JP2007331000A - 連続鋳造用鋳型 - Google Patents

連続鋳造用鋳型 Download PDF

Info

Publication number
JP2007331000A
JP2007331000A JP2006166517A JP2006166517A JP2007331000A JP 2007331000 A JP2007331000 A JP 2007331000A JP 2006166517 A JP2006166517 A JP 2006166517A JP 2006166517 A JP2006166517 A JP 2006166517A JP 2007331000 A JP2007331000 A JP 2007331000A
Authority
JP
Japan
Prior art keywords
mold
molten steel
chamfer
corner
corner portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006166517A
Other languages
English (en)
Other versions
JP4864559B2 (ja
Inventor
Hiroaki Sakai
宏明 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006166517A priority Critical patent/JP4864559B2/ja
Publication of JP2007331000A publication Critical patent/JP2007331000A/ja
Application granted granted Critical
Publication of JP4864559B2 publication Critical patent/JP4864559B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

【課題】鋳型の内側コーナ部の形状によって、溶鋼の凝固遅れを防止し、凝固遅れによる内部欠陥がない鋳片を製造する。
【解決手段】溶鋼2を連続的に鋳造する角筒状の鋳型4であって、前記鋳型4の内側における全てのコーナー部12に水平方向の長さが2mm以上8mm以下となるテーパ状の角落とし部13を設けており、前記角落とし部13は、それぞれ同じ形状とされていると共に、鋳型4の上端から下端に亘って形成されている。
【選択図】図2

