前輪側のアクチュエータ26FL,FRにバウンド方向のアクチュエータ力をピッチ抑制力として発揮させる。具体的には、車体が受けるピッチモーメントを指標する前後加速度として、前後加速度センサ172によって実測された実前後加速度Gxが採用され、その実前後加速度Gxに基づいて、ピッチ抑制力成分FPが、次式に従って決定される。
P=K4・Gx (K4:ゲイン)
なお、ピッチ抑制力は、スロットルセンサ180によって検出されるスロットルの開度、あるいは、ブレーキ圧センサ182によって検出されるマスタシリンダ圧が、設定された閾値を超えることをトリガとして発生させるようにされている。
iv)車高変更制御
車高変更制御では、運転者の意図に基づく車高変更スイッチ166の操作によって、実現すべき設定車高である目標設定車高が変更された場合において、車高が変更される。上記3つの設定車高の各々に応じて、各車輪12についての目標となる車体車輪間距離が設定されており、ストロークセンサ164の検出値に基づいて、それぞれの車輪12についての車体車輪間距離が目標となる距離になるように、エア供給・排出装置80の作動が制御され、各車輪12の車体車輪間距離が目標設定車高に応じた距離に変更されるのである。
具体的には、車高を上げる場合のエア供給・排出装置80の作動(以下、「車高増加作動」という場合がある)では、まず、ポンプモータ94が作動させられるとともに、4つの車輪12すべてについての個別制御弁102が開弁されることで、圧縮エアが各エアスプリング28の圧力室44に供給される。その状態が継続された後、4つの個別制御弁102が、車体車輪間距離が目標距離となった車輪12に対応するものから順次閉弁され、すべての車輪12についての車体車輪間距離が目標距離となった後に、ポンプモータ94の作動が停止させられる。車高を下げる場合のエア供給・排出装置80の作動(以下、「車高減少作動」という場合がある)では、まず、排気制御弁114が開弁されるるとともに、すべての個別制御弁102が開弁されることで、各エアスプリング28の圧力室44からエアが大気に排気される状態とされる。その後、4つの個別制御弁102が、車体車輪間距離が目標距離となった車輪12に対応するものから順次閉弁され、すべての車輪12についての車体車輪間距離が目標距離となった後に、排気制御弁114が閉弁される。
ただし、本サスペンションシステム10では、上記車高変更制御は、比較的平坦な路面に車両が停止している場合にのみ行われるようにされている。具体的には、車速センサ162によって検出される車速が略0であること、および、ストロークセンサ164によって検出される各車輪12についての車体車輪間距離のうち最大のものと最小のものとの差が閾値以下であることが、車高変更制御の許容条件として定められており、その条件を充足する場合にのみ、車高変更制御が実行される。
なお、本サスペンションシステム10の車高変更制御では、4つの車輪12についての車体車輪間距離の変更が同時に実行されるが、各車輪12ごとに、あるいは、1または2以上の車輪12に対応するグループを複数設定してグループごとに、順次、段階的に、車体車輪間距離を変更するようにしてもよい。また、本サスペンションシステム10では、運転者の車高変更スイッチ166の操作によって車高変更制御が実行されるようになっているが、そのような運転者の操作に基づかずに自動的に車高変更制御が実行されるようにしてもよい。具体的には、例えば、乗員,積荷の変動等によって、自動的に、各車輪12についての車体車輪間距離を調整するような制御、車速が高くなった場合に自動的に車高を低くするような制御、乗員の乗り降りの際に自動的に車高を高くあるいは低くするような制御を実行してもよい。
≪車高変更に起因するワープ力とそれの解消のための制御≫
i)車高変更とワープ力
車体に作用する力は、それぞれがその力の成分となるヒーブ力,ロール力,ピッチ力,ワープ力に分けることができる。それらの力は、各車輪12対して設けられているスプリング・アブソーバAssy20が受け止めることになる。車体のワープ力が作用している場合には、図4に概念的に示すように、一方の対角輪の各々のスプリング・アブソーバAssy20が、互いに同じ大きさのリバウンド方向の力を受け、他方の対角輪の各々のスプリング・アブソーバAssy20が、そのリバウンド方向の力と同じ大きさのバウンド方向の力を受けることなる(黒塗り矢印)。このような各スプリング・アブソーバAssy20が受ける力によって定まるワープ力は、車体を捩じる力として作用するが、車体の剛性が比較的高いため、4つの車輪12各々についての車体車輪間距離の変動を殆ど伴わずして発生し得る。
