JP2007525005A - Mramセルのための磁気異方性を誘導するための斜め堆積 - Google Patents

Mramセルのための磁気異方性を誘導するための斜め堆積 Download PDF

Info

Publication number
JP2007525005A
JP2007525005A JP2006517586A JP2006517586A JP2007525005A JP 2007525005 A JP2007525005 A JP 2007525005A JP 2006517586 A JP2006517586 A JP 2006517586A JP 2006517586 A JP2006517586 A JP 2006517586A JP 2007525005 A JP2007525005 A JP 2007525005A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic region
anisotropy
zero
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006517586A
Other languages
English (en)
Inventor
ディ. リゾ、ニコラス
エヌ. エンゲル、ブラッドレー
エイ. ジェーンスキー、ジェイソン
エム. スローター、ジョン
サン、ジジュン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NXP USA Inc
Original Assignee
NXP USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NXP USA Inc filed Critical NXP USA Inc
Publication of JP2007525005A publication Critical patent/JP2007525005A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/303Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices with exchange coupling adjustment of magnetic film pairs, e.g. interface modifications by reduction, oxidation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3272Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Thin Magnetic Films (AREA)

Abstract

表面を有する基板を提供するステップと、前記基板上に合成磁気モーメントベクトルを有する第1磁気領域(17)を堆積するステップと、前記第1磁気領域上に電気絶縁材料(16)を堆積するステップと、前記電気絶縁材料上に第2磁気領域(115)を堆積するステップを備えた磁気抵抗トンネル接合セルを製造する方法であって、前記第1磁気領域および第2磁気領域の一方の少なくとも一部分が、前記基板の表面に直交する方向に対して非ゼロの堆積角で該領域を堆積することによって形成されて誘導異方性を作る方法。