Description

本発明は、溶鋼を連続的に鋳造する鋳型に関する。
従来より、連続鋳造設備では、転炉や二次精錬設備等から出鋼された溶鋼を取鍋によってタンディッシュまで搬送し、搬送された取鍋内の溶鋼をタンディッシュへ注入後、このタンディッシュから鋳型へ溶鋼を供給することで、溶鋼を連続的に鋳造している。
連続鋳造設備における鋳型の形状は、鋳造された鋳片の形状によって決定されるのが一般的である。鋳型の内側コーナ部の形状については、次工程(圧延工程)における倒れ込み防止の観点からR形状や多角形状となる様々な形状が研究されてきている。
連続鋳造設備で鋳造された鋳片は圧延工程にてブルーミングされるが、ブルーミングの際に鋳造された鋳片のコーナ部が直角であると押圧によって当該コーナ部につの状の角が立ち、その角が倒れ込んでしまう問題を生じることから、倒れ込みを防止するために鋳型の内側コーナ部をR形状や多角形状することが検討されている。
さて、鋳造する際、鋳型の内側コーナ部の近傍の溶鋼にあっては、抜熱量が大きいことから他の部分よりも速く凝固し、鋳型のコーナ部付近の凝固シェルが他の部分よりも速く熱収縮することが分かってきている。
鋳型の内側コーナ部付近の凝固シェルが急速に熱収縮すると、当該凝固シェルが鋳型の内側コーナ部から離れてしまい、当該鋳型の内側コーナ部付近にエアギャップが形成される。エアギャップによって鋳型の内側コーナ部付近での溶鋼が凝固し難くなり、溶鋼の凝固遅れの要因となることが知られている。
溶鋼の凝固遅れが生じた部分は、MnSや酸化物などの非金属介在物が多く含有された内部欠陥となって脆弱となる。その内部欠陥によって、圧延以降の加工工程のときに当該鋼材に割れや表面疵が生じることがある。特に、MnSによる欠陥については、非破壊検査によって検出され難く、鋼材が最終製品になったときに割れや疵等によって発見されることが多い。
したがって、近年では、鋳片の倒れ込みを防止するだけでなく、溶鋼の凝固遅れ、即ち、内部欠陥を防止するために内側コーナ部の形状が様々検討されてきている(例えば、特許文献1,2)。
特許文献1では、鋳型の内側コーナ部において、対向するコーナ部の一対に角落とし部を形成し、この角落とし部により鋳型内を溶鋼がスムーズに流れるようにすることで、不均一凝固(凝固遅れ)を防止している。
特許文献2では、鋳型のコーナ部に当該鋳型の内側に向かうテーパ面を形成し、このテーパ面によって凝固シェルが鋳型の内面からできるだけ離れないようにする(エアーギャップをできるだけ生成させない)ことで、凝固遅れを防止している。
特開2005−224809号公報 特開平02−284747号公報
しかしながら、特許文献1や特許文献2の技術を適用しても、溶鋼の凝固遅れ(内部欠陥)は未だ解消されていないのが実情であり、特に、凝固初期において、表面近傍における微細な内部欠陥を防止するには至っていない。
そこで、本発明では、鋳型の内側コーナ部の形状によって、溶鋼の凝固遅れを防止し、凝固遅れによる内部欠陥がない鋳片を製造することができる連続鋳造用鋳型を提供することを目的とする。
前記目的を達成するために、本発明は、次の手段を講じた。
即ち、溶鋼を連続的に鋳造する角筒状の鋳型であって、前記鋳型の内側における全てのコーナー部に、水平方向の長さが2mm以上8mm以下となるテーパ状の角落とし部を設けており、前記角落とし部は、それぞれ同じ形状とされていると共に鋳型の上端から下端に亘って形成されている点にある。
発明者は、溶鋼の凝固遅れを生ずるメカニズムや鋳型の内側コーナ部の形状について様々検討を行った。
その結果、鋳型の内側における全てのコーナー部に2mm〜8mmのテーパ状の角落とし部を設け、それぞれの角落とし部を同じ形状とし、鋳型の上端から下端に亘って角落とし部を形成することで、溶鋼の凝固遅れ、即ち、内部欠陥の無い鋳片を製造することができた。
本発明の連続鋳造用鋳型によれば、溶鋼の凝固遅れを防止し、凝固遅れによる内部欠陥がない鋳片を製造することができる。
本発明の鋳型について説明する。
図1は、本発明の連続鋳造用鋳型を具備した連続鋳造装置を示している。ただし、本発明の連続鋳造用鋳型は図1に示す連続鋳造装置に限定されない。
図1に示すように、連続鋳造装置1は、ブルーム連続鋳造装置又はビレット連続鋳造装置であって、溶鋼2を一時的に貯留するタンディッシュ3と、このタンディッシュ3からの溶鋼2が供給される鋳型4と、この鋳型4により成型された鋳片を引き出すと共に、鋳片をサポートする複数のサポートロール5とを有している。鋳型4の外側には鋳型4内の溶鋼2を電磁攪拌する電磁攪拌装置(M-EMS)6が配置されている。
