WO2005103820A1 - レベンソン型位相シフトマスク及びその製造方法 - Google Patents

レベンソン型位相シフトマスク及びその製造方法 Download PDF

Info

Publication number
WO2005103820A1
WO2005103820A1 PCT/JP2005/007437 JP2005007437W WO2005103820A1 WO 2005103820 A1 WO2005103820 A1 WO 2005103820A1 JP 2005007437 W JP2005007437 W JP 2005007437W WO 2005103820 A1 WO2005103820 A1 WO 2005103820A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
light shielding
opening
shifter
resist
Prior art date
Application number
PCT/JP2005/007437
Other languages
English (en)
French (fr)
Inventor
Yosuke Kojima
Toshio Konishi
Keishi Tanaka
Masao Otaki
Jun Sasaki
Original Assignee
Toppan Printing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co., Ltd. filed Critical Toppan Printing Co., Ltd.
Priority to KR1020067021836A priority Critical patent/KR101139986B1/ko
Priority to CN2005800206022A priority patent/CN1973244B/zh
Priority to EP05734659A priority patent/EP1739481A4/en
Publication of WO2005103820A1 publication Critical patent/WO2005103820A1/ja
Priority to US11/583,797 priority patent/US7632613B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/30Alternating PSM, e.g. Levenson-Shibuya PSM; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/36Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof

Definitions

  • the present invention relates to a Levenson-type phase shift mask used in the manufacture of semiconductor devices such as LSIs, and a method of manufacturing the same.
  • phase shift method proposed by Levenson et al. Of IBM in 1982 as a method for improving the resolution of a transfer pattern.
  • the principle of the phase shift method is that when transmitting light interferes with each other by providing a phase shifting portion (shifter opening) at one of the openings so that the phase of the transmitted light passing through the adjacent openings is inverted. It weakens the light intensity at the boundary, and as a result improves the resolution and focus depth of the transfer pattern.
  • a photomask whose resolution is improved by using such a phase shift method is generally called a Levenson-type phase shift mask.
  • FIG. 8 is a schematic cross-sectional view showing the structure of a digging-type Levenson-type phase shift mask.
  • reference numeral 11 is a transparent substrate
  • 12 is a light shielding film
  • 13 is a non-shifter opening
  • 14 is a shift opening.
  • Reference numeral 15 is a shallow trench, which is the depth to which the substrate of the non-shifter opening 13 is dug.
  • a symbol 16 is called an undercut, and is a ridge length of the light shielding portion provided in the shifter opening 14.
  • Reference numeral 17 is a difference between the amount of digging corresponding to the phase difference between the transmitted light 3b of the non-shifter opening 13 and the transmitted light 3a of the shift opening 14 being 180 °.
  • the symbol 18 is called chrome CD ((CD: Critical Dimension, for example, line width in the case of an isolated pattern of line pattern), and the line width when chrome (Cr) is used for the light shielding film 12 It is a law.
  • the symbol 19 is the pitch, which is the distance to the end face of the light shielding pattern following the end face force of the light shielding pattern.
  • the digging-type Levenson-type phase shift mask described above is based on a structure in which shifter openings and non-shifter openings are alternately and repeatedly arranged.
  • a pattern in which the shifter openings are adjacent to each other or only the patterns in which the shifter openings and the non-shifter openings are alternately arranged, or the non-shifter openings are Produces a pattern in which the For example, as shown in FIG. 9, a pattern may occur in which the other shifter opening 22a is adjacent to the shifter opening 2 la.
  • the occurrence of a pattern in which openings of the same type are adjacent to each other is often unavoidable in circuit design.
  • FIG. 10 is a characteristic diagram showing relative exposure intensity when a mask having the structure of FIG. 9 is transferred onto a semiconductor wafer using a positive resist.
  • the second problem is that the light shielding film 12b present in the portion 23a sandwiched by the openings of the same type is easily peeled off.
  • the space between two shutter one openings 21a and 22a Since the undercut 16 is applied to the transparent substrate 11 of the portion 23a sandwiched between the two, the contact area between the light shielding film 12b and the transparent substrate 11 is reduced. Therefore, the light shielding film 12 b of the sandwiched portion 23 a is easily peeled off from the transparent substrate 11.
  • the mask design is greatly restricted, and the undercut amount can not be selected appropriately, which may cause the performance of the mask to deteriorate.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 10-333316
  • the present invention in order to solve the above-mentioned problems, can improve the pattern resolution of the portion between the openings of the same type, and the portion between the openings of the same type. It is an object of the present invention to provide a Levenson-type phase shift mask capable of making it difficult to peel off a light shielding film and a method of manufacturing the same.
  • the Levenson-type phase shift mask of the present invention has a light shielding portion and an opening formed on a transparent substrate, and the transparent substrate of the opening is partially dug or the opening is A reflector opening formed by partially placing a transparent film on a transparent substrate and a non-shifter opening are repeatedly present, and a lenson which reverses the phase of transmitted light by the shifter opening.
  • Type phase shift mask which has a light shielding portion pattern sandwiched between the same kind of adjacent openings and both side corners, and the light shielding portion pattern for a predetermined design line width determined in the design of the mask It is characterized in that bias correction is performed to extend both sides by a predetermined amount.
  • phase shift mask according to (1) characterized in that a bias correction amount is determined such that the light-shielding portion pattern can be obtained with a desired transfer size.
  • a Levenson-type phase shift mask in which bias correction is applied to a light shielding portion pattern sandwiched between adjacent shifter one openings from both sides, which is sandwiched between a shifter opening and a non-shifter one opening.
  • the light-shielding portion pattern has an undercut on the side of the shifter opening, and the light-shielding portion pattern subjected to the bias correction does not have an undercut, according to any one of (1) to (3).
  • Phase shift mask (Fig. 1).
  • a Levenson-type phase shift mask in which bias correction is applied to a light shielding portion pattern sandwiched from both sides between adjacent shifter one openings, which is sandwiched between a shifter opening and a non-shifter one opening.
  • the light shielding portion pattern has an undercut on the side of the shifter opening, and
  • the light-shielding portion pattern subjected to neutral correction does not have a light-shielding film, and is characterized in (1) to (3)! Or phase shift mask described in (Fig. 2).
  • this chromium-less type phase shift mask even though the light passing through the shifter opening and the light passing through the partial force cancel each other out and the light shielding film is not provided in the sandwiched portion, it is possible to reduce the heat. It functions as if a light shielding film exists.
  • a method of manufacturing a Levenson-type phase shift mask according to the present invention includes a light shielding portion and an opening formed on a transparent substrate, and partially etching the transparent substrate in the opening or Levenson, in which a shifter opening and a non-shifter opening formed by partially placing a transparent film on a transparent substrate at the opening are repeatedly present, and the phase of the transmitted light is reversed by the shifter opening.
  • the light shielding film formed on the transparent substrate is pattern-etched, and bias correction is applied to the area where the light shielding portion pattern to be formed is sandwiched between the same kind of adjacent openings from both sides.
  • a method of manufacturing a Levenson-type phase shift mask is characterized in that a transparent substrate is dug, an undercut is formed on the resist pattern, and the resist of the resist pattern is removed (FIGS. 6A to 61). .
  • a resist pattern is formed which covers the light shielding film pattern except the light shielding portion pattern sandwiched from both sides in the same kind of adjacent opening, The light shielding film of the light shielding portion pattern is removed by etching, and the resist of the resist pattern is removed (6) (FIGS. 6A to 61).
  • a light shielding film is formed by pattern forming a light shielding film and formed on a transparent substrate, having a light shielding portion and an opening portion, partially excavating the transparent substrate of the opening portion or a transparent substrate of the opening portion
  • a Levenson-type phase shift mask in which a shifter opening and a non-shifter opening which are formed by partially placing a transparent film on top are repeatedly present, and the phase of transmitted light is reversed by the shifter opening.
  • the light shielding film formed on the transparent substrate is subjected to pattern etching to form a light shielding portion pattern which is sandwiched from the both sides in the adjacent openings of the same type.
  • the light shielding film is removed from the area to be formed, and bias correction is performed on the light shielding film removed area to form a resist pattern spread on both sides by an undercut amount, and the transparent substrate is etched by using the resist pattern as a mask. And forming an undercut with respect to the resist pattern, and removing the resist of the resist pattern.
  • This is a method of manufacturing a Levenson-type phase shift mask (FIGS. 7A to 7G).
  • the bias correction amount of the light-shielding portion pattern, which is sandwiched from the both sides between the adjacent shifter openings and also from the both sides between the adjacent non-shifter openings, under a predetermined exposure condition is a bias correction amount.
  • non-shifter-aperture is defined as a pattern area that transmits light without changing the phase of light.
  • a shifter-aperture is defined as a pattern region that transmits light by changing the phase of light (phase modulation). For example, in the case of a digging type Levenson-type phase shift mask, it is a region where no light shielding film is present, and there is no digging at all, or even if a digging is done, only a shallow trench is formed. Corresponds to the non-shifter one opening, and the pattern portion having the digging corresponds to the shifter opening.
  • NA refers to the product of the sine sin of the angle ⁇ at which the radius of the stop extends to the incident light in the optical device and the refractive index n of the space of the lens and the substrate to be treated (n It is defined as the numerical aperture given by X sin 0).
  • FIG. 1 is a cross-sectional view showing a Levenson-type phase shift mask according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a Levenson-type phase shift mask according to a second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a Levenson-type phase shift mask according to a third embodiment of the present invention.
  • FIG. 4 is a characteristic chart showing relative exposure intensity when the Levenson-type phase shift mask of the present invention is transferred onto a semiconductor wafer using a positive resist.
  • FIG. 5 is a characteristic diagram showing a resist CD of a pattern sandwiched from both sides in the same kind of opening for the amount of bias correction.
  • FIG. 6A is a process sectional view for explaining a method of manufacturing a Levenson-type phase shift mask of the present invention.
  • FIG. 6B is a process sectional view for explaining the manufacturing method of the Levenson-type phase shift mask of the present invention.
  • FIG. 6C is a process sectional view for explaining the manufacturing method of the Levenson-type phase shift mask of the present invention.
  • FIG. 6D is a process sectional view for explaining the manufacturing method of the Levenson-type phase shift mask of the present invention.
  • FIG. 6E is a process sectional view for explaining the manufacturing method of the Levenson-type phase shift mask of the present invention.
  • FIG. 6F is a process sectional view for explaining the manufacturing method of the Levenson-type phase shift mask of the present invention.
  • FIG. 6G is a process sectional view for explaining the manufacturing method of the Levenson-type phase shift mask of the present invention.
  • FIG. 6H is a process sectional view for explaining the manufacturing method of the Levenson-type phase shift mask of the present invention.
  • FIG. 61 is a cross-sectional view of a process for illustrating a method of manufacturing a Levenson-type phase shift mask of the present invention.
  • FIG. 7A is a process sectional view for explaining the manufacturing method of another Levenson-type phase shift mask of the present invention.
  • FIG. 7B illustrates a method of manufacturing another Levenson-type phase shift mask of the present invention. Process sectional view of FIG.
  • FIG. 7C is a process sectional view for explaining the manufacturing method of another Levenson-type phase shift mask of the present invention.
  • FIG. 7D is a process sectional view for explaining the manufacturing method of another Levenson-type phase shift mask of the present invention.
  • FIG. 7E is process sectional drawing for demonstrating the manufacturing method of the other Levenson-type phase shift mask of this invention.
  • FIG. 7F is process sectional drawing for demonstrating the manufacturing method of the other Levenson-type phase shift mask of this invention.
  • FIG. 7G is a process sectional view for explaining the manufacturing method of another Levenson-type phase shift mask of the present invention.
  • FIG. 8 is a schematic sectional view showing a conventional digging type Levenson-type phase shift mask.
  • FIG. 9 is a cross-sectional view showing a conventional Levenson-type phase shift mask having a pattern in which the shifter-openings are adjacent to each other.
  • FIG. 10 is a characteristic diagram showing relative exposure intensity when a conventional mask having the structure of FIG. 9 is transferred onto a semiconductor wafer, using a positive resist as a convenience.
  • a light shielding portion pattern 23c sandwiched from both sides by adjacent shutter openings 21c and 22c has a light shielding film pattern 52b.
  • the light shielding film pattern 52b does not have an undercut, and the light shielding portion pattern 23c is a type in which a bias correction ⁇ is applied. This is called Type 1 below.
  • a light shielding film pattern 52b without undercut is provided on one side of the recessed portion 44b, and a light shielding film pattern 52a having an undercut 16 on the other side of the recessed portion 44b Providing a light shielding portion pattern 25c) and forming a shifter opening 21c by these There is.
