JP2007504081A - 高純度結晶成長 - Google Patents

高純度結晶成長 Download PDF

Info

Publication number
JP2007504081A
JP2007504081A JP2006524931A JP2006524931A JP2007504081A JP 2007504081 A JP2007504081 A JP 2007504081A JP 2006524931 A JP2006524931 A JP 2006524931A JP 2006524931 A JP2006524931 A JP 2006524931A JP 2007504081 A JP2007504081 A JP 2007504081A
Authority
JP
Japan
Prior art keywords
gas
stream
housing
reactive
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006524931A
Other languages
English (en)
Inventor
シャリアー モタケフ,
アニルッダ エス. ウォーリカー,
Original Assignee
ケープ シミュレイションズ, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ケープ シミュレイションズ, インコーポレイテッド filed Critical ケープ シミュレイションズ, インコーポレイテッド
Publication of JP2007504081A publication Critical patent/JP2007504081A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

反応器中に配置された基材上に結晶を成長させる方法であって、この反応器は、反応器チャンバを提供し、この基材は、この反応器チャンバの中に配置され、この方法は、この反応器チャンバの内部に反応性ガスをこの基材に向かって流す工程であって、この反応性ガスは、互いに結合してこの結晶を形成し得る成分を含有する工程;緩衝ガスを加熱する工程;およびこの加熱された緩衝ガスを、この反応性ガスとこの反応器壁との間のこの反応器チャンバ中で、この反応性ガスおよびこの緩衝ガスが相互作用し得るように、流す工程、を包含し、ここでこの流れている緩衝ガスが、この反応性ガスにより生成される第1の物質の少なくとも1つがこの反応器壁に到達するのを阻害し、そしてこの反応性ガスがこの基材に到達する前に、この反応器壁により生成される第2の物質が反応器チャンバー中のこの反応性ガスに到達するのを阻害する。