タンディッシュ3は、全体として有底箱形となっており、タンディッシュ3の底部に浸漬ノズル7が設けられている。浸漬ノズル7は、スライドバルブ8により開閉可能となっており、浸漬ノズル7の開閉によりタンディッシュ3による鋳型4への溶鋼2の注入が停止又は再開できるようになっている。
電磁攪拌装置6は、従来から連続鋳造装置に用いられている一般的なもので、溶鋼2を右旋回(右回り)させたり、溶鋼2を左旋回(左回り)させたりすることができる。
連続鋳造装置1では、転炉や二次精錬設備等から出鋼された溶鋼2を取鍋によってタンディッシュ3まで搬送し、搬送された取鍋内の溶鋼2をタンディッシュ3へ注入後、スライドバルブ8を開くと共に、電磁攪拌装置6で鋳型4内の溶鋼2を一方向に攪拌することで、溶鋼2を連続的に鋳造することができるようになっている。この連続鋳造装置では、同じ鋼種の溶鋼2を連続的に数チャージ鋳造したり、鋼種の異なる溶鋼2を連続的に鋳造することができる。
以下、本発明の連続鋳造用鋳型について詳しく説明する。
図2に示すように、鋳型4は、銅を主成分とする材料から角筒状に形成されたもので、一対の第1板材10と、この第1板材10の長手方向両側に配置された一対の第2板材11とを有したものとなっている。
鋳型4の内側であって鋳型4のすべてのコーナー部12に角落とし部13(以降、チャンファーということがある)が形成されている。
詳しくは、第2板材11の長手方向両側の内壁(内側)にテーパ面が形成され、このテーパ面が前記角落とし部13となっている。
角落とし部13は、第2板材11の上端から下端、即ち、鋳型4の上端から下端に亘っている。角落とし部13の角度θ1,θ2は鋳型4の上端から下端に亘って略一定値となっている。なお、角落とし部13の角度θ1は、第1水平方向(鋳型4の長辺に沿う方向)と角落とし部(テーパ面)13とのなす狭角で、角落とし部13の角度θ2は、第2水平方向(鋳型4の短辺に沿う方向)と角落とし部(テーパ面)13とのなす狭角である。
第2板材11に形成された角落とし部13はすべて同じ形状となっている。即ち、各角落とし部13の傾斜角度θ1,θ2、第1水平方向の長さa及び第2水平方向の長さb、垂直方向の長さe(図1参照)は互いに略同じとなっている。
各角落とし部13の第1水平方向の長さa及び第2水平方向の長さb(以降、チャンファー量ということがある)は2mm以上8mm以下に設定されている。なお、第1水平方向の長さaと第2水平方向の長さbとは互いに同じであっても異なっていてもよい。
角落とし部13におけるチャンファー量は様々な実験等により導き出されたものである。
以下、チャンファー量の導出過程について図3〜図4を用いて説明する。
図3,4の(a)は、溶鋼2の凝固初期における鋳型4内(溶鋼)の様子を示したものであり、図3,4の(b)は、凝固初期から10秒程度経過した凝固中期における鋳型4内(溶鋼)の様子を示したものである。
図3(a)に示すように、チャンファー量が0mmであって鋳型4のコーナ部12にチャンファー13を形成していない場合、凝固初期では、鋳型4のコーナ部12付近の溶鋼2は、横部材10’(第1板材10に相当)と縦部材11’(第2板材11に相当)との2つの部材に接触していて2方向より冷却されることから接触面積が大であり、これら2つの部材によりコーナ部12付近の溶鋼2が冷却されることから当該鋳型4のコーナ部12付近の溶鋼2は、他の部分(直線部16付近の溶鋼2)に比べて急速に冷却される。
したがって、凝固初期の段階では、鋳型4のコーナ部12付近の凝固シェル14の厚みは、直線部16付近の凝固シェル14の厚みに比べて大きくなる。
図3(b)に示すように、凝固中期になると、厚みが大であるコーナ部12近傍の凝固シェル14において、横部材10’と縦部材11’とに接触する接触部が、当該横部材10’と縦部材11’とによって急速に冷却されるため、接触部は大きく熱収縮する。
そのため、接触部すなわちコーナ部12における凝固シェル14が鋳型4の内面から離れ、コーナ部12にエアーギャップ15(空気層)が形成されてしまう。
コーナ部12にエアーギャップ15が生じると、コーナ部12近傍の溶鋼2の熱が鋳型4へと伝わり難くなるので、コーナ部12における溶鋼2の冷却が遅くなる。
