WO2023228796A1 - 鋼の連続鋳造方法及び連続鋳造機 - Google Patents

鋼の連続鋳造方法及び連続鋳造機 Download PDF

Info

Publication number
WO2023228796A1
WO2023228796A1 PCT/JP2023/018120 JP2023018120W WO2023228796A1 WO 2023228796 A1 WO2023228796 A1 WO 2023228796A1 JP 2023018120 W JP2023018120 W JP 2023018120W WO 2023228796 A1 WO2023228796 A1 WO 2023228796A1
Authority
WO
WIPO (PCT)
Prior art keywords
slab
continuous casting
segment
reduction
less
Prior art date
Application number
PCT/JP2023/018120
Other languages
English (en)
French (fr)
Inventor
則親 荒牧
圭吾 外石
浩之 大野
亮祐 千代原
彰彦 谷澤
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2023228796A1 publication Critical patent/WO2023228796A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/128Accessories for subsequent treating or working cast stock in situ for removing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations

Definitions

  • the present invention relates to a continuous steel casting method and continuous casting machine.
  • solute elements such as carbon (C), phosphorus (P), sulfur (S), and manganese (Mn) are concentrated in the unsolidified liquid phase due to redistribution during solidification.
  • This concentrated solute element becomes micro-segregation formed between dendrite trees.
  • voids are formed in the center of the thickness of the slab due to solidification shrinkage and thermal contraction of the slab, and bulging of the solidified shell that occurs between the rolls of the continuous casting machine. If negative pressure occurs, molten steel will be absorbed into this area.
  • the molten steel concentrated by the above-mentioned micro-segregation flows, accumulates at the center of the slab, and solidifies.
  • the concentration of solute elements is much higher than the initial concentration of molten steel. This is generally called macrosegregation, and is also called central segregation because of its location.
  • the quality of line pipe materials used to transport crude oil and natural gas deteriorates due to center segregation.
  • hydrogen that has entered the steel through a corrosion reaction diffuses and accumulates around the manganese sulfide and niobium carbide in the steel, causing cracks to occur due to the internal pressure. .
  • the center segregation part is hard, cracks propagate. This cracking is called hydrogen-induced cracking (also referred to as "HIC”), and is the main cause of deteriorating the quality of line pipe materials used in sour gas environments.
  • HIC hydrogen-induced cracking
  • Patent Document 1 and Patent Document 2 in a continuous casting machine, a slab at the final stage of solidification having an unsolidified layer is reduced by a slab support roll to an extent equivalent to the sum of the amount of solidification shrinkage and the amount of heat shrinkage.
  • a method has been proposed in which casting is performed while gradually reducing the amount of steel.
  • the technique of gradually reducing the slab being cast in a continuous casting machine with an amount of reduction equivalent to the sum of the amount of solidification shrinkage and the amount of heat shrinkage is called “light reduction” or This is called the “light reduction method.”
  • This light reduction technology uses multiple pairs of rolls lined up in the casting direction to gradually reduce the volume of the unsolidified layer by reducing the slab by a reduction amount commensurate with the sum of solidification shrinkage and heat shrinkage. . This prevents the formation of voids or negative pressure areas at the center of the slab, and at the same time prevents the flow of concentrated molten steel formed between dendrite trees, thereby reducing the center segregation of the slab.
  • the mainstream continuous casting machines have been segment-type continuous casting machines that are composed of segments with multiple pairs of rolls.
  • the group (referred to as the "light underpressure zone") is also composed of multiple segments.
  • the opening between the rolls facing each other in the thickness direction of the slab is adjusted on the entry and exit sides of the segment, with the entry side being larger than the exit side, thereby achieving a predetermined reduction.
  • the amount is configured to be applied to the slab.
  • Patent Document 4 describes continuous casting in which the inter-roll bulging of a slab in a light reduction zone is calculated by unsteady heat transfer solidification calculation, and the reduction rate applied to the slab is changed according to the calculated inter-roll bulging. A method is proposed.
  • the present invention has been made in view of the above circumstances, and its purpose is to reduce the overall segregation level in the width direction of the slab due to center segregation, and to reduce the variation in the degree of segregation in the width direction of the slab. It is an object of the present invention to provide a continuous casting method and a continuous casting machine for steel that can reduce the amount of steel used.
  • a continuous casting method for steel in which steel is continuously cast in a continuous casting machine such as a curved continuous casting machine or a vertical bending continuous casting machine.
  • a continuous casting machine such as a curved continuous casting machine or a vertical bending continuous casting machine.
  • the slab is rolled at a rolling speed of 0.3 mm/min or more and 2.0 mm/min or less, and the slab is rolled.
  • a continuous steel casting method is provided in which the deflection ⁇ of the segment, which is the deflection in the thickness direction of the segment frame of the segment that imparts the following, satisfies formula (1).
  • Actual bulging amount (mm)
  • Segment deflection (mm)
  • A Reduction setting amount (mm) of light reduction in the light reduction zone where the solid phase ratio of the slab is 0.2 or more and less than 1.0
  • n Number of slab support roll pairs existing in the light rolling zone where the solid fraction of the slab is 0.2 or more and less than 1.0
  • the deflection deviation ⁇ of the segment frame corresponding to the final solidification position is set to 0.2 mm or less, and the left and right displacement difference t of the segment frame is always 0. .2mm or less.
  • the roll opening of the plurality of pairs of slab support rolls is adjusted to the downstream side in the casting direction.
  • the long side surface of the slab is bulged with a total bulging amount of 3 mm or more and 20 mm or less, and multiple pairs of The roll opening degree of the slab support roll is gradually reduced toward the downstream side in the casting direction to apply the reduction to the slab.
  • a continuous casting machine such as a curved continuous casting machine or a vertical bending continuous casting machine that continuously casts steel, and a light reduction that reduces continuously cast slabs in the thickness direction.
  • the light reduction zone has a solid phase rate of at least 0.3 mm/min and 2.0 mm/min in the range of at least 0.2 and less than 1.0, which is the solid phase rate at the center of the thickness of the slab.
  • a reduction is applied to the slab at a reduction rate of less than min, and the deflection ⁇ of the segment, which is the deflection in the thickness direction of the segment frame of the segment that applies the reduction to the slab in the light reduction zone, is expressed by equation (1).
  • a steel continuous casting machine is provided to meet your needs.
  • a method and continuous casting method for continuous casting of steel are capable of reducing the overall segregation level of center segregation in the width direction of the slab and reducing variation in the degree of segregation in the width direction of the slab. machine is provided.
  • FIG. 1 is a schematic side view showing a continuous casting machine in an embodiment of the present invention.
  • FIG. 3 is a schematic front view showing the structure of a segment.
  • FIG. 3 is a schematic side view showing the structure of a segment. It is a graph which shows an example of the profile of the roll opening of a slab support roll.
  • the continuous casting machine 1 is an apparatus that continuously casts steel to manufacture a slab having a rectangular cross-sectional shape, which is a cross-sectional shape perpendicular to the longitudinal direction, It is a curved continuous casting machine or a vertical bending continuous casting machine. Since the continuous casting machine 1 according to this embodiment has the same principle, it can be applied to either a curved continuous casting machine or a vertical bending continuous casting machine. In addition, in the following description of this embodiment, the continuous casting machine 1 shall be a vertical bending type continuous casting machine as an example.
  • FIG. 1 shows a schematic side view of a continuous casting machine 1, which is a vertical bending continuous slab casting machine used in carrying out the present invention.
  • a continuous casting machine 1 which is a vertical bending continuous slab casting machine used in carrying out the present invention.
  • it is the longitudinal direction of the slab 3, and the moving direction of the slab 3 and solidified shell 4 in the continuous casting machine 1 is called a casting direction.
  • the transverse direction of the rectangle in the cross section (cross section perpendicular to the longitudinal direction) of the slab 3 (the direction perpendicular to the casting direction in the cross section of the slab 3 in Fig. 1) is referred to as the thickness direction.
  • the longitudinal direction of the rectangle in the cross section (the front-rear direction in FIG. 1) is referred to as the width direction.
  • the length of the slab 3 in the thickness direction is referred to as thickness
  • the length in the width direction is referred to as width.
  • the sides opposite in the thickness direction are longer than the sides opposite in the width direction, and the sides opposite in the thickness direction are called long sides, and the sides opposite in the width direction are called long sides. It is called the short side.
  • molten steel 2 is injected into a continuous slab casting machine 1, and the molten steel 2 is cooled and solidified into a mold for forming an outer shell shape of a slab 3 having a rectangular cross section. 13 will be installed.
  • a tundish 10 which is an intermediate container for relaying molten steel 2 supplied from a ladle (not shown) to the mold 13, is installed at a predetermined position above the mold 13.
  • a sliding nozzle 11 for adjusting the flow rate of molten steel 2 is installed at the bottom of the tundish 10, and an immersion nozzle 12 is installed at the lower surface of the sliding nozzle 11.
  • a plurality of pairs of slab support rolls 14 consisting of a support roll, a guide roll, and a pinch roll are arranged below the mold 13.
  • a spray nozzle such as a water spray nozzle or an air mist spray nozzle is arranged in the gap between the slab support rolls 14 adjacent to each other in the casting direction, and spray nozzles (not shown) such as water spray nozzles or air mist spray nozzles are arranged in the gap between the slab support rolls 14 adjacent to each other in the casting direction.
  • a secondary cooling zone is formed. While being drawn out, the slab 3 is cooled by secondary cooling water sprayed from a spray nozzle in the secondary cooling zone.
  • the plurality of pairs of slab support rolls 14 are arranged on the downstream side in the casting direction from a position approximately 1 m to 4 m away from the exit of the mold 13 in the casting direction, and the supporting and guiding direction of the slab 3 is changed from the vertical direction to the curved direction.
  • the inner and outer sides of the curved portion in the radial direction with respect to the center position of the slab 3 in the thickness direction are defined as the upper surface side and the lower surface side, respectively.
  • the long side surfaces (long side surfaces) of the slab 3 the surface on the radially inner side of the curved portion is referred to as the upper surface, and the surface on the radially outer side of the curved portion is referred to as the lower surface.