Description

(連邦政府の支援による研究に関する記載)
本発明は、少なくとも一部は、合衆国空軍により授与された研究助成番号第F33615−02−M−5422の下での政府の支援によりなされた。政府は、本発明においてある権利を有する。
(発明の分野)
本発明は、単結晶の成長に関し、より具体的には、炭化ケイ素およびIII族窒化物、ならびにそれらの合金の結晶の成長に関する。
(発明の背景)
炭化ケイ素(SiC)、III族窒化物、およびそれらの合金を、低不純物レベル、高い結晶の品質、および商業的に実現可能な成長速度で成長させることは、非常に困難である。以下の議論は、例示の目的のためだけに、SiC結晶の成長に焦点を当てるが、このことは、本発明の範囲を限定しない。
SiC単結晶は、独特の電子的特性および物理的特性を有し、このことがそれらを様々なタイプの半導体デバイスにおける使用のために適切なものにしている。SiCデバイスは、シリコン(Si)またはヒ化ガリウム(GaAs)のようなより慣用的な電子材料を使用して作製されたデバイスよりも有意により高い温度で作動し得る。SiCは、非常に高い降伏電場を有し、これはSiCをマイクロ波周波数スペクトルで作動する高出力通信デバイスのために適切なものにする。さらに、SiCの熱伝導率は、SiおよびGaAsの熱伝導率よりも有意に高く、これは、半導体デバイスの作動の間に生成する熱エネルギーのより効率的な除去を可能にする。このことは、高出力かつ高周波数半導体デバイスのために、特に有利である。
SiC半導体デバイス一般、および特にマイクロ波デバイスの性能を改善するのに役立つように、SiC結晶中のバックグランド不純物を低レベルにすることが望ましい。これは、導電性基材に関連する問題を回避するのを支援するために、高抵抗率かつ半絶縁性の基材(約1E05Ω−cmより大きい抵抗を有する)を使用するマイクロ波デバイスに対して特に当てはまる。
結晶を成長させることに対する1つのアプローチは、高純度ガスを使用するPVT(物理的気相輸送)プロセスにおける粉末供給源を置き換えることである。高濃度の前駆体ガス(例えば、シランおよびプロパン)が、Si運搬蒸気種およびC運搬蒸気種を生成するための粉末供給源の代わりに使用される。例えば、シラン、プロパンのような炭化水素ガス、およびヘリウムのようなキャリアガスの混合物が、円筒状反応器の基部にポンプ輸送され、この円筒状反応器は、外部から加熱されており、そして、その円筒状反応器の平らな上面における結晶成長のシードとして作用するSiCウェーハを備える。シランは、SiおよびHに分解し、そして高濃度のシランが使用されるため、Siクラスターが形成される。このSiクラスターは、プロパンと反応し、熱力学的に安定なSi−Cクラスターおよびをより多くのHを形成する。このクラスターを含むガスストリームは、より高温の領域に入り、そこでそのクラスターは、昇華してSiおよびCを含む蒸気種(Si、SiC、SiC、およびSiC)を形成する。これらの蒸気種は、これらのガスのバルク移動により成長表面に輸送され、分解して、より低温のシード表面の上に結晶性SiCを形成する。この方法は、高温化学気相成長技術(HTCVD)またはガス供給昇華(GFS)と称されており、高純度の物質が高成長速度で生成することが示されている。この技術により成長される物質の組成上の純度は非常に高く、標準的なPVT成長物質において得られる純度よりも高いオーダーである(1015cm−3対1017cm−3のキャリア濃度)。HTCVD物質の高純度は、固体供給源よりもはるかに高い純度レベルで入手され得るガス前駆体を、粉末供給源物質の代わりに使用することに関連する。しかし、ホウ素および窒素のような不純物が、成長した物質中に検出されている。これらの不純物の源は、反応器壁および構成成分であると考えられる。
SiCの成長のためのGFSプロセスで使用される高温で、グラファイトは、容器壁、シードホルダーなどのような反応器構成成分の構築のために熱的、化学的そして経済的に適切な唯一の材料と考えられている。高純度のグラファイトが、反応器の構築のために一般に使用されるが、高い加工温度(2000〜2500℃)は、グラファイト成分からの残渣不純物の放出をもたらす。これらの不純物は、ガスストリーム中に拡散し、成長しつつあるSiC結晶を汚染する。ホウ素および窒素のような不純物が、成長した物質中に検出されている。これらの不純物の供給源は、反応器壁および反応器構成成分であると考えられる。グラファイト成分からの不純物の放出を低減するための1つのアプローチは、それらを高純度のコーティング、例えばSiCでコーティングすることである。
GFSの間、Si運搬前駆体ガスおよびC運搬前駆体ガスのクラッキングおよび反応は、水素を生成する。高温で、水素は、非常に反応性であり、炭化ケイ素と反応し、そのエッチング速度は、単結晶よりも多結晶に対して有意に速い。水素は、成長表面で有益な効果を有し、そこでは水素は、その表面上に形成され得る多結晶をエッチングして取り去り、他方、単結晶部分はそれほど影響を受けないまま残す。これらの前駆体が水素を生成しないか、または生成量が十分でない場合には、制御された量の水素が、反応器への入口で、上記ガス混合物に添加され、そのガス混合物のエッチング作用が制御される。反応器中の水素の存在の有害な副作用は、グラファイト反応器構成成分の炭化ケイ素コーティングとの水素の反応であり、従ってその下に存在するグラファイトを露出させる。GFSで成長したSiC中でのホウ素および窒素の存在は、熱く露出したグラファイトに由来するこれらの不純物の放出に関連する。
GFSプロセスでは、この反応性ガス混合物は、外部供給源(代表的には、高周波誘導)により加熱される反応器中にポンプ輸送される。このガス混合物は、反応器の熱い壁との接触、および引き続くガス混合物を通しての拡散を介して加熱される。一般に、キャリアガスに対するSi運搬前駆体およびC運搬前駆体の濃度は、比較的低く、反応器における熱移動および質量移動は、このキャリアガスの熱物理的特性により制御される。使用され得るキャリアガス(例えば、ヘリウム、アルゴンなど)の熱物理的特性は、水素がこのガス混合物を通って拡散するのとほぼ同じ速度で熱が拡散するような特性である。気相反応の速度は、温度とともに(水素の放出速度に対応する上昇とともに)急激に上昇するので、熱がこのガス混合物の中央部分まで拡散してそれを所望の温度に加熱するときまでに、形成された水素は、反応器壁まで拡散し、そしてその反応器壁の炭化ケイ素コーティングをエッチングして剥がし始める。
不純物の放出およびその不純物のガスの中心への拡散に関連する上記の問題はまた、その不純物が、ガス混合物の成に対する反応器壁への作用なしで反応器壁から放出される場合に、存在する。このような事象の例は、高い作動温度に起因する反応器壁またはそのコーティングからの不純物の放出、またはその反応器中の他の成分からの不純物のこの反応器壁への拡散および引き続くガス混合物への放出である。このような状況では、代表的な不純物(例えば、窒素)の拡散係数は、このガス混合物中の熱の拡散係数とほぼ同じである。
(発明の要旨)
一般に、1つの局面では、本発明は、反応器中に配置された基材上に結晶を成長させる方法を提供し、この反応器は、反応器チャンバを提供し、この基材は、この反応器チャンバの中に配置される。この方法は、この反応器チャンバの内部に反応性ガスをこの基材に向かって流す工程であって、この反応性ガスは、互いに結合してこの結晶を形成し得る成分を含有する工程;緩衝ガスを加熱する工程;およびこの加熱された緩衝ガスを、この反応性ガスとこの反応器壁との間にあるこの反応器チャンバ中に、この反応性ガスおよびこの緩衝ガスが相互作用し得るように、流す工程、を包含し、ここでこの流れている緩衝ガスが、この反応性ガスにより生成される第1の物質の少なくとも1つがこの反応器壁に到達するのを阻害し、そしてこの反応性ガスがこの基材に到達する前に、この反応器壁により生成される第2の物質が反応器チャンバー中のこの反応性ガスに到達するのを阻害する。
本発明の実施は、以下の特徴の1つ以上を含み得る。上記方法は、上記緩衝ガスを使用して、上記反応性ガスを、上記基材に到達する前に反応して所望の物質を形成するに十分加熱し、この所望の物質がこの基材上に所望の結晶を形成する工程をさらに包含する。この方法は、上記反応性ガスおよび上記緩衝ガスの未使用の部分を上記チャンバから放出する工程であって、ここでこの緩衝ガスは、実質的にいかなる上記第1の物質も上記反応器壁に到達せず、そして実質的にいかなる上記第2の物質もこの反応チャンバの内部の反応性ガスに実質的に到達しないような速度で流れる工程、をさらに包含する。上記緩衝ガスは、第1の物質および第2の物質のうちの少なくとも1つと反応して、少なくとも1つの不活性な安定な物質を形成するような構成である少なくとも1つの第3の物質を含む。上記緩衝ガスは、少なくとも1種の不活性ガスを含む。上記少なくとも1種の不活性ガスは、ヘリウムおよびアルゴンのうちの少なくとも1つを含む。
また、本発明の実施は、以下の特徴の1つ以上を含み得る。上記反応性ガスは、上記反応器壁と反応して上記第2の物質を生成するドーパント、およびエッチング剤のうちの少なくとも1つを含む。上記反応性ガスは、上記エッチング剤を含み、このエッチング剤は、水素である。上記反応性ガスは、シラン、四塩化ケイ素、およびトリメチルシラン、ならびにメタンおよびプロパンのうちの少なくとも1つを含む。上記方法は、上記反応器壁を加熱する工程をさらに包含する。上記反応器壁、上記緩衝ガス、および上記基材座のうちの少なくとも1つが加熱され、この反応性ガスの温度と上記基材の温度との間の温度差が制御される。この差は、約5℃と約200℃との間に維持される。
また、本発明の実施は、以下の特徴の1つ以上を含み得る。上記方法は、上記反応性ガスを上記反応チャンバに流す前に、この反応性ガスのすべての成分を混合する工程をさらに包含する。上記方法は、上記チャンバへの導入の前に上記成分を混合することを阻害するために、上記反応性ガスの成分を、この反応チャンバの中へ別々に流す工程をさらに包含する。上記方法は、上記反応器の軸に平行な方向に、かつ上記反応器壁に規定される少なくとも1つの開口部を通して、上記緩衝ガスを放出する工程を包含する。上記反応性ガスは、以下の元素の群:ケイ素および炭素、アルミニウムおよび窒素、ガリウムおよび窒素、アルミニウムおよびガリウムおよび窒素、ならびに前述の群のいずれかの合金、の少なくとも1つを含む。上記反応性ガスは、SiC、III〜V族化合物のうちの1つの結晶、およびSiCとIII〜V族化合物との合金を成長させるためのガスを含む。