本サスペンションシステム10では、上記車高変更制御は、比較的平坦な路面に車両が停止している場合に実行されるようにされており、また、4つの車輪12についての車体車輪間距離の各々を、車高に応じて設定された距離に整合させるような制御とされていることから、ヒーブ力は勿論、ロール力,ピッチ力は生じないと考えることができる。しかし、たとえ4つの車輪12についての車体車輪間距離のすべてを設定距離に整合させたとしても、路面の微妙な起伏、4つのエアスプリング28のエアの供給・排出が停止させられる順序等の影響によって、ワープ力が残存する可能性がある。詳しく言えば、例えば、左右のエアスプリング28の各々の圧力室44内のエア量の相違等によって、それら各々のばね定数が相違することになり、その結果として、ワープ力が残存することになるのである。
上述したようなワープ力が車体に作用した状態で車両を走行させれば、例えば、旋回特性の左右における相違等が発生し、その結果、車両の乗り心地,走行安定性等を低下させてしまうことになる。したがって、車体に作用するワープ力を解消することが望ましいのである。
ii)ワープ力の推定
図5(a)に示すように、スプリング・アブソーバAssy20が受ける車体の分担荷重をWと、スプリング・アブソーバAssy20の長さ(「車輪車体間距離」,「ばね長」と考えることもできる)をLと、分担荷重が0であると仮定した場合のスプリング・アブソーバAssy20の長さをL0と、エアスプリング28の発揮する力をFsと、エアスプリング28のばね定数をKとすれば、概ね次式が成立する。
W=Fs=K・(L0−L)
図5(a)に示す状態において、ある大きさのアクチュエータ力Faを発揮させれば、図5(b)に示すように、スプリング・アブソーバAssy20の長さは、ΔL変化し、その状態においてエアスプリング28が発揮する力は、Fs’となり、概ね次式が成立する。
W=Fa+Fs’=Fa+K(L0−L−ΔL)
したがって、設定されたアクチュエータ力Faを発揮させ、その状態での車輪車体間距離の変動ΔLを検出すれば、上記2つの式から、エアスプリング28のばね定数Kが推定でき、設定された車輪車体間距離とされた場合においてスプリング・アブソーバAssy20が受ける車体の分担荷重を推定することが可能である。
左前輪,右前輪,左後輪,左後輪のスプリング・アブソーバAssy20の分担荷重を、それぞれ、WFL,WFR,WRL,WRRとすれば、車体に作用するワープ力Wwは、次式、
Ww=(WFL−WFR)−(WRL−WRR
によって求めることができる。通常、車両の左右における分担荷重は等しいと考えることができ、また、各車輪12のエアスプリング28の圧力室44に対して適正なバランスでエアが供給・排出された場合には、左右のエアスプリングのばね定数Kが等しくなると考えることができるため、車高変更に起因するワープ力は生じないが、先に説明したように、何らかの影響により適切な車高変更が行われなかった場合に、ワープ力が生じることになる。
本サスペンションシステム10では、前述した車高変更制御が実行された後、4つの車輪12のスプリング・アブソーバAssy20の有するアクチュエータ26の各々を制御することで、詳しくは、各アクチュエータ26の電動モータ54へ供給する電力を制御することで、各アクチュエータ26に、同時に、同じ方向かつ同じ大きさのアクチュエータ力を発揮させるような制御がなされる。そして、そのアクチュエータ力が発揮された状態において、ストロークセンサ164によって4つの車輪12の各々についての車体車輪間距離の変動を検出し、その検出結果に基づき、上記手法に従って車体に作用するワープ力を推定するようされている。本システム10は、このようなワープ力推定処理を実行することで、車高変更に起因して残存するワープ力を、簡便に推定可能とされているのである。
なお、サスペンションシステムに、各エアスプリング28の圧力室44のエア圧を検出可能なエア圧センサ190が設けられている場合には(図3参照)、それらによって検出された左前輪,右前輪,左後輪,右後輪それぞれのエアスプリング28の圧力室44のエア圧PFL,PFR,PRL,PRRに基づき、次式に従って、ワープ力Wwを推定することが可能である。
Ww=(PFL・SFL−PFR・SFR)−(PRL・SRL−PRR・SRR
なお、上記式のSFL,SFR,SRL,SRRは、構造に応じて定まる各エアスプリング28の仮想的な受圧面積である。
iii)ワープ力の解消