Description

本発明は半導体メモリ素子に関し、より詳しくは、磁気薄膜を利用する素子に関する。
メモリ素子は、電子システムにおける大変重要な構成要素である。三つの最も重要な商業上の高密度メモリ技術は、SRAM、DRAM、およびFLASHである。これらのメモリ素子の各々は、情報を記憶するために電子電荷を用いており、それぞれ独自の利点を有している。例えば、SRAMは速い読み書き速度を有している。しかしながら、揮発性であり大きなセル面積を必要とする。DRAMは高メモリ密度を有している。しかしながら、これも揮発性であり、数ミリ秒毎に記憶コンデンサのリフレッシュを必要とする。このリフレッシュ要求は制御電子回路の複雑さを増大する。
FLASHは今日使用されている主要な不揮発性メモリ素子である。典型的なFLASHメモリ素子は、浮遊酸化物層の中に閉じ込められた電荷を使って情報を記憶する。FLASHの不都合な点としては、高電圧が必要であることと、プログラム時間および消去時間が遅いことが挙げられる。また、FLASHメモリは、約10〜10サイクルという少ない書き込み耐久時間でメモリ不良を生じる。更に、ほどほどのデータ記憶力を維持するために、ゲート酸化物の厚みは、電子トンネル効果を許可する閾値以上でなければならない。この厚み要求は、FLASHメモリの小型化の流れをきびしく制限する。
これらの短所を克服するために、磁気メモリ素子が評価されつつある。一つのそのような素子は磁気抵抗ランダムアクセスメモリ(ここでは「MRAM」と呼ぶ)である。MRAMはDRAMと同様の速度性能を有する可能性を備えている。しかしながら、商業的に実現可能であるためには、MRAMは、現在のメモリ技術に匹敵するメモリ密度を有し、未来世代のために小型化可能であるとともに、低電圧で動作し、電力消費量が少なく、競争力がある読み出し/書き込み速度を有さなければならない。
MRAM素子にとって、メモリ状態の安定性、読み出し/書きこみサイクルの反復可能性、および電力消費量は、その設計特性の重要な側面のいくつかである。MRAM内のメモリ状態は、電力によって維持されるのではなく、磁気モーメントベクトルの方向によって維持される。典型的なMRAM素子においては、データの記憶は、磁界を印加して、MRAMセル内の磁気材料を二つの可能なメモリ状態のいずれかに磁化することによって行われる。データの呼び出しは、磁気状態によって決まるセルの抵抗状態を検知することによって行われる。磁界は、電流を磁気構造の外にあるストリップ線路に流すか、または電流を磁気構造そのものに流すことによって生成される。
標準的なMRAM素子に対して、スイッチング磁界Hswはビットの全異方性Hk_total に比例し、この全異方性(total anisotropy)は素子形状と材料組成による寄与分を含むことができる。ほとんどのMRAM素子は、1よりも大きいアスペクト比を有するビット形状に依って、スイッチング磁界Hswを提供する形状異方性Hk_shape をもたらす。
しかしながら、Hk_shape に依ってHswを提供するのはいくつかの不都合がある。一つは、Hk_shape はビット寸法が減少するに従って増加するので、所与の形状および膜厚に対してHswが増加することである。大きいHswを有するビットであればあるほどスイッチングのために大きい電流を必要とする。第2の不都合は、リソグラフィックパターン形成
およびエッチングによるビット形状のばらつきが原因となってHswが変動することである。この変動は、フォトリソグラフプロセスとエッチングプロセスの限られた解像度のために、ビットサイズが減少するに従って増加する。Hswの変動はビットのプログラミングのための動作範囲(operating window)を小さくするので好ましくない。第3の不都合な点は、Hk_shape の大きさを変化させることができる範囲が制限されることである。一定のビット形状のみが信頼できるスイッチングを生じ、膜の厚みを変化させるとHk_shape が変化するが、磁区形成が原因でビットスイッチング品質が劣化する最大ビット厚みが存在する。
他のMRAM素子は、同一原子のペアオーダリング(原子対の異方的な分布)による異方性に依って、Hk_total のすべてまたは一部を提供する。例えば、ニッケル鉄(NiFe)膜が磁界の中で堆積される場合、ごくわずかの鉄(Fe)原子およびニッケル(Ni)原子が同一原子と対をなして、磁界に平行な連鎖を形成し、磁界方向にほぼ平行な約5エルステッドのペア異方性(pair anisotropy) を提供する。
ペアオーダリング異方性Hk_pairは、ビット形状とほぼ無関係であるという利点を有し、ビットサイズが減少しても比較的変化しない。しかしながら、Hk_pairの大きさと方向は温度と共に変化することがありうる。この温度による変化は、ほぼ原子ペアの熱拡散に起因している。更に、Hk_pairの大きさは、ほとんどが、Hswの範囲を限定する特定の磁気材料に対して一定である。
上記形状および対の異方性の制限に基づいて、広範囲にわたって調節可能であり、事実上ビット形状に依存しない、熱的な安定な磁気異方性を用いてスイッチング磁界Hswを調節する必要性が存在することは明白である。そこで、本発明の目的は、磁気抵抗ランダムアクセスメモリ素子を製造する新しい改善された方法を提供することにある。
本発明の前述の目的と利点および更なるより具体的な目的と利点は、添付図面と共になされる以下の好ましい実施態様の詳細な説明により当業者にとってすぐに明らかとなるであろう。
図1は、本発明によるMRAMアレイ3の概略断面図である。本図においては単一のMRAM素子10のみが示されているが、MRAMアレイ3は一般に数多くのMRAM素子を含んでいることは明らかである。しかしながら、磁気異方性を誘導するために材料層を傾斜した角度をなして堆積する方法を示すための議論を簡単かつ容易に行うためにそのような素子が一つのみ示されている。また、MRAM素子、特に磁気トンネル接合(MTJ)素子が議論されているが、他の磁気電子素子(例えば、GMR素子、磁気センサー等)を同様な技術を用いて製造できることは明らかである。
好ましい実施態様においては、MRAM素子10はビットライン20とディジットライン30の間に挟まれている。ビットライン20およびディジットライン30は、電流がそれを通って流れることができるように導電性材料を含んでいる。この図において、ビットライン20はMRAM素子10の表面36上に配置されており、ディジットライン30はMRAM素子10の表面34上に配置されており、ディジットライン30はビットライン20に対して約90度の角度で配向されている(図2参照)。しかしながら、ビットライン20およびディジットライン30のこの配置は説明のためだけのものであり、多くの他の構成が可能であることは明らかである。
図2は、本発明によるMRAMアレイ3の概略平面図である。MRAM素子10の説明
を簡単にするために、すべての方向は図示のようにx−y座標系100で示されている。ビットライン20とディジットライン30の目的は、MRAM素子10内に磁界を生成することにある。正のビット電流(即ち、正のx方向に流れるビット電流)IB は周辺ビット磁界(circumferential bit magnetic field)HB を生成し、正のディジット電流(即ち、正のy方向に流れるディジット電流)ID は周辺ディジット磁界(circumferential digit magnetic field)HD を生成する。
ビットライン20はMRAM素子10の上方に位置するので、その要素の平面内において、HB は、正のIB に対して正のy方向で、MRAM素子10に印加される。同様に、ディジットライン30はMRAM素子10の下方に位置するので、その要素の平面内において、HD は、正のID に対して正のx方向で、MRAM素子10に印加される。電流によって生成される磁界の作用は当業者にとって周知のものであり、ここでは更に詳しく述べることはしない。
図1に戻ると、MRAM素子10は、磁気領域15と磁気領域17との間に挟まれたトンネルバリア16を含んでおり、図3で別に述べるように、MRAM素子10の一部分はゼロ以外の堆積角θをなして堆積される。好ましい実施態様においては、トンネルバリア16は、酸化アルミニウムなどの電気絶縁材料を含んでおり、トンネル接合を形成することができる。
また、好ましい実施態様においては、磁気領域15は、強磁性層45と強磁性層55との間に挟まれた反強磁性結合スペーサ層65を有する三層構造18を備える。また、好ましい実施態様においては、磁気領域17は、強磁性層46と強磁性層56との間に挟まれた反強磁性結合スペーサ層66を含む三層構造19を有する。
磁気領域15と17はN個の強磁性層を含むことができることは明らかである。ここで、Nは2以上の自然数である。しかしながら、好ましい実施態様においては、Nは2に等しくて、磁気領域15と17はそれぞれ一つの三層構造を含む。三層構造はしばしば反平行結合(synthetic anti-ferromagnetic)(以下、「SAF」と呼ぶ)構造と呼ばれることは明らかである。
また、磁気領域15,17は三層構造以外のSAF層材料構造を含むことができ、本実施態様においては説明を目的として三層構造を用いているに過ぎないことは明らかである。例えば、一つのそのようなSAF層材料構造は、強磁性層/反強磁性結合スペーサ層/強磁性層/反強磁性結合スペーサ層/強磁性層構造の5層スタックを含むことができる。また、磁気領域15,17は、単一磁気層などの磁気モーメントベクトルを生成する他の磁気材料構造を含むことができる。