  • the shifter single opening 22c located on the opposite side of the light shielding portion pattern 23c is also formed by the light shielding film pattern 52b without undercut and the light shielding film pattern 52a having the undercut 16 (light shielding portion pattern 26c). It is done!
  • the mask 1 of type 1 since the reinforcement of the transmitted light 3a transmitted through the shifter openings 21c and 22c is suppressed by the bias correction ⁇ , relative exposure of the sandwiched region as shown in FIG. 4 is performed. The intensity is improved from the characteristic line ⁇ (broken line) to the characteristic line ⁇ (solid line), and the phase difference between the openings on both sides is inverted, so that the light shielding portion pattern 23c (usually difficult to resolve, pattern The resolution of the resist CD23f is greatly improved. Further, in the type 1 mask, since the light shielding film 52b does not have an undercut in the light shielding portion pattern 23c, the light shielding film 52b becomes difficult to peel off from the transparent substrate 41.
  • the light shielding portion pattern 23d sandwiched from the both sides by the adjacent shifter openings 21d and 22d does not have a light shielding film, and In this type, bias correction / 3 is applied to the light shielding portion pattern 23d. This is called type 2 below.
  • a light shielding portion pattern 23d having no light shielding film is provided on one side of the recessed portion 45b, and a light shielding film pattern 5 3a (light shielding portion having the undercut 16 on the other side of the recessed portion 45b) A pattern 25d) is provided to form a shifter opening 21d.
  • the shifter single opening 22d located on the opposite side of the light shielding portion pattern 23d is also formed of a light shielding portion pattern 23d without a light shielding film and a light shielding film pattern 53a (light shielding portion pattern 26d) having an undercut 16 !
  • the type 2 mask (chromeless type) 1A is effective when the line width of the pinched portion (light shielding portion pattern 23d) is small, and the transmitted light 3a from the shifter openings 21d and 22d and the non-shifter 1
  • the transmitted light 3b from the opening 23d cancels out, and although there is no light shielding film in the sandwiched portion, it is possible to obtain a sharp resolution as if the light shielding film existed as well as a hot force.
  • the mask 1B of the third embodiment is a type in which a bias correction ⁇ is applied to a light shielding portion pattern 23e sandwiched from both sides by adjacent non-shifter openings 25e and 26e. Ru. This is called type 3 below.
  • the light shielding film pattern 5 If is provided on the flat region of the substrate 41 which is sandwiched on both sides by the non-shifter openings 21 e and 22 e in the digging portion 46 b serving as the shifter opening.
  • the light shielding portion pattern 23e is formed.
  • this type 3 mask 1B similar to the type 1 mask 1A described above, the effect of improving the resolution and preventing the light shielding film from peeling off can be obtained.
  • the transfer dimension under a predetermined exposure condition of a pattern sandwiched between adjacent shifter single openings (or non-shifter single openings) is determined as a function of bias correction amount.
  • a threshold is determined such that a resist CD can be obtained as chromium CD on a photomask. If there is a pattern that is specifically resolved in addition to the above structure, the threshold is determined such that the pattern is resolved with the desired resist CD.
  • the openings of the same type when the amount of bias correction is changed variously.
  • the amount of bias correction ( ⁇ , ⁇ , ⁇ ) is determined for each mask type so that this resist CD can be obtained at a desired value (for example, the threshold level line 31 in FIG. 5).
  • the abscissa represents the bias correction amount (nm), and the ordinate represents the resist CD (nm) of the same kind of opening with a pattern adjacent on both sides, and the resist with respect to the bias correction amount.
  • It is a characteristic line which shows the result of having investigated using simulation about the change of CD (transfer dimension of a resist).
  • the characteristic line E (thick solid line) in the figure is the phase shift mask 1 of type 1
  • the characteristic line F (thin solid line) is the phase shift mask 1A of type 2
  • the characteristic line G (dotted line) is the phase shift of type 3
  • bias correction amounts ⁇ , ⁇ , ⁇ are determined for each type of phase shift mask.
  • the Levenson-type phase shift mask model and exposure conditions used in the simulation are shown below. [0037] Chrome CD: 260 nm (size on photomask)
  • Exposure wavelength 193 nm
  • Type 1 and Type 2 Levenson-type phase shift masks will be described with reference to FIGS.
  • the structure of the Levenson-type phase shift mask is shown by a single trench.
  • a blank mask 100 is prepared (step Sl).
  • a light shielding film 51 consisting of two layers of a chromium metal film and a chromium oxide film is coated on a transparent substrate 41 made of synthetic quartz, and a resist layer 61 is further formed thereon. Is applied.
  • the resist layer 61 is pattern-exposed by an electron beam, and a series of patterning processes such as development are performed to form resist patterns 6 la and 6 lb.
  • bias correction of the amount obtained from the above-described transfer simulation on the wafer is applied.
  • the light shielding film 51 is etched to form a predetermined pattern shown in FIG. 6B (step S2).
  • the resist layer 61 is stripped using a dedicated stripping solution, and light shielding film patterns 51a and 51b are formed on the transparent substrate 41 shown in FIG. 6C (step S3).
  • a resist layer 62 having a predetermined film thickness is applied to the substrate to be processed, the resist layer 62 is pattern-exposed by an electron beam, and a series of patterning processes such as development is performed, as shown in FIG.
  • a predetermined resist pattern 62a, 62b shown is formed (step S4).
  • the resist pattern 62b is formed so as to be extended by an undercut amount (UC) on both sides in anticipation of a later undercut forming process.
  • the transparent substrate 41 is etched by dry etching to form a recess 42 shown in FIG. 6E (step S5).
  • the etching process is controlled to satisfy the relationship of the following formula (1). Form a pit 42.
  • the transparent substrate 41 is etched by wet etching to form a dug 43 having an undercut as shown in FIG. 6F (step S6).
  • the resist layer 62 is peeled off with a special peeling solution, and as shown in FIG. 6G, the light shielding film patterns 52a and 52b, the non-shifter opening 44a and the shifter opening 44b are formed on the transparent substrate 41.
  • the Levenson-type phase shift mask 300 formed is obtained (step S7).
  • This mask 300 corresponds to the mask 1 of type 1 above.
  • the pattern 52b in which both side forces are also held in the shifter opening 44b does not have an undercut, and the pattern 52b is subjected to a bias correction a.
  • a resist layer 63 is applied and formed on the mask 300, and the resist film 63 is subjected to a series of patterning processes such as pattern exposure and development with an electron beam to form a resist pattern 63a, and a resist pattern 63 is formed.
  • the light shielding film 52b is removed by etching using a as a mask (step S8).
  • the resist layer 63 is peeled using a special peeling solution, and as shown in FIG. 61, a Levenson-type phase in which a light shielding film pattern 53a, a non-shifter opening 45a and a shifter opening 45b are formed on a transparent substrate 41.
  • a shift mask 400 is obtained (step S9). This mask 400 corresponds to the type 2 Levenson-type phase shift mask 1A.
  • Pattern exposure of resist layer 61 on blank mask 100 with electron beam A series of patterning processes are performed to form a resist pattern 6 la. Then, using the resist pattern 61a as a mask, the light shielding film 51 is etched to form a predetermined pattern shown in FIG. 7B (step S22). Next, the resist layer 61 is peeled off with a special peeling solution, and a light shielding film pattern 51a is produced on the transparent substrate 41 shown in FIG. 7C (step S23).
  • a resist layer 62 having a predetermined film thickness is applied to the substrate to be processed, the resist layer 62 is pattern-exposed by an electron beam, and a series of patterning processes such as development is performed, as shown in FIG. 7D.
  • a predetermined resist pattern 62a, 62b shown is formed (step S24).
  • the resist pattern 62 b is subjected to a bias correction ⁇ force of the amount obtained by the transfer simulation on the semiconductor wafer.
  • the resist pattern 62b is formed so as to be spread by the undercut amount (UC) on both sides in anticipation of the undercut formation processing in a later step.
  • the transparent substrate 41 is etched by dry etching to form a recess 42 shown in FIG. 7E (step S25).
  • the depth d of the digging 42 is controlled according to the above equation (1).
  • the transparent substrate 41 is etched by wet etching to form a recess 43 having an undercut as shown in FIG. 7F (step S26).
  • a transparent substrate 41 is formed with a light shielding film pattern 52a, a non-shifter opening 44a and a shifter opening 44b.
  • Two Levenson-type phase shift masks 400 (1A) are obtained (step S27).
  • the present invention can provide a Levenson-type phase shift mask used in the manufacture of a semiconductor device such as an LSI, and a method of manufacturing the same. Any of the types shown in FIGS. 1 to 3 can be applied to a digging type Levenson-type phase shift mask. The types shown in Figs. 1 and 2 can also be applied to Levenson-type phase shift masks of the top-mounted type.
  • the patterns 23a, 23c, 23d in which both side forces are also sandwiched in the shifter opening or the patterns 23e in which both side forces are also sandwiched in the non-shifter opening are expanded on both sides by a predetermined amount.
  • ⁇ and ⁇ respectively, the relative exposure intensity of the sandwiched region is improved as shown by the characteristic line ⁇ (dotted line) and the characteristic line ⁇ (solid line), as shown in FIG. Hard to resolve because the phase difference of the opening is not reversed) of the sandwiched portions 23c, 23d, 23e
  • the resolution of the resist CD 23 f can be improved.
  • the light shielding film 52b in this portion is not peeled off. That is, when the undercut is formed in the shifter opening, the light shielding film peeling defect sandwiched between the shifter openings can be reduced, and the undercut amount can be freely selected as appropriate without being restricted by the light shielding film peeling.
  • the pattern 23d of the portion sandwiched between the shifter openings 21d and 22d from both sides does not have the light shielding film, the light shielding film peeling itself does not occur. That is, the light shielding film peeling defect at the time of undercut formation can be reduced, and the undercut amount can be selected more freely without being restricted by the light shielding film peeling.
  • the phase difference of the transmitted light passing through this portion 23d is 0 °, and the phase difference of the transmitted light passing through the openings 21d and 22d on both sides is 180 °, so that the resolution is improved. Are better.
  • a first embodiment in which a resist pattern is formed on a wafer using the Levenson-type phase shift mask of the present invention will be described.
  • a mask 1 of type 1 shown in FIG. 1 was produced by the above-described manufacturing method. At this time, no defect due to peeling of the light shielding film pattern of the manufactured mask was generated.
  • a mask 1 of type 1 having the following size was obtained.
  • Thickness of transparent substrate 6350 m
  • an antireflective film and a resist were coated on a silicon substrate, and the resist was exposed using an exposure apparatus.
  • the exposure conditions were as follows. Exposure wavelength: 193 nm (ArF excimer laser)
  • Bias correction amount a 69 nm
  • this resist pattern has improved resolution of the pattern sandwiched between the openings of the same type ( ⁇ - ⁇ phase shift), and the accuracy is also good.
  • the example which formed the resist pattern on the wafer using the Levenson-type phase shift mask of this invention is shown.
  • the mask 2A of type 2 shown in FIG. 2 was produced by the above-mentioned manufacturing method. At this time, no defect was generated due to peeling of the light shielding film pattern of the manufactured mask.
  • a mask of type 2 having the following size was obtained.
  • Thickness of transparent substrate 6350 m
  • an antireflective film and a resist were coated on a silicon substrate, and the resist was exposed using an exposure apparatus.
  • the exposure conditions were as follows.
  • Exposure wavelength 193 nm (ArF excimer laser)
  • Bias correction amount j8 31 nm
  • this resist pattern has improved resolution of the pattern sandwiched between the openings of the same type ( ⁇ - ⁇ phase shift), and the accuracy is also good.
  • the example which formed the resist pattern on the wafer using the Levenson-type phase shift mask of this invention is shown.
  • the mask 3B of type 3 shown in FIG. 3 was produced using a conventional photolithography process (for example, the method described in Patent Document 1). At this time, no defect was generated due to peeling of the light shielding film pattern of the manufactured mask.
  • a mask 3B of type 3 having the following size was obtained.
  • Thickness of transparent substrate 6350 m
  • an antireflective film and a resist were coated on a silicon substrate, and the resist was exposed using an exposure apparatus.
  • the exposure conditions were as follows.
  • Exposure wavelength 193 nm (ArF excimer laser)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