本サスペンションシステム10は、車高変更によって生じたワープ力を解消するために、各アクチュエータ26にそのワープ力を打ち消す力を発揮させる制御、つまり、ワープ力解消制御を実行するようにされている。このワープ力解消制御は、2つの態様で実行可能とされており、詳しく言えば、上述した車高変更モード切換スイッチ168の状態に依存した車高変更に関するモード(以下、「車高変更モード」という場合がある)に応じて、実行の態様が選択されるようになっている。
2つ設定されている車高変更モードのうちの1つは、車高変更に起因して発生したワープ力を、以後の車両走行の間、常時、アクチュエータ力を発揮させ続けることによって解消するモード(以下、「ワープ解消力付与走行許容モード」という場合がある)であり、つまり、ワープ力をアクチュエータ力によって事後的に解消するモードである。このモードでは、ワープ力推定処理によって推定されたワープ力Wwが設定されている閾値以上である場合に、そのワープ力Wwに基づき、左前輪,右前輪,左後輪,左後輪のそれぞれのアクチュエータ26のアクチュエータ力の成分として、ワープ解消力成分FWFL,FWFR,FWRL,FWRRが次式のように決定され、
WFL=−Ww/4
WFR=Ww/4
WRL=Ww/4
WRR=−Ww/4
それらワープ解消力成分FWFL,FWFR,FWRL,FWRR(以下、「ワープ解消力成分FW」と総称する場合がある)が、アクチュエータ力として発揮されるように、各アクチュエータ26が制御される。つまり、車体に対して、車高変更に起因して生じているワープ力とは反対の力をアクチュエータ26によって車体に付与し続けることで、その結果として、車高変更に起因して生じたワープ力を解消するのである(図4における白抜き矢印参照)。したがって、ワープ解消力付与走行許容モードにおいては、ワープ力解消制御は、常時実行される制御となる。
もう1つの車高変更モードは、車高変更によってある設定閾値以上のワープ力が生じた場合に、各車輪12にアクチュエータ力を発揮させた状態で車高変更制御を再度実行するモード(以下、「再車高変更実行モード」という場合がある)であり、ワープ力の発生ない車高変更を実現して、その後の走行において、ワープ力を解消するためのアクチュエータ力を必要としないモードである。このモードでは、車高変更制御の後、ワープ力推定処理によってワープ力Wwを推定し、そのワープ力Wwが設定閾値以上となっている場合に、エア供給・排出装置80を制御して、一旦、車高変更前の状態に復帰させ、その後に、上記4つの式に従うワープ解消力成分FWFL,FWFR,FWRL,FWRRからなるアクチュエータ力を4つのアクチュエータ26に発揮させ、その状態において、エア供給・排出装置80を制御して、もう一度、先の車高変更制御が実行される。つまり、車高変更に起因して生じるであろうワープ力を見越し、そのワープ力は反対の力をアクチュエータ26によって車体に付与した状態で車高変更制御がされるため、車高変更が完了した後にアクチュエータ力を除去することで、車体にワープ力が作用しない状態が実現されるのである。この再車高変更実行モードでは、ワープ解消力付与走行許容モードに比較して、車高変更に必要な時間が長くなる場合があるが、車高変更後の車両走行においてアクチュエータ力を必要としないため、サスペンションシステム10のエネルギ消費を小さくできることになる。
≪制御プログラム≫
本サスペンションシステム10におけるアクチュエータ力の制御、および、車高変更におけるエアスプリング28の制御つまりエア供給・排出装置80の制御は、図6にフローチャートを示すアクチュエータ制御プログラム、および、図7にフローチャートを示す車高変更プログラムが実行されることによって行われる。それらのプログラムは、コントローラ142によって、イグニッションスイッチ160がON状態とされてからOFF状態とされるまでの間、短い時間間隔(例えば、数msec〜数十msec)をおいて実行される。
i)アクチュエータ制御プログラム
アクチュエータ制御プログラムは、4つの車輪12にそれぞれ設けられたスプリング・アブソーバAssy20のアクチュエータ26の各々に対して実行される。以降の説明においては、説明の簡略化に配慮して、1つのアクチュエータ26に対しての本プログラムによる処理について説明する。