一般に、反強磁性結合スペーサ層65,66は、ルテニウム(Ru)、レニウム(Re)、オスミウム(Os)、チタン(Ti)、クロム(Cr)、ロジウム(Rh)、プラチナ(Pt)、銅(Cu)、またはパラジウム(Pd)元素か、その合金のうちの少なくとも一つを含有する。更に、強磁性層45,55,46,56は一般に、ニッケル(Ni)、鉄(Fe)、またはコバルト(Co)元素か、その合金のうちの少なくとも一つを含有する。好ましい実施態様においては、強磁性層はそれぞれ磁気モーメントベクトル57,53を有し、これらのベクトルは通常、反強磁性結合スペーサ層65の結合によって、反平行に保たれる。また、強磁性層46と56はそれぞれ磁気モーメントベクトル47,43を有し、これらのベクトルは通常、反強磁性結合スペーサ層66の結合によって、反平行に保たれる。また、磁気領域15は合成磁気モーメントベクトル40を有し、磁気領域17は合成磁気モーメントベクトル50を有する。
合成磁気モーメント40は磁気モーメントベクトル53および磁気モーメントベクトル57のベクトル合計であり、合成磁気モーメント50は磁気モーメントベクトル43および磁気モーメントベクトル47のベクトル合計であることは明らかである。層45と層55との間で磁気モーメントが平衡している場合、合成磁気モーメントベクトル40はほぼゼロである。しかしながら、磁気抵抗はそれでもなおトンネルバリア16に隣接した磁気モーメントベクトル(即ち、磁気モーメントベクトル47,53)によって決定される。
好ましい実施態様においては、合成磁気モーメントベクトル40,50の向きは、ビットライン20およびディジットライン30(図2参照)から好ましくは45°の角度の好ましい方向にある異方性容易軸12(図2参照)にほぼ沿っている。容易軸12はまた異方性困難軸14(図2参照)から約90°の方向に向いている。また、磁気領域15は、合成磁気モーメントベクトル40が印加磁界の存在下で自由に回転できることを意味する自由磁気領域である。磁気領域17は、合成磁気モーメントベクトル50が一般に印加磁界の存在下では自由に回転できず、基準として用いられることを意味する固定磁気領域である。
好ましい実施態様においては、合成磁気モーメントベクトル50は、磁気領域17と、シード層31を含む反強磁性領域32との間の反強磁性結合によって、ほぼ固定されている。しかしながら、自由磁気領域および固定磁気領域としての磁気領域15および磁気領域17の構成はそれぞれ説明のためだけのものであって、他の構成が可能であることが分かるであろう。例えば、磁気領域15を固定磁気領域として形成し、磁気領域17を自由磁気領域として形成することができる。
MRAM素子10は、トンネルバリア16を通ってトンネル電流を流すことができる。トンネル電流は、トンネルバリア16に隣接した磁気モーメントベクトル53,47の相対方向によって左右されるMRAM素子10のトンネル磁気抵抗によってほぼ決まる。磁気モーメントベクトル53と磁気モーメントベクトル47とがほぼ平行である場合、MRAM素子10は低い抵抗を有し、ビットライン20とディジットライン30との間の電圧バイアスはMRAM素子10を通して大きなトンネル電流を生成する。この状態は「1」と定義される。
磁気モーメントベクトル53と磁気モーメントベクトル47とがほぼ反平行である場合には、MRAM素子10は高い抵抗を有し、ビットライン20とディジットライン30との間の印加電圧バイアスはMRAM素子10を通して小さなトンネル電流を生成する。この状態は「0」と定義される。
しかしながら、これらの定義は、任意であって逆も可能であるが、説明のためにこの例において使用されていることは明らかである。従って、典型的な磁気抵抗メモリにおいては、データ記憶は、自由強磁性領域の磁気モーメントベクトルを、固定強磁性領域の磁気モーメントに対して平行または反平行のいずれかの方向に向ける磁界を印加することによって行われる。
反強磁性結合層65は、三層構造18の中の強磁性層45と強磁性層55との間に示されているが、強磁性層45,55は磁界または他のフィーチャなどの他の手段によって反強磁性的に結合できることは明らかである。例えば、MRAMセルのアスペクト比が5以下に低減された場合、強磁性層は、磁束閉鎖によりほぼ反平行に結合することができる。好ましい実施態様においては、MRAM素子10は、非円形平面に対して1から5の範囲の長さ/幅比を有する三層構造18,19を有する。アスペクト比=2である平面が示されている(図2参照)。MRAM素子10は、形状異方性によるスイッチング磁界変化に対する寄与分を最小にするためと、フォトリソグラフィー処理を使って素子の横方向寸法
を縮小するのを容易にするために、好ましい実施態様においては楕円形状である。しかしながら、MRAM素子10は、円、正方形、長方形、菱形などの他の形状を有してもよいが、簡略であるとともに性能が改善されることから、楕円形として示されていることは明らかである。
また、MRAMアレイ3の製造の間、後続の各層(例えば、層30,31,32,56など)が順に堆積または形成され、各MRAM素子10は、当業者に周知の技術のいずれかにおける選択的堆積法、フォトリソグラフィー処理、エッチングなどによって規定することができる。
前に述べたように、MRAM素子10の一部分は、図3に示すように非ゼロの(ゼロではない)堆積角θで堆積される。この図3には表面76を有する基板74が示されている。材料フラックス72は、表面76に直交する基準線78に対して角度θをなして表面76に入射される。材料フラックス72は、表面76上に位置する材料領域80を形成する。材料領域80は一般的に、誘導一軸磁気異方性Hki、即ち、入射面にほぼ平行でかつ表面76に平行なHki(||)、または入射面にほぼ直交しかつ表面に平行なHki(⊥)を有する。入射面は、基準線78と、材料フラックス72に平行な基準線79とによって規定される。また、材料フラックス72は磁気材料または非磁気材料を含むことができることは明らかである。好ましい実施態様においては、材料領域80の誘導磁気異方性の方向は、以下に述べるようにほぼθによって決まる。
蒸着、物理気相堆積、またはイオン−ビーム堆積などの堆積技術によって堆積される原子は、堆積処理の詳細に依存する堆積角分布を有する。堆積角θは、原子フラックスが層を形成するためにウェハー上に堆積する平均堆積角として定義される。ゼロの平均角を達成するためには、原子を垂直な入射で直接堆積させてもよいし、または原子フラックスが堆積角θを有するとともに、ゼロの平均角を生じるように堆積の間にウェハーを回転させてもよい。
図4は、材料領域80が25nmニッケル鉄合金(NiFe)層を含む場合の、誘導磁気異方性の大きさHki対θのグラフ90である。グラフ90において、丸はHki(||)を、四角はHki(⊥)を示し、平行(||)および直交(⊥)は、平均堆積フラックス方向の入射面に対して平行であるかまたは直交し、かつ基板の面内に位置する異方性軸をさす。誘導磁気異方性の大きさは、θ=20°における約5エルステッドから、θ=60°における約70エルステッドまで、θと共に増加する。ペアオーダリング異方性の方向は、堆積の間、印加磁界によって設定され、θ=0°において小さなHki(||)を生じさせる。中間の角度に対しては、誘導異方性は平行であり、小さなペアオーダリング異方性に打ち勝って、有意のHki(||)を有する材料をもたらす。大きい堆積角に対しては、誘導異方性はペアオーダリング異方性に直交し、ペアオーダリング異方性を実質的に増加させる。
図5は、角度θにおいても堆積される25nmタンタル(Ta)層の上にある25nmニッケル鉄(NiFe)層に対する、誘導磁気異方性の大きさ対θのグラフ92である。グラフ92にはHki(⊥)とHki(||)がプロットされており、誘導磁気異方性の大きさは図示のようにθと共に増加する。前に述べたように、Hk の大きさはかなりの範囲にわたって変化し、その範囲の幅は一般に斜角で堆積される層の数と共に増加する。この例においては、Hkiは、θが約20°から60°に変化したときにそれぞれ約5エルステッドから500エルステッドによって与えられる範囲にわたって変化し、この範囲の上限(即ち、500エルステッド)は、図4において述べられた25nmニッケル鉄(NiFe)層に対する上限(即ち、70エルステッド)よりもかなり大きい。従って、図4と図5から、ほぼ同じ材料構成に対して広範囲にわたってHkiを変化させ得ることは明白である
好ましい実施態様においては、ニッケル鉄(NiFe)膜に対するHki(||)およびHki(⊥)は、実質的に、誘導異方性Hkiの原因となる膜の表面トポグラフィーを引き起こす斜め堆積角の結果に由来する。小さいθに対しては、膜内の粒子は、入射面に平行な方向の堆積速度によって、入射面にほぼ平行に伸張される。この伸張は、入射面に平行な微細な形状異方性(即ち、Hki(||))を生成する。大きいθに対しては、表面粗さによる自己シャドーイングが、入射面にほぼ直交する膜表面の波形しわを生成する。これは、入射面にほぼ直交する誘導異方性(即ち、Hki(⊥))を生成する。中間のθにおいては、Hki(⊥)とHki(||)とは、ほぼ同等の大きさを有し、それらの方向は直交する。
直交異方性に対し、正味の異方性は、二つの異方性の差によって与えられる大きさと、大きいほうの異方性によって規定される方向を有する。従って、図4と図5における膜に対する全異方性は、ほぼ
