JP2007535694A - 透過率を調整することができる埋込減衰型位相シフトマスク - Google Patents

透過率を調整することができる埋込減衰型位相シフトマスク Download PDF

Info

Publication number
JP2007535694A
JP2007535694A JP2007504104A JP2007504104A JP2007535694A JP 2007535694 A JP2007535694 A JP 2007535694A JP 2007504104 A JP2007504104 A JP 2007504104A JP 2007504104 A JP2007504104 A JP 2007504104A JP 2007535694 A JP2007535694 A JP 2007535694A
Authority
JP
Japan
Prior art keywords
phase shift
layer
substrate
region
embedded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007504104A
Other languages
English (en)
Other versions
JP2007535694A5 (ja
Inventor
シャオ、クアンミン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Photronics Inc
Original Assignee
Photronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photronics Inc filed Critical Photronics Inc
Publication of JP2007535694A publication Critical patent/JP2007535694A/ja
Publication of JP2007535694A5 publication Critical patent/JP2007535694A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

埋込減衰型位相シフトマスク(EAPSM)の減衰特性及び位相シフト特性を個別に選択することができる。埋込位相シフト層の領域のプラウイング後又はプラウイング中に、基板の露出した部分が所定の深さまでエッチングされる。その後、埋込位相シフト層のさらに多くの領域が露出され、所望の減衰量を与えるために所定の厚さまでトリミングされ、基板の最終的にエッチングされる深さが、位相シフト層のトリミングによって引き起こされる相対的な位相シフトの変化を補償する。その際、減衰レベル及び/又は位相シフトが異なる複数のセルを有するマトリックステストデバイスを、単一のEAPSMブランク上に製造することができる。