  • a lower correction band 174 is configured. That is, the arc-shaped slab 3 is gradually bent back into a flat plate shape by the lower straightening zone 174 and straightened into a horizontal portion. In the lower straightening zone 174, tensile stress acts on the upper surface side of the slab 3, and compressive stress acts on the lower surface side. Therefore, in the lower straightening band 174, surface cracks are likely to occur on the upper surface side of the slab 3, and surface cracks generally do not occur on the lower surface side.
  • a plurality of transport rolls 15 for conveying the cast slab 3 are installed downstream in the casting direction from the slab support roll 14a, which is the slab support roll 14 on the most downstream side in the casting direction. Further, above the conveyor roll 15, a slab cutting machine 16 is arranged to cut slabs 3a of a predetermined length from the slab 3 to be cast.
  • Light reduction zones 171 are installed on the upstream and downstream sides in the casting direction across the solidification completion position 6 of the slab 3.
  • the interval (referred to as "roll opening degree") between two slab support rolls 14 that are paired opposite each other in the thickness direction with the slab 3 in between becomes gradually narrower toward the downstream side in the casting direction. It is composed of a plurality of pairs of slab supporting rolls set as follows, that is, a rolling slope is applied.
  • the light reduction zone 171 it is possible to perform light reduction on the slab 3 in the entire area or in a selected region.
  • the light reduction is a technique in which the slab being cast is gradually reduced in the continuous casting machine 1 by an amount of reduction corresponding to the sum of the amount of solidification shrinkage and the amount of heat shrinkage.
  • a spray nozzle for cooling the slab 3 is disposed between adjacent slab support rolls 14 in the casting direction of the light reduction zone 171 .
  • the slab support roll 14 arranged on the light reduction zone 171 is also called a reduction roll 14b.
  • the light reduction zone 171 is composed of three segments 18, each consisting of three pairs of reduction rolls 14b, connected in the casting direction.
  • the light pressure zone 171 is composed of three segments 18, but the number of segments 18 is not particularly limited, and may be one, two, or four or more. .
  • the number of roll-down rolls 14b arranged in one segment may be a plurality of pairs, and any number of roll-down rolls 14b may be provided as long as there are two or more pairs.
  • the slab support rolls 14 other than the light reduction band 171 also have a segment structure, and in particular, the segment 18 of the light reduction band 171 is also referred to as the light reduction segment 18a.
  • the light reduction segment 18a includes an upper frame 180, a lower frame 181, and a support strut 182.
  • the upper surface side frame 180 supports a plurality of (three in this embodiment) slab support rolls 14 on the upper surface side.
  • the lower surface side frame 181 supports a plurality of (three in this embodiment) slab support rolls 14 on the lower surface side.
  • the upper frame 180, the lower frame 181, and the support columns 182 are collectively referred to as a segment frame.
  • the support column 182 is a column that connects and supports the upper frame 180 and the lower frame 181.
  • the support struts 182 are provided at both ends in the width direction, and when a pair of support struts 182 arranged in the width direction constitute one set, a plurality of sets are provided in the casting direction. In this embodiment, as shown in FIG. 3, a pair of support struts 182 are provided at two locations, an entry end and an exit end in the casting direction. Further, the support column 182 has a mechanism that adjusts the roll opening degree by adjusting the distance in the thickness direction between the upper surface side frame 180 and the lower surface side frame 181 using hydraulic pressure or the like.
  • the reduction gradient in the light reduction zone 171 is expressed in the reduction amount of the roll opening per meter in the casting direction, that is, in units of "mm/m". Therefore, the rolling speed (mm/min) of the slab 3 in the light rolling zone 171 can be obtained by multiplying this rolling gradient (mm/m) by the slab drawing speed (m/min).
  • the slab support roll 14 disposed between the lower end of the mold 13 and the liquidus crater end position of the slab 3 constitutes an intentional bulging zone 172.
  • the liquidus crater end position is a position in the casting direction inside the continuous casting machine 1 where the center temperature of the slab 3 is the liquidus temperature of the steel to be cast, and is a position in the casting direction inside the machine of the continuous casting machine 1, where the temperature of the molten steel and the cooling of the continuous casting machine 1 are the same. It is determined by heat transfer solidification calculation (for example, the calculation method described in Patent Document 4) according to the capacity.
  • each slab is rolled in such a way that the roll opening is sequentially widened for each pair of rolls or for each pair of rolls toward the downstream side in the casting direction until the expansion amount of the roll opening reaches a predetermined value.
  • a support roll 14 is set.
  • the slab support roll 14 installed downstream of the intentional bulging zone 172 in the casting direction and upstream of the light reduction zone 171 in the casting direction has a roll opening of a constant value or shrinkage due to temperature drop of the slab 3. It is narrowed down to the extent that it corresponds to the amount.
  • bulging in this embodiment refers to intentional bulging (intentional bulging), and is also simply referred to as “bulging” hereinafter.
  • intentional bulging starts when the solid phase ratio in the center is 0, and ends when the total amount of bulging on the long sides of the slab (total amount of bulging on the top and bottom surfaces) becomes 3 m or more and 20 mm or less. is preferable. If the total amount of intentional bulging is less than 3 mm, the short side of the slab 3 and the slab support roll 14 may come into contact with each other, making it impossible to apply a sufficient light reduction.
  • the total amount of bulging is preferably 15 mm or less, and more preferably 10 mm or less.
  • FIG. 4 shows an example of the roll opening profile of the slab support roll 14 in this embodiment.
  • the long side surface of the slab is intentionally bulged by static pressure of molten steel in the intentional bulging zone 172 to increase the thickness at the center of the long side surface of the slab (region b).
  • the roll opening degree is narrowed to a constant value or to an extent commensurate with the amount of shrinkage accompanying the temperature drop of the slab 3 ( Area c).
  • the long side surface of the slab is rolled down with the light rolling band 171 (region d).
  • a and e in FIG. 4 are regions where the roll opening degree is narrowed to an extent commensurate with the amount of shrinkage of the slab 3 due to the temperature drop.
  • A' in the figure is an example of the roll opening degree of the conventional method in which the roll opening degree is narrowed to an extent commensurate with the amount of shrinkage of the slab 3 due to the temperature drop.
  • the roll opening of the slab support roll 14 is gradually widened toward the downstream side in the casting direction, so that the long side surface of the slab 3 except for the vicinity of the short side is free from molten steel static due to the unsolidified layer.
  • the pressure causes the slab to intentionally bulge following the slab support rolls 14.
  • the long side surface of the slab 3 near the short side is held and restrained by the short side surface of the slab 3 that has been solidified, so that the thickness at the time when intentional bulging is started is maintained. Therefore, due to intentional bulging, only the bulged portions of the long sides of the slab 3 come into contact with the slab support roll 14 .
  • the total amount of reduction is the amount of reduction of the slab 3 from the start of reduction to the end of reduction in the light reduction zone 171
  • the total amount of bulging is the amount of reduction of the slab 3 from the start of intentional bulging to the end of intentional bulging in the intentional bulging zone 172. This is the amount of bulging up to.
  • the amount of bulging is the maximum amount by which the thickness of the slab 3 in the width direction bulges, and the maximum thickness in the cross section of the slab 3 (basically the thickness at the center in the width direction) is the maximum amount of bulging in the width direction of the slab 3. This is the length (mm) calculated as the difference from the side thickness.
  • the intentional bulging zone 172 is placed between the lower end of the mold 13 and the liquidus crater end position of the slab 3.
  • the reason for this is that upstream of the liquidus line crater end position of the slab 3 in the casting direction, the center of the thickness of the slab is entirely the unsolidified layer 5 (liquid phase), and the solidified shell 4 of the slab 3 has a temperature of This is because it has high resistance to deformation, low deformation resistance, and can be easily bulged.
  • the slab 3 is intentionally bulged, if the bulging is performed at a time when the unsolidified layer 5 present inside the slab 3 is small, the center segregation becomes worse on the contrary.
  • the liquidus line of the slab 3 is the solidification start temperature determined by the chemical composition of the slab 3, and can be determined, for example, from the following equation (2).
  • T L 1536-(78 ⁇ [%C]+7.6 ⁇ [%Si]+4.9 ⁇ [%Mn] +34.4 ⁇ [%P]+38 ⁇ [%S]+4.7 ⁇ [%Cu] +3.1 ⁇ [%Ni]+1.3 ⁇ [%Cr]+3.6 ⁇ [%Al]) ...(2)
  • T L is the liquidus temperature (°C)
  • [%C] is the carbon concentration of the molten steel (mass%)
  • [%Si] is the silicon concentration of the molten steel (mass%)
  • [%Mn ] is the manganese concentration of the molten steel (mass%)
  • [%P] is the phosphorus concentration of the molten steel (mass%)
  • [%S] is the sulfur concentration of the molten steel (mass%)
  • [%Cu] is the copper concentration of the molten steel (mass%).
  • [%Ni] is the nickel concentration (mass %) of the molten steel
  • [%Cr] is the chromium concentration (mass %) of the molten steel
  • [%Al] is the aluminum concentration (mass %) of the molten steel.
  • C 0.03 mass% or more and 0.2 mass% or less
  • Si 0.05 mass% or more and 0.5 mass% or less
  • Mn 0.8 mass% or more and 1.
  • the test was conducted using low carbon aluminum killed steel containing 8% by mass or less, P: less than 0.02% by mass, and S: less than 0.005% by mass.
  • the scope of application of the present invention is not limited to the above component range.
  • the intentional bulging zone 172 does not require any special mechanism and can be constructed by simply adjusting the roll opening, so as long as it is within the range from the lower end of the mold 13 to the liquidus crater end position of the slab 3, Can be installed in any position.
  • the molten steel 2 injected from the tundish 10 into the mold 13 through the immersion nozzle 12 is cooled in the mold 13 to form a solidified shell 4.
  • the slab 3 having the solidified shell 4 as an outer shell and the unsolidified layer 5 inside is continuously pulled out below the mold 13 while being supported by a slab support roll 14 provided below the mold 13. While the slab 3 passes through the slab support rolls 14, it is cooled by secondary cooling water in the secondary cooling zone, thereby increasing the thickness of the solidified shell 4. Then, the slab 3 is increased in thickness in the intentional bulging zone 172 except for the short side end of the long side, and is lightly rolled down in the light reduction zone 171 to the inside at the solidification completion position 6. Complete coagulation.