よって、図3(b)に示したように、凝固中期では、逆にコーナ部12における溶鋼2の凝固遅れが生じ、コーナ部12における凝固シェル14の厚みが直線部16付近の凝固シェル14に比べて薄くなるという現象が発生する。
凝固中期からそれ以降においては、コーナ部12における凝固シェル14の厚みが直線部16よりも薄いため、鋳型4内周に沿った凝固シェル14の熱収縮量は、直線部16の凝固シェル14がコーナ部12の凝固シェル14よりも大きくなる。その結果、コーナ部12付近の凝固シェル14が図3(b)の矢印方向に引っ張られて溶鋼2と凝固シェル14との境界部分、例えば、図3(b)の位置Kにおいて内部割れが発生する。溶鋼2と凝固シェル14との境界部分における内部割れには偏析元素や非金属介在物などが侵入し、鋳片の内部欠陥となる。
さて、上述したように、鋳型4のコーナ部12にチャンファー13を形成していない場合は、コーナ部12の2面冷却によりエアーギャップ15が生じやすく、最終的に凝固シェル14に内部割れが生じる。そこで、図4に示すように、鋳型の内側における全てのコーナー部に、それぞれ同じ形状を有するテーパ状の角落とし部(チャンファー)を、鋳型4の上端から下端に亘って設け、そのチャンファー量を大きくして1面冷却に近い状態とすることで、コーナ部12にエアーギャップ15を極力生じないようにすることが考えられる。
しかしながら、そのチャンファー量は適宜設定する必要がある。例えば、図4(a)に示すように、チャンファー量をあまりにも大きくした場合、凝固初期では、鋳型4のコーナ部12付近の溶鋼2は第2板材11のみに接触していて鋳型4に対する溶鋼2の接触面積が、チャンファー13を設けない場合に比べ小さくなることから、コーナ部12付近の溶鋼2における冷却速度は抑えられる。
しかしながら、コーナ部12における凝固シェル14の接触部に着目すると、当該接触部はチャンファー13によって急速に冷却されるため大きな熱収縮が発生し、接触部がチャンファー13から離れるため、どうしてもコーナ部12にエアーギャップ15が形成されてしまうこととなる。
このとき、接触部は、チャンファー13に沿いながら当該チャンファー13から鋳型14の内側に向けて離れることから、エアーギャップ15は水平方向に長細い形状となる。ゆえに、エアーギャップ15の厚みWは、チャンファー13を設けない場合に比べ小さくなるものの、当該エアーギャップ15の幅Lはチャンファー13を設けない場合に比べ長くなるという現象が起きる。エアーギャップ15の幅Lが長いことから、コーナ部12において広範囲に亘って溶鋼2の熱が鋳型4へと伝わり難くなる。
特に、平面視において、鋳型4の外側コーナ部12から鋳型4の中心に向けて仮想的に直線Aを引き、その直線A(以降、直線A上の位置を真コーナ部12aということがある)が溶鋼2と接触する位置Pにおける溶鋼2に着目した場合、位置Pの溶鋼2は、エアーギャップ15に対向する鋳型4の内側(内壁)、チャンファー13ではなく、エアーギャップ15が生じていない鋳型4の直線部16の内壁によって冷却されることとなる。
上述したように、真コーナ部12aの溶鋼2に着目すれば、これらの溶鋼2はエアーギャップ15に対向する鋳型4の内面(チャンファー)ではなく、鋳型4の直線部16によって冷却されることとなるので、真コーナ部12aにおける溶鋼2の冷却は他の部分よりも特に遅れることとなる。
よって、図4(b)に示したように、凝固中期では、コーナ部12における凝固シェル14の厚みが直線部16付近の凝固シェル14に比べて小さくなるという現象が発生し、チャンファー13を設けていない場合と同じように、溶鋼2と凝固シェル14との境界部分において内部割れが発生しやすい。
以上述べた如く、チャンファー量は適宜設定する必要があり、小さすぎても大きすぎても、鋳片に内部割れを発生させることとなる。
そこで、発明者はチャンファー量を様々変化させた鋳型4を複数台用意し、各鋳型4を用いて鋳造を行うという実験を行った。また、発明者は上記の実験に加えて、鋳型4のコーナ部12にテーパ状のチャンファー13の代わりに、R状のチャンファー13を形成した鋳型4を複数台用意し、各鋳型4を用いて鋳造を行った。
なお、図5に示すように、R状のチャンファー13はテーパ状のチャンファー13の代わりに鋳型4のコーナ部12を円弧状にしたものである。
鋳型4の短辺の内側寸法Eを300mm,鋳型4の長辺の内側寸法Dを400mm,鋳型4の垂直方向長さe(高さ)を900mmとした。