Description

[発明の技術分野]
本発明は包括的には、光学リソグラフィのための埋込減衰型位相シフトマスク(embedded attenuated phase shift mask)(EAPSM)に関する。
[発明の背景]
光学リソグラフィは、集積回路を形成するために広く用いられている処理である。集積回路は一連の層、しばしば15層以上の層として形成される。集積回路の各層を形成するために、ウェーハが、フォトレジストと呼ばれる感光性ポリマーでコーティングされる。フォトレジストの層は光のパターンで露光される。フォトレジストのタイプによって、露光後にフォトレジストの特定のエリアが可溶性になり、溶媒で洗浄される。残された不溶性のフォトレジストは、ウェーハの表面上にパターンを描画し、たとえば、エッチング、誘電体又は金属堆積、或いはイオン注入などの次の処理ステップから保護される。残されたフォトレジストの境界によって画定される領域は、各集積回路上に再現されることになる、トランジスタの一部又はトランジスタ間の接続のような物理的な素子に対応する。
ウェーハ上で光のパターンを形成するために、「照明装置」を用いて、コヒーレントで均一な光ビームが生成され、その光ビームがフォトマスク(又は「マスク」)或いはレチクルを通して投影される。マスクは通常、石英又は他の半透明な(translucent)材料から形成されるプレートであり、マスク上のパターンは、そのプレートの表面上に配置されるクロム又は他の不透明材料で形成される。このクロム層は、酸化クロムから成る反射防止層で覆うこともできる。レンズシステムがマスクを透過する光を収集し、その光を半導体ウェーハの小さなエリア上に集束し、それにより、フォトレジスト上に縮小されたイメージ(image)が生成される。「ステッパ」装置を用いてウェーハを徐々に動かすことによって、露光はウェーハの横方向および縦方向に繰り返され、それによりフォトレジスト上に並置されるイメージのアレイがウェーハを覆う。
集積回路のフィーチャのサイズが小さくなると、マスクを照明する光の波長も短くなる必要がある。しかしながら、照明装置及びレンズシステムにおいて用いられる石英レンズは、193nmよりも短い光の波長を吸収するので、光の波長が短くなると用いることができない。光の波長が短くなっても用いることができる装置が提案されているが、同じ光の波長で小さなフィーチャを解像できるようにする、いくつかの解像度向上技法が存在する。たとえば、既知の解像度向上技法を用いる場合、193nmの光を用いて、100nm程度又はそれ未満の小さなフィーチャを解像することができる。
1つのタイプの解像度向上技法は、弱め合う干渉(destructive interference)を用いて、ウェーハ上に投影されるパターンの明るいエリアと暗いエリアとの間のコントラストを改善することである。いくつかの異なる方法で、位相シフトを達成することができる。1つの方法は、基板の部分を極めて正確にエッチングすることによる。そのようなマスクは、レベンソン型位相シフトマスク(PSM)又は交互位相配置型PSM(alternating aperture PSM)(AAPSM)と呼ばれる場合もある。異なる手法として、光の位相をシフトし、且つ光を減衰させる埋込層を用いるものがある。このタイプのマスクは減衰型位相シフトマスク(attenuating phase shift mask)(EAPSM)と呼ばれる。そのマスクも、フィーチャ領域の境界に沿って弱め合う干渉を引き起こす。しかしながら、AAPSMとは異なり、EAPSMは、光の減衰の度合いが比較的高いことに起因して、弱い位相シフタであると見なされる。通常、入射する放射の6%しか透過しない。不透明材料薄膜、たとえば、ケイ化モリブデン(MoSi)から構成されるか、或いはこれに基づく材料の薄膜が基板に被着される。この材料は、その中を通過する光の位相を180°だけシフトし、且つその光を大幅に減衰させる。180°位相シフトされる少量の光が、隣接する開口部を通過するシフトされない光と弱め合うように干渉する結果として、生成されるイメージは、フィーチャ領域境界において鮮明度が高く(sharper)なる。位相シフト層によって与えられる透過及び位相シフトは、放射の波長及び位相シフト層材料の固有の特性(たとえば、その吸収係数及び屈折率)によって決まる。したがって、或る特定の放射の波長の場合に、マスクの位相シフト層に入射する放射の透過及び位相シフトは、位相シフト層の厚さの関数になる。
[発明の概要]
埋込減衰型位相シフトマスクが抱える1つの問題は、透過率及び位相シフトの両方の要件を満たす位相シフト材料を見つけることである。別の問題は、特にオフアクシス照明法(off-axis illumination techniques)が用いられる場合に、所与のマスクのための最良又は最適な透過率が必ずしも明らかではないことである。所与の材料、たとえばMoSiは、限られた範囲の透過率内でのみ機能することができる。位相シフト材料を変更するには、製造プロセスを変更する必要がある。そして、種々の透過率を有するブランク埋込マスク(blank embedded mask)は比較的コストがかかり、製造するのが難しい。
本発明の好ましい実施形態は、位相シフト層の透過率を、位相シフトとは個別に制御できるようにすることによって、これらの問題及び他の問題のうちの1つ又は複数を克服する際に有用である。その好ましい実施形態において本発明を利用する処理の一例によれば、基板のフィーチャ領域を露出させるために、マスクが従来通りに処理される。この処理は、マスクブランク(mask blank)の不透明層及び位相シフト層を除去又はエッチングすることを含む。しかしながら、従来の処理とは異なり、基板の露出した領域は、その後、所定の深さまでエッチングされる。不透明層の選択された部分が除去され、それにより位相シフト層の特定のエリアを露出させる。位相シフト層の露出した領域の厚さを削減するために、第2のエッチングが行われる。エッチング処理の選択性によって、基板の露出した領域のさらに多くの量をエッチングすることもできる。第2のエッチング中にエッチングされる量は、埋込位相シフト層の所望の透過率によって決定される。位相シフト層の厚さが、その透過率を決定する。基板の第1のエッチングは、位相シフト層を薄くすることによって引き起こされる位相シフトの損失を少なくとも部分的に補償する。第1の基板エッチングの深さは、基板のエッチングされた領域を直に通過する放射と、位相シフト層を通過する放射との間の最終的な位相シフトが所望の位相シフトになるように選択される。