 レベンソン型位相シフトマスクは、透明基板上に形成された遮光部と開口部を有し、前記開口部の透明基板を部分的に掘り込むか又は前記開口部の透明基板上に透明膜を部分的に上置きして形成されたシフター開口部と非シフター開口部とが繰り返し存在し、前記シフター開口部により透過光の位相を反転させるレベンソン型位相シフトマスクであって、隣接する同種類の開口部に両側から挟まれた遮光部パターンを有し、マスクの設計デザインで定められた所定の設計線幅に対して前記遮光部パターンを所定量だけ両側へ広げるバイアス補正が施されている。

Description

明 細 書
レベンソン型位相シフトマスク及びその製造方法
技術分野
[0001] 本発明は、 LSI等の半導体素子の製造に用いられるレベンソン型位相シフトマスク 及びその製造方法に関する。
背景技術
[0002] 近時、半導体素子の高密度微細化に伴い投影露光装置にも高い解像性が求めら れている。そこで、フォトマスクの分野においては、転写パターンの解像性を向上させ る手法として、 1982年に IBM社の Levensonらにより提案された位相シフト法がある。 位相シフト法の原理は、隣接する開口部を通過した透過光の位相が反転するように 開口部の一方に位相シフト部(シフタ一開口部)を設けることによって、透過光が干渉 し合う際に境界部での光強度を弱め、その結果として転写パターンの解像性及び焦 点深度を向上させるものである。このような位相シフト法を利用して解像性を向上させ たフォトマスクは、一般にレベンソン型位相シフトマスクと呼ばれる。
[0003] 開口部の一方に位相シフト部を設ける方法としては、現在、透明基板をエッチング 等により掘り込んでシフター開口部を設ける掘り込み型が主流である。
[0004] 図 8は、掘り込み型のレベンソン型位相シフトマスクの構造を示す概略断面図であ る。図中にて符合 11は透明基板、 12は遮光膜、 13は非シフタ一開口部、 14はシフ ター開口部である。符合 15はシヤロートレンチといい、非シフタ一開口部 13の基板 掘り込み深さである。符合 16はアンダーカットといい、シフター開口部 14に設ける遮 光部の庇の長さである。符合 17は非シフタ一開口部 13の透過光 3bとシフタ一開口 部 14の透過光 3aとの位相差が 180° となるのに相当する掘り込み量の差である。符 合 18はクロム CD ((CD : Critical Dimension),例えばラインパターンの孤立パターンの 場合、ライン線幅のことを言う)といい、遮光膜 12にクロム (Cr)を用いた時の線幅寸 法である。符合 19はピッチといい、遮光パターンの端面力 次の遮光パターンの端 面までの距離である。
[0005] 図 8に示すレベンソン型位相シフトマスクにおいて、シヤロートレンチ 15が無い場合 は所謂シングルトレンチ構造といい、シヤロートレンチ 15が有る場合は所謂デュアル トレンチ構造という。いずれの構造においても、基板掘り込み部の側壁からの透過光 による遮光強度のアンバランス防止のために、例えば特許文献 1に記載されて 、るよ うにアンダーカット 16を設けることが公知である。
[0006] 上記の掘り込み型のレベンソン型位相シフトマスクは、シフター開口部と非シフタ一 開口部とを交互に繰り返し配置する構造を基本とする。しかし、実際のデバイス回路 の設計においては、シフター開口部と非シフタ一開口部とが交互に配置されるパタ ーンばかりでなぐシフター開口部同士が隣接するパターン、あるいは非シフタ一開 口部同士が隣接するパターンが生じる。例えば、図 9に示すように、シフター開口部 2 laに他のシフター開口部 22aが隣接するパターンが発生する場合がある。このように 同種類の開口部が隣り合うパターンの発生は回路設計において避けられない場合 が多い。同種類の開口部が隣り合うパターンでは、次の 2つの問題点がある。
[0007] その第 1は、隣接する開口部 21a, 22aの透過光 3aの位相が同じ(図 9の場合は π π )であるため、これらが互いに強め合い(打ち消し合わない)、その結果、同種類 の開口部で挟まれた部分 23aの光強度が大きくなり、この挟まれた部分の解像性が 悪くなるという問題である。図 10は、ポジ型レジストを使用して、図 9の構造を持つマ スクを半導体ウェハ上に転写した場合の相対的露光強度を示す特性線図である。同 じスレツショルド(SL)では、シフター開口部と非シフタ一開口部で挟まれた部分のレ ジスト CD (レジストの転写寸法) 25b, 26bに比べて、同種類のシフター開口部 21a, 22aの間に挟まれた部分のレジスト CD23bは小さくなり、この部分が解像し難くなる。
[0008] 第 2は、同種類の開口部に挟まれた部分 23aに存在する遮光膜 12bが剥がれやす くなるという問題である。非シフタ一開口部が隣接する場合は問題ないが、図 9に示 すパターンのように同種類のシフター開口部 21a, 22aが隣接する場合は、 2つのシ フタ一開口部 21a, 22aの間に挟まれた部分 23aの透明基板 11に両側力 アンダー カット 16が入るため、遮光膜 12bと透明基板 11との接触面積が減少する。このため、 挟まれた部分 23aの遮光膜 12bが透明基板 11から剥がれやすくなる。この遮光膜 1 2bの剥がれ対策のためにマスク設計が大きな制約を受け、アンダーカット量を適宜 選択することができず、マスクのパフォーマンスが悪ィ匕することがある。 特許文献 1:特開平 10— 333316号公報
発明の開示
[0009] 本発明は、上記課題を解決するために、同種類の開口部に挟まれた部分における ノ ターン解像性を向上させることができ、かつ、同種類の開口部に挟まれた部分の 遮光膜を剥がれ難くすることができるレベンソン型位相シフトマスク及びその製造方 法を提供することを目的とする。
[0010] (1)本発明のレベンソン型位相シフトマスクは、透明基板上に形成された遮光部と 開口部を有し、前記開口部の透明基板を部分的に掘り込むか又は前記開口部の透 明基板上に透明膜を部分的に上置きして形成されたシフタ一開口部と非シフタ一開 口部とが繰り返し存在し、前記シフター開口部により透過光の位相を反転させるレべ ンソン型位相シフトマスクにおいて、隣接する同種類の開口部に両側カゝら挟まれた遮 光部パターンを有し、マスクの設計デザインで定められた所定の設計線幅に対して 前記遮光部パターンを所定量だけ両側へ広げるバイアス補正が施されていることを 特徴とする。
[0011] (2)隣接するシフタ一開口部に両側から挟まれるか、または隣接する非シフタ一開 口部に両側から挟まれる遮光部パターンの所定の露光条件での転写寸法をバイァ ス補正量の関数として表わし、前記遮光部パターンが所望の転写寸法で得られるよう にバイアス補正量を決定することを特徴とする(1)記載の位相シフトマスクである。
[0012] (3)バイアス補正量を決定する処理は、半導体ウェハ上への転写シミュレーション によるものであることを特徴とする(2)記載の位相シフトマスクである。
[0013] (4)隣接するシフタ一開口部に両側から挟まれた遮光部パターンにバイアス補正を 施したレベンソン型位相シフトマスクであって、シフター開口部と非シフタ一開口部と に挟まれた遮光部パターンがシフター開口部側にアンダーカットを有し、かつ前記バ ィァス補正を施した遮光部パターンがアンダーカットを有さないことを特徴とする(1) 乃至(3)のいずれかに記載の位相シフトマスクである(図 1)。
[0014] (5)隣接するシフタ一開口部に両側から挟まれた遮光部パターンにバイアス補正を 施したレベンソン型位相シフトマスクであって、シフター開口部と非シフタ一開口部と に挟まれた遮光部パターンがシフター開口部側にアンダーカットを有し、かつ前記バ ィァス補正を施した遮光部パターンが遮光膜を有さな 、ことを特徴とする(1)乃至(3 )の!、ずれかに記載の位相シフトマスクである(図 2)。このクロムレスタイプの位相シフ トマスクは、シフター開口部力もの透過光と挟まれた部分力もの透過光とが打ち消し 合って、挟まれた部分に遮光膜を有しないにも拘わらず、あた力も遮光膜が存在する かのように機能する。
[0015] (6)本発明のレベンソン型位相シフトマスクの製造方法は、透明基板上に形成され た遮光部と開口部を有し、前記開口部の透明基板を部分的に掘り込むか又は前記 開口部の透明基板上に透明膜を部分的に上置きして形成されたシフタ一開口部と 非シフタ一開口部とが繰り返し存在し、前記シフター開口部により透過光の位相を反 転させるレベンソン型位相シフトマスクの製造方法において、透明基板上に形成され た遮光膜をパターンエッチングし、隣接する同種類の開口部に両側から挟まれる遮 光部パターンが形成されるべき領域にバイアス補正を施した遮光膜パターンを形成 し、前記遮光膜パターンの上に両側にアンダーカット量分だけ広げたレジストパター ンを形成し、前記レジストパターンをマスクにしてエッチングにより前記透明基板を掘 り込み、前記レジストパターンに対してアンダーカットを形成し、前記レジストパターン のレジストを除去することを特徴とするレベンソン型位相シフトマスクの製造方法であ る(図 6A〜図 61)。
[0016] (7)前記レジストパターンのレジストを除去した後に、隣接する同種類の開口部に 両側から挟まれる前記遮光部パターンを除いて前記遮光膜パターンを被覆するレジ ストパターンを形成し、前記遮光部パターンの遮光膜をエッチングにより除去し、前記 レジストパターンのレジストを除去することを特徴とする(6)記載の方法である(図 6A 〜図 61)。
[0017] (8)遮光膜をパターン成膜して透明基板上に形成された遮光部と開口部を有し、 前記開口部の透明基板を部分的に掘り込むか又は前記開口部の透明基板上に透 明膜を部分的に上置きして形成されたシフタ一開口部と非シフタ一開口部とが繰り 返し存在し、前記シフター開口部により透過光の位相を反転させるレベンソン型位相 シフトマスクの製造方法において、透明基板上に形成された遮光膜をパターンエッチ ングし、隣接する同種類の開口部に両側から挟まれる遮光部パターンが形成される べき領域から遮光膜を除去し、前記遮光膜除去領域の上にバイアス補正を施して両 側にアンダーカット量分だけ広げたレジストパターンを形成し、前記レジストパターン をマスクにしてエッチングにより前記透明基板を掘り込み、前記レジストパターンに対 してアンダーカットを形成し、前記レジストパターンのレジストを除去することを特徴と するレベンソン型位相シフトマスクの製造方法である(図 7A〜図 7G)。
[0018] (9)隣接するシフタ一開口部に両側から挟まれるか、または隣接する非シフタ一開 口部に両側から挟まれる遮光部パターンの所定の露光条件での転写寸法をバイァ ス補正量の関数として表わし、前記遮光部パターンが所望の転写寸法で得られるよう にバイアス補正量を決定することを特徴とする(6)乃至(8)の 、ずれかに記載の方法 である。
[0019] (10)前記バイアス補正量を決定する処理は、半導体ウェハ上への転写シミュレ一 シヨンによるものであることを特徴とする(9)記載の方法である。