  • the slab 3 is cut by a slab cutting machine 16 to become a slab 3a.
  • Molding powder (not shown) is added to the mold 13, which functions as a heat insulating material, a lubricant, an antioxidant, and the like.
  • continuous casting is performed under the following casting conditions in the light reduction zone 171.
  • a reduction of 0.3 mm/min or more and 2.0 mm/min or less is applied in a range where the central solid fraction, which is the solid fraction at the center of the thickness of the slab 3, is at least 0.2 or more and less than 1.0.
  • the slab 3 is rolled down (light rolling down) at a high speed.
  • the thickness center of the slab 3 in this embodiment means the center in the thickness direction at the position in the width direction where the solid phase ratio at the thickness center portion is the lowest in the cross section of the slab 3.
  • the deflection ⁇ of the light reduction segment 18a is as follows ( 1) Satisfies the formula. 2 ⁇ -A/(n-1) ⁇ 3.25 ⁇ 2 ⁇ 1.3 (1) here, ⁇ : Actual bulging amount (mm) ⁇ : Segment deflection (mm) A: Set reduction amount (mm) of light reduction in the light reduction zone where the central solid fraction of the slab is 0.2 or more and less than 1.0 n: Number of slab support roll pairs present in the light rolling zone where the central solid fraction of the slab is 0.2 or more and less than 1.0
  • the deflection ⁇ of the segment is the deflection in the thickness direction at the center of the segment frame in the width direction, and is determined from the height in the thickness direction between both ends of the segment frame in the width direction and the center part in the width direction. .
  • the deflection ⁇ is preferably the maximum value of the deflection at a plurality of locations in the casting direction of the segment frame.
  • the deflection ⁇ may be the maximum value of the deflections at at least two locations on the exit side and the inlet side in the casting direction of the segment frame.
  • the deflection ⁇ of the segment may be determined by measuring the deflection at two positions in the casting direction where the support columns 182 are provided.
  • the deflection ⁇ of the light reduction segment 18a may be a value measured when actually continuously casting the slab 3, or a value measured when a similar steel type is continuously cast using the continuous casting machine 1. Good too.
  • the measured bulging amount ⁇ is the bulging amount after the time when the central solid fraction of the slab 3 changes to more than 0.0.
  • the measured bulging amount ⁇ is the bulging amount on either the upper surface or the lower surface, and is preferably the actual measured value of the bulging amount on the upper surface for ease of measurement.
  • the total amount of bulging can be determined by measuring the amount of bulging on either long side and doubling the measured amount of bulging. be able to.
  • equation (1) the actual value of the total amount of bulging is shown by multiplying the actual amount of bulging ⁇ by 2 as a coefficient.
  • the set amount A of light reduction is the amount (set amount) by which the slab 3 is reduced from a central solid fraction of 0.2 or more until it completely solidifies.
  • the set reduction amount for light reduction is a set reduction amount determined only by the roll profile, that is, the set roll spacing.
  • the present inventors discovered that during light reduction in an actual continuous casting machine, light reduction may not be performed at the desired reduction amount (reduction setting amount) due to the influence of segment deflection, etc. I confirmed that there is. Then, by discovering that center segregation can be more stably reduced by using segments 18 that satisfy the relationship of equation (1) in the light reduction zone 171 during continuous casting, the present invention was made. .
  • the load applied to the light reduction segment 18a which is the segment 18 constituting the light reduction zone 171 is determined by the size of the slab 3, the rolling slope in the light reduction zone 171, and the proportion of the unsolidified layer 5 of the slab 3 to be lightly rolled. be done.
  • the roll opening degree within the light reduction segment 18a operates in the direction of widening.
  • the load applied to the light draft segment 18a will vary depending on the shape of the slab width direction at the solidification completion position 6, and the roll opening will vary depending on the load. Also fluctuates. For this reason, the rolling speed actually applied to the slab 3 also varies from the set value.
  • the light reduction segment 18a of the light reduction zone 171 satisfy formula (1) when the central solid fraction of the slab 3 is within the above range, sufficient rigidity of the light reduction segment 18a can be obtained.
  • Light reduction can be performed with a sufficient amount of reduction, and center segregation can be reduced more stably.
  • the set conditions for light reduction can be applied evenly across the width of the slab, it is possible to reduce variations in the degree of segregation in the width direction due to center segregation, and it is possible to reduce the variation in the degree of segregation in the width direction due to center segregation. The degree of segregation can be reduced.
  • the casting conditions of this embodiment include that for the segment 18 corresponding to the solidification completion position 6, the deflection deviation ⁇ of the segment frame is 0.2 mm or less, and the left and right displacement difference t of the segment frame is always 0.2 mm or less.
  • the deflection deviation ⁇ is the deflection deviation in each of the upper frame 180 and the lower frame 181 of the segment 18, and is the maximum and minimum deflection at multiple positions in the casting direction of each of the upper frame 180 and the lower frame 181. This is the difference from the value. That is, the deflection deviation ⁇ of 0.2 mm or less means that the deflection deviation in the casting direction of each of the upper frame 180 and the lower frame 181 is 0.2 mm or less.
  • the deflection deviation may be the difference in deflection between the entrance end and the exit end in the casting direction of each of the upper frame 180 and the lower frame 181.
  • the position where the support column 182 is provided may be used as the position for measuring the deflection.
  • the difference between the maximum value and the minimum value of deflection at three or more positions in the casting direction may be defined as the deflection deviation ⁇ .
  • the left and right displacement difference t is the displacement difference between both ends of the segment frame in the width direction. Normally, the structure of the lower portion of the segment 18 is fixed and does not move, so the displacement difference between both widthwise ends of the upper frame 180 of the segment 18 is the left and right displacement difference t.
  • the displacement difference t may be a difference in height between the vertically upper ends of a pair of support struts 182 connected to both ends of the upper frame 180 in the width direction. Furthermore, it is preferable that the left and right displacement difference t is always 0.2 mm or less at different positions in the casting direction. By using such casting conditions, center segregation can be reduced more stably.
  • the support column 182 adjusts the roll opening degree, but the present invention is not limited to such an example.
  • the roll opening degree may be adjusted by expanding and contracting a support member connecting the slab support roll 14 and the segment frame by hydraulic pressure or the like.
  • the slab drawing speed was kept constant at 1.1 m/min for the purpose of efficiently and lightly rolling down the slab 3.
  • the total amount of bulging in the intentional bulging zone 172 was varied for each level within a range of 0.0 mm or more and 15.0 mm or less.
  • the rolling speed set in the light rolling zone 171 was varied for each level within the range of 0 mm/min to 4.0 mm/min.
  • the size of the slab 3 to be cast was a slab slab with a width of 2100 mm and a thickness of 250 mm.
  • frame 1 was made to have higher rigidity than frame 2. Additionally, the amount of secondary cooling water was adjusted to be the same at all levels. Further, the final solidification position was determined by heat transfer solidification calculation similar to that in Patent Document 4.
  • a non-contact sensor measures the roll opening displacement at the center of the segment and the segment frame in the light reduction segment where the solidification completion position 6, which is the most downstream in the casting direction, is found in advance by heat transfer solidification calculation. The displacement of the support column was measured.
  • the relationship between the reduction rate actually applied to the slab 3 and the segregation of the slab 3 was determined by corroding the cross section of a test piece (corresponding to the longitudinal section of the slab) taken from the slab after casting with picric acid, and The presence or absence of segregation and inverted V segregation, and the presence or absence of internal cracks were investigated.
  • the segregation of Mn at the center of the slab thickness was analyzed by EPMA, and the degree of Mn segregation at each position in the slab width direction was investigated.
  • a hydrogen-induced cracking test HIC test
  • Table 1 shows the conditions and test results for each level in the examples. Levels 1 to 13 are cases in which segments with increased frame rigidity are applied, and levels 14 to 28 are cases in which segments with insufficient rigidity are applied. In the example, frames 1 and 2 having different rigidities were used for the light reduction zone 171, and the casting conditions were otherwise the same. Further, the number of light rolling segments 18a provided in the light rolling band 171 was one.
  • the measured bulging amount is the actual measured value of the bulging amount of the cast slab
  • the value ⁇ is the value determined by the following formula (2)
  • the value ⁇ is determined by the following formula (3). It is a value.
  • the set reduction amount A in equation (1) is determined by equation (4) below, and the length L of the light reduction zone 171 in the casting direction is 1.89 m from the length of the light reduction segment 18a.
  • the casting speed V c was 1.1 m/min.
  • the number n of slab supporting roll pairs present in the light reduction zone 171 was set to 8 from the number of roll pairs provided in the light reduction segment 18a.
  • Table 1 the judgment indicates whether the value ⁇ is 1.3 or less, and when the value ⁇ is 1.3 or less, it is “ ⁇ ”, and when the value ⁇ is over 1.3, it is “ ⁇ ”. ”.
  • the condition for the value ⁇ to be greater than or equal to the value ⁇ and for the determination to be “ ⁇ ” satisfies equation (1).
  • the deflection deviation of segment displacement is the deflection deviation ⁇ in the segment at the final solidification position, and is the sum of the deflection deviation ⁇ of the upper side frame 180 and the deflection deviation ⁇ of the lower side frame 181.
  • "in” and “out” of the segment displacement indicate the displacement of the end portions (positions where the support struts 182 are installed) on the entrance and exit sides in the casting direction of the segment at the final solidification position.
  • segment displacement are the displacements of the end (position where the support strut 182 is installed) at one end (south end in the actual machine) and the other end (north end in the actual machine) in the width direction of the segment. shows.
  • the "difference” in segment displacement is the difference in displacement between south and north, and is the left and right displacement difference t.
  • the segment displacement indicates how much the upper end position has displaced from the reference with respect to the upper end position of the support column 182 in a state where the segment is not bent.