電磁攪拌装置6における磁束密度を400gauss(鋳型4の中央側で測定)、電磁攪拌装置6での周波数は2Hzとした。浸漬ノズルの孔数は2個とし、鋳造速度を1.0m/mimとした。
鋳片の内部割れの判定は、凝固遅れ部(鋳片の表面から内部側へ20mm程度入った部分迄)に形成された割れの長さが0.5mm以上(L≧0.5mm)であると欠陥有りとした。割れの長さが0.5mm未満のものを「欠陥無し」とした。そして、「欠陥有り」とした数から検査を行った鋳片の総数を割ることで内部割れ発生率を求めた。
図6は、テーパ状のチャンファー13における内部割れ発生率と、R状(コーナR)のチャンファー13における内部割れの発生率とをまとめたものである。
図6に示すように、テーパ状のチャンファー13では、チャンファー量が2〜8mmにおいて内部割れ発生率が0であって内部欠陥が全くなかった。また、テーパ状のチャンファー13では、チャンファー量が8mmを超えると内部割れの発生率が次第に増加した。
R状のチャンファー13では、チャンファー量が6mmにおいて内部割れ発生率が他のR状のチャンファー13に比べ最も低かったが、内部割れは多少見受けられた。
図5に示すように、R状のチャンファー13では、テーパ状のチャンファー13に比べ同じ値のチャンファー量であっても溶鋼2が接触する面積が大きいので、テーパ状のチャンファー13に比べR状のチャンファー13ではコーナ部12における溶鋼2の冷却が速くなったことが原因となり、溶鋼2と凝固シェル14との境界部分において0.5mm以上の内部割れが発生したものと考えられる。
表1は、本発明の連続鋳造用鋳型4を用いて鋳造を行った実施例と、本発明の連続鋳造用鋳型4を用いずに鋳造を行った比較例とを示している。
Figure 2007331000
実施例では、第1水平方向の長さa及び第2水平方向の長さb、即ち、チャンファー量が2〜8mmとなるテーパ状のチャンファー13をコーナ部12のすべてに設けた。また、実施例では、チャンファー13を鋳型4の上端から下端に亘って設けた。
また、鋳型4の短辺の内側寸法Eを300mm,鋳型4の長辺の内側寸法Dを400mm,鋳型4の垂直方向長さ(高さ)を900mmとした。電磁攪拌装置6における磁束密度を400gauss(鋳型4の中央側で測定)、電磁攪拌装置6での周波数は2Hzとした。浸漬ノズルの孔数は2個とし、鋳造速度を1.0m/mimとした。
表1における溶鋼加熱度は、溶鋼2の温度が、溶鋼2が凝固する液相線から得られる液相温度よりΔT℃高いことを示している。言い換えれば、溶鋼加熱度(ΔT)は、鋳造開始の時点で鋳造する溶鋼2の温度が液相線よりも何度高いかを示したものである。この溶鋼加熱度ΔTが高いほど鋳型4のコーナ部12付近において凝固遅れが発生した場合に内部割れが発生し易い。
比較例1〜3では、テーパ状のチャンファー13において、第1水平方向の長さa及び第2水平方向の長さbは1.0mmである。この比較例1〜3では、第1水平方向及び第2水平方向のチャンファー量は2.0mm以下であり、溶鋼2の温度、即ち、溶鋼2の加熱度が高くなるとコーナ部12近傍に内部割れが発生した(表1の内部割れ判定「×」,表1の総合評価「×」)。
比較例4〜6では、テーパ状のチャンファー13において、第1水平方向の長さaは3.0mmであり、第2水平方向の長さbは1.0mmである。この比較例4〜6では、第1水平方向のチャンファー量は2.0mm〜8.0mmの範囲であるが、第2水平方向のチャンファー量は2.0mm以下であり、溶鋼2の加熱度が高くなるとコーナ部12近傍に内部割れが発生した(表1の内部割れ判定「×」,表1の総合評価「×」)。
比較例7〜9では、テーパ状のチャンファー13において、第1水平方向の長さa及び第2水平方向の長さbを6.0mmとした。なお、比較例7〜9では、鋳型4の上端にはテーパ状のチャンファー13を設けず、鋳型4の上端から100mm下がった部分から鋳型4の下端までの範囲にテーパ状のチャンファー13を設けた。この比較例4〜6では、第1水平方向及び第2水平方向のチャンファー量は2.0mm〜8.0mm範囲であるが、チャンファー13が鋳型4の上端から下端に亘って設けられていないため、溶鋼2の温度にかかわらず、コーナ部12近傍に内部割れが発生した(表1の内部割れ判定「×」,表1の総合評価「×」)。