[0020] 本明細書中において「非シフタ一開口部」とは、光の位相を変えることなく光を透過 させるパターン領域をいうものと定義する。また、本明細書中において「シフタ一開口 部」とは、光の位相を変えて (位相変調させて)光を透過させるパターン領域を ヽぅも のと定義する。例えば掘り込み型のレベンソン型位相シフトマスクの場合は、遮光膜 が存在しない領域であって、掘り込みがまったく無いか、または掘り込みがあつたとし てもシヤロートレンチのみが形成されたパターン部分が非シフタ一開口部に該当し、 また、掘り込みが有るパターン部分がシフター開口部に該当する。
[0021] 本明細書中において「NA」とは、光学機器において絞りの半径が入射光に対して 張る角度 Θの正弦 sin Θとレンズと被処理基板の空間の屈折率 nとの積 (n X sin 0 )で 与えられる開口数をいうものと定義する。
[0022] 本明細書中において「び」とは、照明光学系の開口数を投影光学系の開口数で除 した値として与えられるコヒーレンスファクターのことをいうものと定義する。
[0023] 本明細書中において「ジャストフォーカス」とは、パターンを形成しょうとする被処理 基板上に塗布されたレジストの表面に露光機光学系の焦点を一致させることをいうも のと定義する。
図面の簡単な説明 [図 1]図 1は本発明の第 1実施形態のレベンソン型位相シフトマスクを示す断面図。
[図 2]図 2は本発明の第 2実施形態のレベンソン型位相シフトマスクを示す断面図。
[図 3]図 3は本発明の第 3実施形態のレベンソン型位相シフトマスクを示す断面図。
[図 4]図 4はポジ型レジストを使用して、本発明のレベンソン型位相シフトマスクを半導 体ウェハ上に転写した場合の相対的露光強度を示す特性図。
[図 5]図 5はバイアス補正量に対する同種類の開口部に両側から挟まれたパターンの レジスト CDを示す特性図。
[図 6A]図 6Aは本発明のレベンソン型位相シフトマスクの製造方法を説明するための 工程断面図。
[図 6B]図 6Bは本発明のレベンソン型位相シフトマスクの製造方法を説明するための 工程断面図。
[図 6C]図 6Cは本発明のレベンソン型位相シフトマスクの製造方法を説明するための 工程断面図。
[図 6D]図 6Dは本発明のレベンソン型位相シフトマスクの製造方法を説明するための 工程断面図。
[図 6E]図 6Eは本発明のレベンソン型位相シフトマスクの製造方法を説明するための 工程断面図。
[図 6F]図 6Fは本発明のレベンソン型位相シフトマスクの製造方法を説明するための 工程断面図。
[図 6G]図 6Gは本発明のレベンソン型位相シフトマスクの製造方法を説明するための 工程断面図。
[図 6H]図 6Hは本発明のレベンソン型位相シフトマスクの製造方法を説明するための 工程断面図。
[図 61]図 61は本発明のレベンソン型位相シフトマスクの製造方法を説明するためのェ 程断面図。
[図 7A]図 7Aは本発明の他のレベンソン型位相シフトマスクの製造方法を説明するた めの工程断面図。
[図 7B]図 7Bは本発明の他のレベンソン型位相シフトマスクの製造方法を説明するた めの工程断面図。
[図 7C]図 7Cは本発明の他のレベンソン型位相シフトマスクの製造方法を説明するた めの工程断面図。
[図 7D]図 7Dは本発明の他のレベンソン型位相シフトマスクの製造方法を説明するた めの工程断面図。
[図 7E]図 7Eは本発明の他のレベンソン型位相シフトマスクの製造方法を説明するた めの工程断面図。
[図 7F]図 7Fは本発明の他のレベンソン型位相シフトマスクの製造方法を説明するた めの工程断面図。
[図 7G]図 7Gは本発明の他のレベンソン型位相シフトマスクの製造方法を説明するた めの工程断面図。
[図 8]図 8は従来の掘り込み型のレベンソン型位相シフトマスクを示す概略断面図。
[図 9]図 9はシフタ一開口部同士が隣り合うパターンを有する従来のレベンソン型位 相シフトマスクを示す断面図。
[図 10]図 10はポジ型レジストを便用して、図 9の構造を持つ従来のマスクを半導体ゥ ェハ上に転写した場合の相対的露光強度を示す特性図。
発明を実施するための最良の形態
[0025] 以下、添付の図面を参照して本発明の種々の好ましい実施の形態について説明 する。
[0026] (第 1の実施形態;タイプ 1)
図 1に示すように、第 1の実施形態のレベンソン型位相シフトマスク 1は、隣接するシ フタ一開口部 21c, 22cに両側から挟まれた遮光部パターン 23cが遮光膜パターン 5 2bを備えており、この遮光膜パターン 52bがアンダーカットを有さないものであり、力 つ、該遮光部パターン 23cにバイアス補正 αを施したタイプである。以下、これをタイ プ 1と呼ぶ。
[0027] タイプ 1のマスク 1では、掘り込み部 44bの一方側にアンダーカット無しの遮光膜パ ターン 52bを設け、掘り込み部 44bの他方側にアンダーカット 16を有する遮光膜パタ ーン 52a (遮光部パターン 25c)を設け、これらによりシフター開口部 21cを形成して いる。同様に、遮光部パターン 23cを挟んで反対側に位置するシフタ一開口部 22c もアンダーカット無しの遮光膜パターン 52bとアンダーカット 16を有する遮光膜パタ ーン 52a (遮光部パターン 26c)とで形成されて!、る。
[0028] タイプ 1のマスク 1によれば、シフター開口部 21c, 22cを透過した透過光 3aの強め 合いがバイアス補正 αにより抑えられるので、図 4に示すように挟まれた領域の相対 的露光強度が特性線 Β (破線)から特性線 Α (実線)のように改善され、両隣の開口部 の位相差が反転して ヽな 、ため遮光部パターン 23c (通常は解像し難!、パターン)の レジスト CD23fの解像性が大幅に向上する。また、タイプ 1のマスクは、遮光部パタ ーン 23cにおいて遮光膜 52bがアンダーカットを持たないので、透明基板 41から遮 光膜 52bが剥がれ難くなる。
[0029] (第 2の実施形態;タイプ 2)
図 2に示すように、第 2の実施形態のマスク 1Aは、隣接するシフタ一開口部 21d, 2 2dに両側から挟まれた遮光部パターン 23dが遮光膜を有しないものであり、かつ、該 遮光部パターン 23dにバイアス補正 /3を施したタイプである。以下、これをタイプ 2と 呼ぶ。
[0030] タイプ 2のマスク 1Aでは、掘り込み部 45bの一方側に遮光膜無しの遮光部パターン 23dを設け、掘り込み部 45bの他方側にアンダーカット 16を有する遮光膜パターン 5 3a (遮光部パターン 25d)を設け、これらによりシフター開口部 21dを形成している。 同様に、遮光部パターン 23dを挟んで反対側に位置するシフタ一開口部 22dも遮光 膜無しの遮光部パターン 23dとアンダーカット 16を有する遮光膜パターン 53a (遮光 部パターン 26d)とで形成されて!、る。
[0031] タイプ 2のマスク(クロムレスタイプ) 1Aは、挟まれ部分 (遮光部パターン 23d)の線 幅が小さいときに有効であり、シフター開口部 21d, 22dからの透過光 3aと非シフタ 一開口部 23dからの透過光 3bとが打ち消し合って、挟まれ部分に遮光膜を有しない にも拘わらず、あた力も遮光膜が存在するかのようにシャープな解像性が得られる。
[0032] (第 3の実施形態;タイプ 3)
図 3に示すように、第 3の実施形態のマスク 1Bは、隣接する非シフタ一開口部 25e , 26eに両側から挟まれた遮光部パターン 23eにバイアス補正 γを施したタイプであ る。以下、これをタイプ 3と呼ぶ。
[0033] タイプ 3のマスク 1Bにおいては、シフター開口部となる掘り込み部 46bではなぐ非 シフター開口部 21e, 22eに両側を挟まれた基板 41の平坦領域に遮光膜パターン 5 Ifを設け、これにより遮光部パターン 23eを形成している。このようなタイプ 3のマスク 1 Bによっても、上述したタイプ 1のマスク 1 Aと同様に解像性の向上および遮光膜の 剥がれ防止の効果が得られる。
[0034] 次に、最適なバイアス補正量(α , β , γ )を求める半導体ウェハ上への転写シミュ レーシヨンについて説明する。隣接するシフタ一開口部(または非シフタ一開口部)に 挟まれたパターンの所定の露光条件での転写寸法をバイアス補正量の関数として表 す方法で求める。まず、シフター開口部と非シフタ一開口部が繰り返し存在する通常 のレベンソン型位相シフトマスクの構造にぉ 、て、フォトマスク上のクロム CDどおりに レジスト CDが得られるようなスレツショルドを決める。上記の構造以外に特に解像させ た 、パターンがある場合は、そのパターンが所望のレジスト CDで解像するようなスレ ッショルドを決める。
[0035] 次に、図 1及び図 2 (または図 3)に示すような同位相の開口部が隣接する構造にお いて、バイアス補正量を種々変化させたときの、同種類の開口部で両側から挟まれた パターンの上記のスレツショルドでのレジスト CD (レジストの転写寸法)を求める。この レジスト CDが所望の値(例えば図 5のスレツショルドレベル線 31)で得られるようにバ ィァス補正量(α , β , γ )をマスクタイプ毎に決定する。
[0036] 図 5は、横軸にバイアス補正量 (nm)をとり、縦軸に同種類の開口部に両側から隣 接されたパターンのレジスト CD (nm)をとつて、バイアス補正量に対するレジスト CD ( レジストの転写寸法)の変化についてシミュレーションを用いて調べた結果を示す特 性線図である。図中の特性線 E (太い実線)はタイプ 1の位相シフトマスク 1に、特性 線 F (細い実線)はタイプ 2の位相シフトマスク 1Aに、特性線 G (破線)はタイプ 3の位 相シフトマスク 1Bにそれぞれ対応している。これらの特性線 E, F, Gとパターン最小 線幅(65nm)のスレツショルド線 31との交点から位相シフトマスクのタイプ毎にバイァ ス補正量 α , β , γをそれぞれ求める。シミュレーションに用いたレベンソン型位相シ フトマスクのモデルと露光条件を下記に示す。 [0037] クロム CD: 260nm (フォトマスク上のサイズ)
ピッチ: 760nm (フォトマスク上のサイズ)
シヤロートレンチ: Onm
アンダーカット: lOOnm (フォトマスク上のサイズ)
露光波長: 193nm
NA: 0. 78
σ : 0. 4
露光倍率: 4倍
フォーカス:ジャストフォーカス
(タイプ 1, 2のマスクの製造方法)
次に、図 6Α〜図 61を参照して、タイプ 1及びタイプ 2のレベンソン型位相シフトマス クを製造するための方法について説明する。レベンソン型位相シフトマスクの構造は シングルトレンチで示してある。