一般に、別の局面では、本発明は、基材上に結晶を成長させるための反応器システムを提供し、この反応器システムは、ハウジングであって、第1の端部である入口端部および第2の端部である出口端部を備え、この入口端部が、反応性ストリーム取込みポートおよび緩衝ストリーム取込みポートを規定し、そしてこの出口端部が少なくとも1つの出力ポートを規定する、ハウジング;基部であって、このハウジングの出口端部に連結され、そしてこの基材を受けるような構成である、基部;反応性ガスインジェクタであって、反応性ガスをこのハウジングの中へこの反応性ストリーム取込みポートを通して注入し、この反応性ガスの反応性ストリームを生成するような構成である、反応性ガスインジェクタ;緩衝ガスインジェクタであって、緩衝ガスをこのハウジングの中へこの緩衝ストリーム取込みポートを通して注入し、この緩衝ガスの緩衝ストリームを生成するような構成である、緩衝ガスインジェクタ;ならびに第1の熱源であって、この緩衝ストリームを加熱するような構成および配置である、第1の熱源、を備え、ここでこの入口端部、この反応性ガスインジェクタ、およびこの緩衝インジェクタは、この加熱緩衝ストリームが、この反応性ストリームとこのハウジングの壁との間に配置され、この反応性ストリームの成分またはこの反応性ストリームから生成された成分がこのハウジングの壁に到達するのを阻害し、そしてこのハウジングの壁により生成または放射された物質が、この反応性ストリームがこの基材に到達する前に、この反応性ストリームに到達するのを阻害するような構成である。
本発明の実施は、以下の特徴の1つ以上を含み得る。上記入口端部は、上記ハウジング内部の相互作用位置まで、上記反応性ストリームおよび上記加熱された緩衝ストリームを別々に保つような構成である。上記システムは、実質的に上記相互作用位置と同一平面上の地点と上記基材との間の上記ハウジングの壁を加熱するような構成および配置である第2の熱源をさらに備える。上記第1の熱源は、前記緩衝ストリームが反応性ストリームと相互作用する場合、該緩衝ストリームが、反応性ストリームが該基材に到達する前に該反応性ガスを互いと反応させて所望の物質を形成させ、該所望の物質が該基材上に所望の結晶を形成するに十分加熱するように十分な温度まで該緩衝ストリームを加熱するような構成である。
また、本発明の実施は、以下の特徴の1つ以上を含み得る。上記システムは、上記基材を加熱して上記反応性ストリームの温度とこの基材の温度との温度差を維持するような構成および配置である、基材加熱供給源をさらに備える。上記差は、約5℃と約200℃との間に維持される。上記ハウジングは、このハウジングの長さに沿ってこのハウジングの壁に少なくとも1つの開口部を規定する。上記ハウジングは、このハウジングの上記長さに沿ってこのハウジングの壁に複数の開口部を規定し、ここでこの開口部のサイズが、このハウジングのこの長さに沿ったこのハウジングの壁からの少なくとも上記緩衝ガスの調節された流出量を提供する。上記システムは、外側枠であって、上記ハウジングの上記長さに沿ってこのハウジングのまわりに配置され、このハウジングから分離されて、この枠とこのハウジングとの間の通路を規定する、外側枠;および装置であって、この通路から出るガスの流れを誘導するような構成および配置である、装置、をさらに備える。
一般に、別の局面では、本発明は、基材上に結晶を成長させるための反応器システムを提供し、この反応器システムは、ハウジングであって、第1の端部である入口端部および第2の端部である出口端部を備え、この入口端部が、反応性ストリーム取込みポートを規定し、そしてこの出口端部が少なくとも1つの出力ポートを規定する、ハウジング;基部であって、このハウジングの出口端部に連結され、そしてこの基材を受けるような構成である、基部;装置であって、この反応性ストリーム取込みポートを通るこのハウジングの中へのガス流を提供するような構成および配置である、装置;ならびにこの取込みポートとこの基材との間のこのガス流を加熱し、そして少なくとも1つのガス流成分をこのハウジングの壁から分離し、そしてこのハウジングの壁から放出される物質をこのガス流から分離するための手段であって、このガス流を加熱するための手段は、このハウジングの壁から放射する熱からは独立してこのガス流を加熱するような構成である、手段、を備える。
本発明の実施は、以下の特徴の1つ以上を含み得る。上記加熱のための手段は、上記ガス流成分と反応しそうにない少なくとも1つの緩衝ガスの加熱ストリームを注入するような構成であり、この少なくとも1つの緩衝ガスが、このガス流成分が互いに反応するように、このガス流成分を十分に加熱するに十分な温度にある。上記システムは、上記ハウジングの壁を加熱するための手段をさらに備える。上記システムは、上記ガス流の最高温度と上記基材の温度との間の所望の温度差を維持するためにこの基材を加熱する手段をさらに備える。上記所望の温度差は、約5℃と約200℃との間である。
また、本発明の実施は、以下の特徴の1つ以上を含み得る。上記ハウジングは、このハウジングの長さに沿ってこのハウジングの壁に少なくとも1つの開口部を規定する。上記ハウジングは、このハウジングの上記長さに沿って、このハウジングの壁に異なるサイズの複数の開口部を規定する。上記システムは、外側枠であって、上記ハウジングの上記長さに沿ってこのハウジングのまわりに配置され、このハウジングから分離されて、この枠とこのハウジングとの間の通路を規定する、外側枠;および装置であって、この通路から出るガスの流れを誘導するような構成および配置である、装置、をさらに備える。
本発明の種々の局面は、以下のうちの1つ以上の利点を提供し得る。高純度のSiC、III族窒化物、およびそれらの合金が、商業的に十分な速度で成長され得る。不純物は、結晶を成長させるためのガスのストリームに到達するのを阻害され得る。結晶を成長させるための反応性ガスは、加熱され得るが、他方、そのガスと成長チャンバ壁との接触を阻害される。成長している結晶と反応性ガスとの間の温度差は、所望の閾値未満に制御され、保持され得る。本発明のこれらの特徴および他の特徴は、本発明自体とともに、以下の図面、詳細な説明、および特許請求の範囲の概観の後に、より完全に理解される。
(好ましい実施形態の詳細な説明)
本発明の実施形態は、高純度のSiC、III族窒化物およびこれらの合金、他のIV族化合物、ならびに他のIII〜V族化合物などを成長させるための技術を提供する。例えば、窒化アルミニウム(AlN)、窒化ガリウム(GaN)、炭化ケイ素(SiC)、窒化アルミニウムガリウム(AlGaN)、および他の結晶化合物が、本発明を使用して形成され得る。SiC結晶については、Si運搬ガスおよびC運搬ガスならびに不活性なキャリアガスの反応性ガス混合物が、水冷式入口を通して反応器の中心部へ注入される。他の結晶を成長させるためには、他の反応性ガスが使用され得る。緩衝ガスストリームは、高温まで予め加熱され、この反応器中に導入され、そして反応器壁にわたって、そしてこの反応性ストリームと平行に流れる。この緩衝ストリームは、反応器の中心部を流れるこの反応性ガス混合物から反応器壁を分離する。この反応性ストリームは、所望の化学反応を誘起するために、この緩衝ストリームからの熱により加熱される。これらの反応により生成される水素は、この緩衝ストリームにより反応器壁に到達することを阻害され、そしてこの反応器から排出される。さらに、この反応器壁から放出する不純物は、この緩衝ストリームによって反応性ストリームに到達することを阻害され、そしてこの反応器から排出される。
図1を参照して、結晶成長システム10は、反応器12、シード14、反応性ガスインジェクタ15、緩衝ガスインジェクタ17、および加熱要素16を備え、この反応器12は、ハウジングまたは本体18、断熱材20および入口管22を備える。上記本体18は、反応器壁24、およびシードホルダー26を備え、反応性ストリーム排出ポート28および緩衝ストリーム排出ポート30を備える。このシステム10は、不純物がシード14に到達するのを阻害しつつ、シードホルダー26上に取付けられたシード14上に高純度の結晶を成長させるような構成である。例えば、不純物は、緩衝ストリーム29とともに不純物を除去することにより、および/または反応して不純物を生成し得る材料の使用を制限することにより、シード14に到達するのを阻害され得る。シードホルダー26は、シード14を入口管22からのガスを受ける位置に保持するような構成および配置である。システム10についての以下の説明は、SiC結晶を成長させるためのシステム10の構成および使用に焦点を当てているが、このシステム10は、他の組成の結晶、例えばIII族窒化物およびそれらの合金を成長させるために構成されかつ使用され得る。
反応器ハウジング18は、好ましくはグラファイトから作製された円筒状容器である。このハウジングは、シード14上に所望の化合物を形成し堆積させるために物質を混合するためのチャンバ32を提供する。コーティング34は、壁24の内部表面上に提供される。このコーティングは、好ましくはSiCであり、そして不純物が壁24から放出するのを阻害し、かつ水素が壁24と反応して不純物を生成するのを阻害するような構成である。ハウジング18は、所望の結晶を成長させることにおいて関与する高温(例えば、2500℃)に耐えるような構成である。
反応性ガスインジェクタ15は、所望の流速で入口管22の中へ反応性ガスを提供するような構成および配置である。このインジェクタ15は、SiC結晶が成長されるべきであれば、反応性ガス、例えば不活性ガス(例えば、ヘリウム)ならびにSi運搬ガス(例えば、シラン)およびC運搬ガス(例えば、プロパン)を保持し得る。インジェクタ15は、反応性ガスを入口管22の中へ押し得、その反応性ガスの流れ(反応性ストリーム27)を生成し、チャンバ32中の反応性ガスの加熱を可能にし、チャンバ32中の反応から生成した分子がシード14に到達することを確実にする。入口管22は、好ましくは水冷式であり、その出力端部(すなわち、チャンバ32への)にノズルを有する。管22は、冷却されて、上記Si運搬ガスおよびC運搬ガスが、チャンバ32に入る前に、一切の反応または一切の実質量の反応を受けないように、上記反応性ガスをある温度(例えば、室温)であるようにする。