比較例10〜12では、テーパ状のチャンファー13において、第1水平方向の長さaは12.0mmであり、第2水平方向の長さbは8.0mmである。この比較例10〜12では、第2水平方向のチャンファー量は2.0mm〜8.0mmの範囲であるが、第1水平方向のチャンファー量は8.0mmよりも大きく、溶鋼2の加熱度が高くなると真コーナ部12aに内部割れが発生した(表1の内部割れ判定「×」,表1の総合評価「×」)。
比較例13〜15では、テーパ状のチャンファー13において、第1水平方向の長さaは12.0mm及び第2水平方向の長さbは12.0mmである。この比較例13〜15では、第1水平方向及び第2水平方向のチャンファー量は2.0mm〜8.0mmの範囲外であり、溶鋼2の加熱度が高くなると真コーナ部12aに内部割れが発生した(表1の内部割れ判定「×」,表1の総合評価「×」)。
比較例16〜18では、テーパ状のチャンファー13において、第1水平方向の長さaは18.0mmであり、第2水平方向の長さbは8.0mmである。この比較例10〜12では、第2水平方向のチャンファー量は2.0mm〜8.0mmの範囲であるが、第1水平方向のチャンファー量は8.0mmよりも大きく、溶鋼2温度にかかわらず真コーナ部12aに内部割れが発生した(表1の内部割れ判定「×」,表1の総合評価「×」)。 比較例19〜21では、テーパ状のチャンファー13において、第1水平方向の長さa及び第2水平方向の長さbは18.0mmである。この比較例19〜21では、第1水平方向及び第2水平方向のチャンファー量は2.0mm〜8.0mmの範囲外であり、溶鋼2温度にかかわらず真コーナ部12aに内部割れが発生した(表1の内部割れ判定「×」,表1の総合評価「×」)。
以上、比較例1〜21においては、テーパ状に形成されたチャンファー13において、第1水平方向のチャンファー量と第2水平方向のチャンファー量とのいずれか1つでも2.0mm〜8.0mmの範囲から外れると、コーナ部12近傍又は真コーナ部12aに内部割れが発生している。また、比較例1〜21において、テーパ状のチャンファー13が鋳型4の上端から下端に分かって設けられていなければ、コーナ部12近傍に内部割れが発生している。
比較例22〜24では、R状のチャンファー13において、コーナRの大きさは2.0mmである。この比較例22〜24では、コーナ部12近傍に内部割れが発生した(表1の内部割れ判定「×」,表1の総合評価「×」)。
比較例25〜27では、R状のチャンファー13において、コーナRの大きさは4.0mmである。この比較例25〜27では、コーナ部12近傍に内部割れが発生した(表1の内部割れ判定「×」,表1の総合評価「×」)。
比較例28〜30では、R状のチャンファー13において、コーナRの大きさは12.0mmである。この比較例28〜30では、真コーナ部12aに内部割れが発生した(表1の内部割れ判定「×」,表1の総合評価「×」)。
以上、比較例22〜30においては、チャンファー13の形状がR形状であれば、コーナ部12近傍に内部割れが発生している。
これに対し、実施例31〜48では、テーパ状のチャンファー13において、第1水平方向のチャンファー量及び第2水平方向のチャンファー量を2.0mm〜8.0mmとし、テーパ状のチャンファー13を鋳型4の上端から下端までの全範囲に亘って設けていることから、実施例31〜48では、溶鋼加熱度、即ち、溶鋼2温度に関わらず、コーナ部12近傍にも真コーナ部12aにも内部割れはなかった。
以上、本発明の連続鋳造用鋳型4によれば、鋳型4の内側における全てのコーナー部12に水平の長さが2〜8mmとなるテーパ状のチャンファー13を設け、各チャンファー13を同じ形状とし、且つ、この各チャンファー13を鋳型4の上端から下端に亘って形成しているので、溶鋼2の凝固遅れを防止して凝固遅れによる内部欠陥がない鋳片を製造することができる。
連続鋳造装置の概念図である。 鋳型の平面概略図である。 鋳型にチャンファーを設けない場合の溶鋼の様子を示した図である。 鋳型にチャンファー量が大なるチャンファーを設けた場合の溶鋼の様子を示した図である。 R状のチャンファーの拡大平面図である。 チャンファー量と内部割れ発生率をまとめたものである。
符号の説明
1 連続鋳造装置
2 溶鋼
3 タンディッシュ
4 鋳型
5 サポートロール
6 電磁攪拌装置
7 浸漬ノズル
10 第1板材
11 第2板材
12 コーナ部
13 角落とし部(チャンファー)