[0038] 先ず、ブランクマスク 100を準備する(工程 Sl)。ブランクマスク 100は、図 6Aに示 すように、合成石英力 なる透明基板 41の上にクロム金属膜と酸化クロム膜の 2層か らなる遮光膜 51が被覆され、さらにその上にレジスト層 61が塗布されたものである。 このレジスト層 61を電子ビームにてパターン露光し、現像等の一連のパター-ング処 理を行って、レジストパターン 6 la, 6 lbを形成する。ここで、レジストパターン 6 lbに は前述のウェハ上への転写シミュレーションより求めた量のバイアス補正が力かって いる。次いで、レジストパターン 61a, 6 lbをマスクにして遮光膜 51をエッチングし、図 6Bに示す所定のパターンを形成する(工程 S2)。次いで、レジスト層 61を専用の剥 離液で剥離し、図 6Cに示す透明基板 41上に遮光膜パターン 51a, 51bが形成され る(工程 S3)。
[0039] 次に、所定膜厚のレジスト層 62を被処理基板に塗布し、このレジスト層 62を電子ビ ームによってパターン露光し、現像等の一連のパターユング処理を行って、図 6Dに 示す所定のレジストパターン 62a, 62bを形成する(工程 S4)。ここで、レジストパター ン 62bは後にアンダーカット形成処理をすることを見越して、両側にアンダーカット量 (UC)分だけ広げて形成する。 [0040] 次に、レジストパターン 62a, 62bをマスクとして、透明基板 41をドライエッチングに よってエッチングし、図 6Eに示す掘り込み 42を形成する(工程 S5)。ここで、掘り込み 42の深さを d、アンダーカット量を UC、露光波長をえ、透明基板の屈折率を nとする とき、下式(1)の関係を満たすようにエッチング処理を制御して掘り込み 42を形成す る。
[0041] d= l /2 (n- l) -UC …ひ)
次に、レジストパターン 62a, 62bをマスクにして、透明基板 41をウエットエッチング にてエッチングし、図 6Fに示すようにアンダーカットを有する掘り込み 43を形成する( 工程 S6)。
[0042] 次に、レジスト層 62を専用の剥離液で剥離し、図 6Gに示すように透明基板 41上に 遮光膜パターン 52a及び 52b、非シフタ一開口部 44a及びシフター開口部 44bがそ れぞれ形成されたレベンソン型位相シフトマスク 300を得る(工程 S7)。このマスク 30 0が上記タイプ 1のマスク 1に相当する。マスク 300 (1)は、シフター開口部 44bに両 側力も挟まれたパターン 52bがアンダーカットを有せず、かつ同パターン 52bにバイ ァス補正 aを施したものである。
[0043] さらに、タイプ 2のマスクを得るには、次の処理を更に行う。まず、マスク 300上にレ ジスト層 63を塗布形成し、レジスト膚 63を電子ビームにてパターン露光、現像等の一 連のパター-ング処理を行って、レジストパターン 63aを形成し、レジストパターン 63 aをマスクにして遮光膜 52bをエッチングによって除去する(工程 S8)。次に、レジスト 層 63を専用の剥離液で剥離し、図 61に示すように、透明基板 41に遮光膜パターン 5 3a、非シフタ一開口部 45a及びシフター開口部 45bが形成されたレベンソン型位相 シフトマスク 400を得る(工程 S9)。このマスク 400がタイプ 2のレベンソン型位相シフ トマスク 1 Aにあたる。
[0044] (タイプ 2のマスクの他の製造方法)
次に、図 7A〜図 7Gを参照して、図 2に示すタイプ 2のレベンソン型位相シフトマス クを製造するための他の方法について説明する。
[0045] 上述したものと同じブランクマスク 100を図 7Aに示すように準備する(工程 S21)。
ブランクマスク 100上のレジスト層 61を電子ビームにてパターン露光し、現像等の一 連のパター-ング処理を行って、レジストパターン 6 laを形成する。次いで、レジスト パターン 61aをマスクにして遮光膜 51をエッチングし、図 7Bに示す所定のパターン を形成する(工程 S22)。次いで、レジスト層 61を専用の剥離液で剥離し、図 7Cに示 す透明基板 41上に遮光膜パターン 51aを作製する(工程 S23)。
[0046] 次に、所定膜厚のレジスト層 62を被処理基板に塗布し、このレジスト層 62を電子ビ ームによってパターン露光し、現像等の一連のパターユング処理を行って、図 7Dに 示す所定のレジストパターン 62a, 62bを形成する(工程 S 24)。ここで、レジストパタ ーン 62bには半導体ウェハ上への転写シミュレーションより求めた量のバイアス補正 β力かかっている。また、レジストパターン 62bは、後工程でアンダーカット形成処理 されることを見越して、両側にアンダーカット量 (UC)分だけ広げて形成する。
[0047] 次に、レジストパターン 62a, 62bをマスクにして、透明基板 41をドライエッチングに よってエッチングし、図 7Eに示す掘り込み 42を形成する(工程 S25)。掘り込み 42の 深さ dは、上式(1)に従って制御される。
[0048] 次に、レジストパターン 62a, 62bをマスクにして、透明基板 41をウエットエッチング にてエッチングし、図 7Fに示すようにアンダーカットを有する掘り込み 43を形成する( 工程 S26)。
[0049] 最後に、レジスト層 62を専用の剥離液で剥離し、図 7Gに示すように、透明基板 41 に遮光膜パターン 52a、非シフタ一開口部 44a及びシフター開口部 44bが形成され たタイプ 2のレベンソン型位相シフトマスク 400 (1A)を得る(工程 S27)。
[0050] 本発明は、 LSIなどの半導体素子の製造に用いるレベンソン型位相シフトマスク及 びその製造方法を提供することができる。図 1〜図 3に示すタイプはいずれも掘り込 み型のレベンソン型位相シフトマスクに適用することができる。なお、図 1と図 2に示す タイプは上置き型のレベンソン型位相シフトマスクにも適用することが可能である。
[0051] 本発明によれば、シフター開口部に両側力も挟まれたパターン 23a, 23c, 23dま たは非シフタ一開口部に両側力も挟まれたパターン 23eを所定量だけ両側へ広げる バイアス補正 α , β , γをそれぞれ施すことによって、図 4に示すように挟まれた領域 の相対的露光強度が特性線 Β (破線)カゝら特性線 Α (実線)のように改善され、(両隣 の開口部の位相差が反転していないため解像し難い)挟まれ部分 23c, 23d, 23eの レジスト CD23fの解像性を向上させることができる。
[0052] また、本発明によれば、シフター開口部 21c, 22cに両側力 挟まれた部分 23cの パターンがアンダーカットを有していないため、この部分の遮光膜 52bが剥がれること はない。すなわち、シフター開口部へのアンダーカット形成時、シフター開口部同士 で挟まれた遮光膜剥がれ欠陥が低減できると共に、遮光膜剥がれに制約されること なくより自由にアンダーカット量を適宜選択できる。
[0053] さらに、本発明によれば、シフター開口部 21d, 22dに両側から挟まれた部分のパ ターン 23dが遮光膜を有していないため、遮光膜剥がれ自体が起きない。すなわち、 アンダーカット形成時の遮光膜剥がれ欠陥を低減できると共に、遮光膜剥がれに制 約されることなくより自由にアンダーカット量を適宜選択できる。また、この部分 23dを 通過する透過光の位相差は 0° となり、両側の開口部 21d, 22dを通過する透過光 の位相差 180° と位相が反転しているため、解像性の点で優れている。
[0054] 以下、本発明の種々の実施例を説明する。
(実施例 1)
本発明のレベンソン型位相シフトマスクを用いてウェハ上にレジストパターンを形成 した実施例 1について説明する。図 1に示すタイプ 1のマスク 1を上述の製造方法によ り作製した。このとき、作製したマスクの遮光膜パターンの剥がれによる欠陥は発生し なかった。
[0055] 下記のサイズを有するタイプ 1のマスク 1を得た。
[0056] 透明基板の厚み: 6350 m
ピッチ: 760nm
掘り込み幅 LI : 531nm
遮光部の幅 L2 : 398nm
アンダーカット長さ L3 : lOOnm
掘り込み深さ L4 : 172nm
マスクの設計線幅: 260nm
続いて、シリコン基板上に、反射防止膜、レジストを塗布し、露光装置を用いてレジ ストの露光を行った。露光条件は以下の通りとした。 [0057] 露光波長: 193nm(ArFエキシマレーザ)
NA: 0. 78
σ : 0. 4
露光倍率: 4倍
バイアス補正量 a : 69nm
この後、現像を行い、レジストパターンを形成した。
[0058] このレジストパターンは図 4の特性線 Aに示すように、同種類(π— π位相シフト)の 開口部に挟まれたパターンの解像性が向上し、精度も良好なものであった。
[0059] (実施例 2)
本発明のレベンソン型位相シフトマスクを用いてウェハ上にレジストパターンを形成 した例を示す。図 2に示すタイプ 2のマスク 1Aを上述の製造方法により作製した。こ の時、作製したマスクの遮光膜パターンの剥がれによる欠陥は発生しな力つた。
[0060] 下記のサイズを有するタイプ 2のマスク 1 Αを得た。
[0061] 透明基板の厚み: 6350 m
ピッチ: 760nm
掘り込み幅 LI : 569nm
遮光部の幅 L2 : 322nm
アンダーカット長さ L3 : lOOnm
掘り込み深さ L4 : 172nm
マスクの設計線幅: 260nm
続いて、シリコン基板上に、反射防止膜、レジストを塗布し、露光装置を用いてレジ ストの露光を行った。露光条件は以下の通りとした。
[0062] 露光波長: 193nm(ArFエキシマレーザ)
NA: 0. 78
σ : 0. 4
露光倍率: 4倍
バイアス補正量 j8 : 31nm
この後、現像を行い、レジストパターンを形成した。 [0063] このレジストパターンは図 4の特性線 Aに示すように、同種類(π— π位相シフト)の 開口部に挟まれたパターンの解像性が向上し、精度も良好なものであった。
[0064] (実施例 3)
本発明のレベンソン型位相シフトマスクを用いてウェハ上にレジストパターンを形成 した例を示す。図 3に示すタイプ 3のマスク 1Bを常法のフォトリソグラフィプロセス(例 えば特許文献 1に記載された方法)を用いて作製した。この時、作製したマスクの遮 光膜パターンの剥がれによる欠陥は発生しな力つた。
[0065] 下記のサイズを有するタイプ 3のマスク 1Bを得た。
[0066] 透明基板の厚み: 6350 m
ピッチ: 760nm
遮光部の幅 L2 : 286nm
アンダーカット長さ L3 : lOOnm
掘り込み深さ L4 : 172nm
マスクの設計線幅: 260nm
続いて、シリコン基板上に、反射防止膜、レジストを塗布し、露光装置を用いてレジ ストの露光を行った。露光条件は以下の通りとした。
[0067] 露光波長: 193nm(ArFエキシマレーザ)
NA: 0. 78
σ : 0. 4
露光倍率: 4倍
バイアス補正量 γ : 13nm
この後、現像を行い、レジストパターンを形成した。
[0068] このレジストパターンは図 4の特性線 Aに示すように、同種類(0— 0位相シフト)の 開口部に挟まれたパターンの解像性が向上し、精度も良好なものであった。