緩衝ガスインジェクタ17は、緩衝ガスを保持し、予め加熱し、そしてそれを上記反応器ハウジング18により提供される入力ポート36を通してチャンバ32の中へ注入し、緩衝ストリーム29を生成するような構成である。このインジェクタは、緩衝ガス、好ましくは1種以上の不活性ガスを保持し、その不活性な緩衝ガスを予め加熱し、その後それらをチャンバ32の中へ注入する。インジェクタ17は、このガスを高温(例えば、2500℃)まで加熱するような構成である。インジェクタ17は、さらに、上記緩衝ガスを、壁24と反応性ストリーム27との間で、壁24と反応性ストリーム27との間にバリアを提供する緩衝ガスストリーム29を生成するに十分な流速で、チャンバ32の中に注入するように配置され、そのように構成される。緩衝ストリーム29は、反応性ストリーム27と同軸でそれと平行に反応器12に入る。
予め加熱された緩衝ガスストリーム29は、好ましくは少なくとも3つの機能を発揮する。第一に、それは、反応性ストリーム27を、Si運搬ガスおよびC運搬ガスを分解してSi−Cクラスターを生成し昇華するために十分な温度まで加熱する。この緩衝ガスストリーム29は、上記反応性ガスおよび反応器壁24を隔てた状態に保ちつつ、反応性混合物を加熱する。第2に、予め加熱された緩衝ストリーム29は、水素または他のエッチング剤の反応器壁24への輸送に対する拡散バリアを提供する。水素および/または他のエッチング剤が、上記反応性ガスの化学反応の間に生成され得、またはそうでなければ反応性ストリーム27中に存在し得る。この拡散バリアは、エッチング剤ガスと反応器壁24との反応を低減するのを補助し、そして恐らくはこのような相互作用を完全に排除する。第3に、予め加熱された緩衝ストリーム29は、反応器壁24から放出され得るが、恐らく専らにはエッチングガスと反応器壁24との反応に関与しない不純物に対する拡散バリアとして作用する。緩衝ガスストリーム29は、これら3つの機能を同時に発揮し得る。緩衝ガスストリーム29は、熱およびガス状種の両方の輸送によって、反応性ガスストリーム27を反応器壁24から隔離するのに役立つ。緩衝ガスストリーム29は、反応器壁24に由来する不純物が、反応性ガスストリーム27に入りそしてシード14上の成長する結晶に取り込まれることを防ぐ。
加熱要素16、断熱剤20、およびファンまたは他の装置が、緩衝ストリームの温度および流れを、そして反応性ガスストリーム流れを維持するために提供される。この断熱材は、緩衝ストリーム29と水冷式入口管22との間に配置され、そして上記ストリーム29を管22から熱的に隔離する。加熱要素16は、ストリーム29の進入点を越えて断熱材20から下流に配置され、熱を反応器12に提供する。この熱は、壁24を通ってそして緩衝ストリーム29に伝播され、緩衝ストリーム29におけるエネルギー損失に対して防御するのに役立つ。加熱要素16は、例えば、高周波(RF)誘導器であり得る。ファンまたは他の装置(示さず)は、上記反応性ガスおよび緩衝ガスを排出ポート28、30を通して引き込むための、チャンバ32の圧力に対する陰圧を生成するために提供される。
反応器12は、反応性ガスストリーム27が反応して、シード14上への堆積のための所望の分子を生成するに十分な反応時間を有するような十分に長い大きさである。反応器12は、反応性ガスストリームの流速に関連して、反応性ガスストリーム27が緩衝ストリーム29によって、この反応性ガスの反応を誘起するに十分な温度まで加熱されることを可能にするに十分長い。この反応性ガスの化学反応は、Siクラスターおよび蒸気のSiを形成させる。反応器12は、好ましくは、すべてのSiクラスターまたは実質的にすべてのSiクラスターが、気相に昇華するように十分長い。
シードホルダー26は、結晶がシード14上で成長するために、シード14を適所に保持するような配置および構成である。ホルダー26は、加熱ストリーム27における反応から生じる反応性ガスストリーム由来の原子が、シード14上に堆積して所望の結晶を形成するように、シード14を反応性ガスストリーム27と同一列に保持する。
操作において、さらに図1を参照しながら図2を参照して、システム10を使用して結晶を成長させるためのプロセス50は、示される段階を包含する。しかし、プロセス50は、単に例示的に過ぎず、限定的ではない。プロセス50は、例えば、段階が追加される、取り除かれる、または再配列されることにより、変更され得る。
段階52では、反応性ストリーム27および緩衝ストリーム29が、チャンバ32中に導入される。この緩衝ガスは、緩衝ガスインジェクタ17中で加熱され、そしてチャンバ32の中へ注入される。この反応性ガスは、インジェクタ15により入口管22の中へ、管22を通して、そしてチャンバ32の中へ注入される。
段階54では、反応性ガスストリーム27および緩衝ガスストリーム29からの熱が相互作用する。これら2つのストリーム27、29は反応器12中に流れるので、熱は、図1の矢印31により示されるように、予め加熱された緩衝ストリーム29から反応性混合物ストリーム27に拡散する。反応混合物の温度が上昇するにつれて、Si運搬ガスおよびC運搬ガスは、チャンバ32中の領域33中でSiクラスターおよび蒸気の形態のSiを形成する化学反応を受ける。反応性ストリーム27がシード14に向かって流れるとき、反応性ストリームの温度は、緩衝ガスストリーム29からの熱移動を介して、好ましくは最高温度まで上昇し続ける。この最高温度は、領域35で到達され、この反応性ガス混合物は、必須ではないが好ましくは、すべての残存するSiクラスターが気相に昇華するほどに十分に熱い。この例示的な実施形態では、ストリーム27の温度は、好ましくは約2300℃と約2600℃との間である。反応性混合物ストリーム27は、さらにシード14に向かって流れ、領域37で反応性ストリームの温度は、予め加熱された緩衝ストリーム29の温度に近づく。ストリーム27、29の両方の温度は、それらがシードホルダー26に近づくにつれて、ゆっくりと低下する。
段階54の間、緩衝ストリーム29は、反応性ストリーム27のための不純物緩衝を提供する。緩衝ストリーム29は、反応性ストリーム27中で生成されるか、そうでなければその中に提供される水素が、壁24に到達しそれと反応して不純物を生成することを阻害する。ストリーム29は、さらに、壁24と反応する水素から生成されるかまたは壁24を加熱することにより生成される不純物、またはそうでなければ壁24の近くで生成されるかまたは配置される不純物が、好ましくは、シード14の表面のすべてまたは少なくともその上(シード14の表面から上流)でない点で反応性ガスストリーム27に到達することを阻害する。
段階56で、反応性ストリーム27は、シード14の上に原子を堆積させ、そして緩衝ストリーム29とともにチャンバ32を出る。シード14の上で、反応性混合物27は、Si原子およびC原子をシード14の表面上に堆積させ、SiC結晶の成長をもたらす。反応性ストリーム27は、反応器12から、シード14の周りに配置される出口ポート28を通って排出される。緩衝ストリーム29は、シード14から、出口ポート28よりも遠く離れてかつ反応器壁24の近傍に配置される出口ポート30を通って反応器12を離れる。
図3を参照して、プロセス50の間に(例えば、段階54の反応性混合物中での化学反応で)生成される水素の例示の移流経路が示される。反応性ストリーム27が入口管22から出てシード14に向かって流れるとき、この混合物は、化学反応を受け、そこで、例えば、シランが反応してケイ素原子および水素原子60を形成し、そしてC運搬ガスが分解して炭素原子および水素原子60を形成する。これらのプロセスの間に生成される水素原子60は、矢印62によって示されるように、反応性ストリーム27のバルク移動によってシード14に向かって移動される。水素はまた、矢印64によって示されるように、隣接する予め加熱された緩衝ストリーム29の中へも拡散する。予め加熱された緩衝ストリーム29の流速は、とりわけ、ストリーム29が、反応器12中の出口28、30に向かって拡散される水素60を駆り立て、導き、またはそうでなければ移動させ、矢印66によって示されるように、水素60が反応器壁24に到達する前に、水素60を反応器12から除去するように選択される。
図4を参照して、反応器12の壁24から放出される不純物68の例示の移動経路が示される。これらの不純物68は、上記反応性混合物中の水素もしくは他のエッチング剤による反応器壁24のエッチングまたは反応器壁のコーティングのエッチング、または反応器壁の材料による不純物の自己放出のような多くの機構により生成される。いったん生成されると、これらの不純物68は、矢印70によって示されるように、反応器壁24から出て予め加熱された緩衝ストリーム29中に拡散する。予め加熱された緩衝ストリーム29の速度は、不純物68が、少なくとも有意には、反応性混合物ストリーム27の中へ拡散せず、矢印72によって示されるように、緩衝ストリーム29によって出口ポート28、30に移動されることを確実にするのに役立つ。
図1〜4を参照して、プロセス50について、反応性ストリーム27および緩衝ストリーム29の流速、緩衝ストリーム29の入口温度、および反応器12の幾何学的特徴が、所望の目的を達成するために、互いに協奏して選択される。これらの目的の第1は、反応性混合物ガスの温度が、この混合物が、シード14に到達する前に、Si蒸気種を形成するための反応およびプロセスを誘起するに適切な値に到達することを確実にすることである。第2の目的は、反応性ストリーム27中に存在する水素60が、この反応性混合物から反応器壁24へ拡散するのに要する時間が、緩衝ストリーム29が水素を反応器12の出口28、30に除去するのに要する時間よりも長いことを確実にすることである。第3の目的は、反応器壁24で生成される不純物68が、緩衝ストリーム29を横切って拡散し、反応性ストリーム27に進入するのに要する時間が、緩衝ストリーム29が不純物68を反応器12の出口28、30に導くのに要する時間よりも長いことを確実にすることである。
反応性ストリーム27およひ緩衝ストリーム29の流速、緩衝ストリーム29の入口温度、および反応器12の幾何学的特徴は、好ましくは、確立したエネルギー保存の法則、運動量移動の法則、および対流系における質量移動の法則を使用して互いに協奏的に選択される。例えば、詳細な工学的解析およびコンピューターシミュレーションが、所望のパラメータを決定するために実施され得る。しかし、緩衝ストリーム29の特定の特徴は、以下に記載される様式でほぼ獲得され得る。以下に説明される方法は、近似的で例示的であり、緩衝ストリーム29の特徴と、反応性ストリーム27の特徴と反応器12の幾何学的特徴との間の可能性のある関係を例証するためにここで記載される。