このようにして埋込位相シフト層の透過率を制御することができる1つの利点は、異なる透過率及び位相シフト角を有するテストデバイスのマトリックスを単一のフォトマスク上に製造できることである。単一のマスク上で、透過率、位相及びトライトーン(tri-tone)のような複数の位相シフトパラメータを組み合わせることによって、最良のウェーハリソグラフィ結果を得るために、種々の位相シフトパラメータを直に比較するとともに最適化することができる。さらに、193nm及び157nmの放射波長のための高透過率の位相シフトマスクのほとんど全てのリソグラフィデータがシミュレーションを基にしている。種々の透過率及びシフト角を有するマトリックスを用いることによって、実際のウェーハリソグラフィデータを収集して、193nm又は157nmのリソグラフィの場合の最良の位相シフトマスク構成を求めることができるようになる。さらに別の利点は、複数のフォトマスクを用いることに関連するコストの削減、及びウェーハ処理の変動をなくすことを含む。
[図面の詳細な説明]
種々の図面を通して、同様のまたは対応する部品を示すために同様の番号が用いられる。
図1A〜図1D並びに図2A及び図2Bは、埋込減衰型位相シフトマスク(EAPSM)を製造するための処理の一例の特定のステップの後のフォトマスクブランク100の一部の代表的な例の概略断面図である。この処理では、埋込位相シフト層の減衰が、位相シフトとは個別に制御される。いずれの例でも、ブランクは、実質的に透明な材料、たとえば石英から形成される基板110と、基板層110上に配置される、厚さHの埋込位相シフト層112と、埋込位相シフト層の上にある不透明層114とを含む。位相シフト層112は、たとえば、ケイ化モリブデン(MoSi)、窒化チタン、窒化シリコン又は他の適当な材料から形成される。不透明層114は、たとえば、クロム又は他の不透明材料から形成される。例示される実施形態では、位相シフト層はMoSiから形成され、不透明材料はクロムから形成され、基板は石英から形成される。
最初に、上に重なっている不透明層の領域を除去することによって、非減衰フィーチャ領域116が形成され、所望の回路パターンが形成される。その後、位相シフト層112の露出した部分が、よく知られているエッチング技法を用いて除去、すなわち「プラウイング」される(plowed)。このステップの結果の一例が図1Aに示される。このステップは、基板110の露出したフィーチャ領域118を作り出すか、又はフィーチャ領域118が明らかに見えるようにする。図1B及び図2Aでは、基板の露出した領域が所定の深さまでエッチングされ、基板がその平坦な表面の下までエッチングされた領域が作り出されている。この基板のエッチングは、位相シフト層をオーバーエッチングすることによって、埋込位相シフト層112のエッチング処理中に行うことができる。
その後、レジストコート(resist coat)、第2の露光、現像及びエッチングを含む、よく知られている第2段階の処理ステップを用いて、不透明層114の特定の領域が除去され、図1Cの例に示されるように、下層の位相シフト層112の領域120を露出させる。位相シフト層のこれらの領域は、フォトマスクの使用中に、(領域118を通過する放射と比べて)減衰したレベルで放射を透過するであろう。その処理の最後の基本ステップは、位相シフト層112の露出した領域120の一部又は全てを、全厚より薄い所定の厚さまでエッチング又は他の方法によって除去することである。結果として形成される構造の代表的な例が図1D及び図2Bに示される。エッチング剤の選択性によっては、基板110の露出した領域118もエッチングされる場合がある。エッチング処理の選択性が高いとき、結果として、基板はほとんど、又は全くエッチングされない場合もある。しかしながら、選択性のより低いエッチング処理の場合、基板のさらに多くの量が除去されることになり、それゆえ、基板内に形成される井戸がさらに深くなるであろう。
第1のエッチング処理及び第2のエッチング処理は、「プラウイング」処理及び「トリミング」処理とも呼ばれるであろう。第1の処理は、埋込位相シフト層の複数の領域を完全に除去し、それゆえ全体をプラウイングする。第2の処理は、埋込位相シフト層の上側部分だけを除去し、それゆえ、上側部分を所望の透過率までトリミングする。
基板及び位相シフト層が均質であるものと仮定すると、プラウイングステップ及びトリミングステップのためのエッチング時間は、以下の式を用いて、解析的に求めることができる。
Figure 2007535694
ただし、式中の変数は以下の意味を有する。
:第1のエッチング処理のために必要とされる全時間
:第2のエッチング処理のために必要とされる時間の長さ
:第1のエッチング処理(プラウイング)中の埋込位相シフト材料のエッチング速度(etch rate)
:初期位相シフト層厚(埋込)
:波長λにおける未トリミング時の埋込位相シフト層の初期透過率
T:波長λにおける埋込位相シフト材料の所望の透過率
Φ:波長λにおける未トリミング時の埋込位相シフト層の位相角
:波長λにおける埋込位相シフト層の屈折率
:波長λにおける基板の屈折率
:第1のエッチング処理(プラウイング)中の埋込位相シフト材料のエッチング速度
’:第2のエッチング処理(トリミング)中の埋込位相シフト材料のエッチング速度
:第1のエッチング処理(プラウイング)中の基板のエッチング速度
’:第2の位相シフタエッチング処理(トリミング)中の基板のエッチング速度
ここで図2A及び図2Bだけを参照して、式(1)及び(2)の導出が以下に説明される。以下の変数を用いて、位相シフト層及び基板層の寸法が指示される。
ΔH:第2のエッチング処理中に除去される位相シフト材料の量(ΔH=H−H
:第2のエッチング(トリミング)後の埋込位相シフト層の最終的な厚さ
2a:第1のエッチング処理(プラウイング)中に除去される基板の深さ
2b:第2のエッチング処理(トリミング)中に除去される基板の深さ
:第2のエッチング処理後の基板の最終的な厚さ(H=H2a+H2b
これらの寸法は、図2A及び図2Bに示される例について指示される。
図2A及び図2Bの例において、第1の(プラウイング)エッチング処理及び第2の(トリミング)エッチング処理のためのエッチング時間を求めるために先に与えられた式は以下のように導出される。
位相シフト層112の透過率は一般的に以下の式によって定義される。
Figure 2007535694
Tは、厚さt、所与の波長λにおける吸収係数αの場合の位相シフト材料の透過率である。位相シフト層112を通過する放射の位相角は一般的に以下の式によって定義される。
Figure 2007535694
Φは周囲の空気中の位相シフト層の位相シフト角であり、tは位相シフト層の厚さであり、nは所与の波長λにおける位相シフト層の屈折率である。したがって、特定の位相シフト材料から成る厚さHの位相シフト層を有するマスクの場合、位相シフト層112に入射する放射の透過率及び位相シフト角はそれぞれ、特定の入射放射波長の場合の位相シフト層112の厚さtの関数である。
第2のエッチング処理後の埋込位相シフト層の最終的な厚さHを計算するための式は、以下のように、既知の初期の厚さH、未トリミング時の埋込位相シフト層の初期の透過率T、及び式(3)及び(4)からのトリミングされた埋込位相シフト層の所望の最終的な透過率Tに基づいて導出することができる。
Figure 2007535694
これらの2つの式を組み合わせて、以下の式を導くことができる。
Figure 2007535694