Claims

請求の範囲
[1] 透明基板上に形成された遮光部と開口部を有し、前記開口部の透明基板を部分的 に掘り込むか又は前記開口部の透明基板上に透明膜を部分的に上置きして形成さ れたシフタ一開口部と非シフタ一開口部とが繰り返し存在し、前記シフター開口部に より透過光の位相を反転させるレベンソン型位相シフトマスクにおいて、
隣接する同種類の開口部に両側カゝら挟まれた遮光部パターンを有し、マスクの設 計デザインで定められた所定の設計線幅に対して前記遮光部パターンを所定量だ け両側へ広げるバイアス補正が施されていることを特徴とするレベンソン型位相シフト マスク。
[2] 隣接するシフタ一開口部に両側力も挟まれるか、または隣接する非シフタ一開口部 に両側から挟まれる遮光部パターンの所定の露光条件での転写寸法をバイアス補 正量の関数として表わし、前記遮光部パターンが所望の転写寸法で得られるように ノィァス補正量を決定することを特徴とする請求項 1記載の位相シフトマスク。
[3] 前記バイアス補正量を決定する処理は、半導体ウェハ上への転写シミュレーションに よるものであることを特徴とする請求項 2記載の位相シフトマスク。
[4] 隣接するシフタ一開口部に両側力も挟まれた遮光部パターンにバイアス補正を施し たレベンソン型位相シフトマスクであって、シフター開口部と非シフタ一開口部とに挟 まれた遮光部パターンがシフター開口部側にアンダーカットを有し、かつ前記バイァ ス補正を施した遮光部パターンがアンダーカットを有さないことを特徴とする請求項 1 乃至 3の!、ずれ力 1項記載の位相シフトマスク。
[5] 隣接するシフタ一開口部に両側力も挟まれた遮光部パターンにバイアス補正を施し たレベンソン型位相シフトマスクであって、シフター開口部と非シフタ一開口部とに挟 まれた遮光部パターンがシフター開口部側にアンダーカットを有し、かつ前記バイァ ス補正を施した遮光部パターンが遮光膜を有さないことを特徴とする請求項 1乃至 3 の!、ずれ力 1項記載の位相シフトマスク。
[6] 透明基板上に形成された遮光部と開口部を有し、前記開口部の透明基板を部分的 に掘り込むか又は前記開口部の透明基板上に透明膜を部分的に上置きして形成さ れたシフタ一開口部と非シフタ一開口部とが繰り返し存在し、前記シフター開口部に より透過光の位相を反転させるレベンソン型位相シフトマスクの製造方法において、 透明基板上に形成された遮光膜をパターンエッチングし、隣接する同種類の開口 部に両側から挟まれる遮光部パターンが形成されるべき領域にバイアス補正を施し た遮光膜パターンを形成し、
前記遮光膜パターンの上に両側にアンダーカット量分だけ広げたレジストパターン を形成し、
前記レジストパターンをマスクにしてエッチングにより前記透明基板を掘り込み、前 記レジストパターンに対してアンダーカットを形成し、前記レジストパターンのレジスト を除去することを特徴とするレベンソン型位相シフトマスクの製造方法。
[7] 前記レジストパターンのレジストを除去した後に、隣接する同種類の開口部に両側か ら挟まれる前記遮光部パターンを除いて前記遮光膜パターンを被覆するレジストバタ ーンを形成し、前記遮光部パターンの遮光膜をエッチングにより除去し、前記レジスト パターンのレジストを除去することを特徴とする請求項 6記載の方法。
[8] 遮光膜をパターン成膜して透明基板上に形成された遮光部と開口部を有し、前記開 口部の透明基板を部分的に掘り込むか又は前記開口部の透明基板上に透明膜を 部分的に上置きして形成されたシフタ一開口部と非シフタ一開口部とが繰り返し存在 し、前記シフター開口部により透過光の位相を反転させるレベンソン型位相シフトマ スクの製造方法において、
透明基板上に形成された遮光膜をパターンエッチングし、隣接する同種類の開口 部に両側から挟まれる遮光部パターンが形成されるべき領域力 遮光膜を除去し、 前記遮光膜除去領域の上にバイアス補正を施して両側にアンダーカット量分だけ 広げたレジストパターンを形成し、
前記レジストパターンをマスクにしてエッチングにより前記透明基板を掘り込み、前 記レジストパターンに対してアンダーカットを形成し、前記レジストパターンのレジスト を除去することを特徴とするレベンソン型位相シフトマスクの製造方法。
[9] 隣接するシフタ一開口部に両側力も挟まれるか、または隣接する非シフタ一開口部 に両側から挟まれる遮光部パターンの所定の露光条件での転写寸法をバイアス補 正量の関数として表わし、前記遮光部パターンが所望の転写寸法で得られるように ノィァス補正量を決定することを特徴とする請求項 6乃至 8のいずれか 1項記載の方 法。
[10] 前記バイアス補正量を決定する処理は、半導体ウェハ上への転写シミュレーションに よるものであることを特徴とする請求項 9記載の方法。
[11] フォトマスク上のクロム CDどおりにレジストの転写寸法が得られるようなスレツショルド を決めるか、または、特定のパターンが所望のレジスト CDで解像するようなスレツショ ルドを決め、
同位相の開口部が隣接するパターン構造においてバイアス補正量を変化させたと きの、同種類の開口部で両側力 挟まれたパターンの前記スレツショルドでのレジスト の転写寸法を求め、
前記レジスト転写寸法が所望のスレツショルドレベル値で得られるようにバイアス補 正量をマスクタイプ毎に決定することを特徴とする請求項 10記載の方法。
PCT/JP2005/007437 2004-04-23 2005-04-19 レベンソン型位相シフトマスク及びその製造方法 WO2005103820A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020067021836A KR101139986B1 (ko) 2004-04-23 2005-04-19 레벤손형 위상 시프트 마스크 및 그 제조 방법
CN2005800206022A CN1973244B (zh) 2004-04-23 2005-04-19 Levenson型相移掩模及其制造方法
EP05734659A EP1739481A4 (en) 2004-04-23 2005-04-19 LEVENSON-TYPE DEHASTER MASK AND METHOD FOR MANUFACTURING THE SAME
US11/583,797 US7632613B2 (en) 2004-04-23 2006-10-20 Levenson type phase shift mask and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004128043A JP4254603B2 (ja) 2004-04-23 2004-04-23 レベンソン型位相シフトマスク及びその製造方法
JP2004-128043 2004-04-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/583,797 Continuation US7632613B2 (en) 2004-04-23 2006-10-20 Levenson type phase shift mask and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2005103820A1 true WO2005103820A1 (ja) 2005-11-03