反応器12中の緩衝ストリーム29の特徴的な速度は、好ましくは、それらが反応器壁24に到達し得る前に、反応性ストリーム27から拡散する水素原子を反応器12から外へ移流させるに十分に大きい。また、またはあるいは、この速度は、好ましくは、反応器壁24で生成される不純物が結晶成長表面に到達し得る前に、その不純物を反応器12から移流させるに十分高い。反応器12中の緩衝ストリーム29の好ましい最低の特徴的速度は、2つの特徴的な時定数を等式化することにより計算され得る。第1の特徴的な時定数は、緩衝ストリーム29が反応器12の長さに沿って移流するのに要する時間であり、反応器12の長さの、緩衝ストリーム29の速度に対する比に等しい。第2の特徴的な時定数は、水素が反応器12の中心線から反応器壁24まで拡散するのに要する時間であり、反応器12の半径の2乗の、緩衝ストリーム29中での水素の拡散係数に対する比に等しい。あるいは、この第2の特徴的な時定数は、不純物が反応器壁24から、ウェーハホルダー26上の基材ウェーハ14の外側周辺の半径位置と同じである反応器12中の半径位置まで拡散するのに要する時間であり得る。この特徴的な時定数は、上述の半径位置と反応器壁24との間の距離の2乗を緩衝ストリーム29中のその不純物の拡散係数で割ったものに等しい。この第2の特徴的な時定数に対する2つの二者択一の値のうちの小さいほうは、第1の特徴的な時定数とともに等式化されて、反応器12中の緩衝ストリーム29の特徴的な速度に対する近似値を与える。
予め加熱された緩衝ストリーム29中に蓄えられる熱エネルギーは、反応器12中の反応性ストリーム27の温度を、室温のような低い値から反応性ストリーム27中で所望の物質(単数または複数)を形成するための値まで上昇させるために使用される。所望の物質(単数または複数)は、ウェーハ14上に所望の結晶を形成するための物質である。予め加熱された緩衝ストリーム29中に蓄えられる熱エネルギーの大きさは、緩衝ストリーム29の温度、緩衝ストリーム29の質量流速、および緩衝ストリーム29の熱力学的特性により決定され得る。反応器12に入る前の緩衝ストリーム29の質量流速は、緩衝ストリーム29の特徴的な速度、緩衝ストリーム29が流れる断面積、および緩衝ストリーム29の密度により決定される。緩衝ストリーム29中に蓄えられる熱エネルギーは、このエネルギーのうちのいくらかが、反応性ストリーム27に移されるときに、反応性ストリーム27と緩衝ストリーム29との平均温度が反応性ストリーム27中の所望の物質(単数または複数)を形成するための温度範囲に留まるように、十分大きくあるべきである。従って、緩衝ストリーム29の入口温度は、反応器12に入る前の緩衝ストリーム29およびと反応性ストリーム27との熱エネルギーの合計を、緩衝ストリーム29が反応性ストリーム27を所望の温度(範囲)まで加熱した後の緩衝ストリーム29と反応性ストリーム27との熱エネルギーの合計とともに等式化することにより、近似的に得られ得る。
例示的な実施例として、SiCの成長のためのプロセスについての幾何学的パラメータおよびプロセスパラメータが以下に提示される。これらの条件は、詳細なコンピューターシミュレーションにより得られたものであり、成長した結晶中の不純物のレベルを少なくとも一桁低減するために計算された一組の条件を構成する。
Figure 2007504081
ここでslpmは、1分間あたりの標準リットル(standard liter per minute)を表す。
図5を参照して、別の結晶成長システム90は、外部予備加熱要素92を含む。この予備加熱要素92は、反応器94の入口端部に配置され、緩衝ガスストリーム96が反応器チャンバ98に入る前に、ストリーム96を予め加熱するような構成である。要素92は、反応器チャンバ98に入る前に、緩衝ガスストリーム96が環状領域100を通って流れるときに、それを加熱するための高周波(RF)誘導器のような種々の熱源のいずれかであり得る。この環状領域100の長さおよび幅、ならびに外部熱源92のサイズは、緩衝ガスが反応性ストリーム102と接触する前に、緩衝ガスが反応性混合物102を所望の温度まで加熱し得るように、緩衝ガスが十分高い温度まで加熱されることを確実にするのに役立つために、成長システム90の他の幾何学的パラメータおよびプロセスパラメータと協奏して決定される。このRF加熱要素92は、グラファイト部分に熱を誘起するが、シード14においては熱を誘起しない(または、少なくとも有意にはそうしない)。
図6を参照して、別の結晶成長システム110は、シード14の近傍の領域を加熱し、シード14自体を加熱し、そしてシードホルダー26を加熱するために構成され、反応器114のシード端部の近くに配置される独立した熱源112を含む。熱源112は、反応器壁に沿う温度分布およびシード14の周りの温度分布の独立の制御を提供する。熱源112は、反応性ガス27中の最高温度とシード温度との間の差の直接の制御を提供し、それによってシード表面上のSiCの成長速度に対して影響を及ぼしそれを制御する手段を提供する。好ましくは、反応性ストリームの最高温度とシード温度との間の差は、それがある場合には、約5℃と約200℃との間に維持される。
図7を参照して、別の結晶成長システム120は、円筒状の構造体122および反応器壁を貫いて反応器の長さに沿って多数の開口部126を有する反応器124を含む。円筒状の構造体122は、反応器壁の周りに配置され、反応器124と構造体122との間に環状導管領域128を提供する。RF加熱源130が、円筒状の構造体122の外側に配置される。円筒状の構造体122は、RF誘導器130により誘導される加熱作用のすべてまたは実質的にすべてが、反応器壁24で起こるように、好ましくは、RF誘導器130と結合しない(少なくとも有意にはそうしない)物質、例えば水晶から構築される。環状導管領域128は、反応器124中の圧力に対して陰圧を生成する真空ポンプ134(または他のデバイス、例えばファン)と流体連通している。従って、特定量の緩衝ストリーム29が、矢印132で示されるように、開口部126を通って導管領域128に流れ、そしてこの導管領域(通路)128から流れ出る。開口部126のサイズは、例えば、反応器壁24に沿って開口部126を通る緩衝ストリーム29の流速の変化を制御するのに役立つために、反応器壁24の長さに沿って変化され得る。緩衝ガス29は、反応器壁24で生成された不純物を反応器壁24中の開口部126を通して除去する。この反応器の構成は、反応器壁での不純物の生成が、不純物の自己放出によりもたらされる状況に対して、特に有用であり得る。
他の実施形態は、本発明の範囲内および思想内である。例えば、水素のようなエッチングガスが、反応性ガスストリーム27が反応器に導入される前に、反応性ガスストリーム27に添加され得る。予め加熱された緩衝ストリーム27は、その反応混合物中の成分と反応して、緩衝ストリームにより反応器の外へ移流される不活性かつ安定な化合物を形成するように選択される。例えば、緩衝ストリーム27は、反応性ガスの化学反応の間に放出される水素、反応性ストリーム29中のエッチング剤、または反応性ガス自体と反応して、不活性かつ安定な化合物を形成し得る。緩衝ガス(単数または複数)は、同様に、反応器壁から放出される不純物、または反応器壁との反応の他の生成物と反応し得る。予め加熱された緩衝ストリームは、反応器から放出された不純物と反応して緩衝ストリームにより反応器の外へ移流される不活性かつ安定な化合物を形成するように選択され得る。成長する結晶は、適切な量のドーパント運搬ガスを反応性ストリームに導入することにより、制御された量でドープされ得る。ドーパントは、成長される物質の特性に影響を及ぼすために使用され得る。このドーパントガスは、反応器の入口で反応性ガス混合物中に添加され得る。このドーパントは、反応性ガスストリーム27のバルク移動によりシード14に向かって移流され、そして成長している結晶の中に取り込まれる。このドーパントのいくらかはまた、緩衝ストリーム29の中へ拡散し、反応器の外へ移流される。入口での反応性混合物中のドーパント濃度は、成長表面での所望のレベルのドーピングが得られるように、反応器の幾何学的特徴およびプロセスパラメータと協奏的に選択される。外部ヒーターは、例えば、図5に示されるようなヒーター16、92の機能を同時に発揮して、緩衝ストリームおよび反応器壁を予め加熱するために使用され得る。さらに、すべての反応性ガス構成成分が反応器/反応器チャンバの中への導入の前に混合されるとして記載されてきたが、1種以上の反応性ガス成分が、1種以上の他の成分の反応器/反応器チャンバへの導入からは別に、上記ストリームの中に導入されてもよい。例えば、図8を参照して、反応性ガスのための複数の別々の入口管152、154が使用され得る。さらに、1種以上の反応性ガスのための入口管152は、異なる長さを有し得、そして、1種以上の反応性ガスのための入口管154とは異なる深さでそのガスを反応器チャンバ156の中へ放出し得る。
なおさらなる実施形態が、添付の特許請求の範囲に具現化されるように、本発明の範囲および思想内にある。
図1は、反応器の断面であり、反応器中の反応性ガス混合物および予備加熱緩衝ガスストリームの流路を図示する。 図2は、基材上に結晶を成長させるために、図1に示されるシステムを使用するプロセスのブロック流れ図である。 図3は、図1に示される反応器の断面であり、反応性ガスストリーム中に存在する水素および他のエッチング剤の移流経路を図示する。 図4は、図1に示される反応器の断面であり、反応器壁で生成される不純物の拡散経路および移流経路を図示する。 図5は、緩衝ガスストリームが、それがこの反応器に入る前に環状領域を移動するときに加熱される反応器の断面である。 図6は、シードおよびシードホルダーの近傍の領域を加熱するために補助ヒーターが用される反応器の断面である。 図7は、反応器壁が、開口部を提供し、予め加熱された緩衝ガスストリームの一部がその開口部を通って環状領域中に流れ、その開口部は、その反応器壁で生成された不純物の移流のための排出ポートに供給する反応器の断面である。 図8は、反応性ガスを異なる深さで反応器に導入するような構成である多数の様々な長さの入口管を有する反応器の断面である。