それゆえ、第2のエッチング処理中にトリミングされることになる埋込位相シフト層の量又は厚さは、以下の式によって与えられる。
Figure 2007535694
それゆえ、第2のエッチング処理中に領域120において埋込位相シフト層112をトリミングするためのエッチング時間tは、以下のようになる。
Figure 2007535694
第2のエッチング処理中の埋込位相シフト材料と基板材料との間の選択性が限られているので、基板の露出した領域118の厚さも第2のエッチング処理中に或る程度除去されるであろう。除去される量はH2bと設計され、以下の式によって求められる。
Figure 2007535694
フィーチャエッジにおいて最大量の弱め合う干渉を引き起こすために、領域120において位相シフト層112を通過する減衰した放射と、領域118を経由して基板層110だけを通過した減衰していない放射との間の相対的な位相角は180°、すなわちπラジアンであることが好ましい。しかしながら、所望ならば、任意の位相シフトを選択することができる。領域120を経由して位相シフト層112を通過した放射と、領域118を経由して基板層110を通過した放射との間の位相角は、トリミングされた位相シフト層112の厚さ(H)及び2つのエッチング処理中に除去される基板層110の全厚(H)に依存する。その関係は以下のように表すことができる。
Figure 2007535694
ただし、nは波長λの放射における基板層110の屈折率である。
に式(7)を代入し、Φ=(2π/λ)(n−1)Hであることがわかっているとき、基板層110から除去される必要がある全厚Hは、以下のように計算することができる。
Figure 2007535694
第1のエッチング処理及び第2のエッチング処理の両方の処理中に除去される必要がある基板層110の全厚Hは、2つのエッチング処理のそれぞれの間に除去される厚さの和、すなわちH=H2a+H2bである。ただし、H2aは第1のエッチング処理中に除去される基板の厚さであり、H2bは第2のエッチング処理中に除去される基板の厚さである。H及びH2bに式(10)及び(12)を代入することにより、以下のようにH2aを求めることができる。
Figure 2007535694
第1のエッチング処理のために必要とされる全エッチング時間tは、埋込位相シフト層112を除去するための時間(H/r)に、式(13)によって与えられる、基板110のH2aに等しい深さを除去するために用いられる時間、すなわちH2a/rを加えたものに等しい。それゆえ、第1のエッチング処理の時間は以下の式によって計算される。
Figure 2007535694
ただし、第1項は、フィーチャ領域118が位相シフト層112からエッチングされる位相シフトエッチング時間(period)の部分tを表し、第2項は、基板層110の厚さH2aが除去されるオーバーエッチング時間を表す。
上記の式及び導出は、基板又は位相シフト層が均質であり、第1(プラウイング)のエッチング処理及び第2(トリミング)のエッチング処理中のエッチング速度が均一であるという仮定に基づいている。しかしながら、通常の位相シフト層は均質な挙動を示すことはなく、多くの位相シフト層パラメータ、たとえば、屈折率、吸収率及びエッチング速度は、位相シフト層の深さによって異なる場合がある。エッチング時間を求めるための厳密な解析モデルは不確かなこともあり、上記の式を通して、パラメータを容易に得られない場合もある。しかしながら、実験的に確定されたデータを用いて、完全に、又は部分的に実験的な手法を利用することができる。
図3は、実験的に導出されたデータを用いて、所与の目標とする透過率からエッチング時間を求めるためのプロセスの代表的な例を示す。そのプロセスは、基板及び位相シフト層がいずれも均質でないものと仮定する。この例では、6つの応答曲線又は参照テーブルが実験的に作成される。これらの曲線又はテーブルは、(1)エッチング深さに対する基板層の透過率(T%対ΔH)、(2)残りの基板層の位相角対エッチング深さ(φsub対ΔH)、(3)基板のエッチング深さに対する第2のエッチング処理(トリミング)にかかるエッチング時間(t2b対ΔH)、(4)基板をトリミングするためのエッチング時間に対する基板のエッチング厚(H2b対t)、(5)基板の第1のエッチング(プラウイング)にかかるエッチング時間に対するエッチング基板厚(H2b対t over)及び(6)エッチングされる深さに対する基板の位相角(φsub対H)に関連する。
ステップ122において所与の目標とする透過率T%で開始すると、所望の透過率を達成するために位相シフト層112から除去されるべき材料の深さが、ステップ124において求められる。位相シフト層において用いられる特定の材料の厚さ及び透過率に関連する、実験によって求められたデータを用いて、所望の透過率に対応する厚さが見つけられ、その後、その厚さは、埋込位相シフト層の既知の厚さから減算され、ΔH、すなわち位相シフト層のためのエッチング深さが導かれる。特定の位相シフト層材料及びエッチング処理の場合のエッチング深さ及びエッチング時間に関連する、実験によって導出されたデータは、ΔHを用いてステップ126において第2のエッチングtを求めるために用いられる。
第2のエッチング時間が求められると、第2のエッチング中に除去される基板の深さが求められる。ステップ128では、特定の基板材料及びエッチング処理の場合にエッチング深さをエッチング時間に関連付ける実験データを用いて、第2のエッチング中の基板のエッチング深さH2bが求められる。
その処理の次のステップは、領域118において減衰することなく基板を通過する放射と、領域120において位相シフト層(及び基板)を通過する放射との間でπラジアン、すなわち180°の所望の位相シフトに達するために、基板が第1のエッチング及び第2のエッチング中にエッチングされなければならない必要な深さを求める。第2のエッチング後の位相シフト層の厚さはわかっているため、エッチングされた高さにおける位相シフト層(すなわち、トリミングされた位相シフト層)の位相シフト角は、位相シフト層の厚さを位相シフトに関連付ける実験データを用いて求めることができる。この位相シフト角φpslは、その後、通常πラジアンである所望の位相シフトφfinalから減算され、ステップ132において、基板によって導入されなければならない位相シフト、すなわちφsubが導かれる。基板のエッチング深さを位相シフトに関連付ける実験データを用いて、基板の全エッチング深さHを求めることができる。全エッチング深さは、第1のエッチング及び第2のエッチング後に基板がエッチングされる最終的な深さである。
ステップ130、132及び134は、ステップ126及び128の前に、又はそれらのステップと同時に行うこともできる。