k_total (θ)=Hk_pair−Hki(||)+Hki(⊥)
となる。図4において、Hk_pairは入射面にほぼ直交するように堆積される。θが増えると、Hki(||)は急速に増え、Hk_total はマイナスとなる。θが更に増えると、Hki(⊥)が支配的となり、Hk_total は再びプラスになる。正味の結果は、Hk_total がいろいろな異方性の相殺によってゼロか相当小さくなるという二つの点があることである。
図5においても、大きいθに対するHkiの大きさが有意に増加することを除き、同様の傾向が見られる。この増加はタンタル(Ta)層の表面波形しわによって起こるので、Hki(⊥)は、ニッケル鉄(NiFe)だけに対するよりも更に大きくなる。
ニッケル鉄(NiFe)膜はHki(||)とHki(⊥)の両方をθの関数として示すが、いくつかの材料は、著しいHki(||)を実質的に示さず、むしろ、著しいHki(⊥)だけを示す。しかしながら、好ましい実施態様においては、説明のためと議論の容易性のためにニッケル鉄(NiFe)の場合が議論されることは明らかである。
図8は、いろいろな堆積角θにおいてタンタル(Ta)層の上に堆積されたバルクニッケル鉄コバルト(NiFeCo)膜に対する正規化磁気異方性Hk_total 対アニール温度の実験測定を示す。非ゼロの堆積角に起因する誘導磁気異方性は、磁気材料層そのものによるかタンタル層(図5参照)による表面トポグラフィーの結果であるので、Hk の大きさと方向は温度に対して安定しているため、熱ドリフトは最小となる。また、斜め堆積角で堆積された膜のHk は、ビット形状に著しく依存することはない。
図8に戻って、この実験においては、膜を約15分間それぞれの温度でアニールする間、全異方性方向を横切る磁界を印加する。ペアオーダリング異方性のみ(θ=0)を有する膜に対して、測定されるHk_total は、同一原子対の熱拡散のために、増加する温度と共に著しく低下する。θが増えると、誘導異方性Hkiは、傾斜堆積による表面トポグラフィーに主として起因するので、アニール後の異方性の変化は最小となる。熱安定異方性はMRAMセルにとって利点となる。これは、そのような安定な異方性を有するメモリセルのスイッチング磁界は、スイッチングのための磁界の反復的な印加によって著しく変化しないためである。
それ故、非ゼロの堆積角θを選択して、MRAM素子10に対する望ましい異方性の大きさおよび方向を得ることができる。素子10における磁気層に対する全異方性は、ほぼ
k_total (θ)=Hk_shape ±Hk_pair±Hki(⊥)±Hki(||)
となる。
このように、一定の磁気層または下層に対する適切な堆積角を選択することによって、Hkiを使ってHk_total を変化させることができる。
図1に戻って、非ゼロの堆積角θで堆積される少なくとも一つの層を含むメモリ素子10のいくつかの他の実施態様があることは明らかである。第1実施態様においては、自由層(即ち、磁気領域15)は、非ゼロの堆積角θで堆積される少なくとも一つの層(即ち、層55と65と45またはそのいずれか)を有することができる。この実施態様においては、誘導異方性Hkiは、磁気領域15に対する他の異方性(即ち、Hk_shape またはHk_pair)を増大または低減する。このことは、Hki(||)またはHki(⊥)が誘導されるか否かということと他の異方性の向きとにほぼ依存する。
第1実施態様においては、堆積角θは小さく、このことは、ウェハー全体に渡って一様な膜厚を保つという利点がある。この一様性はまた、一定の層の材料を約半分堆積させたのち、ウェハーを180°回転させ、その堆積を完成させることによって改善することができる。この回転は、傾斜堆積に起因する厚みの勾配の効果を減少させる。
第2実施態様においては、MRAM素子10はほぼ円形をしているので、形状異方性は最小である。更に、小さいHk_pairを有するように磁気材料を選ぶことができるので、Hkiが支配的な磁気異方性である。
第3実施態様においては、シード層31は非ゼロ角θで堆積でき、後続の層は0°にほぼ等しいθで堆積される。この実施態様は、ウェハー全体にわたって一定の膜厚を保ち、それでもなおシード層31からかなりのHkiを得るという利点がある。
第4実施態様においては、磁気領域17は自由層を含み、磁気層15は固定層を含む(代替実施態様は、磁気領域15の中に自由層を有し、磁気領域17の中に固定層を有することができる)。磁気領域15において、少なくとも一つの層(即ち、層55,65,45の少なくともいずれか)を非ゼロの堆積角θで堆積することができる。第4実施態様においては、磁気領域15のみが大きい角度θで斜めに堆積されて、固定層の中に大きいHkiを誘導する。大きいHkiは固定層にとって望ましいので、磁化方向は、メモリ素子10の書き込みと読み出しの間、ほぼ一定に保持される。このことは、固定層内の磁化方向の動きによるいかなる乱れも実質的に最小にする。
素子10は、イオンビーム堆積システム、物理気相堆積システム、または同等のものを用いて堆積することができることは明らかであり、好ましい実施態様においては、非ゼロの堆積角で堆積される素子10の部分は静止した(非回転の)基板を用いて行われる。大きい誘導Hkiを生成するために、誘導フラックス材料の比較的平行なビームを生成することが望ましい。平行ビームは通常、低圧堆積システムまたは基板距離に対して長いターゲットを有するシステム内で生成することができる。
イオンビーム堆積システムに対しては、基板は、スパッタリングターゲット上のビームスポットの中心から基板の中心へ引いた線に対して斜角に向けられる。しかしながら、物理気相堆積システム110に対しては、基板は、図6に示すように、スパッタリングターゲットを横切って掃引される。ここで、θは時間の関数として変化する。好ましい実施態様においては、物理気相堆積システム110は、成形ターゲット116とフラックスシェーパ118を備える。基板112は一般に、回転テーブルまたはアーム114によって保持され、この回転テーブルまたはアーム114は、ゲートバルブ(図示せず)を通って搬送ロボット(図示せず)から基板112を受け取る。堆積システムの基本的構成と、そのようなシステムにおける回転テーブルまたはアームの動作は、当業者にとって周知のものであって、ここで更に詳しく述べることはしない。
図7は、物理気相堆積システム110の側面図である。基板112は、図示されたように、ロボットアーム114によって、基準線122に対して角度θをなして配置される。プラズマ(図示せず)がターゲット116に隣接しており、基板112はアーム114によって基準線120に沿って動かされる。ターゲットが電圧によってバイアスがかけられると、プラズマはターゲット材料を広い角度分布でスパッタする。従って、基板の掃引の開始時、基板がターゲットの片側に逸れているとき、堆積原子は主に斜角をなしている。基板の掃引の範囲および速度を制御して、層のうちどれだけ多くが斜めの状態で堆積されるかを決定することができる。この堆積方法の一つの利点は、堆積膜はより一定であり、それでもなお、層堆積パスの初めと最後に非ゼロの堆積角θによる誘導磁気異方性を有する斜め堆積膜を得ることである。シェーパー118は、望ましい掃引の範囲と速度分布に対して基板112にわたって一定の厚みの膜を提供するようになっている。この方法を使用して、磁界が層の堆積の間に印加されない場合でさえも明確な異方性方向を有する層を生成することができる。
このように、強磁性層を利用した、MTJ素子とGMR素子またはそのいずれかを含むMRAM素子、磁気センサーなどの磁気電子素子に対して、材料層を堆積する新しい改善された方法が開示された。この方法は、非ゼロの堆積角で磁気素子の部分を堆積するステップを含んでいる。この堆積方法の利点は、誘導される磁気異方性が温度に関してほぼ安定しているということにある。もう一つの利点は、誘導異方性の大きさに対する値の範囲が増加するということにある。更にもう一つの利点は、この新しい改善された堆積方法が、堆積の間に印加磁界を必要とすることなく明確な異方性軸を生成することにある。しかしながら、もし望まれるならば印加磁界を使用できることは明らかである。また、非ゼロの堆積角は、形状異方性、ペアオーダリング異方性、または固有異方性を補うか、または妨げるように選択することができる。また、所望により、固定層を形成するステップにおいて、十分大きい誘導異方性を用いることができるので、反強磁性ピンニング層32は必要とされない。
説明のためにここで選択された実施態様に対する種々の変更は、当業者に容易に思い浮かぶであろう。そのような変更と変形は、本発明の精神から逸脱しない程度まで、特許請求の範囲の公正な解釈によってのみ評価される本発明の範囲内に含まれることが意図されている。
本発明による磁気抵抗ランダムアクセスメモリ素子の断面図。 本発明による磁気抵抗ランダムアクセスメモリ素子の概略平面図。 非ゼロの堆積角で堆積されと材料層を有する基板の斜視図。 25nmニッケル鉄(NiFe)層に対する誘導異方性の大きさ対堆積角を示すグラフ。 25nmタンタル(Ta)層の上に堆積される25nmニッケル鉄(NiFe)層に対する誘導異方性の大きさ対堆積角を示すグラフ。 本発明による材料層を堆積するために使用される物理気相堆積システムの上面図。 本発明による材料層を堆積するために使用される物理気相堆積システムの側面図。 タンタル(Ta)層上に堆積されるバルクニッケル鉄コバルト(NiFeCo)膜に対する正規化磁気異方性Hk 対アニール温度を示すグラフ。