Claims (34)

  1. 反応器中に配置された基材上に結晶を成長させる方法であって、該反応器は、反応器チャンバを提供し、該基材は、該反応器チャンバの中に配置され、該方法は、以下:
    該反応器チャンバの内部に反応性ガスを該基材に向かって流す工程であって、該反応性ガスは、互いに結合して該結晶を形成し得る成分を含有する工程;
    緩衝ガスを加熱する工程;および
    該加熱された緩衝ガスを、該反応性ガスと該反応器壁との間にある該反応器チャンバ中に、該反応性ガスおよび該緩衝ガスが相互作用し得るように、流す工程、
    を包含し、ここで該流れている緩衝ガスが、該反応性ガスにより生成される第1の物質の少なくとも1つが該反応器壁に到達するのを阻害し、そして該反応性ガスが該基材に到達する前に、該反応器壁により生成される第2の物質が反応器チャンバー中の該反応性ガスに到達するのを阻害する、方法。
  2. 前記緩衝ガスを使用して、前記反応性ガスを、前記基材に到達する前に反応して所望の物質を形成するに十分加熱し、該所望の物質が該基材上に所望の結晶を形成する工程をさらに包含する、請求項1に記載の方法。
  3. 前記反応ガスおよび前記緩衝ガスの未使用の部分を前記チャンバから放出する工程であって、ここで該緩衝ガスは、実質的にいかなる前記第1の物質も前記反応器壁に到達せず、そして実質的にいかなる前記第2の物質も該反応チャンバの内部の該反応性ガスに実質的に到達しないような速度で流れる工程、をさらに包含する、請求項1に記載の方法。
  4. 前記緩衝ガスが、第1の物質および第2の物質のうちの少なくとも1つと反応して、少なくとも1つの不活性な安定な物質を形成するような構成である少なくとも1つの第3の物質を含む、請求項1に記載の方法。
  5. 前記緩衝ガスが、少なくとも1種の不活性ガスを含む、請求項1に記載の方法。
  6. 前記少なくとも1種の不活性ガスが、ヘリウムおよびアルゴンのうちの少なくとも1つを含む、請求項5に記載の方法。
  7. 前記反応性ガスが、前記反応器壁と反応して前記第2の物質を生成するドーパント、およびエッチング剤のうちの少なくとも1つを含む、請求項1に記載の方法。
  8. 前記反応性ガスが、前記エッチング剤を含み、該エッチング剤が、水素である、請求項7に記載の方法。
  9. 前記反応性ガスが、シラン、四塩化ケイ素、およびトリメチルシラン、ならびにメタンおよびプロパンのうちの少なくとも1つを含む、請求項1に記載の方法。
  10. 前記反応器壁を加熱する工程をさらに包含する、請求項1に記載の方法。
  11. 前記反応器壁、前記緩衝ガス、および前記基材座のうちの少なくとも1つが加熱され、該反応性ガスの温度と前記基材の温度との間の温度差が制御される、請求項10に記載の方法。
  12. 前記差が、約5℃と約200℃との間に維持される、請求項11に記載の方法。
  13. 前記反応性ガスを前記反応器に流す前に、該反応性ガスのすべての成分を混合する工程をさらに包含する、請求項1に記載の方法。
  14. 前記チャンバへの導入の前に前記成分を混合することを阻害するために、前記反応性ガスの成分を、該反応チャンバの中へ別々に流す工程をさらに包含する、請求項1に記載の方法。
  15. 前記反応器の軸に平行な方向に、かつ前記反応器壁に規定される少なくとも1つの開口部を通して、前記緩衝ガスを放出する工程を包含する、請求項1に記載の方法。
  16. 前記反応性ガスが、以下の元素の群:ケイ素および炭素、アルミニウムおよび窒素、ガリウムおよび窒素、アルミニウムおよびガリウムおよび窒素、ならびにこれらの群のいずれかの合金、の少なくとも1つを含む、請求項1に記載の方法。
  17. 前記反応性ガスが、SiC、III〜V族化合物のうちの1つの結晶、およびSiCとIII〜V族化合物との合金を成長させるためのガスを含む、請求項1に記載の方法。
  18. 基材上に結晶を成長させるための反応器システムであって、該反応器システムは、
    ハウジングであって、第1の端部である入口端部および第2の端部である出口端部を備え、該入口端部が、反応性ストリーム取込みポートおよび緩衝ストリーム取込みポートを規定し、そして該出口端部が少なくとも1つの出力ポートを規定する、ハウジング;
    基部であって、該ハウジングの出口端部に連結され、そして該基材を受けるような構成である、基部;
    反応性ガスインジェクタであって、反応性ガスを該ハウジングの中へ該反応性ストリーム取込みポートを通して注入し、該反応性ガスの反応性ストリームを生成するような構成である、反応性ガスインジェクタ;
    緩衝ガスインジェクタであって、緩衝ガスを該ハウジングの中へ該緩衝ストリーム取込みポートを通して注入し、該緩衝ガスの緩衝ストリームを生成するような構成である、反応性ガスインジェクタ;ならびに
    第1の熱源であって、該緩衝ストリームを加熱するような構成および配置である、第1の熱源;
    を備え、ここで該入口端部、該反応性ガスインジェクタ、および該緩衝インジェクタは、該加熱緩衝ストリームが、該反応性ストリームと該ハウジングの壁との間に配置され、該反応性ストリームの成分または該反応性ストリームから生成された成分が該ハウジングの壁に到達するのを阻害し、そして該ハウジングの壁により生成または放射された物質が、該反応性ストリームが該基材に到達する前に、該反応性ストリームに到達するのを阻害するような構成である、反応器システム。
  19. 前記入口端部が、前記ハウジング内部の相互作用位置まで、前記反応性ストリームおよび前記加熱された緩衝ストリームを別々に保つような構成である、請求項18に記載の方法。
  20. 実質的に前記相互作用位置と同一平面上の地点と前記基材との間の前記ハウジングの壁を加熱するような構成および配置である第2の熱源をさらに備える、請求項19に記載の方法。
  21. 前記第1の熱源が、前記緩衝ストリームが反応性ストリームと相互作用する場合、該緩衝ストリームが、反応性ストリームが該基材に到達する前に該反応性ガスを互いと反応させて所望の物質を形成させ、該所望の物質が該基材上に所望の結晶を形成するに十分加熱するように十分な温度まで該緩衝ストリームを加熱するような構成である、請求項18に記載のシステム。
  22. 前記基材を加熱して前記反応性ストリームの温度と該基材の温度との温度差を維持するような構成および配置である、基材加熱供給源をさらに備える、請求項18に記載のシステム。
  23. 前記差が、約5℃と約200℃との間に維持される、請求項22に記載のシステム。
  24. 前記ハウジングが、該ハウジングの長さに沿って該ハウジングの壁に少なくとも1つの開口部を規定する、請求項18に記載のシステム。
  25. 前記ハウジングが、該ハウジングの前記長さに沿って該ハウジングの壁に複数の開口部を規定し、ここで該開口部のサイズが、該ハウジングの該長さに沿った該ハウジングの壁からの前記緩衝ガスの調節された流出量を提供する、請求項24に記載のシステム。
  26. 請求項25に記載のシステムであって、
    外側枠であって、前記ハウジングの前記長さに沿って該ハウジングのまわりに配置され、該ハウジングから分離されて、該枠と該ハウジングとの間の通路を規定する、外側枠;および
    装置であって、該通路から出るガスの流れを誘導するような構成および配置である、装置、
    をさらに備える、システム。
  27. 基材上に結晶を成長させるための反応器システムであって、該反応器システムは、
    ハウジングであって、第1の端部である入口端部および第2の端部である出口端部を備え、該入口端部が、反応性ストリーム取込みポートを規定し、そして該出口端部が少なくとも1つの出力ポートを規定する、ハウジング;
    基部であって、該ハウジングの出口端部に連結され、そして該基材を受けるような構成である、基部;
    装置であって、該反応性ストリーム取込みポートを通る該ハウジングの中へのガス流を提供するような構成および配置である、装置;ならびに
    該取込みポートと該基材との間の該ガス流を加熱し、そして少なくとも1つのガス流成分を該ハウジングの壁から分離し、そして該ハウジングの壁から放出される物質を該ガス流から分離するための手段であって、該ガス流を加熱するための手段は、該ハウジングの壁から放射する熱からは独立して該ガス流を加熱するような構成である、手段、
    を備える、反応器システム。
  28. 前記加熱のための手段が、前記ガス流成分と反応しそうにない少なくとも1つの緩衝ガスの加熱ストリームを注入するような構成であり、該少なくとも1つの緩衝ガスが、該ガス流成分が互いに反応するように、該ガス流成分を十分に加熱するに十分な温度にある、請求項27に記載のシステム。
  29. 前記ハウジングの壁を加熱するための手段をさらに備える、請求項27に記載のシステム。
  30. 前記ガス流の最高温度と前記基材の温度との間の所望の温度差を維持するために該基材を加熱する手段をさらに備える、請求項29に記載のシステム。
  31. 前記所望の温度差が、約5℃と約200℃との間である、請求項30に記載のシステム。
  32. 前記ハウジングが、該ハウジングの長さに沿って該ハウジングの壁に少なくとも1つの開口部を規定する、請求項27に記載のシステム。
  33. 前記ハウジングが、該ハウジングの前記長さに沿って、該ハウジングの壁に異なるサイズの複数の開口部を規定する、請求項32に記載のシステム。
  34. 請求項27に記載のシステムであって、
    外側枠であって、前記ハウジングの前記長さに沿って該ハウジングのまわりに配置され、該ハウジングから分離されて、該枠と該ハウジングとの間の通路を規定する、外側枠;および
    装置であって、該通路から出るガスの流れを誘導するような構成および配置である、装置、
    をさらに備える、システム。
JP2006524931A 2003-08-28 2004-08-27 高純度結晶成長 Pending JP2007504081A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/650,530 US7052546B1 (en) 2003-08-28 2003-08-28 High-purity crystal growth
PCT/US2004/028110 WO2005021842A2 (en) 2003-08-28 2004-08-27 High-purity crystal growth