アクチュエータ制御プログラムに従う処理では、まず、ステップ1(以下、「S1」と省略する。他のステップも同様とする。)において、先に説明したように、縦加速度センサ176,178によって検出されたばね上速度VUおよびばね下速度VLに基づいて、減衰力成分FVが決定される。次いで、S2,S3において、それぞれ、先に説明したように、ロール抑制力成分FR,ピッチ抑制力成分FPが決定される。続くS4において、それらの成分を合計することにより、アクチュエータ力Faが決定される。このS4では、後に説明する車高変更プログラムにおいて決定されるワープ解消力成分FWも加えられ、さらに、ワープ力推定処理において発揮させられるアクチュエータ力となるワープ推定用成分FTも加えられる。つまり、ワープ解消力成分FW,ワープ推定用成分FTまでもが一元化されて、アクチュエータ力Faが決定されるのである。アクチュエータ力Faが決定された後、そのアクチュエータ力Faに基づいて、アクチュエータ26が有するモータ54が発生させる力の向き、および、そのモータ54への供給電力つまりデューティ比が決定され、それらについての制御信号が、インバータ146に送信される。
後に詳しく説明するが、以上のようにして各アクチュエータ26のアクチュエータ力が制御されることから、車高変更モードが先に説明したワープ解消力付与走行許容モードとされている場合においては、各アクチュエータ26は、適切なワープ解消力を常時発揮し続けることになり、また、再車高変更実行モードとされている場合においては、再度の車高変更の際に、適切なワープ解消力が発揮されることになる。
ii)車高変更プログラム
車高変更プログラムに従う処理では、まず、S11において、車高変更スイッチ166の操作による車高変更指令、つまり、目標設定車高の変更が有ったか否かが判断され、車高変更指令が無かったと判断された場合には、当該プログラムの1回の実行が終了し、有ったと判断された場合には、S12において、先に説明した車高変更の許容条件を充足しているか否かが判断される。車両が走行している場合、各車輪12の実際の車体車輪間距離うちの最大のものと最小のものとの差が閾値を超えている場合には、車高変更を行わないように、本プログラムが終了する。
S12において、車高変更を許容する判断がなされた場合には、S13において、それまでにおいて既に何某かのワープ解消力成分FWが発揮されている場合のことを考慮して、ワープ解消力成分FWが0にリセットされる。続くS14において、それまでの目標設定車高と新たな目標設定車高との比較によって、車高を上昇させるか下降させるかが判断され、車高を上昇させる場合にはS15において、下降させる場合にはS16において、それぞれ、エア供給・排出装置80が制御され、先に説明した車高増加作動,車高減少作動が実行される。S15,S16の処理は、各車輪12の車体車輪間距離が、新たな目標設定車高に対応する目標距離となるまで続けられる。
S15またはS16の処理が終了後、S17において、図8にフローチャートを示すワープ力推定処理サブルーチンが実行される。このサブルーチンに従う処理では、まず、S171において、先に説明したワープ力推定のためのアクチュエータ力を発揮させるべく、ワープ推定用成分FTが、予め設定された値FT0に設定される。車両は平坦な路面上に停止しており、また、ワープ解消力成分FWが既に0とされているため、この処理が実行された時点での各アクチュエータ26が発揮するアクチュエータ力は、ワープ推定用成分FTだけとなる。所定のアクチュエータ力が発揮されている状態において、S173の処理によって、先に述べた手法に従い車高変更後に車体に作用しているワープ力Wwが算出され、算出の後、S174において、発揮されているアクチュエータ力を解除すべく、ワープ推定用成分FTが0とされる。
ワープ力推定処理サブルーチンによる処理の終了後、S18において、推定されたワープ力Wwが閾値Ww0以上であるか否かが判断される。閾値Ww0未満である場合には、適正な車高変更が実施されたとして、本プログラムの実行が終了する。ワープ力Wwが閾値Ww0以上である場合には、S19において、車高変更モード切換スイッチ168の操作状態を基に、車高変更モードがワープ解消力付与走行許容モードと再車高変更実行モードとのいすれであるかが判断される。ワープ解消力付与走行許容モードである場合は、S20において、各アクチュエータ26についてのワープ解消力成分FWが、先に説明した手法に従って、Ww/4あるいは−Ww/4に決定され、本プログラムに従う処理が終了する。S20の処理が実行された後は、次の車高変更が実施されるまで、各アクチュエータ26が、決定されたワープ解消力成分FWを発揮し続けることになる。