Family

ID=35197133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007437 WO2005103820A1 (ja) 2004-04-23 2005-04-19 レベンソン型位相シフトマスク及びその製造方法

Country Status (7)

Country Link
US (1) US7632613B2 (ja)
EP (1) EP1739481A4 (ja)
JP (1) JP4254603B2 (ja)
KR (1) KR101139986B1 (ja)
CN (1) CN1973244B (ja)
TW (1) TWI436160B (ja)
WO (1) WO2005103820A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7935462B2 (en) 2005-12-15 2011-05-03 Renesas Electronics Corporation Pattern formation method using levenson-type mask and method of manufacturing levenson-type mask
JP2015143816A (ja) * 2013-12-26 2015-08-06 Hoya株式会社 フォトマスクの製造方法、フォトマスク及びパターン転写方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064679A1 (ja) * 2004-12-15 2006-06-22 Toppan Printing Co., Ltd. 位相シフトマスク及び位相シフトマスクの製造方法並びに半導体素子の製造方法
JP4800065B2 (ja) * 2006-02-16 2011-10-26 Hoya株式会社 位相シフトマスクの製造方法
KR20090083197A (ko) 2008-01-29 2009-08-03 삼성전자주식회사 컬러필터기판의 제조 방법
CN101923278B (zh) * 2009-06-17 2012-01-04 复旦大学 一种光刻工艺中移相掩模版的建模方法
EP2543682A4 (en) 2010-03-03 2014-06-25 Sk Innovation Co Ltd HIGHLY ACTIVE, HIGHLY SELECTIVE ETHYLENE OLIGOMERIZATION CATALYST, AND PROCESS FOR PREPARING HEXEN OR OCTENE USING THE CATALYST
JP5318140B2 (ja) * 2011-03-25 2013-10-16 ルネサスエレクトロニクス株式会社 レベンソン型マスクの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293822A (ja) * 1987-05-27 1988-11-30 Hitachi Ltd マスク製造方法
JPH0511433A (ja) * 1991-07-02 1993-01-22 Toshiba Corp フオトマスクの製造方法及びフオトマスク
JPH0553290A (ja) * 1991-08-22 1993-03-05 Toppan Printing Co Ltd 位相シフトマスク用ブランクおよび位相シフトマスク並びにその製造方法
JP2000187315A (ja) * 1998-12-22 2000-07-04 Fujitsu Ltd 位相シフタの配置方法、レイアウトパターン設計方法、位相シフタの配置装置、及び、記録媒体
JP2003177511A (ja) * 2001-09-28 2003-06-27 Asml Masktools Bv 位相エッジをサブ解像度アシスト・フィーチャとして用いる光近接効果補正方法
JP2003344987A (ja) * 2002-05-24 2003-12-03 Sony Corp 位相シフトマスクのひさし量測定方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10333316A (ja) 1997-05-29 1998-12-18 Hitachi Ltd 位相シフトマスク及びその製造方法
US6458495B1 (en) * 2000-06-30 2002-10-01 Intel Corporation Transmission and phase balance for phase-shifting mask
JP2003187315A (ja) * 2001-12-17 2003-07-04 Konan Customer Service Kk 自動販売機の盗難防止装置
JP4139605B2 (ja) * 2002-03-01 2008-08-27 大日本印刷株式会社 片掘り型の基板掘り込み型位相シフトマスクにおけるマスク断面構造の決定方法
US6830702B2 (en) * 2002-06-07 2004-12-14 Taiwan Semiconductor Manufacturing Co. Ltd Single trench alternating phase shift mask fabrication
US6785879B2 (en) * 2002-06-11 2004-08-31 Numerical Technologies, Inc. Model-based data conversion

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293822A (ja) * 1987-05-27 1988-11-30 Hitachi Ltd マスク製造方法
JPH0511433A (ja) * 1991-07-02 1993-01-22 Toshiba Corp フオトマスクの製造方法及びフオトマスク
JPH0553290A (ja) * 1991-08-22 1993-03-05 Toppan Printing Co Ltd 位相シフトマスク用ブランクおよび位相シフトマスク並びにその製造方法
JP2000187315A (ja) * 1998-12-22 2000-07-04 Fujitsu Ltd 位相シフタの配置方法、レイアウトパターン設計方法、位相シフタの配置装置、及び、記録媒体
JP2003177511A (ja) * 2001-09-28 2003-06-27 Asml Masktools Bv 位相エッジをサブ解像度アシスト・フィーチャとして用いる光近接効果補正方法
JP2003344987A (ja) * 2002-05-24 2003-12-03 Sony Corp 位相シフトマスクのひさし量測定方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7935462B2 (en) 2005-12-15 2011-05-03 Renesas Electronics Corporation Pattern formation method using levenson-type mask and method of manufacturing levenson-type mask
US8071264B2 (en) 2005-12-15 2011-12-06 Renesas Electronics Corporation Pattern formation method using levenson-type mask and method of manufacturing levenson-type mask
US8367309B2 (en) 2005-12-15 2013-02-05 Renesas Electronics Corporation Pattern formation method using levenson-type mask and method of manufacturing levenson-type mask
JP2015143816A (ja) * 2013-12-26 2015-08-06 Hoya株式会社 フォトマスクの製造方法、フォトマスク及びパターン転写方法

Also Published As

Publication number Publication date
US20070037072A1 (en) 2007-02-15
US7632613B2 (en) 2009-12-15
TW200606575A (en) 2006-02-16
KR20070005688A (ko) 2007-01-10
KR101139986B1 (ko) 2012-06-28
TWI436160B (zh) 2014-05-01
CN1973244B (zh) 2010-05-05
EP1739481A4 (en) 2009-01-14
EP1739481A1 (en) 2007-01-03
JP4254603B2 (ja) 2009-04-15
JP2005309202A (ja) 2005-11-04
CN1973244A (zh) 2007-05-30

Similar Documents

Publication Publication Date Title
KR100201040B1 (ko) 위상 쉬프트 마스크 및 그 제조 방법
US7906252B2 (en) Multiple resist layer phase shift mask (PSM) blank and PSM formation method
TWI388922B (zh) 圖案形成方法及相位移遮罩的製造方法
WO2005103820A1 (ja) レベンソン型位相シフトマスク及びその製造方法
US6780568B1 (en) Phase-shift photomask for patterning high density features
JP2006119651A (ja) 位相シフトマスクを製作するための方法および位相シフトマスク
JP2009205146A (ja) フォトマスクの欠陥修正方法、フォトマスクの製造方法、位相シフトマスクの製造方法、フォトマスク、位相シフトマスク、フォトマスクセット及びパターン転写方法
US6933084B2 (en) Alternating aperture phase shift photomask having light absorption layer
US8034543B2 (en) Angled-wedge chrome-face wall for intensity balance of alternating phase shift mask
JP4800065B2 (ja) 位相シフトマスクの製造方法
US20030226819A1 (en) Single trench alternating phase shift mask fabrication
KR0183852B1 (ko) 포토레지스트 열적흐름의 경계효과 보정방법
JP2002156739A (ja) 位相シフトマスクブランク及び位相シフトマスク
US6720114B1 (en) Method of forming an alternating phase shift circuitry fabrication mask, method of forming a circuitry fabrication mask having a subtractive alternating phase shift region, and alternating phase shift mask
JP2002244270A (ja) 位相シフトマスクの製造方法および位相シフトマスク
US6562521B1 (en) Semiconductor feature having support islands
US6296987B1 (en) Method for forming different patterns using one mask
JPH06180497A (ja) 位相シフトマスクの製造方法
KR100382609B1 (ko) 위상 반전 마스크의 제조 방법
JPH05333524A (ja) 位相シフトマスクおよびその製造方法
JP4314899B2 (ja) 位相シフトマスクの製造方法
JP2003315978A (ja) ウェーブガイド型交互位相反転マスク及びその製造方法
KR100224717B1 (ko) 위상반전 마스크 제조방법
JP2005345920A (ja) 位相シフトマスクおよびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005734659

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11583797

Country of ref document: US

Ref document number: 1020067021836

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 200580020602.2

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005734659

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11583797

Country of ref document: US