Publications (1)

Publication Number Publication Date
JP2007504081A true JP2007504081A (ja) 2007-03-01

Family

ID=34273364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006524931A Pending JP2007504081A (ja) 2003-08-28 2004-08-27 高純度結晶成長

Country Status (4)

Country Link
US (2) US7052546B1 (ja)
EP (1) EP1665339A2 (ja)
JP (1) JP2007504081A (ja)
WO (1) WO2005021842A2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009543946A (ja) * 2006-07-12 2009-12-10 ノースロップ グラマン システムズ コーポレーション ワイドバンドギャップ半導体材料
JP2012224486A (ja) * 2011-04-15 2012-11-15 Mitsubishi Chemicals Corp 第13族窒化物結晶の製造方法
JP2013035729A (ja) * 2011-08-10 2013-02-21 Denso Corp 炭化珪素単結晶製造装置
JP2013035730A (ja) * 2011-08-10 2013-02-21 Denso Corp 炭化珪素単結晶の製造装置
JP2014111546A (ja) * 2014-03-19 2014-06-19 Denso Corp 炭化珪素単結晶の製造装置
JP2015528780A (ja) * 2012-05-25 2015-10-01 ソル ヴォルテイックス エービーSol Voltaics Ab 同心流反応装置
JP2018501642A (ja) * 2014-11-10 2018-01-18 ソル ヴォルテイックス エービーSol Voltaics Ab ナノ粒子エアロゾル生成器を有するナノワイヤ成長システム
KR20190009447A (ko) * 2017-07-18 2019-01-29 세메스 주식회사 에지 링의 제조 방법 및 에지 링 재생 방법