それに対し、再車高変更実行モードである場合には、S21において、復帰作動が実行される。復帰作動では、車高変更が実行される前の状態に復帰させるようにエア供給・排出装置80が制御され、各車輪12の車体車輪間距離が、ストロークセンサ164の検出値に基づいて、元の距離に戻される。その復帰作動の後、S22において、ワープ解消力成分FWが、S20の処理と同様に、Ww/4あるいは−Ww/4に決定される。この処理が実行される前の時点では、アクチュエータ力は0とされているため、S22の実行によって、各アクチュエータ26は、決定されたワープ解消力成分FWからなるアクチュエータ力を発揮する状態となる。
上記アクチュエータ力が発揮された状態において、続くS23において、S14の判断と同様に、車高を上昇させるか下降させるかが判断され、S24あるいはS25において、S15,S16と同様の車高増加作動あるいは車高減少作動が実行されて、再度の車高変更が実施される。再度の車高変更が完了した後、発揮させられているワープ解消力成分FWを解除すべく、S26において、ワープ解消力成分FWが0とされて、本プログラムによる処理が終了する。再車高変更実行モードとされている場合には、このような一連の処理によって、アクチュエータ力を利用した再度の車高変更が実施され、ワープ力Wwが残存しない状態とされるのである。
なお、フローチャートでは省略しているが、車高変更プログラムの実行中に車両を走行させた場合等には、その時点で実行されている処理が中止させられ、その時点における各車輪12の車体車輪間距離が維持されるとともに、ワープ解消力成分FW,ワープ推定用成分FTが0とされて、そのプログラムの実行が矯正的に終了させられる。当該プログラムが強制終了させられた旨は、インパネに設けられたインジケータに表示される。
≪コントローラの機能構成≫
上述のアクチュエータ制御プログラムおよび車高変更プログラムを実行するコントローラ142は、それらのプログラムに従う各種の処理を実行する各種の機能部を有していると考えることができる。詳しく言えば、図9に示すように、コントローラ142は、S1の処理を実行して減衰力成分FV決定する機能部として、振動減衰制御部200を、S2の処理を実行してロール抑制力成分FRを決定する機能部として、ロール抑制制御部202を、S3の処理を実行してピッチ抑制力成分FPを決定する機能部として、ピッチ抑制制御部204を、それぞれ有しており、ロール抑制制御部202とピッチ抑制制御部204とを含んで車体の姿勢を制御する機能部である姿勢制御部206が構成されている。また、車高変更に関して言えば、S11,S12の判断に従って、S14〜S16の処理を実行するとともに、車高変更モードの如何によって、S21,S23〜S24の処理を実行する機能部として、車高変更制御部208を有している。そして、その車高変更モードの如何についての判断は、S19の処理を実行する機能部である車高変更モード判断部210によって行われる。
また、コントローラ142は、車高変更に起因するワープ力を推定する処理、つまり、S17の処理を実行する機能部として、ワープ力推定部212を有しており、さらに、ワープ力推定部212によって推定されたワープ力に基づいて、アクチュエータ力のワープ解消力成分FWを決定する処理、つまり、S20またはS22の処理を実行する機能部として、ワープ解消制御部214を有している。
実施例のサスペンションシステムの全体構成を示す図である。 図1に示すサスペンションシステムを構成するところの、アクチュエータとエアスプリングとを含んで構成されるスプリング・アブソーバAssyの断面図である。 図1に示すサスペンションシステムが有するエア供給・排出装置の回路図である。 車体に作用するワープ力およびそれを解消するための力であるワープ解消力を示す概念図である。 アクチュエータ力を加えた場合の車体車輪間距離の変動を説明するための概念図である。 図1に示すサスペンションシステムが有するコントローラによって実行されるアクチュエータ制御プログラムのフローチャートである。 図1に示すサスペンションシステムが有するコントローラによって実行される車高変更プログラムのフローチャートである。 図7に示す車高変更プログラムを構成するワープ力推定処理サブルーチンのフローチャートである。 図1に示すサスペンションシステムが有するコントローラの機能に関するブロック図である。
符号の説明