Abstract

中心偏析の鋳片幅方向における全体的な偏析レベルを低減するとともに、偏析度の鋳片幅方向におけるバラツキを低減することのできる鋼の連続鋳造方法及び連続鋳造機を提供することを課題とする。連続鋳造機(1)で鋼を連続鋳造する、鋼の連続鋳造方法であり、連続鋳造される鋳片の厚み中心の固相率である中心固相率が少なくとも0.2以上1.0未満の範囲において、0.3mm/min以上2.0mm/min以下の圧下速度で鋳片に圧下を付与し、鋳片に圧下を付与するセグメント(18)のセグメントフレームの厚み方向の撓みである、セグメント(18)の撓みτが(1)式を満たす、鋼の連続鋳造方法。2×τ-A/(n-1)≦3.25×2×δ≦1.3 ・・・(1) ここで、δ:実測バルジング量(mm)、τ:セグメントの撓み(mm)、A:軽圧下の圧下設定量(mm)、n:軽圧下帯に存在する鋳片支持ロール対の数。

Description

鋼の連続鋳造方法及び連続鋳造機
 本発明は、鋼の連続鋳造方法及び連続鋳造機に関する。
 鋼の凝固過程では、炭素(C)や燐(P)、硫黄(S)、マンガン(Mn)などの溶質元素は、凝固時の再分配により未凝固の液相側に濃化される。この濃化した溶質元素がデンドライト樹間に形成されるミクロ偏析となる。また、連続鋳造機における鋼の連続鋳造の過程では、鋳片の凝固収縮や熱収縮、連続鋳造機のロール間で発生する凝固シェルのバルジングなどによって、鋳片の厚み中心部に空隙が形成されたり負圧が生じたりすると、この部分に溶鋼が吸収されることとなる。しかし、凝固末期の未凝固層には十分な量の溶鋼が存在しないので、上記のミクロ偏析によって濃縮された溶鋼が流動し、鋳片中心部に集積して凝固する。このようにして形成された偏析スポットは、溶質元素の濃度が溶鋼の初期濃度に比べ格段に高濃度となる。これを一般にマクロ偏析と呼び、その存在部位から、中心偏析とも呼んでいる。
 原油や天然ガスなどの輸送用ラインパイプ材は、中心偏析によって品質が悪化する。中心偏析部にマンガン硫化物やニオブ炭化物が生成されると、腐食反応により鋼内部に侵入した水素が鋼中のマンガン硫化物やニオブ炭化物のまわりに拡散・集積し、その内圧により割れが発生する。更に、中心偏析部は硬くなっているので、割れが伝播する。この割れは水素誘起割れ(「HIC」ともいう)と呼ばれ、サワーガス環境下で使用されるラインパイプ材の品質を悪化させる主たる原因となっている。
 これに対処するべく、連続鋳造工程から圧延工程に至るまで、鋳片の中心偏析を低減する、或いは無害化する対策が多数提案されている。
 例えば、特許文献1及び特許文献2には、連続鋳造機内において、未凝固層を有する凝固末期の鋳片を、鋳片支持ロールによって凝固収縮量と熱収縮量との和に相当する程度の圧下量で徐々に圧下しながら鋳造する方法が提案されている。
 特許文献1及び特許文献2のように、鋳造中の鋳片を連続鋳造機内において凝固収縮量及び熱収縮量の和に相当する程度の圧下量で徐々に圧下する技術は、「軽圧下」或いは「軽圧下法」と呼ばれている。この軽圧下技術は、鋳造方向に並んだ複数対のロールを用いて、凝固収縮量及び熱収縮量の和に見合った圧下量で鋳片を徐々に圧下して未凝固層の体積を減少させる。これにより、鋳片中心部における空隙或いは負圧部の形成を防止すると同時に、デンドライト樹間に形成される濃化溶鋼の流動を防止し、これによって鋳片の中心偏析を軽減させる。
 尚、近年の連続鋳造機は、複数対のロールを備えたセグメントで構成されるセグメント方式の連続鋳造機が主流であり、セグメント方式の連続鋳造機の場合には、軽圧下を実施する圧下ロール群(「軽圧下帯」という)も複数のセグメントから構成されている。セグメントで構成される軽圧下帯では、鋳片の厚み方向に相対するロール間の開度を、セグメントの入側と出側とで、入側を出側より大きく調整することで、所定の圧下量が鋳片に付与されるように構成されている。
 ところで、鋳片の凝固完了位置の鋳片幅方向における形状と中心偏析とは密接な関係があることが知られている。例えば、特許文献3には、鋳片幅方向における凝固完了位置を検出し、検出された凝固完了位置の最短部と最長部との差が基準内となるように、鋳型内の溶鋼流動を調整するか、または二次冷却の幅切り量を調整する方法が提案されている。鋳片幅方向で凝固完了位置が異なる場合、軽圧下帯における圧下量が鋳片幅方向各位置で異なるため、凝固完了位置が鋳造方向下流側に伸びた位置では、圧下量が少なくなり、十分な中心偏析改善効果を得ることができなくなる。しかし、特許文献3の方法によれば、鋳片幅方向で凝固完了位置が異なる場合であっても、中心偏析改善効果を得ることができる。
 また、鋳片のロール間でのバルジングも中心偏析に影響を及ぼすことが知られている。例えば、特許文献4には、軽圧下帯における鋳片のロール間バルジングを非定常伝熱凝固計算によって算出し、算出されるロール間バルジングに応じて鋳片に付与する圧下速度を変更する連続鋳造方法が提案されている。
特開平8-132203号公報 特開平8-192256号公報 特開2006-198644号公報 特開2012-45552号公報
 上記のように、鋳片の中心偏析を改善するべく、軽圧下時における圧下速度、鋳片幅方向における凝固完了位置の形状、ロール間バルジングについて、それぞれ対策が採られてきた。しかしながら、至近の連続鋳造鋳片に対する品質要求レベルはより一層高まっており、鋳片幅方向の偏析度のバラツキも問題となっている。特に、ラインパイプ材などの偏析厳格鋼材では、鋳片段階で幅方向に1箇所でも偏析が大きい部分があると、ラインパイプ材として使用することが困難となっている。
 そして、上記従来技術を適用した場合であっても、中心偏析の鋳片幅方向における全体的な偏析レベルの悪化や鋳片幅方向の偏析度のバラツキの増加といった中心偏析の問題が生じる場合があり、中心偏析をより安定的に低減する技術が求められている。
 そこで、本発明は上記事情に鑑みてなされたもので、その目的とするところは、中心偏析の鋳片幅方向における全体的な偏析レベルを低減するとともに、偏析度の鋳片幅方向におけるバラツキを低減することのできる鋼の連続鋳造方法及び連続鋳造機を提供することである。
 (1)本発明の一態様によれば、湾曲型連続鋳造機又は垂直曲げ型連続鋳造機の連続鋳造機で鋼を連続鋳造する、鋼の連続鋳造方法であり、連続鋳造される鋳片の厚み中心の固相率が少なくとも0.2以上1.0未満の範囲において、0.3mm/min以上2.0mm/min以下の圧下速度で上記鋳片に圧下を付与し、上記鋳片に圧下を付与するセグメントのセグメントフレームの厚み方向の撓みである、セグメントの撓みτが(1)式を満たす、鋼の連続鋳造方法が提供される。
  2×τ-A/(n-1)≦3.25×2×δ≦1.3 ・・・(1)
  ここで、
  δ:実測バルジング量(mm)
  τ:セグメントの撓み(mm)
  A:鋳片の固相率が0.2以上1.0未満の軽圧下帯における軽圧下の圧下設定量(mm)
  n:鋳片の固相率が0.2以上1.0未満の軽圧下帯に存在する鋳片支持ロール対の数
 (2)上記(1)に記載の鋼の連続鋳造方法において、最終凝固位置に相当するセグメントフレームについて、撓み偏差σを0.2mm以下とし、且つ上記セグメントフレームの左右の変位差tを常に0.2mm以下とする。
 (3)上記(1)又は(2)に記載の鋼の連続鋳造方法において、上記連続鋳造機の意図的バルジング帯にて、複数対の鋳片支持ロールのロール開度を鋳造方向の下流側に向かって段階的に増加させて上記鋳片の長辺面を3mm以上20mm以下のバルジング総量でバルジングさせ、上記意図的バルジング帯よりも鋳造方向の下流側の軽圧下帯にて、複数対の鋳片支持ロールのロール開度を上記鋳造方向の下流側に向かって段階的に減少させて上記鋳片に上記圧下を付与する。
 (4)本発明の一態様によれば、鋼を連続鋳造する湾曲型連続鋳造機又は垂直曲げ型連続鋳造機の連続鋳造機であり、連続鋳造される鋳片を厚み方向に圧下する軽圧下帯を備え、上記軽圧下帯では、上記鋳片の厚み中心の固相率である中心固相率が少なくとも0.2以上1.0未満の範囲において、0.3mm/min以上2.0mm/min以下の圧下速度で上記鋳片に圧下を付与し、上記軽圧下帯において上記鋳片に圧下を付与するセグメントのセグメントフレームの厚み方向の撓みである、セグメントの撓みτが(1)式を満たす、鋼の連続鋳造機が提供される。
 本発明の一態様によれば、中心偏析の鋳片幅方向における全体的な偏析レベルを低減するとともに、偏析度の鋳片幅方向におけるバラツキを低減することのできる鋼の連続鋳造方法及び連続鋳造機が提供される。
本発明の一実施形態における連続鋳造機を示す側面概略図である。 セグメントの構造を示す正面概略図である。 セグメントの構造を示す側面概略図である。 鋳片支持ロールのロール開度のプロフィルの一例を示すグラフである。
 以下の詳細な説明では、図面を参照して、本発明の実施形態を説明する。各図面は模式的なものであり、現実のものとは異なる場合が含まれる。また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において種々の変更を加えることができる。
 本発明の一実施形態において、連続鋳造機1は、鋼を連続鋳造することで、長手方向に直交する断面の形状である横断面形状が矩形の鋳片であるスラブを製造する装置であり、湾曲型連続鋳造機又は垂直曲げ型連続鋳造機である。本実施形態に係る連続鋳造機1は、原理的には共通なものであることから、湾曲型連続鋳造機又は垂直曲げ型連続鋳造機のどちらの形式のものについても適用することができる。なお、本実施形態の以下の説明では、一例として連続鋳造機1が垂直曲げ型連続鋳造機であるものとする。
 図1には、本発明を実施する際に用いられる垂直曲げ型のスラブ連続鋳造機である、連続鋳造機1の側面概略図を示す。なお、本実施形態において、鋳片3の長手方向であり、連続鋳造機1内における鋳片3や凝固シェル4の移動方向を鋳造方向という。また、鋳片3の横断面(長手方向に直交する断面)における矩形の短手方向(図1の鋳片3の断面内において鋳造方向に直交する方向)を厚み方向といい、鋳片3の横断面における矩形の長手方向(図1における前後方向)を幅方向という。さらに、鋳片3の厚み方向における長さを厚みといい、幅方向における長さを幅という。さらに、鋳片3の横断面において、厚み方向に対向する辺の方が幅方向に対向する辺よりも長いものとなり、厚み方向に対向する辺を長辺といい、幅方向に対向する辺を短辺という。
 図1に示すように、スラブ連続鋳造機1には、溶鋼2が注入され、この溶鋼2を冷却して凝固させ、横断面が矩形である鋳片3の外殻形状を形成するための鋳型13が設置される。鋳型13の上方所定位置には、取鍋(図示せず)から供給される溶鋼2を鋳型13に中継供給するための中間容器であるタンディッシュ10が設置される。タンディッシュ10の底部には、溶鋼2の流量を調整するためのスライディングノズル11が設置され、スライディングノズル11の下面には、浸漬ノズル12が設置される。
 鋳型13の下方には、サポートロール、ガイドロール及びピンチロールからなる複数対の鋳片支持ロール14が配置される。鋳造方向に隣り合う鋳片支持ロール14の間隙には、水スプレーノズルやエアーミストスプレーノズルなどのスプレーノズル(図示せず)が配置され、鋳型直下から機端の鋳片支持ロール14までの範囲に、二次冷却帯が構成される。鋳片3は、引き抜かれながら、二次冷却帯のスプレーノズルから噴霧される二次冷却水によって冷却される。
 複数対の鋳片支持ロール14は、鋳型13の出口から鋳造方向に1m~4m程度離れた位置から鋳造方向の下流側に配置され、鋳片3の支持・案内方向が鉛直方向から湾曲方向へと方向を変える上部矯正帯173を構成する。つまり、鋳型13から鉛直方向に引き抜かれた平板状の鋳片3は、上部矯正帯173で次第に円弧状に曲げられ、半径が一定の湾曲部へと矯正される。上部矯正帯173では、鋳片3の下面側に引張応力が働き、上面側には圧縮応力が働く。したがって、上部矯正帯173では、鋳片3の下面側に表面割れが発生しやすく、上面側には一般に表面割れは発生しない。この場合、鋳片3の厚み方向の中心位置を境として、湾曲部の径方向の内側及び外側を、上面側及び下面側とそれぞれ定義する。また、鋳片3の長辺側の面(長辺面)について、湾曲部の径方向内側の面を上面といい、湾曲部の径方向外側の面を下面という。