第1のエッチング中の基板のエッチング深さH2aは、基板に必要とされる全エッチング深さから、ステップ128において求められた、第2のエッチング中の基板のエッチング深さH2bを減算することによって、ステップ136において求められる。これは、オーバーエッチング時間と呼ばれ、t overで表されるであろう。オーバーエッチング時間t overは、H2aをエッチング深さとして用いて、基板のエッチング深さをエッチング時間に関連付ける実験的に求められたデータから求められる。ステップ140では、第1のエッチングのための全エッチング時間tが、位相シフト層を完全に除去するための既知のエッチング時間を加えることによって計算される。エッチング時間が求められると、フォトマスクの第1及び第2のエッチング処理が、図2に関連して説明されるように、フォトマスクのための製造プロセスの一部として、ステップ142において実行される。
したがって、所与の所望の透過率の場合に、位相シフト層の第1のエッチング、すなわちプラウイングのためのエッチング時間、及び第2のエッチング、すなわちトリミングのためのエッチング時間が求められる。所望の透過率に対する第1のエッチング時間及び第2のエッチング時間をプロットするテーブル又はグラフを、所与のタイプのフォトマスクブランク、すなわち所与の透過率及び位相シフト特性を有する、所与の厚さの所与の材料から形成される基板及び位相シフト層とともに用いられるフォトブランクマスクの場合に構成することができる。そのようなグラフの一例が図4のグラフ144であり、線146及び148がそれぞれ、目標とする透過率に対する第1のエッチング時間及び第2のエッチング時間をプロットしている。
少なくとも場合によっては、基板が均質であると仮定することができる。基板が均質であると仮定される場合には、第1のエッチング及び第2のエッチング中の基板のためのエッチング速度が同じであると仮定することができる。式(8)及び(9)から、以下の式を用いて、基板のためのオーバーエッチング時間t overを計算することができる。
Figure 2007535694
その後、オーバーエッチング時間に、位相シフト層をプラウイングする、すなわち完全に除去するための時間を加えることによって、第1のエッチングのための全エッチング時間を求めることができる。第2のエッチング時間t、及びトリミングされた位相シフト層の位相シフトφpslを求めるために、図3のステップ124、126及び130が実行されるであろう。その後、これらの値を式(13)に代入して、オーバーエッチング時間t overを計算することができる。その後、ステップ140において上記のようにオーバーエッチング時間を用いて、第1のエッチングのための全時間が計算される。
ここで図6を参照すると、位相シフト角とは関係なく埋込減衰型位相シフトマスク内の位相シフト層の透過を制御することによって、単一のフォトマスク上に、それぞれ透過率及び位相シフト角が異なる複数のセルを有するマトリックステストデバイスを製造できるようになる。それらのセルは、フォトマスク上で、一度に1つの領域において、上記の処理を繰り返すことによって製造される。そのようなマトリックステストデバイスの一例が図5に示される。異なる透過率、位相シフト角及びトライトーンのような、それぞれ潜在的に異なる位相シフト条件を有する複数のテストセル154が、単一のフォトマスク152の上に形成されている。そのようなテストデバイスを製造するプロセスの一例が図6に示される。ステップ156は、吸収層又は不透明層、たとえばクロム層のために必要なパターンを形成するための標準的なパターニング処理、現像処理及びエッチング処理を表す。製造されることになるセル毎に、以下のステップが繰り返される。ステップ158では、フォトマスクがレジスト(resist)でコーティングされ、対象とするセルだけを露出させるパターンを用いて露光される。所与の透過率及び位相シフト角の場合に、図1に関連して先に説明された処理がステップ160において始められる(undertaken)。その後、ステップ162において、レジストが剥離され、処理は次のセルに対して繰り返される。
ウェーハリソグラフィにおける最良の結果は、最大限の処理許容度(process latitude)、焦点深さ及び解像度を達成することによってもたらされる。単一のフォトマスク上に多数の位相シフトパラメータを組み合わせることによって、最良のウェーハリソグラフィ結果を得るために、位相シフトパラメータを直に比較するとともに最適化できるようになる。193及び157nmリソグラフィの場合、データの生成に関連して、シミュレーションが頻繁に用いられる。そのようなシミュレーションは多くの場合に、モデルの精度及び変数の数に関する制約によって制限される。上記のようなフォトマスクを用いる場合、最良の位相シフトマスク構成を求めるためのデータを得るために、そのようなシミュレーションはもはや不要である。シミュレーションと合わせて、多数の位相シフトパラメータを有するフォトマスクで形成される半導体ウェーハからの実際のデータを用いることができる。上記のようなフォトマスクから生成される実際のデータは、ウェーハリソグラフィのためのフォトマスクの最適な位相シフト条件を特定するためだけでなく、シミュレーションモデルを検証するために、且つそれらのモデルを修正するために用いることができる。単一のフォトマスク上で種々の位相シフトパラメータを組み合わせることは、多数のフォトマスクを必要としないので、コストも削減し、複数のフォトマスクを用いる最適化プロセスに対するウェーハ処理変動の影響も排除する。
本発明は、これまでの詳細な説明によって、詳しく図示及び説明されてきたが、本発明の精神及び範囲から逸脱することなく、形態及び細部において種々の変更、改変、修正、変化及び派生が可能であることは当業者には理解されよう。
不透明層及び埋込位相シフト材料の複数の領域が除去された後の埋込減衰型フォトマスクブランクの一部の概略断面図である。 基板の特定の領域が除去されている、図1Aに示されるフォトマスクの一部の概略断面図である。 不透明層のさらに別の領域が除去され、下層である位相シフト層の複数の領域が露出した後の図1Aに示されるフォトマスクの一部の概略断面図である。 埋込位相シフト層の特定の露出した領域がトリミングされた後の図1Aに示されるフォトマスクの一部の概略断面図である。 埋込位相シフト層の領域が完全に除去され、下にある基板の領域がエッチングされた後の埋込減衰型フォトマスクの一部の概略断面図である。 所望の、又は予め選択された減衰レベルに達するために、埋込位相シフト層の露出した部分が薄くされた(そして、エッチング処理の選択性によって、基板のさらに多くの量が除去された)後の図2Aのフォトマスクの一部の概略断面図である。 埋込減衰型位相シフトフォトマスクのための予め選択された減衰及び位相シフトを達成するために、実験的に導出された情報を用いてエッチング時間を求めるためのプロセスの基本的なステップの流れ図である。 調整可能な位相シフト層透過率を有する埋込減衰型位相シフトマスクを製造するためのエッチング時間のプロット図である。 種々の減衰レベル、位相シフト及び/又は他の調整可能なパラメータをテストするために、単一の埋込減衰型位相シフトフォトマスクブランク上に形成されるマトリックステストデバイスの概略図である。 図5のマトリックステストデバイスを製造する基本的な処理のステップを示す流れ図である。