Claims (1)

  1. 溶鋼を連続的に鋳造する角筒状の鋳型であって、
    前記鋳型の内側における全てのコーナー部に、水平方向の長さが2mm以上8mm以下となるテーパ状の角落とし部を設けており、前記角落とし部は、それぞれ同じ形状とされていると共に鋳型の上端から下端に亘って形成されていることを特徴とする連続鋳造用鋳型。
JP2006166517A 2006-06-15 2006-06-15 連続鋳造用鋳型 Expired - Fee Related JP4864559B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006166517A JP4864559B2 (ja) 2006-06-15 2006-06-15 連続鋳造用鋳型

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006166517A JP4864559B2 (ja) 2006-06-15 2006-06-15 連続鋳造用鋳型

Publications (2)

Publication Number Publication Date
JP2007331000A true JP2007331000A (ja) 2007-12-27
JP4864559B2 JP4864559B2 (ja) 2012-02-01

Family

ID=38930975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006166517A Expired - Fee Related JP4864559B2 (ja) 2006-06-15 2006-06-15 連続鋳造用鋳型

Country Status (1)

Country Link
JP (1) JP4864559B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8245760B2 (en) 2007-11-19 2012-08-21 Posco Continuous cast slab and method for manufacturing the same
JP2013136081A (ja) * 2011-12-28 2013-07-11 Mishima Kosan Co Ltd 連続鋳造鋳型
KR101360564B1 (ko) * 2011-12-27 2014-02-24 주식회사 포스코 연속주조 주형
DE102012108952A1 (de) 2012-09-21 2014-05-15 Voestalpine Stahl Gmbh Vorrichtung zum Stranggießen von Metallen
JP2015128776A (ja) * 2014-01-06 2015-07-16 三島光産株式会社 連続鋳造用鋳型
TWI569907B (zh) * 2014-07-24 2017-02-11 Jfe Steel Corp Continuous casting method of steel
JP2020171954A (ja) * 2019-04-12 2020-10-22 日本製鉄株式会社 鋼の連続鋳造方法
JP2021115607A (ja) * 2020-01-28 2021-08-10 日本製鉄株式会社 チタン鋳造用装置
JP6954514B1 (ja) * 2020-06-18 2021-10-27 Jfeスチール株式会社 連続鋳造方法
WO2021256243A1 (ja) * 2020-06-18 2021-12-23 Jfeスチール株式会社 連続鋳造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103831412B (zh) * 2014-02-26 2017-01-18 钢铁研究总院 一种控制中厚板表面边直裂缺陷的生产方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163242A (ja) * 1986-12-15 1988-07-06 アセア アクチーボラグ 磁気弾性力変換器
JPH09271902A (ja) * 1996-04-08 1997-10-21 Nippon Steel Corp 角ビレットの連続鋳造用チューブモールド

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163242A (ja) * 1986-12-15 1988-07-06 アセア アクチーボラグ 磁気弾性力変換器
JPH09271902A (ja) * 1996-04-08 1997-10-21 Nippon Steel Corp 角ビレットの連続鋳造用チューブモールド