 同様に湾曲部の鋳造方向が水平方向と平行となる位置の近傍に配置される複数対の鋳片支持ロール14は、鋳片3の支持・案内方向が湾曲方向から水平方向へと方向を変える下部矯正帯174を構成する。つまり、円弧状の鋳片3は、下部矯正帯174で次第に平板状に曲げ戻され、水平部へと矯正される。下部矯正帯174では、鋳片3の上面側に引張応力が働き、下面側には圧縮応力が働く。したがって、下部矯正帯174では、鋳片3の上面側に表面割れが発生しやすく、下面側には一般に表面割れは発生しない。
 鋳造方向最下流側の鋳片支持ロール14である鋳片支持ロール14aよりも鋳造方向下流側には、鋳造された鋳片3を搬送するための複数の搬送ロール15が設置される。また、搬送ロール15の上方には、鋳造される鋳片3から所定の長さの鋳片3aを切断するための鋳片切断機16が配置される。
 鋳片3の凝固完了位置6を挟んで鋳造方向の上流側及び下流側には、軽圧下帯171が設置される。軽圧下帯171は、鋳片3を挟んで厚み方向に対向して対となる2本の鋳片支持ロール14の間隔(「ロール開度」という)が鋳造方向下流側に向かって順次狭くなるように設定された、つまり、圧下勾配が施された、複数対の鋳片支持ロール群から構成される。軽圧下帯171では、その全域または一部選択した領域で、鋳片3に軽圧下を行うことが可能である。なお、軽圧下とは、上述のように、連続鋳造機1内において、鋳造中の鋳片を凝固収縮量及び熱収縮量の和に相当する程度の圧下量で徐々に圧下する技術である。軽圧下帯171の鋳造方向に隣り合う鋳片支持ロール14の間には、鋳片3を冷却するためのスプレーノズルが配置される。軽圧下帯171に配置される鋳片支持ロール14は圧下ロール14bとも呼ばれる。
 図1に示す連続鋳造機1においては、軽圧下帯171は、3対の圧下ロール14bを1組とするセグメント18が鋳造方向に3基つながって構成される。なお、図1では、軽圧下帯171が3基のセグメント18で構成されているが、セグメント18の数は特に限定されるものではなく、1基、2基又は4基以上であってもよい。また、図1では、1基のセグメント18に配置される圧下ロール14bは3対であるが、3対に限定されるものではない。1基のセグメントに配置される圧下ロール14bは、複数対であればよく、2対以上であれば幾つであっても構わない。さらに、連続鋳造機1では、図示はしないが、軽圧下帯171以外の鋳片支持ロール14もセグメント構造となっており、特に軽圧下帯171のセグメント18を軽圧下セグメント18aともいう。
 図2及び図3に示すように、軽圧下セグメント18aは、上面側フレーム180と、下面側フレーム181と、支持支柱182とを有する。上面側フレーム180は、上面側の複数本(本実施形態では3本)の鋳片支持ロール14を支持する。下面側フレーム181は、下面側の複数本(本実施形態では3本)の鋳片支持ロール14を支持する。なお、上面側フレーム180と、下面側フレーム181と、支持支柱182とをまとめてセグメントフレームともいう。支持支柱182は、上面側フレーム180と下面側フレーム181とを接続し、支持する柱である。支持支柱182は、幅方向の両端にそれぞれ設けられ、幅方向に並ぶ一対の支持支柱182を一組とした場合に、鋳造方向に複数組設けられる。本実施形態では図3に示すように、鋳造方向の入側端部と出側端部との2箇所に一対の支持支柱182が設けられる。また、支持支柱182は、上面側フレーム180と下面側フレーム181との厚み方向の間隔を、油圧等を用いて調整することでロール開度を調整する機構を有する。
 通常、軽圧下帯171における圧下勾配は、鋳造方向1mあたりのロール開度の絞り込み量、つまり「mm/m」の単位で表示される。したがって、軽圧下帯171における、鋳片3の圧下速度(mm/min)は、この圧下勾配(mm/m)に鋳片引き抜き速度(m/min)を乗算することで得られる。
 鋳型13の下端から鋳片3の液相線クレータエンド位置との間に配置される鋳片支持ロール14は、意図的バルジング帯172を構成することが好ましい。液相線クレータエンド位置とは、鋳片3の中心温度が鋳造される鋼の液相線温度となる連続鋳造機1の機内の鋳造方向における位置であり、溶鋼温度や連続鋳造機1の冷却能力に応じた伝熱凝固計算(例えば、特許文献4に記載の計算方法)によって求められる。意図的バルジング帯172では、ロール開度の拡大量が所定値となるまで、鋳造方向下流側に向かって1ロール対毎又は複数ロール対毎に順次ロール開度が広くなるように、各鋳片支持ロール14が設定される。意図的バルジング帯172よりも鋳造方向下流側、且つ軽圧下帯171よりも鋳造方向上流側に設置される鋳片支持ロール14は、ロール開度が一定値又は鋳片3の温度降下に伴う収縮量に見合う程度に狭められる。
 ここで、本実施形態におけるバルジングは、意図的なバルジング(意図的バルジング)のことを示し、以下単に「バルジング」とも言う。なお、意図的バルジングは、中心部の固相率が0の段階で開始し、鋳片の長辺面のバルジング総量(上面及び下面のバルジング量の合計)が3m以上20mm以下となったら終了するのが好ましい。意図的バルジングのバルジング総量が3mm未満では、鋳片3の短辺と鋳片支持ロール14とが接触してしまい十分な軽圧下が付与できなくなる恐れがある。なお、意図的にバルジングをさせる際に、内部割れを抑制する観点から、バルジング総量は15mm以下であることが好ましく、10mm以下であることがより好ましい。
 図4には、本実施形態における鋳片支持ロール14のロール開度のプロフィルの一例を示す。図4に示すロール開度のプロフィルでは、意図的バルジング帯172で鋳片長辺面を溶鋼静圧によって意図的にバルジングさせて鋳片長辺面の中央部の厚みを増大させる(領域b)。また、図4に示すロール開度のプロフィルでは、意図的バルジング帯172を通りすぎた下流側では、ロール開度が一定値又は鋳片3の温度降下に伴う収縮量に見合う程度に狭められる(領域c)。その後、図4に示すロール開度のプロフィルでは、軽圧下帯171で鋳片長辺面を圧下する(領域d)。図4中のa及びeは、ロール開度が鋳片3の温度降下に伴う収縮量に見合う程度に狭められる領域である。図中のa’は、鋳片3の温度降下に伴う収縮量に見合う程度にロール開度を狭くする従来方法のロール開度の例である。
 意図的バルジング帯172では、鋳片支持ロール14のロール開度を鋳造方向下流側に向かって順次広くすることにより、鋳片3の短辺近傍を除く長辺面は、未凝固層による溶鋼静圧によって鋳片支持ロール14に倣って意図的にバルジングさせられる。鋳片3の短辺近傍の長辺面は、凝固が完了した鋳片3の短辺面に固持及び拘束されることから、意図的バルジングを開始した時点の厚みを維持する。したがって、鋳片3は、意図的なバルジングによって、長辺面のバルジングした部分のみが鋳片支持ロール14に接触することになる。また、軽圧下帯171では、圧下総量をバルジング総量以下にすることで、鋳片3の長辺面のバルジングした部分のみが圧下され、効率的に軽圧下することが可能となる。なお、圧下総量とは、軽圧下帯171における圧下開始から圧下終了までの鋳片3の圧下量であり、バルジング総量とは、意図的バルジング帯172における意図的なバルジング開始から意図的なバルジング終了までのバルジング量である。また、バルジング量とは、鋳片3の幅方向での厚みがバルジングした最大量であり、鋳片3の横断面における厚みの最大値(基本的には幅方向中央での厚み)と、短辺側の厚みとの差分として算出される長さ(mm)である。
 また、鋳片3を意図的にバルジングさせる場合、意図的バルジング帯172を鋳型13の下端から鋳片3の液相線クレータエンド位置との間に配置することが好ましい。その理由は、鋳片3の液相線クレータエンド位置よりも鋳造方向上流側は、鋳片厚み中心部は全て未凝固層5(液相)であり、鋳片3の凝固シェル4は温度が高く、変形抵抗が小さく、容易にバルジングさせることができるからである。また、鋳片3を意図的にバルジングさせる場合、鋳片3の内部に存在する未凝固層5が少ない時点でバルジングさせると、中心偏析は却って悪化する。しかし、鋳片3の液相線クレータエンド位置よりも鋳造方向上流側でバルジングさせた場合には、この時点では、溶質元素の濃化されていない初期濃度の溶鋼が鋳片内部に潤沢に存在し、且つ、この溶鋼が容易に流動する。この溶鋼が流動しても偏析は起こらず、したがって、この時点におけるバルジングは中心偏析の原因とはならない。
 尚、鋳片3の液相線とは、鋳片3の化学成分によって決まる凝固開始温度であり、例えば、下記の(2)式から求めることができる。
=1536-(78×[%C]+7.6×[%Si]+4.9×[%Mn]
  +34.4×[%P]+38×[%S]+4.7×[%Cu]
  +3.1×[%Ni]+1.3×[%Cr]+3.6×[%Al]) ・・・(2)
 但し、(2)式において、Tは液相線温度(℃)、[%C]は溶鋼の炭素濃度(質量%)、[%Si]は溶鋼の珪素濃度(質量%)、[%Mn]は溶鋼のマンガン濃度(質量%)、[%P]は溶鋼の燐濃度(質量%)、[%S]は溶鋼の硫黄濃度(質量%)、[%Cu]は溶鋼の銅濃度(質量%)、[%Ni]は溶鋼のニッケル濃度(質量%)、[%Cr]は溶鋼のクロム濃度(質量%)、[%Al]は溶鋼のアルミニウム濃度(質量%)である。なお、本実施形態の検討においては、C:0.03質量%以上0.2質量%以下、Si:0.05質量%以上0.5質量%以下、Mn:0.8質量%以上1.8質量%以下、P:0.02質量%未満、S:0.005質量%未満の低炭素アルミキルド鋼で行った。しかしながら、もとより本発明の適用範囲は上記の成分範囲に限定されるものではない。
 意図的バルジング帯172は、特別な機構は不要であり、ロール開度を調整するだけで構成されるので、鋳型13の下端から鋳片3の液相線クレータエンド位置との範囲である限り、任意の位置に設置することができる。
 この構成のスラブ連続鋳造機1において、タンディッシュ10から浸漬ノズル12を介して鋳型13に注入された溶鋼2は、鋳型13で冷却されて凝固シェル4を形成する。この凝固シェル4を外殻とし、内部に未凝固層5を有する鋳片3は、鋳型13の下方に設けた鋳片支持ロール14に支持されつつ、鋳型13の下方に連続的に引き抜かれる。鋳片3は、鋳片支持ロール14を通過する間、二次冷却帯の二次冷却水で冷却され、凝固シェル4の厚みを増大させる。そして、鋳片3は、意図的バルジング帯172では長辺面の短辺側端部を除いた部分の厚みを増大させ、また、軽圧下帯171では軽圧下されながら凝固完了位置6で内部までの凝固を完了する。凝固完了後の鋳片3は、鋳片切断機16によって切断されて鋳片3aとなる。鋳型13内には、断熱材や潤滑剤、酸化防止剤などとして機能するモールドパウダー(図示せず)が添加される。
 また、本実施形態では、軽圧下帯171における鋳造条件が以下の条件で連続鋳造を行う。軽圧下帯171では、鋳片3の厚み中心の固相率である中心固相率が少なくとも0.2以上1.0未満の範囲において、0.3mm/min以上2.0mm/min以下の圧下速度で鋳片3を圧下(軽圧下)する。なお、本実施形態における鋳片3の厚み中心とは、鋳片3の横断面において厚み中心部の固相率が最も低い幅方向位置における厚み方向の中心を意味する。中心固相率が上記範囲内における軽圧下の圧下速度が0.3mm/min未満の場合、V偏析が発生する可能性が高くなる。一方、中心固相率が上記範囲内における軽圧下の圧下速度が2.0mm/min超の場合、逆V偏析が発生する可能性が高くなる。
 さらに、本実施形態では、中心固相率が少なくとも0.2以上1.0未満の範囲内の軽圧下帯において、軽圧下帯を構成するセグメント18である軽圧下セグメント18aの撓みτが下記(1)式を満たす。
 2×τ-A/(n-1)≦3.25×2×δ≦1.3 ・・・(1)
 ここで、
 δ:実測バルジング量(mm)
 τ:セグメントの撓み(mm)
 A:鋳片の中心固相率が0.2以上1.0未満の軽圧下帯における軽圧下の圧下設定量(mm)
 n:鋳片の中心固相率が0.2以上1.0未満の軽圧下帯に存在する鋳片支持ロール対の数
 なお、(1)式において、セグメントの撓みτは、セグメントフレームの幅方向中央における厚み方向の撓みであり、セグメントフレームの幅方向両端部と幅方向中央部との厚み方向の高さから求められる。具体的には、図2の一点鎖線で示すように、撓みτは、上面側フレーム180及び下面側フレーム181の両方における撓みτ,τの和(τ=τ+τ)として示される。また、撓みτは、セグメントフレームの鋳造方向における複数箇所における撓みの最大値となることが好ましい。例えば、撓みτは、セグメントフレームの鋳造方向における出側及び入側の少なくとも2箇所における撓みのうち最大となる撓みの値であってもよい。この場合、図3に示すように、支持支柱182が設けられる2箇所の鋳造方向位置における撓みをそれぞれ測定することでセグメントの撓みτが求められてもよい。なお、軽圧下セグメント18aの撓みτは、実際に鋳片3を連続鋳造する際に測定される値でもよく、連続鋳造機1で同様な鋼種を連続鋳造した際に測定された値であってもよい。
 また、実測バルジング量δは、鋳片3の中心固相率が0.0超に変化した時点以降でのバルジング量である。実測バルジング量δは、上面又は下面のどちらか一方のバルジング量であり、測定の容易さから、上面のバルジング量の実測値であることが好ましい。また、バルジング量は、通常、上面と下面とで同じ値となるため、いずれか一方の長辺面のバルジング量を測定し、測定されたバルジング量を2倍にすることで、バルジング総量を求めることができる。(1)式では、実測バルジング量δに係数として2を乗じることで、バルジング総量の実測値が示されている。
 さらに、軽圧下の設定量Aは、鋳片3が0.2以上の中心固相率から完全凝固するまでに圧下される量(設定量)である。軽圧下の圧下設定量は、ロールプロフィールつまり設定されるロール間隔のみによって決定される設定上の圧下量である。
 ここで、本発明者らは、実際の連続鋳造機での軽圧下においては、セグメントの撓みなどが影響することで、目的とする圧下量(圧下設定量)で軽圧下が行われない場合があることを確認した。そして、連続鋳造を行う際に(1)式の関係を満たすセグメント18を軽圧下帯171で用いることにより、中心偏析をより安定的に低減できることを知見することで、本発明をするにいたった。
 軽圧下帯171を構成するセグメント18である軽圧下セグメント18aに掛かる荷重は、鋳片3のサイズ、軽圧下帯171における圧下勾配及び軽圧下される鋳片3の未凝固層5の割合で決定される。中心偏析の原因となる凝固末期での溶鋼流動を防止するには、凝固収縮量や熱収縮量に見合った量の軽圧下を付与する必要があるが、設定の圧下勾配が大きい、或いは、鋳片サイズが大きい場合、軽圧下セグメント18aに掛かる荷重は大きくなる。軽圧下セグメント18aに掛かる荷重が大きくなると、軽圧下セグメント18a内のロール開度は拡がる方向に作動する。したがって、鋳片サイズや圧下勾配の設定が同一であっても、凝固完了位置6の鋳片幅方向における形状に応じて軽圧下セグメント18aに掛かる荷重は変動し、その荷重に応じてロール開度も変動する。このため、実際に鋳片3に付与される圧下速度も設定値から変動してしまう。
 しかし、鋳片3の中心固相率が上記範囲内において、軽圧下帯171の軽圧下セグメント18aが(1)式を満たすようにすることで、軽圧下セグメント18aの剛性が十分に得られ、十分な圧下量で軽圧下を行うことができ、中心偏析をより安定的に低減できる。また、設定した軽圧下の条件を鋳片の幅方向対して均等に与えることができるため、中心偏析による偏析度の幅方向におけるバラツキを低減させることが可能となり、かつ幅方向における全ての箇所での偏析度を低減することができる。一方、軽圧下帯171の軽圧下セグメント18aが(1)式を満たさない場合には、十分な圧下量が確実に得られない。このため、鋳片3の中心偏析の鋳片幅方向における全体的な偏析レベルが悪化したり、偏析度の鋳片幅方向におけるバラツキが増加したりすることがある。また、特許文献1~4のような従来の技術を検証すると、いずれも設定した軽圧下条件がそのまま鋳片に付与されたことを大前提としており、実際に発生するセグメントの機械的な撓みや設支柱の機械的な伸びによる軽圧下開度からのズレが考慮されていない。
 さらに、本実施形態の鋳造条件としては、凝固完了位置6に相当するセグメント18について、セグメントフレームの撓み偏差σを0.2mm以下とし、且つセグメントフレームの左右の変位差tを常に0.2mm以下とすることが好ましい。撓み偏差σは、セグメント18の上面側フレーム180及び下面側フレーム181のそれぞれにおける撓みの偏差であり、上面側フレーム180及び下面側フレーム181のそれぞれの鋳造方向の複数位置における撓みの最大値と最小値との差分である。つまり、撓み偏差σが0.2mm以下であることは、上面側フレーム180及び下面側フレーム181のそれぞれにおいて、鋳造方向における撓み偏差が0.2mm以下となることである。例えば、撓み偏差は、上面側フレーム180及び下面側フレーム181のそれぞれにおける、鋳造方向の入側端部及び出側端部の撓みの差分であってもよい。この場合、撓みを測定する位置としては、支持支柱182が設けられた位置であってもよい。また、3箇所以上の鋳造方向位置における撓みの最大値と最小値との差分を撓み偏差σとしてもよい。左右の変位差tは、セグメントフレームの幅方向両端部の変位差である。通常、セグメント18の下部分の構造は固定で動かないため、セグメント18の上面側フレーム180における幅方向両端の変位差が左右の変位差tとなる。また、変位差tは、上面側フレーム180の幅方向両端に接続される一対の支持支柱182の鉛直方向上端の高さの差であってもよい。さらに、左右の変位差tは、鋳造方向の異なる位置において、常に0.2mm以下であることが好ましい。このような鋳造条件とすることで、中心偏析をより安定的に低減することができる。
 <変形例>
 以上で、特定の実施形態を参照して本発明を説明したが、これら説明によって発明を限定することを意図するものではない。本発明の説明を参照することにより、当業者には、開示された実施形態とともに種々の変形例を含む本発明の別の実施形態も明らかである。従って、特許請求の範囲に記載された発明の実施形態には、本明細書に記載したこれらの変形例を単独または組み合わせて含む実施形態も網羅すると解すべきである。
 例えば、上記実施形態では、支持支柱182がロール開度を調整するとしたが、本発明はかかる例に限定されない。例えば、鋳片支持ロール14とセグメントフレームとを接続する支持部材が油圧などによって伸縮することで、ロール開度を調整するようにしてもよい。
 本発明者らが行った実施例について説明する。実施例では、鋳造条件が鋳片3の厚み中心偏析へ与える影響を調査するため、剛性の異なる2種類のセグメント18(フレーム1及びフレーム2)を試験的に上架し、種々の鋳造条件で連続鋳造を行った。なお、鋳造条件は、図1に示すような垂直曲げ型の連続鋳造機1で軽圧下を行って連続鋳造を行う場合における鋳造条件である。そして、鋳造された鋳片3に対してMn偏析度の測定と耐水素誘起割れ試験(HIC試験)とを実施し評価した。詳細な鋳造条件は以下である。
 実施例では、鋳片3を効率的に軽圧下することを目的として、鋳片引抜速度は、1.1m/min一定とした。意図的バルジング帯172におけるバルジング総量は、0.0mm以上15.0mm以下の範囲で水準毎に変化させた。軽圧下帯171での設定の圧下速度は、0mm/min以上4.0mm/min以下の範囲で水準毎に変化させた。鋳造される鋳片3のサイズは、2100mm幅、250mm厚みのスラブ鋳片とした。セグメント18のセグメントフレームについては、フレーム1をフレーム2よりも剛性の高いものとした。また、2次冷却水量については、全ての水準で同様となるように調整をした。また、最終凝固位置は、特許文献4と同様な伝熱凝固計算によって求めた。
 鋳造中には、予め伝熱凝固計算によって求めた最も鋳造方向下流側となる凝固完了位置6が存在する軽圧下セグメントにおいて、非接触のセンサーによってロール開度の変位をセグメントの中央及びセグメントフレームの支持支柱の変位を測定した。
 鋳片3に実際に付与された圧下速度と鋳片3の偏析との関係を鋳造後、鋳片から採取した試験片の断面(鋳片の縦断面に相当)をピクリン酸で腐食し、V偏析や逆V偏析の有無及び内部割れの有無を調査した。また、鋳片3から採取した試験片において、鋳片厚み中心部のMnの偏析をEPMAにより分析し、鋳片幅方向各位置のMn偏析度を調査した。また、鋳片幅方向各位置から採取した試験片において、耐水素誘起割れ試験(HIC試験)を実施した。
 実施例における各水準の条件及び試験結果を表1に示す。水準1~13はフレーム剛性を上げたセグメントを適用した場合であり、水準14~28は剛性の不十分なセグメントを適用した場合である。実施例では、軽圧下帯171に剛性の異なるフレーム1,2を使用し、それ以外の鋳造条件は同一として実施した。また、軽圧下帯171に設けられる軽圧下セグメント18aの数は1つとした。なお、表1において、実測バルジング量は、鋳造した鋳片のバルジング量の実測値であり、値αは下記(2)式で求められる値であり、値βは下記(3)式で求められる値である。さらに、(1)式における圧下設定量Aは、下記(4)式で求められるものであり、軽圧下帯171の鋳造方向の長さLを軽圧下セグメント18aの長さから1.89mとし、鋳造速度Vを1.1m/minとした。さらに、軽圧下帯171に存在する鋳片支持ロール対の数nを軽圧下セグメント18aに設けられるロール対の数から8組とした。また、表1において、判定は、値βが1.3以下であるか否かを示し、値βが1.3以下の場合を「○」、値βが1.3超の場合を「×」とする。つまり、値βが値α以上となり、且つ判定が「○」となる条件は、(1)式を満たすものである。さらに、表1において、セグメント変位の撓み偏差は、最終凝固位置のセグメントにおける撓み偏差σであり、上面側フレーム180の撓み偏差σと下面側フレーム181の撓み偏差σとを足し合わせた値である。また、セグメント変位の「入」及び「出」は、最終凝固位置のセグメントの鋳造方向の入側及び出側における端部(支持支柱182を設置した位置)の変位を示す。また、セグメント変位の「南」及び「北」はセグメントの幅方向の一端(実機における南側端部)及び他端(実機における北側端部)における端部(支持支柱182を設置した位置)の変位を示す。さらに、セグメント変位の「差」は南と北における変位の差であり、左右の変位差tである。本実施例では、セグメント変位は、セグメントに撓みがない状態における支持支柱182の上端位置を基準として、上端位置が基準からどのくらい変位したかを示す。
  α=2×τ-A/(n-1) ・・・(2)
  ここで、
  τ:セグメントの撓み(mm)
  A:鋳片の固相率が0.2以上1.0未満の軽圧下帯における軽圧下の圧下設定量(mm)
  n:鋳片の固相率が0.2以上1.0未満の軽圧下帯に存在する鋳片支持ロール対の数
  β=3.25×2×δ ・・・(3)
  ここで、
  δ:実測バルジング量(mm)
  A=V×L/V ・・・(4)
  ここで、
  V:設定圧下速度(mm/min)
  L:軽圧下の鋳造方向の長さ(m)
  V:鋳造速度(m/min)
Figure JPOXMLDOC01-appb-T000001
 
 表1に示すように、フレーム1とフレーム2とを比較すると、フレーム剛性を上げ、中央の撓みを0.4mm以下とし、左右の変位差を0.2mm以下に抑えることで、中心偏析は改善した。
 また、水準1~6は本発明の範囲内の条件であるが、偏析度もバラツキσも良好な結果となった。水準9~11,16~17,22~24の軽圧下帯171における圧下速度が0.3mm/min未満の条件ではV偏析が発生し、水準12,13,25,26の圧下速度が2.0mm/minを超える条件では逆V偏析が発生した。
 中心偏析は、V偏析及び逆V偏析が発生したものはMn偏析度が悪化し、HIC成績である割れ偏析面積率(%)=CAR(CRACK AREA RATIO)も悪化した。なお、中心偏析の判断基準としては、Mn偏析度については1.06以下となるものを良とし、HIC成績については2.0以下となるものを良とした。したがって、軽圧下帯171における圧下速度は0.3mm/min以上2.0mm/min以下に制御する必要があることがわかった。尚、鋳片3に実際に付与された圧下速度は、非接触のセンサーによって測定した軽圧下セグメントでのロール開度の変位から算出される圧下勾配と鋳片の引き抜き速度との積として求めたものである。
 1 スラブ連続鋳造機
 10 タンディッシュ
 11 スライディングノズル
 12 浸漬ノズル
 13 鋳型
 14,14a 鋳片支持ロール
 14b 圧下ロール
 15 搬送ロール
 16 鋳片切断機
 171 軽圧下帯
 172 意図的バルジング帯
 173 上部矯正帯
 174 下部矯正帯
 18 セグメント
 18a 軽圧下セグメント
 180 上面側フレーム
 181 下面側フレーム
 182 支持支柱
 2 溶鋼
 3,3a 鋳片
 4 凝固シェル
 5 未凝固層
 6 凝固完了位置

Claims (4)

  1.  湾曲型連続鋳造機又は垂直曲げ型連続鋳造機の連続鋳造機で鋼を連続鋳造する、鋼の連続鋳造方法であり、
     連続鋳造される鋳片の厚み中心の固相率である中心固相率が少なくとも0.2以上1.0未満の範囲において、0.3mm/min以上2.0mm/min以下の圧下速度で前記鋳片に圧下を付与し、
     前記鋳片に圧下を付与するセグメントのセグメントフレームの厚み方向の撓みである、セグメントの撓みτが(1)式を満たす、鋼の連続鋳造方法。
      2×τ-A/(n-1)≦3.25×2×δ≦1.3 ・・・(1)
      ここで、
      δ:実測バルジング量(mm)
      τ:セグメントの撓み(mm)
      A:鋳片の中心固相率が0.2以上1.0未満の軽圧下帯における軽圧下の圧下設定量(mm)
      n:鋳片の中心固相率が0.2以上1.0未満の軽圧下帯に存在する鋳片支持ロール対の数
  2.  最終凝固位置に相当するセグメントフレームについて、撓み偏差σを0.2mm以下とし、且つ前記セグメントフレームの左右の変位差tを常に0.2mm以下とする、請求項1に記載の鋼の連続鋳造方法。
  3.  前記連続鋳造機の意図的バルジング帯にて、複数対の鋳片支持ロールのロール開度を鋳造方向の下流側に向かって段階的に増加させて前記鋳片の長辺面を3mm以上20mm以下のバルジング総量でバルジングさせ、
     前記意図的バルジング帯よりも鋳造方向の下流側の軽圧下帯にて、複数対の鋳片支持ロールのロール開度を前記鋳造方向の下流側に向かって段階的に減少させて前記鋳片に前記圧下を付与する、請求項1又は2に記載の鋼の連続鋳造方法。
  4.  鋼を連続鋳造する湾曲型連続鋳造機又は垂直曲げ型連続鋳造機の連続鋳造機であり、
     連続鋳造される鋳片を厚み方向に圧下する軽圧下帯を備え、
     前記軽圧下帯では、前記鋳片の厚み中心の固相率である中心固相率が少なくとも0.2以上1.0未満の範囲において、0.3mm/min以上2.0mm/min以下の圧下速度で前記鋳片に圧下を付与し、
     前記軽圧下帯において前記鋳片に圧下を付与するセグメントのセグメントフレームの厚み方向の撓みである、セグメントの撓みτが(1)式を満たす、鋼の連続鋳造機。
      2×τ-A/(n-1)≦3.25×2×δ≦1.3 ・・・(1)
      ここで、
      δ:実測バルジング量(mm)
      τ:セグメントの撓み(mm)
      A:鋳片の中心固相率が0.2以上1.0未満の軽圧下帯における軽圧下の圧下設定量(mm)
      n:鋳片の中心固相率が0.2以上1.0未満の軽圧下帯に存在する鋳片支持ロール対の数
PCT/JP2023/018120 2022-05-26 2023-05-15 鋼の連続鋳造方法及び連続鋳造機 WO2023228796A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022086206 2022-05-26
JP2022-086206 2022-05-26

Publications (1)

Publication Number Publication Date
WO2023228796A1 true WO2023228796A1 (ja) 2023-11-30

Family

ID=88919195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018120 WO2023228796A1 (ja) 2022-05-26 2023-05-15 鋼の連続鋳造方法及び連続鋳造機

Country Status (1)

Country Link
WO (1) WO2023228796A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045552A (ja) * 2010-08-24 2012-03-08 Jfe Steel Corp 鋼鋳片の連続鋳造方法
JP2016028827A (ja) * 2014-07-25 2016-03-03 Jfeスチール株式会社 鋼の連続鋳造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045552A (ja) * 2010-08-24 2012-03-08 Jfe Steel Corp 鋼鋳片の連続鋳造方法
JP2016028827A (ja) * 2014-07-25 2016-03-03 Jfeスチール株式会社 鋼の連続鋳造方法

Similar Documents

Publication Publication Date Title
JP6115735B2 (ja) 鋼の連続鋳造方法
KR102635630B1 (ko) 강의 연속 주조 방법
JP5962625B2 (ja) 鋼の連続鋳造方法
WO2016103293A1 (ja) 鋼の連続鋳造方法
JP6384679B2 (ja) 熱延鋼板の製造方法
WO2023228796A1 (ja) 鋼の連続鋳造方法及び連続鋳造機
JPH038864B2 (ja)
JP5870966B2 (ja) 連続鋳造鋳片の製造方法
JP2005193265A (ja) 鋼の連続鋳造設備および連続鋳造方法
JP6439663B2 (ja) 鋼の連続鋳造方法
JP6788232B2 (ja) 鋼の連続鋳造方法
CN111989175B (zh) 钢的连续铸造方法
JP6152824B2 (ja) 鋼の連続鋳造方法
JP5929836B2 (ja) 鋼の連続鋳造方法
JP4692164B2 (ja) 高炭素鋼の連続鋳造方法
JP6933158B2 (ja) 鋼の連続鋳造方法
JP7355285B1 (ja) 鋼の連続鋳造方法
JPH038863B2 (ja)
WO2023190018A1 (ja) 鋼の連続鋳造方法
JP4364852B2 (ja) スラブ鋳片の連続鋳造設備と連続鋳造方法
JP4723451B2 (ja) 復熱由来の内部割れに係る高炭素鋼の連続鋳造方法
JP2016179490A (ja) 連続鋳造方法
JP2014039940A (ja) 鋼の連続鋳造方法
JP2016036821A (ja) 連続鋳造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811670

Country of ref document: EP

Kind code of ref document: A1