Claims (28)

  1. 半透明の基板と、前記基板に重なる位相シフト及び減衰材料から構成される埋込位相シフト層と、前記埋込位相シフト層に重なる不透明材料の層とを備える埋込減衰型位相シフトマスクであって、
    前記不透明材料の複数のエリアが回路パターンを画定するために除去されており、
    前記除去された不透明材料の前記エリア内で、
    前記埋込層の第1の領域が完全に除去され、
    前記埋込層の第2の領域が、所定の減衰レベルに等価な所定の高さまで薄くされ、
    前記埋込層の前記第2の領域に隣接する前記基板の領域が、所定の深さまでエッチングされ、それによって、前記埋込位相シフト層の前記第2の領域を通過する放射が、前記第1の領域を通過する放射に対して所定の量だけ位相シフトされるようになっている、埋込減衰型位相シフトマスク。
  2. 複数のテストセルをさらに備え、
    前記複数のテストセルのうちの少なくとも一つは第1の減衰を有し、
    前記複数のテストセルのうちの第2のセルは前記第1の減衰とは異なる第2の減衰を有する、請求項1に記載の埋込減衰型位相シフトマスク。
  3. 複数のテストセルをさらに備え、
    前記複数のテストセルのうちの少なくとも一つは第1の位相減衰を有し、
    前記複数のテストセルのうちの第2のセルは前記第1のものとは異なる第2の位相シフトを有する、請求項1に記載の埋込減衰型位相シフトマスク。
  4. 埋込減衰型位相シフトフォトマスクを製造するための方法であって、前記フォトマスクは基板と、厚さが既知である埋込位相シフト層と、不透明層とを備え、
    前記方法は、
    前記フォトマスクの第1の領域において前記位相シフト層を完全に除去することと、
    前記第1の領域において、前記位相シフト層の前記除去された第1の領域の下にある前記基板を所定の深さまで除去することと、
    前記フォトマスクの第2の領域において前記位相シフト層を薄くすることであって、それによって、前記第2の領域を通過する放射に対する所定の減衰を達成する、前記位相シフト層を薄くすることと
    を含み、
    それにより、前記第1の領域を通過する放射と前記第2の領域を通過する放射との間の相対的な位相シフトを所望の位相シフトに等しくする、埋込減衰型位相シフトフォトマスクを製造するための方法。
  5. 前記位相シフト層を完全に除去すること、及び前記基板の複数のエリアを所定の深さまで除去することは、同じエッチング処理中に始められる、請求項4に記載の方法。
  6. 前記第2の領域において、前記位相シフト層は、前記第1の領域において前記基板のさらに多くの量を除去するエッチング処理によって薄くされ、
    前記位相シフト層を薄くしている間に前記基板の前記さらに多くの量が除去された後に、前記第1の領域において前記除去された基板の全深さが、前記第1の領域を通過する放射と前記第2の領域を通過する放射との間の所定の相対的な位相シフトを引き起こすように、前記所定の深さが選択される、請求項4に記載の方法。
  7. 前記位相シフト層を薄くすることは、前記位相シフト層から材料を除去するためのエッチング処理を含み、
    前記位相シフト層の前記第2のエッチングのための時間は前記所定の減衰に基づいて選択される、請求項4に記載の方法。
  8. 前記エッチング処理は前記第1の領域において前記基板のさらに多くの量を除去し、
    前記位相シフト層のエッチング中に前記基板のさらに多くの量を除去した後に、前記第1の領域において前記除去された基板の全深さが、前記第1の領域を通過する放射と前記第2の領域を通過する放射との間の所定の相対的な位相シフトを引き起こすように、前記所定の深さが求められる、請求項7に記載の方法。
  9. 埋込減衰型位相シフトマスクから構成される装置であって、
    前記埋込減衰型位相シフトマスクは、基板と、埋込位相シフト層と、不透明層とを備え、
    前記埋込減衰型位相シフトマスク上には、複数のテストセルが製造されており、
    前記複数のテストセルのうちの第1のテストセルは、非減衰フィーチャ領域に隣接して、第1の減衰を有する前記埋込位相シフト層の露出した領域を有し、
    前記複数のテストセルのうちの第2のテストセルは、非減衰フィーチャ領域に隣接して、第2の減衰を有する前記埋込位相シフト層の露出した領域を有する
    埋込減衰型位相シフトマスクから構成される装置。
  10. 埋込減衰型位相シフトマスクから構成される装置であって、
    前記埋込減衰型位相シフトマスクは、基板と、所定の厚さを有する埋込位相シフト層と、不透明層とを備え、
    前記埋込減衰型位相シフトマスク上には、複数のテストセルが製造されており、
    前記複数のテストセルのうちの1つのテストセルは、非減衰フィーチャ領域に隣接して、前記所定の厚さより薄い厚さまでトリミングされている、前記埋込位相シフト層の露出した領域を有する
    埋込減衰型位相シフトマスクから構成される装置。
  11. 前記複数のテストセルのうちの前記1つのテストセルは、非減衰フィーチャ領域に隣接する前記埋込位相シフト層の露出した領域を有し、
    前記露出した領域は所定の第1の減衰レベルを達成することになり、
    前記複数のテストセルのうちの第2のテストセルは、非減衰フィーチャ領域に隣接して、第2の減衰を有する前記埋込位相シフト層の露出した領域を有する、請求項10に記載の装置。
  12. 前記複数のテストセルのうちの前記1つのテストセルは、前記基板が所定の深さまでエッチングされている非減衰フィーチャ領域を含み、
    隣接する前記埋込位相シフト層の前記トリミングされた露出した領域と、前記エッチングされた非減衰フィーチャ領域との間の相対的な位相シフトは、前記複数のテストセルのうちの別のテストセルにおける露出した位相シフト層とフィーチャとの間の位相シフトとは異なる、請求項10に記載の装置。
  13. 位相シフト層を有するフォトマスクの位相シフト層パラメータを最適化する方法であって、
    フォトマスク上に複数のテストセルパターンを形成することであって、前記複数のテストセルパターンのうちの少なくとも2つは、少なくとも1つの異なる位相シフト層パラメータを有する、テストセルパターンを形成することと、
    前記フォトマスクを用いて半導体基板上に複数のテストセルを製造することであって、前記半導体基板上の前記テストセルは、前記パターン内の前記複数のテストセルに対応する、テストセルを製造することと、
    前記半導体基板上の前記テストセルを評価することと
    を含む、位相シフト層を有するフォトマスクの位相シフト層パラメータを最適化する方法。
  14. 前記テストセルの前記評価に少なくとも或る程度基づいて、フォトマスクを生産するための位相シフトパラメータを選択することをさらに含む、請求項13に記載の方法。
  15. 前記フォトマスクの少なくとも一部のモデルを用いて、半導体基板上にパターンの少なくとも一部を形成することをシミュレートすることと、
    前記テストセルの前記評価に基づいて、前記フォトマスクの前記モデルを検証又は修正することと
    をさらに含む、請求項13に記載の方法。
  16. 埋込減衰型位相シフトマスクであって、
    その中に第1のパターンが形成されている不透明材料の層と、
    前記不透明材料の層の下にある、その中に第2のパターンが形成されている位相シフト材料の層であって、前記第2のパターンは、少なくとも1つの除去された部分と、少なくとも1つの窪んだ部分と、少なくとも1つの窪んでいない部分とを含み、前記第2のパターンの前記少なくとも1つの窪んでいない部分は前記第1のパターンと一致し、前記少なくとも1つの窪んだ部分は前記マスクの所望の透過率に基づいて予め求められる深さまで窪む、位相シフト材料の層と、