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8245760B2 (en) 2007-11-19 2012-08-21 Posco Continuous cast slab and method for manufacturing the same
KR101360564B1 (ko) * 2011-12-27 2014-02-24 주식회사 포스코 연속주조 주형
CN104023874A (zh) * 2011-12-27 2014-09-03 Posco公司 连铸模具
JP2013136081A (ja) * 2011-12-28 2013-07-11 Mishima Kosan Co Ltd 連続鋳造鋳型
DE102012108952A1 (de) 2012-09-21 2014-05-15 Voestalpine Stahl Gmbh Vorrichtung zum Stranggießen von Metallen
JP2015128776A (ja) * 2014-01-06 2015-07-16 三島光産株式会社 連続鋳造用鋳型
TWI569907B (zh) * 2014-07-24 2017-02-11 Jfe Steel Corp Continuous casting method of steel
JP2020171954A (ja) * 2019-04-12 2020-10-22 日本製鉄株式会社 鋼の連続鋳造方法
JP7284394B2 (ja) 2019-04-12 2023-05-31 日本製鉄株式会社 鋼の連続鋳造方法
JP2021115607A (ja) * 2020-01-28 2021-08-10 日本製鉄株式会社 チタン鋳造用装置
JP7376790B2 (ja) 2020-01-28 2023-11-09 日本製鉄株式会社 チタン鋳造用装置
JP6954514B1 (ja) * 2020-06-18 2021-10-27 Jfeスチール株式会社 連続鋳造方法
WO2021256243A1 (ja) * 2020-06-18 2021-12-23 Jfeスチール株式会社 連続鋳造方法
TWI784570B (zh) * 2020-06-18 2022-11-21 日商杰富意鋼鐵股份有限公司 連續鑄造方法
EP4170054A4 (en) * 2020-06-18 2023-06-21 JFE Steel Corporation CONTINUOUS CASTING PROCESS

Also Published As

Publication number Publication date
JP4864559B2 (ja) 2012-02-01

Similar Documents

Publication Publication Date Title
JP4864559B2 (ja) 連続鋳造用鋳型
JP5673149B2 (ja) 鋼の連続鋳造用鋳型及び鋼の連続鋳造方法
JP5933751B2 (ja) 連続鋳造鋳型
JP6947737B2 (ja) 鋼の連続鋳造方法
CN108907121B (zh) 幂函数结晶器铜管
JPH04172155A (ja) 連続鋳造用誘導加熱タンディッシュ
JPH09276994A (ja) 連続鋳造用鋳型
TW202003134A (zh) 用於鋼之薄板鑄造的連續鑄造用設備及連續鑄造方法
WO2013151061A1 (ja) チタンまたはチタン合金からなる鋳塊の連続鋳造用の鋳型およびこれを備えた連続鋳造装置
JP5267315B2 (ja) 連続鋳造用タンディッシュ及び連続鋳造方法
TWI656924B (zh) 連續鑄造用鑄模以及鋼之連續鑄造方法
CN110523934A (zh) 一种组合式可修复小方坯高拉速结晶器
KR101660773B1 (ko) 주조용 몰드
JP6520272B2 (ja) 連続鋳造用鋳型及び連続鋳造方法
JP2018044820A (ja) 溶融層厚みの測定装置、測定方法及び鋼の製造方法
KR101400040B1 (ko) 턴디쉬의 용강온도 유지방법
KR101400047B1 (ko) 극저탄소강 주조 제어방법
JP2018089669A (ja) 連続鋳造方法
JP2018069324A (ja) 鋼の連続鋳造用鋳型装置及びそれを用いた表層改質鋳片の製造方法
JP2010240686A (ja) 溶鋼の鋳型内流動制御方法
JP3267545B2 (ja) 連続鋳造方法
WO2013031431A1 (ja) チタンまたはチタン合金からなるスラブの連続鋳造装置
JP3283746B2 (ja) 連続鋳造用鋳型
JP6551161B2 (ja) 双ロール鋳造装置用の注湯ノズル、双ロール鋳造装置、及び鋳片の鋳造方法
JPS63215352A (ja) 連続鋳造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees