JP2020171954A - 鋼の連続鋳造方法 - Google Patents

鋼の連続鋳造方法 Download PDF

Info

Publication number
JP2020171954A
JP2020171954A JP2019076308A JP2019076308A JP2020171954A JP 2020171954 A JP2020171954 A JP 2020171954A JP 2019076308 A JP2019076308 A JP 2019076308A JP 2019076308 A JP2019076308 A JP 2019076308A JP 2020171954 A JP2020171954 A JP 2020171954A
Authority
JP
Japan
Prior art keywords
slab
reduction
solid phase
phase ratio
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019076308A
Other languages
English (en)
Other versions
JP7284394B2 (ja
Inventor
研一郎 伊澤
Kenichiro Izawa
研一郎 伊澤
村上 敏彦
Toshihiko Murakami
敏彦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019076308A priority Critical patent/JP7284394B2/ja
Publication of JP2020171954A publication Critical patent/JP2020171954A/ja
Application granted granted Critical
Publication of JP7284394B2 publication Critical patent/JP7284394B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

【課題】連続鋳造中、特に高固相率領域で鋳片を圧下するに際し、圧下ロールとして凸型ロールを用いることなく、過大な圧下力を必要とすることのない、鋼の連続鋳造方法を提供する。【解決手段】角落とし部2を付した鋳造断面4を有する鋳型1を用い、鋳片31の鋳片断面8のコーナー部14に面取り形状7を設けた鋳片とし、連続鋳造中にロール圧下することにより、面取り部を有しない鋳片をロール圧下する場合と比較し、同じ圧下量であれば圧下力を低減することができる。また、同じ圧下力であればより大きな圧下量で圧下を行うことができる。鋳片厚み中心固相率が0.8以上の領域においてロールによって鋳片を圧下すると好ましい。【選択図】図1

Description

本発明は、鋼の連続鋳造プロセスにおける中心偏析及びポロシティ欠陥を、効率的かつ抜本的に低減することを目的とする、鋼の連続鋳造方法に関する。
連続鋳造方法によってスラブやブルームなどの鋳片を鋳造する場合に、鋳片の中心部にリンやマンガン等の成分が偏析する、いわゆる中心偏析が発生することがある。また、鋳片中心部にはセンターポロシティと呼ばれる空孔が発生する。
連続鋳造中の凝固末期において、鋼が凝固する際の凝固収縮に伴って、鋳片内の所定体積に占める鋼量が不足する。未凝固溶鋼が流動可能である鋳片部位では、未凝固溶鋼が最終凝固部の凝固完了点に向かって流動し、固液界面の不純物濃化溶鋼が最終凝固部に集積し、これが中心偏析の原因となる。また、未凝固溶鋼が流動できない位置(鋳片中心固相率が0.8以上)では、鋳片中心部に空隙が生じ、センターポロシティの原因となる。
中心偏析を軽減するためには、厚み中心が固液共存領域であって未凝固溶鋼が流動可能である領域において、溶鋼の凝固収縮量に見合った分だけ凝固シェルを圧下することにより、最終凝固部付近の溶鋼流動を抑えることが有効となる。また、センターポロシティを軽減するためには、未凝固溶鋼が流動できない凝固完了位置付近又は完全凝固後の鋳片を圧下してセンターポロシティを圧着することが有効となる。このような考え方に基づき、連続鋳造末期の凝固完了前後においてサポートロールによって鋳片を圧下する軽圧下技術が用いられている。
連続鋳造においては、上記のように凝固収縮を補償する適切な圧下を付与することにより、中心偏析を低減することが可能である。実機では、中心固相率0.8以下の低固相率領域において0.8〜1.2mm/min程度の適正圧下を加える、軽圧下技術が広く適用されている。
特許文献1には、圧下の割合を0.36〜0.72mm/minとして、中心固相率が流動限界固相率以上の部位まで該圧下を行うことを特徴とするスラブの連続鋳造方法が紹介されている。流動限界固相率以上の部位(中心固相率が0.8以上)においても圧下勾配を変化させていない。
特許文献2は、少なくとも1対の対向するロール間で圧下しつつ鋼スラブ連続鋳造片を引抜く連続鋳造方法において、該鋳片中心部の固相率が0.1〜0.4となる位置から0.8〜0.9の範囲内となる任意位置に至る領域では、全凝固収縮量を補償するように鋳片を圧下し、上記任意位置以降凝固が完了するまでの高固相率の領域は、鋳片の引抜方向長さ(単位:m)当たりの鋳片厚みに対する圧下量の割合(%)を示す圧下勾配(%/m)が、鋼のC濃度による式で規定される範囲を満足するように圧下する連続鋳造方法が提案されている。
連続鋳造中に凝固が完了する前後において鋳片を圧下しようとするとき、すでに鋳片の両短辺側は凝固が完了して温度も低下しているために圧下に伴う変形抵抗が大きく、所定の圧下量が得られないことがあった。そこで、ロールの直径がロール幅方向に一定であるロール(以下「フラットロール」という。)を用いるのではなく、鋳片幅中央部に対応する部分のロール直径が大きく、鋳片幅両側に対応する部分のロール直径が幅中央部に比較して小さい形状のロール(以下「凸型ロール」という。)を用い、鋳片の凝固が完了した両短辺側は圧下せず、鋳片幅中央部のみを圧下する技術が開発された(特許文献3参照)。
特許文献4には、垂直曲げ型連続鋳造機を用いた連続鋳造において、曲げ矯正時の鋳片コーナー部表面割れ発生を防止する目的で、連続鋳造鋳型の長辺と短辺で区画される矩形空間の四隅を、所定の長さ比で直角三角形状に取り除いた鋳造空間を有する鋳型を用いる発明が開示されている。このような面取り形状とした鋳造空間を有する鋳型をチャンファーモールドと称している。チャンファーモールドとすることによって、鋳片コーナー部の表面割れを抑制できるとしている。
特許文献5には、連続鋳造中の鋳片コーナー部での凝固遅れに起因する内部欠陥を防止する目的で、鋳型のすべてのコーナー部に角落とし部(チャンファー)を形成する発明が開示されている。
特開平06−297125号公報 特開平11−77269号公報 特開2009−279652号公報 国際公開WO2016/013186号 特開2007−331000号公報
連続鋳造中の鋳片を圧下する場合、特に中心固相率が0.8以上の高固相率の領域で大きな圧下量で鋳片を圧下する場合においては、圧下ロールとしてフラットロールを用いる場合には大きな圧下能力を必要とする。一方、圧下ロールとしてフラットロールではなく凸型ロールを用いることとすれば、鋳片幅両端部の圧下抵抗が大きい部分の圧下を行わないことにより、圧下を実現するための圧下ロールの圧下力を軽減することができるものの、凸型ロールを用いて圧下を行う結果として、連続鋳造後の鋳片には表面に凹みが形成され、この凹み部が原因となって、後工程の熱間圧延において疵の原因となることがあった。
本発明は、鋼の連続鋳造方法であって、連続鋳造中、特に高固相率領域で鋳片を圧下するに際し、圧下ロールとして凸型ロールを用いることなく、過大な圧下力を必要とすることのない、鋼の連続鋳造方法を提供することを目的とする。
即ち、本発明の要旨とするところは以下のとおりである。
[1]連続鋳造鋳型における、鋳片が通過する鋳造空間の鋳型下端部における断面を鋳造断面と呼び、当該鋳造断面形状は、矩形形状であって矩形の四隅に面取り形状を有し(以下、矩形から面取りによって取り除かれた部分を「角落とし部」という。)、鋳造断面の長辺側外周における前記角落とし部の辺長さが5mm以上であり、
前記連続鋳造鋳型を用いて連続鋳造を行い、連続鋳造中においてロールによって鋳片を圧下することを特徴とする、鋼の連続鋳造方法。
[2]前記鋳造断面の短辺側外周における前記角落とし部の辺長さが、鋳片厚み中心固相率が0.8以上で凝固完了位置までの領域における鋳片の総圧下量以上であることを特徴とする、[1]に記載の鋼の連続鋳造方法。
[3]鋳片厚み中心固相率が0.8以上の領域においてロールによって鋳片を圧下することを特徴とする、[1]又は[2]に記載の鋼の連続鋳造方法。
[4]鋳片厚み中心固相率が0.8以上凝固完了位置までの領域における圧下勾配を0.8〜1.2mm/min以上とすることを特徴とする、[3]に記載の鋼の連続鋳造方法。
本発明は、角落とし部を付した鋳造断面を有する鋳型を用い、鋳片の鋳片断面のコーナー部に面取り形状を設けた鋳片とし、連続鋳造中にロール圧下することにより、面取り部を有しない鋳片をロール圧下する場合と比較し、同じ圧下量であれば圧下力を低減することができる。また、同じ圧下力であればより大きな圧下量で圧下を行うことができる。
鋳型断面の形状と鋳片断面の形状の関係を示す図であり、(A)は鋳型のA−A矢視側面断面図、(B)は鋳型のB−B矢視平面断面図、(C)は鋳造断面、(D)は鋳片断面を示す図である。 (A)は本発明の角落とし部を有する鋳片を圧下する状況を示す断面図であり、(B)は対応する鋳造断面を示す図である。 角落とし部の形状を示す図である。 変形解析で求めた、角落とし部の長辺側辺長さと必要圧下荷重との関係を示す図であり、(A)は鋳片幅450mm、(B)は鋳片幅2000mmの場合である。 高固相率領域における圧下ロール対の配置を示す図であり、(A)は1対、(B)は2対、(C)は3対を有する場合である。 連続鋳造中に圧下ロールで圧下する際の、角落とし部の有無による必要圧下荷重の差異について、横軸を長辺側辺長さとして示す図である。 変形解析で求めた、角落とし部の短辺側辺長さと必要圧下荷重との関係を示す図である。 ラボ連続鋳造装置で得られた、高固相率領域での圧下勾配と鋳片中心部最大Mn偏析度との関係を示す図である。 高固相率領域での圧下ロール対を用いた圧下に加え、低固相率領域で軽圧下を行う状況を示す図である。 連続鋳造中に圧下ロールで圧下する際の、角落とし部の長辺側辺長さと必要圧下荷重との関係を示す図である。 連続鋳造中に圧下ロールで圧下する際の、角落とし部の長辺側辺長さと圧下量との関係を示す図である。
連続鋳造中における鋳片の中心固相率の変化について説明する。鋳片の上面側と下面側の液相線が鋳片厚み中心部で接した地点(凝固開始位置)から中心固相率が0より大きくなり、下流側に行くに従って中心固相率が増大する。凝固開始位置より上流側では中心固相率が0である。そして、鋳片の上面側と下面側の固相線が鋳片厚み中心部で接した地点で凝固が完了し、中心固相率が1.0となる。この点を「凝固完了位置」ともいう。凝固完了位置の下流側では、中心固相率は1.0のままである。以下便宜的に、凝固完了位置を「中心固相率が1.0の位置」ということがある。また、中心固相率をfsと表示することがある。
鋳造中の鋳造方向各位置における中心固相率については、連続鋳造中の鋳片厚み方向中心部の温度TCを1次元の伝熱凝固計算によって求めた上で、液相線温度TL、固相線温度TSを用いて下記(1)式で算出することができる。伝熱・凝固計算にあたってはエンタルピー法や等価比熱法などを用いることができる。TC>TLでは中心固相率=0、TS>TCでは中心固相率=1.0となる。
中心固相率=(TL−TC)/(TL−TS) (1)
前述のように、連続鋳造においては、凝固収縮を補償する適切な圧下を付与することにより、中心偏析を低減することが行われている。実機では、中心固相率0.8以下の低固相率領域において軽圧下を行っており、そのような中心固相率の範囲では、凝固収縮を補償するための軽圧下量は、0.8〜1.2mm/min程度とされている。
本発明においては、中心固相率が0.8以上1.0以下の高固相率領域においても、適正な圧下を行えば、鋳片の中心偏析・センターポロシティをより改善できるのではないかと着想した。
前述のように、連続鋳造中に凝固が完了する前後、特に中心固相率が0.8以上の高固相率領域及び凝固完了後において鋳片を圧下しようとするとき、すでに鋳片の両短辺側は凝固が完了して温度も低下しているために圧下に伴う変形抵抗が大きく、所定の圧下量が得られないことがあった。圧下ロールとしてフラットロールではなく凸型ロールを用いることとすれば、前述のとおり、鋳片幅両端部の圧下抵抗が大きい部分の圧下を行わないことにより、圧下を実現するための圧下ロールの圧下力を軽減することができる。しかし、凸型ロールを用いて圧下を行う結果として、連続鋳造後の鋳片には表面に凹みが形成され、この凹み部が原因となって、後工程の熱間圧延において疵の原因となることがあった。
そこで本発明では、中心固相率が0.8以上の高固相率領域において鋳片を圧下するに際し、凸型ロールを用いることなく、フラットロールを圧下ロールとして採用しつつ、同じ圧下量を実現する上で圧下力を低減し、あるいは同じ圧下力で従来よりも大きな圧下量を実現することのできる、鋼の連続鋳造方法を実現すべく検討を行った。
鋳片31の鋳造方向に垂直な断面(以下単に「鋳片断面8」という。)の形状において、図1(D)に示すように、鋳片31のコーナー部14に面取り形状7を設ける。このような形状の鋳片31について、図2(A)に示すように、凝固が完了する前後において圧下ロール22としてフラットロールを用いて鋳片31を圧下する場合を想定する。鋳片31の厚み中心部で幅方向中央よりには、固相32に囲まれて固液共存層33が残存している。一方、鋳片31の短辺13付近は、鋳片31の厚み全体にわたって凝固が完了している(凝固完了部35)。この凝固完了部35において、圧下ロール22と鋳片31が接する部分の長さが、面取り形状7の分だけ短くなる。このような形状の鋳片を連続鋳造中に圧下する場合、圧下力と圧下量との関係が面取り形状によって影響を受けるか否か、今までは全く知られていなかった。
図2に示すように、鋳片31のコーナー部14に面取り形状を有する鋳片31を、連続鋳造中に圧下ロール22としてフラットロールを用いて所定の圧下量が得られるように圧下した際に、必要とする圧下力について、面取り形状を設けることによって必要圧下力が低減するか否かについて、本発明者らは、有限要素法を用いた変形解析により、変形挙動を求めることとした。
ここで、図1に基づいて、鋳片31の断面形状と鋳型の断面形状との関係について説明する。
溶鋼の連続鋳造において、連続鋳造用の鋳型が準備される。鋳型は、溶鋼を注入して初期凝固シェルを形成しつつ鋳片が下方へ向けて通過するための空洞部を有している。図1(A)に示すように、鋳型1が有するこの空洞部をここでは鋳造空間3と呼ぶ。鋳造空間3は、鋳型1の下端44において下部に開放されている。この鋳造空間の鋳型下端部における断面(鋳造方向に垂直な断面)を、ここでは鋳造断面4と呼ぶ(図1(C)参照)。鋳型1の鋳造空間3に溶鋼が注入され、鋳型1の下端44から鋳片31として引き抜かれる。引き抜かれた鋳片31の鋳片断面8(鋳片の鋳造方向に垂直な断面)の形状(図1(D))は、上記鋳造断面4にならった形状となる(図1(C)参照)。従って、鋳片断面8の形状として、図1(D)にあるような面取り形状7を実現するためには、鋳型1の鋳造断面4の形状として、図1(C)にあるような面取り形状7を設けることが必要である。そこでここでは、鋳型1の鋳造断面4の形状について論じることとする。
鋳片断面8のコーナー部の形状を面取り形状7とするため、鋳型の鋳造断面4の形状において、断面形状が矩形形状であって矩形の四隅に面取り形状を有するような形状とする。ここでいう「矩形11」は、面取り形状を形成しない場合の形状であり、図1(C)において二点鎖線で記載された部分を含む矩形形状である。そして、この矩形形状から面取りによって取り除かれた部分を「角落とし部2」と名付ける。図3において、ドットハッチングした部分が角落とし部2である。角落とし部2の最も単純な形状は直角三角形である。直角三角形の直角部は、鋳造断面形状を矩形11としたときのコーナー部14の頂点15に位置する。直角三角形の直角部と接する一辺は、鋳造断面4の長辺12側外周に沿っている。当該一辺の長さを「長辺側辺長さa」という。直角部と接する他の一辺は鋳造断面の短辺13側外周に沿っている。当該他の一辺の長さを「短辺側辺長さb」という(図1(C)参照)。
以上のとおりであることから、図1(D)に示すような、鋳片31の鋳片断面8のコーナー部14に面取り形状を設けた鋳片をロール圧下するに際しての圧下挙動を説明するに際し、鋳片断面8の形状ではなく、図1(C)に示すような鋳型の鋳造断面4の形状に沿って説明を行う。
有限要素法を用いた変形解析を行うに際し、鋳片サイズ(鋳造断面サイズ)が幅:450mm×厚さ:350mmのブルームの連続鋳造において、鋳造断面4のコーナー部14の角落とし部2の形状を二等辺三角形(長辺側辺長さa=短辺側辺長さb)とし、長辺側辺長さaを0mmから30mmまでの5種類として設定する。鋳片の圧下については、ロール径:350mmの圧下ロールを用いた圧下ロール対を連続で3対用い、3対の圧下ロール対の累積圧下量を6mmとする。圧下位置は、中心固相率が0.30となる位置の前後と、中心固相率が0.90となる位置の前後の2種類とした。結果を図4(A)に示す。横軸が角落とし部の長辺側辺長さa、縦軸が最終圧下ロールの必要圧下荷重である。圧下を行う部位の中心固相率が0.3の場合と0.9の場合のそれぞれについて、折れ線グラフとしている。図4(A)から明らかなように、角落とし部2の長辺側辺長さaが大きくなるに従い、同じ2mmの圧下量を実現する上での必要圧下荷重が低減することが明らかである。即ち、鋳造断面4のコーナー部14に角落とし部2を設けることによって鋳片断面8に面取り形状7を形成し、そのような鋳片についてフラットロールで圧下することにより、鋳片断面8が面取り形状7を有しない矩形断面である通常の鋳片に比較し、同じ圧下量を得るための必要圧下荷重を低減できることが明らかとなった。図4(A)に示すように、圧下位置での鋳片中心固相率が0.30の場合も0.90の場合もいずれでもこの現象が見られた。
鋳片サイズ(鋳造断面サイズ)が幅:2000mm×厚さ:180mmのスラブの連続鋳造においても、同様に有限要素法を用いた変形解析を行った。角落とし部の形状は上記ブルームの場合と同様であり、ロール径:350mmの圧下ロールで2mmの圧下量としている。結果を図4(B)に示す。図4(A)のブルームの場合と同様、角落とし部2の長辺側辺長さa(短辺側辺長さbに等しい)を大きくするほど、必要圧下荷重が小さくなることが確認できた。
次に、実際のブルームの連続鋳造において、鋳型1の鋳造断面4の形状に角落とし部2を設けて、鋳造する鋳片断面8の形状に面取り形状7を形成した上で、連続鋳造中にフラットロールを用いて圧下を行い、所定の圧下量をえるための必要圧下荷重の計測を行った。鋳造条件は上記有限要素法を用いた変形解析の場合と同じであり、鋳造する品種は、0.20質量%Cの中炭素鋼、鋳片サイズ(鋳造断面サイズ)は幅:450mm×厚さ:350mmである。鋳造断面8コーナー部14の角落とし部2の形状を二等辺三角形(長辺側辺長さa=短辺側辺長さb=10mm)とし、角落とし部2を設けた場合と設けなかった場合について鋳造を行った。連続鋳造のサポートロール帯に、図5(C)に示すように圧下ロール対を3対設け、ロール径:350mmの圧下ロールで累積圧下量を6mmとする。角落とし部2の長辺側辺長さaを横軸、必要圧下荷重を縦軸とした結果を図6に示す。圧下位置は、中心固相率が0.30前後となる位置(図中●印)と、中心固相率が0.90前後となる位置(図中黒四角印)の2種類とした。図6においては、上記有限要素法を用いた変形解析結果(図4(A))を併せてプロットしている(図中○、□印)。図6から明らかなように、変形解析結果と実鋳造結果はよく一致しており、角落とし部を設けたことによる必要圧下荷重の低減効果が明らかである。
以上の変形解析及び実鋳造試験においては、角落とし部2の形状について、長辺側辺長さaと短辺側辺長さbが等しい二等辺三角形の形状である場合について検討を行った。次に、長辺側辺長さaは一定としつつ、短辺側辺長さbを変更した場合の影響について検討した。その結果、鋳造断面の短辺側外周における前記角落とし部の辺長さ(短辺側辺長さb)が、鋳片厚み中心固相率が0.8以上で凝固完了位置までの領域における鋳片の総圧下量以上であると、角落とし部を設けた効果を享受できることがわかった。鋳片のコーナー部に面取り形状を有する鋳片について、厚み中心部に未凝固溶鋼が残存する位置においてロールによって圧下を行う。鋳片の短辺付近は厚み中心部まで凝固が完了しており、コーナー部には面取り形状が形成されているので、鋳片の短辺付近では面取り形状が形成されている上面側と下面側が優先的に圧下変形を受け、角落とし部がつぶれるような変形となる。このとき、角落とし部2の短辺側辺長さbが圧下量よりも大きければ、圧下した後も角落とし部の形状が残存しており、角落とし部を設けた効果を発揮することができる。圧下によって角落とし部がつぶれる変形を受けるのは、鋳片の厚み中心部に未凝固溶鋼が残存している、即ち凝固完了位置よりも上流側で圧下を行った場合である。凝固完了位置よりも上流側で複数対の圧下ロール対で圧下を行う場合においては、その総圧下量よりも、短辺側辺長さが長ければよい。ただし、鋳片厚み中心固相率が0.8以下で圧下した場合には、圧下によっても角落とし部がつぶれる変形はわずかであるため、短辺側辺長さが鋳片厚み中心固相率が0.8以上で凝固完了位置までの領域における鋳片の総圧下量以上であればよい。総圧下量が角落とし部2の短辺側辺長さbを上回る場合、角落とし部2の面取り形状は完全に押下され、面取り形状7による圧下荷重低減効果を享受できなくなる。
図7は、角落とし部2の短辺側辺長さbを種々変更し、中心固相率が0.8以上で凝固完了位置までの領域における総圧下量が5.6mmの場合(図中○印)と10mmの場合(図中□印)について、必要圧下荷重を、前記変形解析を用いて算出した結果である。総圧下量が10mmである場合、角落とし部の短辺側辺長さbが総圧下量(10mm)を超えるプロットでは必要圧下荷重が低減している一方、短辺側辺長さbが総圧下量(10mm)未満であるプロット(b=5mm)では必要となる圧下荷重は角鋳型(b=0mm)のそれと変わらない。総圧下量が5.6mmである場合も同様に、短辺側辺長さbが総圧下量(5.6mm)を超えるプロットでは必要圧下荷重が低減している一方、短辺側辺長さbが総圧下量(5.6mm)未満であるプロット(b=5mm)では必要となる圧下荷重は角鋳型(b=0mm)のそれと変わらない。
以上説明したように、図1(C)に示すように角落とし部2を付した鋳造断面4を有する鋳型を用い、図1(D)に示すような、鋳片31の鋳片断面8のコーナー部14に面取り形状を設けた鋳片とし、連続鋳造中にロール圧下することにより、面取り部を有しない鋳片をロール圧下する場合と比較し、同じ圧下量であれば圧下力を低減することができる。また、同じ圧下力であればより大きな圧下量で圧下を行うことができる。この点は、連続鋳造中において圧下を行う鋳造方向43位置が、低固相率領域、高固相率領域のいずれであっても有効である。特に、中心固相率が0.8以上の高固相率領域で鋳片に圧下を行う場合に、大きな効果を発揮することができる。図4(A)から明らかなように、角落とし部2の長辺側辺長さaが5mm以上であれば、角落とし部2を設けたことによる必要圧下荷重の低減効果を発揮することができる。そこで本発明では、長辺側辺長さaの下限を5mmと定めた。長辺側辺長さaが8mm以上であればより好ましい。
次に、中心固相率が0.8以上の高固相率領域で鋳片に圧下を行う場合の好適な圧下勾配について説明する。
前述のように、連続鋳造においては、凝固収縮を補償する適切な圧下を付与することにより、中心偏析を低減することが行われている。実機では、中心固相率0.8以下の低固相率領域において軽圧下を行っており、そのような中心固相率の範囲では、凝固収縮を補償するための軽圧下量は、0.8〜1.2mm/min程度とされている。
本発明においては、中心固相率が0.8以上1.0以下の高固相率領域においても、適正な圧下を行えば、鋳片の中心偏析・センターポロシティをより改善できるのではないかと着想した。そこで、ラボ連続鋳造装置を用いた実験により確認を行った。実験装置は実機のセグメントによるロール多段圧下を模擬可能な機構を備え、凝固中の鋳片内部温度を直接測温しながら、任意の勾配によるロール圧下を、中心固相率0.3〜凝固完了まで継続して加えることができるものである。鋳片中心固相率が0.8から1.0までの区間の高固相率領域において鋳片の圧下を行い、圧下に際して圧下勾配(時間当たりの圧下量(mm/min))を種々変化させ、鋳片厚み中心部の最大Mn偏析度に及ぼす影響の評価を行った。Mn偏析評価に当たっては、圧下定常部のセンター部・鋳造方向断面サンプルを対象に、EPMAによるビーム径50μmでMn濃度マッピング分析を実施した。マッピングデータのうち、偏析最悪部を含む2mm幅のラインを設定し、濃度のピーク値Cを測定視野内平均濃度C0で除した値を、最大Mn偏析度C/C0とした。
ラボ連続鋳造装置を用いた評価結果を図8に示す。鋳片中心固相率が0.8から1.0までの区間の高固相率領域において圧下を行い、圧下における圧下勾配を増加させると、鋳片厚み中心部の最大Mn偏析度は減少していくことがわかる。そして、鋳片中心固相率が0.8から1.0の区間における圧下勾配が3.0mm/minとなったときの最大Mn偏析度は1.2、圧下勾配が4.5mm/minとなったときの最大Mn偏析度は1.15となった。さらに当該区間での圧下勾配が5.5mm/minで最大Mn偏析度は1.10、さらに、圧下勾配が6.0mm/minでは最大Mn偏析度は1.08まで大きく低減可能であることがわかった。
以上の結果を踏まえ、中心固相率が0.8から1.0までの領域(高固相率領域51)で行う圧下の圧下勾配は、5.5mm/min以上とすると好ましい。5.5mm/min以上であれば、中心偏析とセンターポロシティを良好に低減することができるからである。また、高固相率領域51で行う圧下の圧下勾配は、10mm/min以下とすると好ましい。10mm/min以下であれば、割れが発生しないことを実験装置で確認しているためである。
中心固相率が0.8から1.0までの高固相率領域51で圧下を行う圧下ロール対23の数については、1対以上とする。圧下ロール対の数が多いほど良好な結果を得ることができる。図5(A)は圧下ロール対が1対の場合、(B)は2対、(C)は3対の場合を示している。
中心固相率が0.8以下の固相率が低い領域における好ましい鋳片の圧下条件について説明する(図9参照)。従来から知られているように、固相率が低い領域において、凝固収縮にみあった鋳片の圧下を行うことにより、鋳片の中心偏析が低減することが知られている。固相率が低い領域における中心固相率の範囲では、凝固収縮を補償するための軽圧下量は、0.8〜1.2mm/min程度とされている。本発明においても、中心固相率が0.3から0.75までの領域(低固相率領域52)において、圧下勾配が0.8〜1.2mm/minの圧下を行うことにより、鋳片の中心偏析を低位に保つことが可能となる。中心固相率の下限については、軽圧下が有効となる固相率範囲の一般的な下限であることから定めた。一方、中心固相率が0.75を超えると、圧下勾配の上限が緩和されることから、低固相率領域の上限中心固相率を0.75と定めた。低固相率領域における圧下勾配の範囲については、凝固収縮見合いとされる、一般的な軽圧下適正勾配に準ずるものである。
前記低固相率領域52と高固相率領域51の間の領域(中心固相率が0.75〜0.8の間の領域、以下「遷移固相率領域53」という。)では圧下勾配が0.8mm/min以上の圧下を行えばよい(図9参照)。遷移固相率領域53の圧下勾配の上限は、高固相率領域51と同様、10mm/min以下とすると好ましい。即ち、遷移固相率領域53においては、低固相率領域52と同じ圧下勾配としてもよく、あるいは高固相率領域51と同じ圧下勾配としてもよく、低固相率領域52での圧下勾配(軽圧下)から高固相率領域51での圧下勾配(高圧下)に順次移行する遷移領域としてもかまわない。
中心固相率が0.8から1.0までの高固相率領域の圧下ロールの直径については、ロール直径が350mm以上であれば内部割れが発生しないことを確認している。
鋳片形状が、幅:450mm、厚さ:340mmのブルームを鋳造する湾曲型のブルーム連続鋳造において、本発明を適用した。用いた連続鋳造装置は、一般的な軽圧下機能を持つ連続鋳造装置に該当する。鋳造速度は0.8m/分であり、中心固相率が0.8から凝固完了位置まで鋳造長で0.8〜1.0mの距離であることを確認している。
連続鋳造装置のロール配置については、図9に示すように、上流側41の固相率が低い側においては通常のサポートロール21(直径350mm)によって鋳片を支持しており、凝固完了位置前後でのサポートロール帯のロールピッチは400mmである。上面側と下面側に対面するサポートロールのロール間隔を順次狭めることによって軽圧下を行うことができる。
また、下流側42の固相率が0.8−1.0の領域(高固相率領域51)では、圧下ロール22を用いた圧下ロール対23を配置し、圧下を行っている。圧下ロール対23において、F面側、L面側ともに圧下ロール22はフラットロールを用いている。
図5に高固相率領域での圧下ロール対23の配置について図示している。図5(A)は圧下ロール対23が1対、(B)は圧下ロール対23が2対、(C)は圧下ロール対23が3対配置されている。圧下ロール対23が3対の場合、図5(C)に示すように、上流側41から、第1圧下ロール対、第2圧下ロール対、第3圧下ロール対が配置される。中心固相率が0.3から0.8までの領域と、中心固相率が0.8から1.0までの領域について、それぞれ圧下条件を設定して圧下を行った。圧下ロールの直径はいずれも350mmである。
また、圧下ロール対の数が1対〜3対の場合のいずれも、最も上流側の第1圧下ロール対の直前のサポートロール21Uは鋳片中心固相率が0.8以下、各圧下ロール対23は鋳片中心固相率が0.8以上凝固完了位置(鋳片中心固相率が1.0)の範囲内に配置されている。表1に示す「累積平均圧下量(mm)」については、高固相率領域直前のサポートロール21U出側における鋳片の厚み(サポートロール21Uの上下ロール間隔)を基準とし、高固相率領域の各圧下ロール対において、サポートロール21Uのロール間隔と当該圧下ロール対のロール間隔との差が、累積平均圧下量となる。また、表1に示す圧下勾配(mm/min)は、高固相率領域入り側と出側における平均圧下量の差を、高固相率領域通過時間で除した値である。具体的には、高固相率領域入り側の平均圧下量はゼロ、出側における平均圧下量は最終圧下ロール対の累積平均圧下量が対応する。また、高固相率領域通過時間は、高固相率領域の長さL(実施例では0.8〜1.0m)を鋳造速度(実施例では0.8m/min)で除した値である。実施例では結果として、圧下勾配(mm/min)は、最終圧下ロール対の累積平均圧下量(mm)と等しい数値となっている。
中心固相率が0.8までの領域では、軽圧下条件として、通常用いられている軽圧下勾配の0.8〜1.2mm/minを採用した。この中心固相率領域では、0.8〜1.2mm/minを採用することにより、凝固収縮を補償することができる。この領域での軽圧下は、前述のように通常用いられているサポートロール21を用いており、ロール直径は350mmである。
鋳造する品種としては、0.20質量%Cの中炭素鋼を用いた。この品種は、実施例で使用する湾曲型の連続鋳造装置で鋳造した場合、鋳造した鋳片の上面側コーナーにコーナー横割れが発生する品種である。
鋳片品質については、鋳片厚み中心部の最大Mn偏析度(中心偏析)、センターポロシティ、コーナー横割れの評価を行った。最大Mn偏析度評価方法は、前記ラボ連続鋳造装置による試験と同様である。鋳片のセンターポロシティについては、鋳片断面のカラーチェックにより算出したポロシティ面積率を指標として評価を行った。
コーナー横割れについては、鋳造・酸洗後にコーナー部に確認できる、1辺10mm以上の横割れをコーナー割れとした。また、コーナー割れ同士の間隔が鋳造方向に50mm以内で密集する範囲を「コーナー割れ領域」とし、当該コーナー割れ領域の長さをそれぞれLc1,Lc2・・・と定め、鋳片長さLの領域に観察されたコーナー割れ領域の合計長さLc(Lc=Lc1+Lc2+・・・)をLで除した値(R=Lc/L)をコーナー割れ発生割合Rとした。
表1は実連続鋳造機を用いた鋳造試験結果である。対比のため、圧下ロール対が3対の場合について、有限要素法を用いた変形解析を行い、結果を表2に示した。
Figure 2020171954
Figure 2020171954
表1のNo.1〜6は圧下ロール対が3対の場合である。No.1〜3は各圧下ロール対での累積圧下量が一定となるよう、圧下荷重を選定した。No.4〜6は各圧下ロール対での圧下荷重を定め、累積圧下量を計測した。比較例No.1、4は角落とし部を設けず、本発明例No.2、3、5、6は本発明範囲内の角落とし部を設けている。
本発明例No.2、3、5、6については、過大な圧下荷重を要することなく、品質向上に必要な圧下勾配を実現することができ、良好な鋳片品質を得ることができた。
比較例No.1は、必要な圧下勾配を得るために過大な圧下荷重を必要とした。
比較例No.4は、本発明例No.5、6と同等の圧下荷重で圧下した結果として、圧下勾配が十分には得られず、本発明例No.5、6と比較すると鋳片品質が低下した。
図10は、横軸を角落とし部長辺片長さa、縦軸を圧下荷重として、圧下勾配5.6mm/minを得るために必要な圧下荷重を表1から読み取った結果である。具体的には、表1のNo.1〜3(圧下勾配5.6mm/min)について、角落とし部長辺片長さaを横軸、No.3圧下ロールの圧下荷重を縦軸として、黒四角印でプロットしている。併せて、表2のNo.1〜5についても、同様にして□印でプロットしている。
図11は、横軸を角落とし部長辺片長さa、縦軸を累積圧下量として、最終圧下ロール圧下荷重118ton重で圧下したときの累積圧下量を表1から読み取った結果である。具体的には、表1のNo.4〜6(最終圧下ロール圧下荷重118ton重)について、角落とし部長辺片長さaを横軸、No.3圧下ロールの累積圧下量を縦軸として、◆印でプロットしている。併せて、表2のNo.6、7についても、同様にして◇印でプロットしている。
圧下ロール対が2対の場合(No.7、8)、圧下ロール対が1対の場合(No.9、10)のいずれも、角落とし部を設けていない比較例(No.7、9)に対して、角落とし部を設けた本発明例(No.8、10)は鋳片品質の改善が得られている。圧下ロール対の対数と偏析低減効果について見ると、3対の場合が最も品質良好であり、対数の低減とともに品質改善効果が減じられる。
鋳片品質のうち、コーナー割れ発生割合に着目すると、角落とし部を設けていない比較例ではコーナー割れ発生が認められたものの、角落とし部を設けた本発明例ではコーナー割れ発生が軽微あるいは認められない結果となった。湾曲型連続鋳造装置において、湾曲部からの曲げ戻し時における鋳片コーナー部の応力負荷が、角落とし部を設けた結果として低減したため、コーナー割れが低減したものと推定される。
1 鋳型
2 角落とし部
3 鋳造空間
4 鋳造断面
7 面取り形状
8 鋳片断面
11 矩形
12 長辺
13 短辺
14 コーナー部
15 頂点
21 サポートロール
22 圧下ロール
23 圧下ロール対
31 鋳片
32 固相
33 固液共存層
35 凝固完了部
41 上流側
42 下流側
43 鋳造方向
44 下端
51 高固相率領域
52 低固相率領域
53 遷移固相率領域
a 長辺側辺長さ
b 短辺側辺長さ

Claims (4)

  1. 連続鋳造鋳型における、鋳片が通過する鋳造空間の鋳型下端部における断面を鋳造断面と呼び、当該鋳造断面形状は、矩形形状であって矩形の四隅に面取り形状を有し(以下、矩形から面取りによって取り除かれた部分を「角落とし部」という。)、鋳造断面の長辺側外周における前記角落とし部の辺長さが5mm以上であり、
    前記連続鋳造鋳型を用いて連続鋳造を行い、連続鋳造中においてロールによって鋳片を圧下することを特徴とする、鋼の連続鋳造方法。
  2. 前記鋳造断面の短辺側外周における前記角落とし部の辺長さが、鋳片厚み中心固相率が0.8以上で凝固完了位置までの領域における鋳片の総圧下量以上であることを特徴とする、請求項1に記載の鋼の連続鋳造方法。
  3. 鋳片厚み中心固相率が0.8以上の領域においてロールによって鋳片を圧下することを特徴とする、請求項1又は請求項2に記載の鋼の連続鋳造方法。
  4. 鋳片厚み中心固相率が0.8以上凝固完了位置までの領域における圧下勾配を5.5mm/min以上とすることを特徴とする、請求項3に記載の鋼の連続鋳造方法。
JP2019076308A 2019-04-12 2019-04-12 鋼の連続鋳造方法 Active JP7284394B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019076308A JP7284394B2 (ja) 2019-04-12 2019-04-12 鋼の連続鋳造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019076308A JP7284394B2 (ja) 2019-04-12 2019-04-12 鋼の連続鋳造方法

Publications (2)

Publication Number Publication Date
JP2020171954A true JP2020171954A (ja) 2020-10-22
JP7284394B2 JP7284394B2 (ja) 2023-05-31

Family

ID=72829653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019076308A Active JP7284394B2 (ja) 2019-04-12 2019-04-12 鋼の連続鋳造方法

Country Status (1)

Country Link
JP (1) JP7284394B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114734011A (zh) * 2022-04-18 2022-07-12 中天钢铁集团有限公司 一种提高连铸方坯内部质量的连铸方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05200491A (ja) * 1992-01-24 1993-08-10 Sumitomo Metal Ind Ltd 連続鋳造鋳片の製造方法
WO1997000747A1 (fr) * 1995-06-21 1997-01-09 Sumitomo Metal Industries, Ltd. Coulee continue de pieces minces
JP2003001388A (ja) * 2001-06-20 2003-01-07 Sumitomo Metal Ind Ltd 鋼の連続鋳造方法
JP2007331000A (ja) * 2006-06-15 2007-12-27 Kobe Steel Ltd 連続鋳造用鋳型
WO2014203937A1 (ja) * 2013-06-20 2014-12-24 新日鐵住金株式会社 鋳片の連続鋳造方法
WO2016013186A1 (ja) * 2014-07-24 2016-01-28 Jfeスチール株式会社 鋼の連続鋳造方法
JP2017087218A (ja) * 2015-11-02 2017-05-25 新日鐵住金株式会社 スラブ鋳片の連続鋳造方法
JP6954514B1 (ja) * 2020-06-18 2021-10-27 Jfeスチール株式会社 連続鋳造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05200491A (ja) * 1992-01-24 1993-08-10 Sumitomo Metal Ind Ltd 連続鋳造鋳片の製造方法
WO1997000747A1 (fr) * 1995-06-21 1997-01-09 Sumitomo Metal Industries, Ltd. Coulee continue de pieces minces
JP2003001388A (ja) * 2001-06-20 2003-01-07 Sumitomo Metal Ind Ltd 鋼の連続鋳造方法
JP2007331000A (ja) * 2006-06-15 2007-12-27 Kobe Steel Ltd 連続鋳造用鋳型
WO2014203937A1 (ja) * 2013-06-20 2014-12-24 新日鐵住金株式会社 鋳片の連続鋳造方法
WO2016013186A1 (ja) * 2014-07-24 2016-01-28 Jfeスチール株式会社 鋼の連続鋳造方法
JP2017087218A (ja) * 2015-11-02 2017-05-25 新日鐵住金株式会社 スラブ鋳片の連続鋳造方法
JP6954514B1 (ja) * 2020-06-18 2021-10-27 Jfeスチール株式会社 連続鋳造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114734011A (zh) * 2022-04-18 2022-07-12 中天钢铁集团有限公司 一种提高连铸方坯内部质量的连铸方法

Also Published As

Publication number Publication date
JP7284394B2 (ja) 2023-05-31

Similar Documents

Publication Publication Date Title
JP4830612B2 (ja) 極厚鋼板用鋳片の連続鋳造方法
EP2799162B1 (en) Continuous casting mold
JP4515419B2 (ja) 中心偏析の少ないスラブ鋼の連続鋳造方法
EP3219408B1 (en) Continuous casting method for steel
JP4609330B2 (ja) 内質に優れた極厚鋼板および極厚鋼板用鋳片の連続鋳造方法
US10532386B2 (en) Continuous-cast slab, method and apparatus of manufacturing the same, and method and apparatus of manufacturing thick steel plate
JP2020171954A (ja) 鋼の連続鋳造方法
JPH036855B2 (ja)
JP3427794B2 (ja) 連続鋳造方法
JP2007245168A (ja) 連続鋳造の凝固完了検出方法、装置及び連続鋳造方法、装置
JP7126098B2 (ja) 鋼の連続鋳造方法
JP5683061B2 (ja) 厚板材の連続鋳造方法
US11077492B2 (en) Continuous steel casting method
JP4932304B2 (ja) 鋼材の製造方法
JP6816523B2 (ja) 鋼の連続鋳造方法
JP2017087218A (ja) スラブ鋳片の連続鋳造方法
JP7172346B2 (ja) 連続鋳造の圧下方法
JP3958787B1 (ja) 連続鋳造方法
JP3275828B2 (ja) 連続鋳造方法
JP3395674B2 (ja) 連続鋳造方法
JPWO2019203137A1 (ja) 鋼の連続鋳造方法
JP7371821B1 (ja) 鋼の連続鋳造方法
WO2024004447A1 (ja) 鋼の連続鋳造方法
JP7273307B2 (ja) 鋼の連続鋳造方法
WO2023228796A1 (ja) 鋼の連続鋳造方法及び連続鋳造機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230501

R151 Written notification of patent or utility model registration

Ref document number: 7284394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151