    前記位相シフト材料の層の下にある、その中に第3のパターンを形成されている実質的に透明な基板であって、前記第3のパターンは前記第2のパターンの前記少なくとも1つの除去された部分と一致し、前記マスクの所望の位相シフトに基づいて予め求められる深さを有する、実質的に透明な基板と
    を備える、埋込減衰型位相シフトマスク。
  17. 前記不透明材料はクロム及びMoSiから成るグループから選択される、請求項1に記載の埋込減衰型位相シフトマスク。
  18. 前記位相シフト材料は、MoSi、窒化チタン及び窒化シリコンから成るグループから選択される、請求項1に記載の埋込減衰型位相シフトマスク。
  19. 埋込減衰型位相シフトマスクであって、
    複数のテストセルを備え、
    前記複数のテストセルの各テストセルは、他のテストセルの位相シフト条件とは異なる少なくとも1つの位相シフト条件を有し、
    前記複数のテストセルの各テストセルは、
    その中に第1のパターンを形成されている不透明材料の層と、
    前記不透明材料の層の下にある、その中に第2のパターンを形成されている位相シフト材料の層であって、前記第2のパターンは、少なくとも1つの除去された部分と、少なくとも1つの窪んだ部分と、少なくとも1つの窪んでいない部分とを含み、前記第2のパターンの前記少なくとも1つの窪んでいない部分は前記第1のパターンと一致する、位相シフト材料の層と、
    前記位相シフト材料の層の下にある、その中に第3のパターンを形成されている実質的に透明な基板であって、前記第3のパターンは前記第2のパターンの前記少なくとも1つの除去された部分と一致する、実質的に透明な基板と
    を備える
    埋込減衰型位相シフトマスク。
  20. 前記少なくとも1つの位相シフト条件は、透過率、位相シフト角及びトライトーンから成るグループから選択される、請求項19に記載の埋込減衰型位相シフトマスク。
  21. 前記少なくとも1つの位相シフト条件は透過率であり、
    前記第2のパターンの前記少なくとも1つの窪んだ部分は、対応するテストセルの所望の透過率に基づいて予め求められる深さまで窪む
    請求項20に記載の埋込減衰型位相シフトマスク。
  22. 前記少なくとも1つの位相シフト条件は位相シフト角であり、
    前記第3のパターンは対応するテストセルの所望の位相シフト角に基づいて予め求められる深さを有する
    請求項20に記載の埋込減衰型位相シフトマスク。
  23. 前記複数のテストセルはマトリックスに配列される、請求項19に記載の埋込減衰型位相シフトマスク。
  24. ブランクフォトマスクから埋込減衰型位相シフトフォトマスクを形成する方法であって、
    前記ブランクフォトマスクは、基板と、前記基板上に形成される位相シフト層と、前記位相シフト層上に形成される不透明層とを備え、
    前記方法は、
    前記不透明層の少なくとも1つの第1の部分と、前記位相シフト層の少なくとも1つの対応する第1の部分とを除去するステップであって、それによって、前記基板の少なくとも一部を露出させる、除去するステップと、
    前記基板の前記露出した少なくとも一部を深さDまで除去するステップと、
    前記不透明層の少なくとも1つの第2の部分を除去するステップであって、それによって、前記位相シフト層の少なくとも1つの対応する第2の部分を露出させる、除去するステップと、
    前記位相シフト層の前記露出した少なくとも1つの第2の部分を深さDまで除去するステップであって、それによって、前記位相シフト層の所望の透過率を達成し、前記深さDは、前記基板の前記少なくとも一部と、前記位相シフト層の前記少なくとも第2の部分との間の所望の相対的な位相シフトに基づいて予め求められる、除去するステップと
    を含む、ブランクフォトマスクから埋込減衰型位相シフトフォトマスクを形成する方法。
  25. 前記位相シフト層の前記少なくとも1つの第2の部分の除去の前記深さDは、以下の式によって求められ、
    Figure 2007535694
    ただし、
    「D」は初期の位相シフト層厚を表し、
    「T」は波長λにおける前記位相シフト層の所望の透過率を表し、
    「T」は前記波長λにおける前記位相シフト層の初期の透過率を表す
    請求項24に記載の方法。
  26. 前記基板の前記露出した少なくとも一部は、前記位相シフト層の前記露出した少なくとも1つの第2の部分を除去するステップ中にさらに除去される、請求項25に記載の方法。
  27. 前記基板の前記露出した少なくとも一部の除去の前記深さDは、以下の式によって求められ、
    Figure 2007535694
    ただし、
    「n」は、前記波長λにおける前記基板の屈折率を表し、
    「Φ」は、前記波長λ及び前記初期の位相シフト層厚Dにおける、前記位相シフト層の位相角を表し、
    ’は、前記不透明層の少なくとも1つの第1の部分と、前記位相シフト層の少なくとも1つの対応する第1の部分とを除去するステップ中の、前記位相シフト層のエッチング速度を表し、
    ’は、前記位相シフト層の前記露出した少なくとも1つの第2の部分を除去するステップ中の、前記基板のエッチング速度を表す
    請求項26に記載の方法。
  28. 半導体デバイスを形成する方法であって、
    半導体ウェーハとエネルギー源との間に埋込減衰型位相シフトマスクを配置するステップであって、
    前記埋込減衰型位相シフトマスクは、
    その中に第1のパターンを形成されている不透明材料の層と、
    前記不透明材料の層の下にある、その中に第2のパターンを形成されている位相シフト材料の層であって、前記第2のパターンは、少なくとも1つの除去された部分と、少なくとも1つの窪んだ部分と、少なくとも1つの窪んでいない部分とを含み、前記第2のパターンの前記少なくとも1つの窪んでいない部分は前記第1のパターンと一致し、前記少なくとも1つの窪んだ部分は前記マスクの所望の透過率に基づいて予め求められる深さまで窪む、位相シフト材料の層と、
    前記位相シフト材料の層の下にある、その中に第3のパターンを形成されている実質的に透明な基板であって、前記第3のパターンは前記第2のパターンの前記少なくとも1つの除去された部分と一致し、前記マスクの所望の位相シフトに基づいて予め求められる深さを有する、実質的に透明な基板と
    を備える、埋込減衰型位相シフトマスクを配置するステップと、
    前記エネルギー源においてエネルギーを生成するステップと、
    前記生成されたエネルギーを、前記埋込減衰型位相シフトマスクの前記不透明材料の層、前記位相シフト材料の層、及び前記基板内に形成される前記パターンを通して、前記半導体ウェーハに透過させるステップと、
    前記埋込減衰型位相シフトマスクの前記不透明材料の層、前記位相シフト材料の層及び前記基板内に形成される前記パターンに対応するイメージを前記半導体ウェーハ上にエッチングするステップと
    を含む、半導体デバイスを形成する方法。
JP2007504104A 2004-03-18 2005-03-17 透過率を調整することができる埋込減衰型位相シフトマスク Pending JP2007535694A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/803,847 US7312004B2 (en) 2004-03-18 2004-03-18 Embedded attenuated phase shift mask with tunable transmission
PCT/US2005/008905 WO2005090931A1 (en) 2004-03-18 2005-03-17 Embedded attenuated phase shift mask with tunable transmission