Claims (48)

  1. 磁気電子素子を製造する方法であって、
    合成磁気モーメントベクトル、大きさ、および方向を備えた誘導磁気異方性を有する少なくとも一つの磁気領域を堆積するステップを備え、前記誘導磁気異方性は、前記少なくとも一つの磁気領域の少なくとも一部分を前記磁気電子素子の表面に直交する基準線に対して非ゼロの堆積角で堆積することによって生成されることを特徴とする方法。
  2. 請求項1に記載の方法であって、イオンビーム堆積システムと、スパッタリングターゲットを有し、そのスパッタリングターゲットの上方で基板を掃引させる物理気相堆積システムとのうちの一方を使用して、前記少なくとも一つの磁気領域を堆積するステップを更に含むことを特徴とする方法。
  3. 請求項1に記載の方法であって、前記少なくとも一つの磁気領域は第1強磁性層と第2強磁性層との間に挟まれた電気絶縁材料層を含み、該電気絶縁材料層はトンネル接合を形成することを特徴とする方法。
  4. 請求項3に記載の方法であって、前記少なくとも一つの磁気領域は少なくとも一つの反強磁性結合材料層を含むことを特徴とする方法。
  5. 請求項4に記載の方法であって、前記非ゼロの堆積角で堆積される前記少なくとも一つの磁気領域の一部分は、第1強磁性層、第2強磁性層、電気絶縁材料層、少なくとも一つの反強磁性結合材料層、およびそれらの組合せのうちの一つであることを特徴とする方法。
  6. 請求項1に記載の方法であって、前記少なくとも一つの磁気領域は第1導電ラインと第2導電ラインとの間に挟まれていることを特徴とする方法。
  7. 請求項1に記載の方法であって、前記非ゼロの堆積角は、前記誘導磁気異方性の方向が堆積入射面にほぼ直交するように向くように選択されることを特徴とする方法。
  8. 請求項1に記載の方法であって、前記非ゼロの堆積角は前記誘導磁気異方性の方向が堆積入射面にほぼ平行に向くように選択されることを特徴とする方法。
  9. 請求項6に記載の方法であって、前記非ゼロの堆積角で堆積される前記少なくとも一つの磁気領域の一部分は、第1導電ラインおよび第2導電ラインの少なくとも一方に隣接して堆積されるシード層であることを特徴とする方法。
  10. 請求項9に記載の方法であって、前記シード層の上に堆積される後続の層は前記基準線に対してほぼゼロの堆積角で堆積されることを特徴とする方法。
  11. 請求項1に記載の方法であって、前記非ゼロの堆積角は、形状異方性、ペアオーダリング異方性、および前記第1磁気領域および第2磁気領域の少なくとも一方の固有異方性のうちの少なくとも一つを補うか、または妨げるように選択されることを特徴とする方法。
  12. スイッチング磁界を有する磁気抵抗トンネル接合素子を製造する方法において、
    表面を有する基板を提供するステップと、
    印加磁界の非存在下において、好ましい方向に一定の大きさをもつ合成磁気モーメントベクトルを有する第1磁気領域を前記基板上に堆積するステップであって、前記第1磁気領域は厚みおよび第1誘導磁気異方性を有するステップと、
    前記第1磁気領域の上に電気絶縁材料を堆積して磁気抵抗トンネル接合を形成するステップと、
    前記電気絶縁材料の上に第2磁気領域を堆積するステップであって、前記第2磁気領域は、第2誘導磁気異方性と、前記第1磁気領域の好ましい方向に対して平行または反平行な位置に向けられた大きさをもつ合成磁気モーメントベクトルとを有し、前記第1磁気領域および第2磁気領域の一方の少なくとも一部分は、前記基板の表面にほぼ直交する基準線に対して非ゼロの堆積角で堆積されるステップと
    を備えることを特徴とする方法。
  13. 請求項12に記載の方法であって、前記第1磁気領域および第2磁気領域の少なくとも一方は、調節可能な磁気スイッチング量を有する合成反強磁性材料層を含み、前記合成反強磁性層材料は、反強磁性的に結合されたN個の強磁性層を含み、前記Nは2以上の自然数であることを特徴とする方法。
  14. 請求項12に記載の方法であって、前記非ゼロの堆積角は前記スイッチング磁界を得るように選択されることを特徴とする方法。
  15. 請求項13に記載の方法であって、前記N個の強磁性層のそれぞれは、各隣接強磁性層の間に反強磁性結合材料層を挟むことによって反強磁性的に結合されることを特徴とする方法。
  16. 請求項12に記載の方法であって、前記非ゼロの堆積角は、前記第1誘導磁気異方性および第2誘導磁気異方性の少なくとも一方が堆積入射面にほぼ直交して向くように選択されることを特徴とする方法。
  17. 請求項12に記載の方法であって、前記非ゼロの堆積角は、前記第1誘導磁気異方性および第2誘導磁気異方性の少なくとも一方が堆積入射面にほぼ平行に向くように選択されることを特徴とする方法。
  18. 請求項12に記載の方法であって、前記非ゼロの堆積角は、形状異方性、ペアオーダリング異方性、および前記第1磁気領域および第2磁気領域の少なくとも一方の固有異方性のうちの少なくとも一つを補うか、または妨げるように選択されることを特徴とする方法。
  19. 請求項12に記載の方法であって、前記非ゼロの堆積角で堆積される前記第1磁気領域および第2磁気領域の少なくとも一方の前記部分はシード層であることを特徴とする方法。
  20. 請求項19に記載の方法であって、前記シード層の上に堆積される後続の層は前記基準線に対してほぼゼロ堆積角で堆積されることを特徴とする方法。
  21. 請求項12に記載の方法であって、前記第1磁気領域および第2磁気領域を堆積するステップは、イオンビーム堆積システムと、スパッタリングターゲットを有し、そのスパッタリングターゲットの上方で基板を掃引させる物理気相堆積システムとのうちの一方を使用することを含むことを特徴とする方法。
  22. 請求項12に記載の方法であって、前記第1磁気領域および第2磁気領域のそれぞれは第1導電ラインと第2導電ラインとの間に挟まれることを特徴とする方法。
  23. 大きさおよび方向をもつ誘導磁気異方性を有する少なくとも一つの磁気領域を備えた磁
    気電子素子であって、前記誘導磁気異方性は前記少なくとも一つの磁気領域の少なくとも一部分を前記領域の表面にほぼ直交する基準線に対して非ゼロの堆積角で堆積することによって生成されることを特徴とする磁気電子素子。
  24. 請求項23に記載の磁気電子素子であって、前記少なくとも一つの磁気領域を堆積するステップは、イオンビーム堆積システムと、スパッタリングターゲットを有し、そのスパッタリングターゲットの上方で基板を掃引させる物理気相堆積システムの一方を使用するステップからなることを特徴とする磁気電子素子。
  25. 請求項23に記載の磁気電子素子であって、前記少なくとも一つの磁気領域は第1強磁性層と第2強磁性層の間に挟まれた電気絶縁材料層を含み、該電気絶縁材料層はトンネル接合を形成することを特徴とする磁気電子素子。
  26. 請求項25に記載の磁気電子素子であって、前記少なくとも一つの磁気領域は少なくとも一つの反強磁性結合材料層を含むことを特徴とする磁気電子素子。
  27. 請求項26に記載の磁気電子素子であって、前記非ゼロの堆積角で堆積される前記少なくとも一つの磁気領域の一部分は、第1強磁性層、第2強磁性層、電気絶縁材料層、少なくとも一つの反強磁性結合材料層、およびそれらの組合せのうちの一つであることを特徴とする磁気電子素子。
  28. 請求項23に記載の磁気電子素子であって、前記非ゼロの堆積角は前記誘導磁気異方性の方向が堆積入射面にほぼ直交して向くように選択されることを特徴とする磁気電子素子。
  29. 請求項23に記載の磁気電子素子であって、前記非ゼロの堆積角は前記誘導磁気異方性の方向が堆積入射面にほぼ平行に向くように選択されることを特徴とする磁気電子素子。
  30. 請求項23に記載の磁気電子素子であって、前記非ゼロの堆積角で堆積される前記少なくとも一つの磁気領域の一部分は、第1導電ラインおよび第2導電ラインの少なくとも一方に隣接して堆積されるシード層であることを特徴とする磁気電子素子。
  31. 請求項30に記載の磁気電子素子であって、前記シード層の上に堆積される後続の層は前記基準線に対してほぼゼロ堆積角で堆積されることを特徴とする磁気電子素子。
  32. 請求項23に記載の磁気電子素子であって、前記少なくとも一つの磁気領域は固定磁気領域を含むことを特徴とする磁気電子素子。
  33. 請求項23に記載の磁気電子素子であって、前記少なくとも一つの磁気領域は自由磁気領域を含むことを特徴とする磁気電子素子。
  34. スイッチング磁界を有する磁気抵抗トンネル接合素子であって、
    表面を有する基板と、
    前記基板上に位置する少なくとも一つの磁気領域であって、大きさおよび方向をもつ誘導磁気異方性を有する磁気領域とを備え、
    前記誘導磁気異方性は、前記少なくとも一つの磁気領域の少なくとも一部分を前記基板の表面にほぼ直交する基準線に対して非ゼロの堆積角で堆積することによって生成されることを特徴とする磁気抵抗トンネル接合素子。
  35. 請求項34に記載の装置であって、前記少なくとも一つの磁気領域は、イオンビーム堆
    積システムと、スパッタリングターゲットを有し、そのスパッタリングターゲットの上方で基板を掃引させる物理気相堆積システムとのうちの一方を使用して堆積されることを特徴とする装置。
  36. 請求項34に記載の装置であって、前記少なくとも一つの磁気領域は第1強磁性層と第2強磁性層の間に挟まれた電気絶縁材料層を含み、該電気絶縁材料層はトンネル接合を形成することを特徴とする装置。
  37. 請求項36に記載の装置であって、前記少なくとも一つの磁気領域は少なくとも一つの反強磁性結合材料層を含むことを特徴とする装置。
  38. 請求項34に記載の装置であって、前記非ゼロの堆積角は前記誘導磁気異方性の方向が堆積入射面にほぼ直交するように選択されることを特徴とする装置。
  39. 請求項34に記載の装置であって、前記非ゼロの堆積角は前記誘導磁気異方性の方向が堆積入射面にほぼ平行であるように選択されることを特徴とする装置。
  40. 請求項38に記載の装置であって、前記非ゼロの堆積角で堆積される前記少なくとも一つの磁気領域の一部分は、前記少なくとも一つの磁気領域のまわりに挟まれた前記第1導電ラインおよび第2導電ラインの少なくとも一方に隣接して堆積されるシード層であることを特徴とする装置。
  41. 請求項40に記載の装置であって、前記シード層の上に堆積される後続の層は前記基準線に対してほぼゼロ堆積角で堆積されることを特徴とする装置。
  42. 請求項34に記載の装置であって、前記磁気抵抗トンネル接合素子は磁気抵抗ランダムアクセスメモリ素子を含むことを特徴とする装置。
  43. 請求項38に記載の装置であって、前記第1磁気領域および第2磁気領域の少なくとも一方は、調節可能磁気スイッチング量を有する合成反強磁性材料層を含み、前記合成反強磁性層材料は、反強磁性的に結合されたN個の強磁性層を含み、前記Nは2以上の自然数であることを特徴とする装置。
  44. 請求項34に記載の装置であって、前記非ゼロの堆積角は前記スイッチング磁界を得るように選択されることを特徴とする装置。
  45. 請求項43に記載の装置であって、前記N個の強磁性層のそれぞれは、各隣接強磁性層の間に反強磁性結合材料層を挟むことによって反強磁性的に結合されることを特徴とする装置。
  46. 請求項34に記載の装置であって、前記非ゼロの堆積角は、形状異方性、ペアオーダリング異方性、および前記第1磁気領域および第2磁気領域の少なくとも一方の固有異方性のうちの少なくとも一つを補うか、または妨げるように選択されることを特徴とする装置。
  47. 請求項34に記載の磁気電子素子であって、前記少なくとも一つの磁気領域は固定磁気領域を含むことを特徴とする磁気電子素子。
  48. 請求項34に記載の磁気電子素子であって、前記少なくとも一つの磁気領域は自由磁気領域を含むことを特徴とする磁気電子素子。
JP2006517586A 2003-06-30 2004-06-22 Mramセルのための磁気異方性を誘導するための斜め堆積 Pending JP2007525005A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/611,789 US6818961B1 (en) 2003-06-30 2003-06-30 Oblique deposition to induce magnetic anisotropy for MRAM cells
PCT/US2004/020156 WO2005006450A1 (en) 2003-06-30 2004-06-22 Oblique deposition to induce magnetic anisotropy for mram cells