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4150642B2 (ja) * 2003-08-04 2008-09-17 株式会社デンソー 単結晶の成長方法および成長装置
WO2005103341A1 (ja) * 2004-04-27 2005-11-03 Matsushita Electric Industrial Co., Ltd. Iii族元素窒化物結晶製造装置およびiii族元素窒化物結晶製造方法
ITMI20041677A1 (it) * 2004-08-30 2004-11-30 E T C Epitaxial Technology Ct Processo di pulitura e processo operativo per un reattore cvd.
US7524376B2 (en) * 2006-05-04 2009-04-28 Fairfield Crystal Technology, Llc Method and apparatus for aluminum nitride monocrystal boule growth
WO2008014446A2 (en) * 2006-07-28 2008-01-31 Caracal, Inc. Sintered metal components for crystal growth reactors
ITMI20062213A1 (it) * 2006-11-20 2008-05-21 Lpe Spa Reattore per crescere cristalli
ITMI20071075A1 (it) * 2007-05-28 2008-11-29 Lpe Spa Reattore per la crescita di cristalli con ingressi raffreddati
DE102007030106A1 (de) * 2007-06-28 2009-01-02 Intega Gmbh Verfahren und Vorrichtung zum Behandeln eines Halbleitersubstrats
US8603243B2 (en) * 2008-07-31 2013-12-10 The United States Of America, As Represented By The Secretary Of The Navy Tracking carbon to silicon ratio in situ during silicon carbide growth
WO2011063007A2 (en) 2009-11-18 2011-05-26 Rec Silicon Inc Fluid bed reactor
JP5500953B2 (ja) * 2009-11-19 2014-05-21 株式会社ニューフレアテクノロジー 成膜装置および成膜方法
SE536605C2 (sv) * 2012-01-30 2014-03-25 Odling av kiselkarbidkristall i en CVD-reaktor vid användning av klorineringskemi
JP6158025B2 (ja) * 2013-10-02 2017-07-05 株式会社ニューフレアテクノロジー 成膜装置及び成膜方法
CN107924823B (zh) * 2015-09-29 2021-09-28 住友电气工业株式会社 制造碳化硅外延基板的方法、制造碳化硅半导体装置的方法以及制造碳化硅外延基板的设备
WO2018043169A1 (ja) * 2016-08-31 2018-03-08 昭和電工株式会社 SiCエピタキシャルウェハ及びその製造方法、並びに、ラージピット欠陥検出方法、欠陥識別方法
US11293115B2 (en) 2016-08-31 2022-04-05 Showa Denko K.K. Method for producing a SiC epitaxial wafer containing a total density of large pit defects and triangular defects of 0.01 defects/cm2 or more and 0.6 defects/cm2 or less
CN111052308A (zh) * 2017-09-01 2020-04-21 纽富来科技股份有限公司 气相生长装置及气相生长方法
CN114174567B (zh) * 2019-03-05 2023-12-15 学校法人关西学院 SiC衬底的制造方法及其制造装置
CN117737687B (zh) * 2024-02-09 2024-05-10 上海谙邦半导体设备有限公司 一种用于钨沉积设备的混气结构及混气方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166123A (ja) * 1985-01-18 1986-07-26 Matsushita Electric Ind Co Ltd 気相成長装置
JP2006523777A (ja) * 2003-04-16 2006-10-19 クリー インコーポレイテッド 堆積システムにおける堆積物の形成を制御するための方法および装置、ならびにそれらを含む堆積システムおよび方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4267829A (en) * 1979-04-11 1981-05-19 American Medical Systems, Inc. Penile prosthesis
US4615294A (en) * 1984-07-31 1986-10-07 Hughes Aircraft Company Barrel reactor and method for photochemical vapor deposition
EP0254651B1 (en) * 1986-06-28 1991-09-04 Nihon Shinku Gijutsu Kabushiki Kaisha Method and apparatus for chemical vapor deposition
US5062386A (en) * 1987-07-27 1991-11-05 Epitaxy Systems, Inc. Induction heated pancake epitaxial reactor
US5334277A (en) * 1990-10-25 1994-08-02 Nichia Kagaky Kogyo K.K. Method of vapor-growing semiconductor crystal and apparatus for vapor-growing the same
SE9502288D0 (sv) 1995-06-26 1995-06-26 Abb Research Ltd A device and a method for epitaxially growing objects by CVD
US6030661A (en) 1995-08-04 2000-02-29 Abb Research Ltd. Device and a method for epitaxially growing objects by CVD
SE9503428D0 (sv) 1995-10-04 1995-10-04 Abb Research Ltd A method for epitaxially growing objects and a device for such a growth
SE9503426D0 (sv) 1995-10-04 1995-10-04 Abb Research Ltd A device for heat treatment of objects and a method for producing a susceptor
DE19603323A1 (de) 1996-01-30 1997-08-07 Siemens Ag Verfahren und Vorrichtung zum Herstellen von SiC durch CVD mit verbesserter Gasausnutzung
US6039812A (en) 1996-10-21 2000-03-21 Abb Research Ltd. Device for epitaxially growing objects and method for such a growth
JP4232330B2 (ja) * 2000-09-22 2009-03-04 東京エレクトロン株式会社 励起ガス形成装置、処理装置及び処理方法
US6613695B2 (en) * 2000-11-24 2003-09-02 Asm America, Inc. Surface preparation prior to deposition
ATE528421T1 (de) * 2000-11-30 2011-10-15 Univ North Carolina State Verfahren zur herstellung von gruppe-iii- metallnitrid-materialien
US6461944B2 (en) * 2001-02-07 2002-10-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Methods for growth of relatively large step-free SiC crystal surfaces
WO2003034477A1 (en) * 2001-10-18 2003-04-24 Chul Soo Byun Method and apparatus for chemical vapor ddeposition capable of preventing contamination and enhancing film growth rate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166123A (ja) * 1985-01-18 1986-07-26 Matsushita Electric Ind Co Ltd 気相成長装置
JP2006523777A (ja) * 2003-04-16 2006-10-19 クリー インコーポレイテッド 堆積システムにおける堆積物の形成を制御するための方法および装置、ならびにそれらを含む堆積システムおよび方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009543946A (ja) * 2006-07-12 2009-12-10 ノースロップ グラマン システムズ コーポレーション ワイドバンドギャップ半導体材料
JP2012224486A (ja) * 2011-04-15 2012-11-15 Mitsubishi Chemicals Corp 第13族窒化物結晶の製造方法
JP2013035729A (ja) * 2011-08-10 2013-02-21 Denso Corp 炭化珪素単結晶製造装置
JP2013035730A (ja) * 2011-08-10 2013-02-21 Denso Corp 炭化珪素単結晶の製造装置
KR102061093B1 (ko) * 2012-05-25 2019-12-31 솔 발테익스 에이비 동심 유동 반응기
JP2015528780A (ja) * 2012-05-25 2015-10-01 ソル ヴォルテイックス エービーSol Voltaics Ab 同心流反応装置
US11702761B2 (en) 2012-05-25 2023-07-18 Alignedbio Ab Concentric flow reactor
US10196755B2 (en) 2012-05-25 2019-02-05 Sol Voltaics Ab Concentric flower reactor
US10920340B2 (en) 2012-05-25 2021-02-16 Alignedbio Ab Concentric flow reactor
JP2014111546A (ja) * 2014-03-19 2014-06-19 Denso Corp 炭化珪素単結晶の製造装置
JP2018501642A (ja) * 2014-11-10 2018-01-18 ソル ヴォルテイックス エービーSol Voltaics Ab ナノ粒子エアロゾル生成器を有するナノワイヤ成長システム
KR101974421B1 (ko) * 2017-07-18 2019-05-03 세메스 주식회사 에지 링의 제조 방법 및 에지 링 재생 방법
KR20190009447A (ko) * 2017-07-18 2019-01-29 세메스 주식회사 에지 링의 제조 방법 및 에지 링 재생 방법

Also Published As

Publication number Publication date
US20070107654A1 (en) 2007-05-17
WO2005021842A3 (en) 2005-09-15
US7052546B1 (en) 2006-05-30
US7377977B2 (en) 2008-05-27
WO2005021842A2 (en) 2005-03-10
EP1665339A2 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
US7377977B2 (en) High-purity crystal growth
TWI695811B (zh) 製作石墨烯層結構的方法
US5704985A (en) Device and a method for epitaxially growing objects by CVD
CN100414004C (zh) 通过气相淀积制备单晶的设备和方法
JP5209022B2 (ja) 堆積システムにおける堆積物の形成を制御するための方法および装置、ならびにそれらを含む堆積システムおよび方法
US8461071B2 (en) Polycrystalline group III metal nitride with getter and method of making
US7695565B2 (en) Sublimation chamber for phase controlled sublimation
JP2005528777A (ja) 反転型cvdのための装置
US20080072817A1 (en) Silicon carbide single crystals with low boron content
US8491720B2 (en) HVPE precursor source hardware
US20060160367A1 (en) Methods of treating semiconductor substrates
WO2011011532A2 (en) Hollow cathode showerhead
WO2020179795A1 (ja) SiC基板の製造方法及びその製造装置
JP4943850B2 (ja) 炭化ケイ素層を形成するホモエピタキシャル成長方法
US6030661A (en) Device and a method for epitaxially growing objects by CVD
US20050255245A1 (en) Method and apparatus for the chemical vapor deposition of materials
US4389273A (en) Method of manufacturing a semiconductor device
TW201443302A (zh) 低碳第iii族氮化物結晶
Zhang et al. Growth characteristics of SiC in a hot-wall CVD reactor with rotation
TWI259214B (en) Device and method for producing single crystals by vapour deposition
US20120247392A1 (en) Multichamber thin-film deposition apparatus and gas-exhausting module
JPS62229927A (ja) 化合物半導体気相成長装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110330