10:車両用サスペンションシステム 12:車輪 20:スプリング・アブソーバAssy 22:ロアアーム(ばね下部材) 24:マウント部(ばね上部材)26:アクチュエータ 28:エアスプリング(流体スプリング) 44:圧力室 50:ねじロッド(雄ねじ部) 52:ナット(雌ねじ部) 54:電動モータ 80:エア供給・排出装置(流体流入・流出装置) 140:サスペンション電子制御ユニット(ECU) 142:コントローラ(制御装置) 144:ドライバ 146:インバータ 162:車速センサ 164:ストロークセンサ 166:車高変更スイッチ 168:車高変更モード切換スイッチ 170:操作角センサ 172:前後加速度センサ 174:横加速度センサ 176:縦加速度センサ(ばね上) 178:縦加速度センサ(ばね下) 200:振動減衰制御部 202:ロール抑制制御部 204:ピッチ抑制制御部 206:姿勢制御部 208:車高変更制御部 210:車高変更モード判断部 212:ワープ力推定部 214:ワープ解消制御部

Claims (5)

  1. 前後左右の4つの車輪に対応して設けられ、それぞれが、自身に対応する車輪と車体とを弾性的に連結するとともに、自身に対する流体の流入・流出によって、自身に対応する車輪と車体との上下方向における距離である車体車輪間距離を変更な4つの流体スプリングと、
    それら4つの流体スプリングの各々に対して、流体を流入・流出させる流体流入・流出装置と、
    前記4つの車輪に対応して設けられ、それぞれが、自身に対応する車輪と車体とを上下方向において接近・離間させる力であるアクチュエータ力を発揮する4つのアクチュエータと、
    前記流体流入・流出装置および前記4つのアクチュエータの作動を制御する装置であって、(a)前記流体流入・流出装置の作動を制御し、4つの車輪の各々についての車体車輪間距離を変更することで車高を変更する車高変更制御部と、(b)前記4つのアクチュエータの作動を制御して、車高の変更に起因して車体に作用するワープ力を打ち消すためのアクチュエータ力を、前記4つのアクチュエータに発揮させるワープ解消制御部とを有する制御装置と
    を備えた車両用サスペンションシステム。
  2. 前記制御装置が、前記車高制御部による車高の変更の後に前記ワープ解消制御部による前記4つのアクチュエータの作動の制御を実行可能とされた請求項1に記載の車両用サスペンションシステム。
  3. 前記制御装置が、前記ワープ解消制御部による前記4つのアクチュエータの作動の制御の実行中において前記車高変更制御部による車高の変更を実行可能とされた請求項1または請求項2に記載の車両用サスペンションシステム。
  4. 前記制御装置が、
    前記4つのアクチュエータの各々に設定された大きさのアクチュエータ力を発揮させるとともに、そのことによる前記4つの車輪の各々についての車体車輪間距離の変動に基づいてワープ力を推定するワープ力推定部を備え、
    そのワープ力推定部の推定結果に基づいて、前記ワープ解消制御を実行するものとされた請求項1ないし請求項3のいずれかに記載の車両用サスペンションシステム。
  5. 前記ワープ力推定部が、前記4つの車輪の各々についての車体車輪間距離の変動に基づいて前記4つの流体スプリングの各々ばね定数を推定し、その推定されたばね定数に基づいてワープ力を推定するものである請求項4に記載の車両用サスペンションシステム。
JP2006211360A 2006-08-02 2006-08-02 車両用サスペンションシステム Expired - Fee Related JP4797869B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006211360A JP4797869B2 (ja) 2006-08-02 2006-08-02 車両用サスペンションシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006211360A JP4797869B2 (ja) 2006-08-02 2006-08-02 車両用サスペンションシステム

Publications (2)

Publication Number Publication Date
JP2008037183A true JP2008037183A (ja) 2008-02-21
JP4797869B2 JP4797869B2 (ja) 2011-10-19

Family

ID=39172720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006211360A Expired - Fee Related JP4797869B2 (ja) 2006-08-02 2006-08-02 車両用サスペンションシステム

Country Status (1)

Country Link