Publications (1)

Publication Number Publication Date
JP2007525005A true JP2007525005A (ja) 2007-08-30

Family

ID=33418750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006517586A Pending JP2007525005A (ja) 2003-06-30 2004-06-22 Mramセルのための磁気異方性を誘導するための斜め堆積

Country Status (5)

Country Link
US (1) US6818961B1 (ja)
EP (1) EP1642343A4 (ja)
JP (1) JP2007525005A (ja)
KR (1) KR20060054207A (ja)
WO (1) WO2005006450A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009154009A1 (ja) * 2008-06-20 2011-11-24 キヤノンアネルバ株式会社 磁気抵抗素子の製造方法、スパッタ成膜チャンバー、スパッタ成膜チャンバーを有する磁気抵抗素子の製造装置、プログラム、記憶媒体
JP2012230752A (ja) * 2011-04-25 2012-11-22 Seagate Technology Llc データ検知素子、磁気素子および方法
JP2013069401A (ja) * 2011-09-21 2013-04-18 Seagate Technology Llc 装置、センサおよびセンサの製造方法
JP2014064033A (ja) * 2009-06-24 2014-04-10 New York Univ 電流誘起スピン−運動量移動に基づく高速低電力磁気デバイス
JP2014081985A (ja) * 2012-10-15 2014-05-08 Seagate Technology Llc 磁気リーダ、装置およびスタック
JP2014107002A (ja) * 2012-11-28 2014-06-09 Seagate Technology Llc 磁気素子、装置および磁気素子の製造方法
CN103871427A (zh) * 2012-12-11 2014-06-18 希捷科技有限公司 具有变化的各向异性的侧屏蔽
JP2014112677A (ja) * 2012-11-29 2014-06-19 Seagate Technology Llc 薄膜を含む磁気層
US9082888B2 (en) 2012-10-17 2015-07-14 New York University Inverted orthogonal spin transfer layer stack
US9082950B2 (en) 2012-10-17 2015-07-14 New York University Increased magnetoresistance in an inverted orthogonal spin transfer layer stack
US9236103B2 (en) 2003-08-19 2016-01-12 New York University Bipolar spin-transfer switching
JP2016536799A (ja) * 2013-09-05 2016-11-24 ドイチェス エレクトローネン ジンクロトロン デズイ 多層構造の磁気電子デバイスの製造方法及び磁気電子デバイス
US9773837B2 (en) 2013-06-17 2017-09-26 New York University Scalable orthogonal spin transfer magnetic random access memory devices with reduced write error rates
US9812184B2 (en) 2007-10-31 2017-11-07 New York University Current induced spin-momentum transfer stack with dual insulating layers

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005060657A2 (en) * 2003-12-15 2005-07-07 Yale University Magnetoelectronic devices based on colossal magnetoresistive thin films
US7083988B2 (en) * 2004-01-26 2006-08-01 Micron Technology, Inc. Magnetic annealing sequences for patterned MRAM synthetic antiferromagnetic pinned layers
US7102916B2 (en) * 2004-06-30 2006-09-05 International Business Machines Corporation Method and structure for selecting anisotropy axis angle of MRAM device for reduced power consumption
US7319262B2 (en) * 2004-08-13 2008-01-15 Taiwan Semiconductor Manufacturing Company, Ltd. MRAM over sloped pillar
US7432150B2 (en) * 2006-02-10 2008-10-07 Everspin Technologies, Inc. Method of manufacturing a magnetoelectronic device
WO2009028055A1 (ja) * 2007-08-29 2009-03-05 Canon Anelva Corporation スパッタリングによる成膜方法とその装置
JPWO2009040892A1 (ja) * 2007-09-26 2011-01-13 キヤノンアネルバ株式会社 方向が均一で、かつ方向を変えることができる磁場が生成可能な磁石アセンブリ及びこれを用いたスパッタリング装置
US8659852B2 (en) 2008-04-21 2014-02-25 Seagate Technology Llc Write-once magentic junction memory array
US7852663B2 (en) 2008-05-23 2010-12-14 Seagate Technology Llc Nonvolatile programmable logic gates and adders
US7855911B2 (en) 2008-05-23 2010-12-21 Seagate Technology Llc Reconfigurable magnetic logic device using spin torque
US7881098B2 (en) 2008-08-26 2011-02-01 Seagate Technology Llc Memory with separate read and write paths
US7985994B2 (en) 2008-09-29 2011-07-26 Seagate Technology Llc Flux-closed STRAM with electronically reflective insulative spacer
US8169810B2 (en) 2008-10-08 2012-05-01 Seagate Technology Llc Magnetic memory with asymmetric energy barrier
US8039913B2 (en) 2008-10-09 2011-10-18 Seagate Technology Llc Magnetic stack with laminated layer
US8089132B2 (en) 2008-10-09 2012-01-03 Seagate Technology Llc Magnetic memory with phonon glass electron crystal material
US7880209B2 (en) * 2008-10-09 2011-02-01 Seagate Technology Llc MRAM cells including coupled free ferromagnetic layers for stabilization
US8045366B2 (en) 2008-11-05 2011-10-25 Seagate Technology Llc STRAM with composite free magnetic element
US8043732B2 (en) 2008-11-11 2011-10-25 Seagate Technology Llc Memory cell with radial barrier
US7826181B2 (en) 2008-11-12 2010-11-02 Seagate Technology Llc Magnetic memory with porous non-conductive current confinement layer
GB2465370A (en) * 2008-11-13 2010-05-19 Ingenia Holdings Magnetic data storage comprising a synthetic anti-ferromagnetic stack arranged to maintain solitons
US8289756B2 (en) 2008-11-25 2012-10-16 Seagate Technology Llc Non volatile memory including stabilizing structures
CN101429646B (zh) * 2008-12-12 2012-06-27 厦门大学 无诱导磁场下产生面内单轴磁各向异性的薄膜的制备方法
JP5280459B2 (ja) 2008-12-25 2013-09-04 キヤノンアネルバ株式会社 スパッタリング装置
US7826259B2 (en) 2009-01-29 2010-11-02 Seagate Technology Llc Staggered STRAM cell
US8257596B2 (en) * 2009-04-30 2012-09-04 Everspin Technologies, Inc. Two-axis magnetic field sensor with substantially orthogonal pinning directions
US20100315869A1 (en) * 2009-06-15 2010-12-16 Magic Technologies, Inc. Spin torque transfer MRAM design with low switching current
US20120015099A1 (en) * 2010-07-15 2012-01-19 Everspin Technologies, Inc. Structure and method for fabricating a magnetic thin film memory having a high field anisotropy
GB201015497D0 (en) 2010-09-16 2010-10-27 Cambridge Entpr Ltd Magnetic data storage
GB201020727D0 (en) 2010-12-07 2011-01-19 Cambridge Entpr Ltd Magnetic structure
JP6368484B2 (ja) * 2013-11-27 2018-08-01 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 圧縮装置、および圧縮方法
US9349391B2 (en) 2013-12-04 2016-05-24 HGST Netherlands B.V. Controlling magnetic layer anisotropy field by oblique angle static deposition
KR101661389B1 (ko) * 2014-01-27 2016-10-10 한양대학교 산학협력단 수직자기이방성을 갖는 mtj 구조
US9281168B2 (en) * 2014-06-06 2016-03-08 Everspin Technologies, Inc. Reducing switching variation in magnetoresistive devices
FR3027453B1 (fr) * 2014-10-20 2017-11-24 Commissariat Energie Atomique Dispositif resistif pour circuit memoire ou logique et procede de fabrication d'un tel dispositif
US10340446B1 (en) * 2018-03-06 2019-07-02 International Business Machines Corporation Semiconductor structure multilayers having a dusting material at an interface between a non-magnetic layer and a magnetic layer
US11280855B2 (en) * 2019-07-29 2022-03-22 Nxp B.V. Magnetic field sensor, system, and oblique incident deposition fabrication method
US11199594B2 (en) * 2019-08-27 2021-12-14 Western Digital Technologies, Inc. TMR sensor with magnetic tunnel junctions with a free layer having an intrinsic anisotropy

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220609A (ja) * 1992-07-31 1994-08-09 Sony Corp 磁気抵抗効果膜及びその製造方法並びにそれを用いた磁気抵抗効果素子、磁気抵抗効果型磁気ヘッド
JPH0818117A (ja) * 1994-06-24 1996-01-19 Nippon Steel Corp 磁気抵抗素子
JPH09212855A (ja) * 1996-02-05 1997-08-15 Hitachi Ltd 磁気記録媒体及び磁気ヘッド並びにこれらを用いた磁気記録再生装置
JPH11120524A (ja) * 1997-10-13 1999-04-30 Fuji Elelctrochem Co Ltd 磁気抵抗型ヘッドの製造方法
JP2000073165A (ja) * 1998-06-05 2000-03-07 Internatl Business Mach Corp <Ibm> イオン・ビ―ム・スパッタ付着システム
JP2001338487A (ja) * 2000-03-24 2001-12-07 Sharp Corp 磁気メモリ、磁気メモリの製造方法
JP2003078114A (ja) * 2001-06-19 2003-03-14 Matsushita Electric Ind Co Ltd 磁気メモリとその駆動方法、およびこれを用いた磁気メモリ装置
JP2003124446A (ja) * 2001-08-09 2003-04-25 Hewlett Packard Co <Hp> マルチビット磁気メモリセル
US20030086217A1 (en) * 1999-12-09 2003-05-08 Mustafa Pinarbasi Spin valve sensor free layer structure with a cobalt based layer that promotes magnetic stability and high magnetoresistance

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304026A (ja) * 1992-02-29 1993-11-16 Sony Corp 軟磁性薄膜とこれを用いた磁気ヘッド
DE10113853B4 (de) * 2000-03-23 2009-08-06 Sharp K.K. Magnetspeicherelement und Magnetspeicher
JP2002033532A (ja) * 2000-07-17 2002-01-31 Alps Electric Co Ltd トンネル型磁気抵抗効果型素子及びその製造方法
US6430085B1 (en) * 2001-08-27 2002-08-06 Motorola, Inc. Magnetic random access memory having digit lines and bit lines with shape and induced anisotropy ferromagnetic cladding layer and method of manufacture
US6806523B2 (en) * 2002-07-15 2004-10-19 Micron Technology, Inc. Magnetoresistive memory devices

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220609A (ja) * 1992-07-31 1994-08-09 Sony Corp 磁気抵抗効果膜及びその製造方法並びにそれを用いた磁気抵抗効果素子、磁気抵抗効果型磁気ヘッド
JPH0818117A (ja) * 1994-06-24 1996-01-19 Nippon Steel Corp 磁気抵抗素子
JPH09212855A (ja) * 1996-02-05 1997-08-15 Hitachi Ltd 磁気記録媒体及び磁気ヘッド並びにこれらを用いた磁気記録再生装置
JPH11120524A (ja) * 1997-10-13 1999-04-30 Fuji Elelctrochem Co Ltd 磁気抵抗型ヘッドの製造方法
JP2000073165A (ja) * 1998-06-05 2000-03-07 Internatl Business Mach Corp <Ibm> イオン・ビ―ム・スパッタ付着システム
US20030086217A1 (en) * 1999-12-09 2003-05-08 Mustafa Pinarbasi Spin valve sensor free layer structure with a cobalt based layer that promotes magnetic stability and high magnetoresistance
JP2001338487A (ja) * 2000-03-24 2001-12-07 Sharp Corp 磁気メモリ、磁気メモリの製造方法
JP2003078114A (ja) * 2001-06-19 2003-03-14 Matsushita Electric Ind Co Ltd 磁気メモリとその駆動方法、およびこれを用いた磁気メモリ装置
JP2003124446A (ja) * 2001-08-09 2003-04-25 Hewlett Packard Co <Hp> マルチビット磁気メモリセル

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9449668B2 (en) 2003-08-19 2016-09-20 New York University Current induced spin-momentum transfer stack with dual insulating layers
US9236103B2 (en) 2003-08-19 2016-01-12 New York University Bipolar spin-transfer switching
US9812184B2 (en) 2007-10-31 2017-11-07 New York University Current induced spin-momentum transfer stack with dual insulating layers
US8932438B2 (en) 2008-06-20 2015-01-13 Canon Anelva Corporation Method of manufacturing magnetoresistive element, sputter deposition chamber, apparatus for manufacturing magnetoresistive element having sputter deposition chamber, program and storage medium
JP2014030030A (ja) * 2008-06-20 2014-02-13 Canon Anelva Corp スピンバルブ型トンネル磁気抵抗素子の製造方法
JPWO2009154009A1 (ja) * 2008-06-20 2011-11-24 キヤノンアネルバ株式会社 磁気抵抗素子の製造方法、スパッタ成膜チャンバー、スパッタ成膜チャンバーを有する磁気抵抗素子の製造装置、プログラム、記憶媒体
JP2014064033A (ja) * 2009-06-24 2014-04-10 New York Univ 電流誘起スピン−運動量移動に基づく高速低電力磁気デバイス
JP2012230752A (ja) * 2011-04-25 2012-11-22 Seagate Technology Llc データ検知素子、磁気素子および方法
JP2013069401A (ja) * 2011-09-21 2013-04-18 Seagate Technology Llc 装置、センサおよびセンサの製造方法
US9036308B2 (en) 2011-09-21 2015-05-19 Seagate Technology Llc Varyinig morphology in magnetic sensor sub-layers
JP2014081985A (ja) * 2012-10-15 2014-05-08 Seagate Technology Llc 磁気リーダ、装置およびスタック
US9082888B2 (en) 2012-10-17 2015-07-14 New York University Inverted orthogonal spin transfer layer stack
US9082950B2 (en) 2012-10-17 2015-07-14 New York University Increased magnetoresistance in an inverted orthogonal spin transfer layer stack
US9240200B2 (en) 2012-11-28 2016-01-19 Seagate Technology Llc Magnetic element with crossed anisotropies
JP2014107002A (ja) * 2012-11-28 2014-06-09 Seagate Technology Llc 磁気素子、装置および磁気素子の製造方法
JP2014112677A (ja) * 2012-11-29 2014-06-19 Seagate Technology Llc 薄膜を含む磁気層
JP2014116063A (ja) * 2012-12-11 2014-06-26 Seagate Technology Llc データ記憶装置、装置およびデータ要素
CN103871427A (zh) * 2012-12-11 2014-06-18 希捷科技有限公司 具有变化的各向异性的侧屏蔽
US9773837B2 (en) 2013-06-17 2017-09-26 New York University Scalable orthogonal spin transfer magnetic random access memory devices with reduced write error rates
JP2016536799A (ja) * 2013-09-05 2016-11-24 ドイチェス エレクトローネン ジンクロトロン デズイ 多層構造の磁気電子デバイスの製造方法及び磁気電子デバイス

Also Published As

Publication number Publication date
US6818961B1 (en) 2004-11-16
WO2005006450A1 (en) 2005-01-20
EP1642343A4 (en) 2007-10-24
EP1642343A1 (en) 2006-04-05
KR20060054207A (ko) 2006-05-22

Similar Documents

Publication Publication Date Title
US6818961B1 (en) Oblique deposition to induce magnetic anisotropy for MRAM cells
US7561385B2 (en) Magneto-resistive element in which a free layer includes ferromagnetic layers and a non-magnetic layer interposed therebetween
Engel et al. The science and technology of magnetoresistive tunneling memory
EP2073285B1 (en) A high performance MTJ element for STT-RAM and method for making the same
KR101405854B1 (ko) 스핀 토크 스위칭을 보조하는 층을 갖는 스핀 토크 스위칭을 이용하는 자기 스택
US7535069B2 (en) Magnetic tunnel junction with enhanced magnetic switching characteristics
JP5080267B2 (ja) メモリ素子のアレイを有する磁気抵抗ランダム・アクセス装置及び磁気エレクトロニクス・メモリ素子を製造する方法
JP2005510048A (ja) 縮小可能性が改良された磁気抵抗ランダムアクセスメモリ
US20120015099A1 (en) Structure and method for fabricating a magnetic thin film memory having a high field anisotropy
US20080191295A1 (en) Non-Volatile Magnetic Memory Element with Graded Layer
US7005691B2 (en) Magnetoresistance element and magnetoresistance storage element and magnetic memory
US8198660B2 (en) Multi-bit STRAM memory cells
JP2001237472A (ja) 磁気抵抗効果素子および磁気抵抗効果記憶素子およびデジタル信号を記憶させる方法
JP2005210126A (ja) 磁気トンネル接合型メモリセルおよびその製造方法、磁気トンネル接合型メモリセルアレイ
JP2008507854A (ja) 磁気トンネル接合素子構造と磁気トンネル接合素子構造の製造方法
US11056640B2 (en) Magnetoresistive memory device including a high dielectric constant capping layer and methods of making the same
JP2007013118A (ja) 積層されたトグルメモリセルが反対に方向付けられた容易軸バイアスを有する磁気ランダムアクセスメモリ
US6649423B2 (en) Method for modifying switching field characteristics of magnetic tunnel junctions
WO2021101585A1 (en) Magnetoresistive memory device including a high dielectric constant capping layer and methods of making the same
US8482970B2 (en) Multi-bit STRAM memory cells
Schlage et al. Spin‐Structured Multilayers: A New Class of Materials for Precision Spintronics
KR101109501B1 (ko) 감소된 스위칭 필드 편차를 갖는 자기 저항 랜덤 액세스메모리
JP2003115623A (ja) 磁気抵抗素子および磁気抵抗記憶素子および磁気メモリ
Perdue et al. Giant Magnetoresistance and Exchange Bias in Spin Valves with Pico-Scale IrMn Antiferromagnetic Layers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070606

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011