Publications (2)

Publication Number Publication Date
JP2007535694A true JP2007535694A (ja) 2007-12-06
JP2007535694A5 JP2007535694A5 (ja) 2008-05-08

Family

ID=34986706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007504104A Pending JP2007535694A (ja) 2004-03-18 2005-03-17 透過率を調整することができる埋込減衰型位相シフトマスク

Country Status (7)

Country Link
US (1) US7312004B2 (ja)
EP (1) EP1730477A4 (ja)
JP (1) JP2007535694A (ja)
KR (1) KR20070008638A (ja)
CN (1) CN101006329A (ja)
TW (1) TWI270754B (ja)
WO (1) WO2005090931A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271572A (ja) * 2009-05-22 2010-12-02 Hoya Corp 多階調フォトマスクの製造方法、多階調フォトマスク、及びパターン転写方法
TWI480679B (zh) * 2011-09-30 2015-04-11 Hoya Corp 多灰階光罩、多灰階光罩之製造方法、圖案轉印方法及薄膜電晶體之製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442472B2 (en) * 2004-08-10 2008-10-28 Micron Technology, Inc. Methods of forming reticles
CN1773373B (zh) * 2004-11-08 2010-07-14 中芯国际集成电路制造(上海)有限公司 用于多透射率光掩模结构的镶嵌的方法和所得结构
EP1804119A1 (en) 2005-12-27 2007-07-04 Interuniversitair Microelektronica Centrum Method for manufacturing attenuated phase- shift masks and devices obtained therefrom
US8288081B2 (en) * 2007-04-02 2012-10-16 Taiwan Semiconductor Manufacturing Company, Ltd. Method and system for exposure of a phase shift mask
KR101361130B1 (ko) * 2007-12-26 2014-02-12 삼성전자주식회사 반사형 포토마스크 및 상기 반사형 포토마스크의 층 두께최적화 방법
US9005848B2 (en) * 2008-06-17 2015-04-14 Photronics, Inc. Photomask having a reduced field size and method of using the same
KR101420907B1 (ko) * 2009-02-16 2014-07-17 다이니폰 인사츠 가부시키가이샤 포토마스크, 포토마스크의 제조 방법 및 수정 방법
US9005849B2 (en) * 2009-06-17 2015-04-14 Photronics, Inc. Photomask having a reduced field size and method of using the same
JP2011027878A (ja) * 2009-07-23 2011-02-10 Hoya Corp 多階調フォトマスク、多階調フォトマスクの製造方法、及びパターン転写方法
CN102129165B (zh) * 2010-01-15 2012-12-05 中芯国际集成电路制造(上海)有限公司 衰减相移掩膜
CN102183874B (zh) * 2011-05-06 2013-03-27 北京理工大学 一种基于边界层模型的三维相移掩膜优化方法
US8959465B2 (en) 2011-12-30 2015-02-17 Intel Corporation Techniques for phase tuning for process optimization
CN110970297B (zh) * 2018-09-29 2024-06-07 长鑫存储技术有限公司 补偿性蚀刻方法及结构、半导体器件及其制备方法
CN112635408B (zh) * 2020-12-21 2022-08-16 上海富乐华半导体科技有限公司 一种dbc基板上铜箔台阶的制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261725B1 (en) * 1999-10-28 2001-07-17 Taiwan Semiconductor Manufacturing Company Phase angle modulation of PSM by chemical treatment method
US6277528B1 (en) * 2000-01-21 2001-08-21 Taiwan Semiconductor Manufacturing Company Method to change transmittance of attenuated phase-shifting masks
US6403267B1 (en) * 2000-01-21 2002-06-11 Taiwan Semiconductor Manufacturing Company Method for high transmittance attenuated phase-shifting mask fabrication
US20020127881A1 (en) * 2001-01-05 2002-09-12 Guangming Xiao Step mask

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480747A (en) * 1994-11-21 1996-01-02 Sematech, Inc. Attenuated phase shifting mask with buried absorbers
US5618643A (en) 1995-12-15 1997-04-08 Intel Corporation Embedded phase shifting mask with improved relative attenuated film transmission
KR970048985A (ko) 1995-12-26 1997-07-29 김광호 더미 패턴을 가지는 하프톤형 위상 반전 마스크 및 그 제조 방법
US6406818B1 (en) 1999-03-31 2002-06-18 Photronics, Inc. Method of manufacturing photomasks by plasma etching with resist stripped
US6436588B1 (en) 1999-12-20 2002-08-20 Texas Instruments Incorporated Method and system for varying the transmission of an attenuated phase shift mask
US6274281B1 (en) * 1999-12-28 2001-08-14 Taiwan Semiconductor Manufacturing Company Using different transmittance with attenuate phase shift mask (APSM) to compensate ADI critical dimension proximity
US6902851B1 (en) * 2001-03-14 2005-06-07 Advanced Micro Devices, Inc. Method for using phase-shifting mask
US7022436B2 (en) * 2003-01-14 2006-04-04 Asml Netherlands B.V. Embedded etch stop for phase shift masks and planar phase shift masks to reduce topography induced and wave guide effects

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261725B1 (en) * 1999-10-28 2001-07-17 Taiwan Semiconductor Manufacturing Company Phase angle modulation of PSM by chemical treatment method
US6277528B1 (en) * 2000-01-21 2001-08-21 Taiwan Semiconductor Manufacturing Company Method to change transmittance of attenuated phase-shifting masks
US6403267B1 (en) * 2000-01-21 2002-06-11 Taiwan Semiconductor Manufacturing Company Method for high transmittance attenuated phase-shifting mask fabrication
US20020127881A1 (en) * 2001-01-05 2002-09-12 Guangming Xiao Step mask

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271572A (ja) * 2009-05-22 2010-12-02 Hoya Corp 多階調フォトマスクの製造方法、多階調フォトマスク、及びパターン転写方法
TWI480679B (zh) * 2011-09-30 2015-04-11 Hoya Corp 多灰階光罩、多灰階光罩之製造方法、圖案轉印方法及薄膜電晶體之製造方法

Also Published As

Publication number Publication date
KR20070008638A (ko) 2007-01-17
EP1730477A4 (en) 2007-05-16
US20050208390A1 (en) 2005-09-22
EP1730477A1 (en) 2006-12-13
TW200535575A (en) 2005-11-01
TWI270754B (en) 2007-01-11
WO2005090931A1 (en) 2005-09-29
CN101006329A (zh) 2007-07-25
US7312004B2 (en) 2007-12-25

Similar Documents

Publication Publication Date Title
JP2007535694A (ja) 透過率を調整することができる埋込減衰型位相シフトマスク
JP2739065B2 (ja) アパーチャ交番移相マスクを製造する方法
JP2862183B2 (ja) マスクの製造方法
EP1542073A2 (en) Patterning method
JP2996127B2 (ja) パターン形成方法
TWI388922B (zh) 圖案形成方法及相位移遮罩的製造方法
KR20030038327A (ko) 패턴의 형성 방법 및 장치의 제조 방법
JP3388986B2 (ja) 露光用マスク及びその製造方法
US5695896A (en) Process for fabricating a phase shifting mask
WO2005103820A1 (ja) レベンソン型位相シフトマスク及びその製造方法
US6376130B1 (en) Chromeless alternating reticle for producing semiconductor device features
CN104597710A (zh) 掩模的制造方法
KR100475083B1 (ko) 미세한 콘택홀 어레이를 위한 포토마스크, 그 제조방법 및사용방법
US7049034B2 (en) Photomask having an internal substantially transparent etch stop layer
JP2002072442A (ja) 位相シフトマスクの製造方法、レジストパターンの形成方法および半導体装置の製造方法
JP2003177504A (ja) 位相シフトマスク用データ補正方法
JP3759914B2 (ja) フォトマスク及びそれを用いたパターン形成方法
US6933084B2 (en) Alternating aperture phase shift photomask having light absorption layer
TWI298422B (en) Optical proximity correction photomasks
US20050026053A1 (en) Photomask having an internal substantially transparent etch stop layer
JP2007233138A (ja) マスク、マスクの製造方法およびそのマスクを用いた半導体装置の製造方法
US5747196A (en) Method of fabricating a phase-shift photomask
US20030180629A1 (en) Masks and method for contact hole exposure
JPH0476551A (ja) パターン形成方法
US20030181033A1 (en) Masks and method for contact hole exposure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705