JP (1) JP4797869B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204220A1 (ja) * 2016-05-26 2017-11-30 日立オートモティブシステムズ株式会社 車載用リニアモータ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208115A (ja) * 1989-02-08 1990-08-17 Fuji Heavy Ind Ltd 車高調整装置付車両の車高制御方法
JPH02303913A (ja) * 1989-05-17 1990-12-17 Mazda Motor Corp 車両のサスペンション装置
JP2006117210A (ja) * 2004-10-25 2006-05-11 Toyota Motor Corp 車両懸架装置
JP2006192946A (ja) * 2005-01-11 2006-07-27 Toyota Motor Corp 車輌の車輪接地荷重推定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208115A (ja) * 1989-02-08 1990-08-17 Fuji Heavy Ind Ltd 車高調整装置付車両の車高制御方法
JPH02303913A (ja) * 1989-05-17 1990-12-17 Mazda Motor Corp 車両のサスペンション装置
JP2006117210A (ja) * 2004-10-25 2006-05-11 Toyota Motor Corp 車両懸架装置
JP2006192946A (ja) * 2005-01-11 2006-07-27 Toyota Motor Corp 車輌の車輪接地荷重推定装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204220A1 (ja) * 2016-05-26 2017-11-30 日立オートモティブシステムズ株式会社 車載用リニアモータ
CN109565234A (zh) * 2016-05-26 2019-04-02 日立汽车系统株式会社 车载用直线电机
US11264884B2 (en) 2016-05-26 2022-03-01 Hitachi Astemo, Ltd. Vehicle linear motor

Also Published As

Publication number Publication date
JP4797869B2 (ja) 2011-10-19

Similar Documents

Publication Publication Date Title
JP4737222B2 (ja) 車両用サスペンションシステム
JP4743276B2 (ja) 車両用サスペンションシステム
JP4519113B2 (ja) 車両用サスペンションシステム
JP4525660B2 (ja) 車両用サスペンションシステム
JP4894545B2 (ja) 車両用サスペンションシステム
JP2009234323A (ja) 車両用サスペンションシステム
JP4788675B2 (ja) 車両用サスペンションシステム
JP4797869B2 (ja) 車両用サスペンションシステム
JP4858292B2 (ja) 車両用サスペンションシステム
JP4894501B2 (ja) 車両用サスペンションシステム
JP2008296802A (ja) 車両用サスペンションシステム
JP4631847B2 (ja) 車両用サスペンションシステム
JP2010058704A (ja) 車両用サスペンションシステム
JP2009078657A (ja) 車両用サスペンションシステム
JP2008162333A (ja) 車両用サスペンションシステム
JP4582068B2 (ja) 車両用サスペンションシステム
JP4775250B2 (ja) 車両用サスペンションシステム
JP4635979B2 (ja) 車両用サスペンションシステム
JP4888078B2 (ja) 車両用サスペンションシステム
JP5266811B2 (ja) 車両用サスペンションシステム
JP4693055B2 (ja) 車両用サスペンションシステム
JP4582085B2 (ja) 車両用サスペンションシステム
JP2008222023A (ja) 車両用電磁式アブソーバシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees