JP2007273990A - 交差型単純マトリクス素子のインクジェット印刷 - Google Patents

交差型単純マトリクス素子のインクジェット印刷 Download PDF

Info

Publication number
JP2007273990A
JP2007273990A JP2007086774A JP2007086774A JP2007273990A JP 2007273990 A JP2007273990 A JP 2007273990A JP 2007086774 A JP2007086774 A JP 2007086774A JP 2007086774 A JP2007086774 A JP 2007086774A JP 2007273990 A JP2007273990 A JP 2007273990A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
functional material
cross
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007086774A
Other languages
English (en)
Inventor
Christopher Newsome
ニューサム クリストファー
Daping Chu
チュー ダピン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of JP2007273990A publication Critical patent/JP2007273990A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/02Disposition of storage elements, e.g. in the form of a matrix array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • H10K19/202Integrated devices comprising a common active layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • H10K71/611Forming conductive regions or layers, e.g. electrodes using printing deposition, e.g. ink jet printing

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】単純マトリクス有機強誘電体メモリアレイ又は他のアレイ素子の生産を、インクジェット印刷を用いて金属又は金属に類似した材料、必要に応じて強誘電体及び絶縁性材料をも堆積することによって行うための製造工程及び交差型素子を提供する。
【解決手段】交差型素子であって、複数の底部電極100と、底部電極100と交差する複数の上部電極200と、底部電極100及び上部電極200の間に設けられた強誘電体層150の複数の領域とを有し、少なくとも二の交差部が、強誘電体層150の分離された領域を底部電極100及び上部電極200の電極間に有する。
【選択図】図4

Description

本発明は、特に、単純マトリクスメモリアレイに応用する交差部構造の形成に関する。
インクジェット印刷技術は研究開発の規模で、長年にわたり電子部品の製造に応用されてきた。とりわけ、有機半導体高分子で製造される発光ダイオードは、インクジェット印刷を用いて大規模に生産されてきている。特に、フラットパネル型有機発光ディスプレイ(OLED)や薄膜トランジスタ(TFT)は、インクジェット印刷技術と、バンク構造の形成などの他の技術とを組み合わせて用いることによって開発されてきている。
上記の部品に加え、メモリシステムを生産する同様の製造技術に大きな関心が寄せられている。他方の無機の発光ダイオードやトランジスタについては、無機のメモリセルやメモリチップの製造過程で高温工程や高真空の成膜装置が必要となる。このような製造過程は設置に多くの費用がかかり、また高度の保守が必要であるため、更に多くの費用がかかる。このような出費を最小限に抑え、効率を改善することが望ましい。
交差部アレイはメモリシステムの形成に用いることができる。強誘電体メモリ交差部アレイの基本的な構造は、その最も単純な形態では、図1に示す薄膜「キャパシタ」のアレイである。それぞれの「キャパシタ」は書き込まれた極性を記憶する。
具体的には、図1(a)には二つの電極10,11を有する交差部構造が示されており、二つの電極10,11は通常200nmから2ミクロンの厚さで、金属材料を用いて、薄い強誘電体膜20の両面に付与されている。電極10,11間に電界が印加されると、分極応答を電界の関数として計測できる。電界に対する分極のヒステリシス特性により、その材料がメモリ素子に適しているか否かが分かる。
強誘電体メモリの例を図1(b)に示す。図中、複数行の電極10aが、強誘電体膜20の下方に設けられ、複数列の電極10bが、その強誘電体膜20の上方に設けられている。当業者に周知の方法により、行及び列の電極が指定され、指定された行及び指定された列の交点にある強誘電体材料を分極させ、これによりデータを書き込むことができる。このデータは、その指定された行及び列の交点における強誘電体材料の分極を判断することによって、後に読み出すことができる。
更に具体的には、それぞれの交差点において、上下の電極がメモリ素子の「ビット」を形成し、強誘電体材料の自発的な分極に応じて、「1」又は「0」として読み出すことができる。強誘電体材料の自発的な分極は、材料の単位体積当たりの双極子モーメントの量により与えられる。強誘電体材料において、自発的な分極の方向は電界により切り替えることができ、従って、分極ヒステリシスを測定することができる。
有機高分子材料では、強誘電体材料はポリフッ化ビニリデン(PVDF)、フッ化ビニリデン−トリフルオロエチレン共重合体(P(VDF−TrFE))、フッ化ビニリデン−テトラフルオロエチレン共重合体(P(VDF−TeFE))等となる。材料の通常の膜厚は200〜2000nmの範囲である。この材料のスピンコーティングには極性溶媒が用いられる。このような塗布工程には、スピンコーティング工程の後に含まれていた溶媒の大半が自然に揮発するように、80〜140℃の範囲の沸点を有する溶媒が好ましい。2−ブタノン(メチルエチルケトンとしても知られている)のような溶媒を用いることができる。このような溶媒を用いることにより、厚さの均一性の高い膜を形成することができる。
強誘電体キャパシタの領域を画定する電極は、多くの材料を用いて形成することができる。金属蒸着の場合には、金、アルミニウム、銀等が容易に熱蒸着可能である。金属のこの選択は、利用できる多くの材料の内の極わずかでしかない。コスト削減の観点からは、アルミニウムが第一の選択である。溶解処理による強誘電体材料の障害を最小化するために、上部電極の形成を、シャドウマスクを介した金属の蒸着によるダイレクトパターニングにより行うことが最も好ましい。フォトリソグラフィにより上部電極を形成するためには、フォトレジスト材料を強誘電体層に直接接触させる必要がある。このような材料の組み合わせにより、フォトレジスト内の溶媒やフォトレジスト用の現像液や除去液による内部拡散や混合が起こる可能性がある。この電極形成にシャドウマスクを用いることにより、強誘電体層への障害を最小化できる。金属材料の蒸着の性質上、膜への多少の加熱が発生し得る。
有機メモリ素子は、有機材料を活性層に用いて、すなわち高分子材料をキャパシタ構造中の強誘電性誘電体として用いて、既に製造されている。高分子を強誘電体層として用いる利点は、材料を溶液からスピンコーティングによって、通常の環境条件で成膜できる点である。更に、主溶媒を除去する工程は、低温乾燥工程(<150℃)を用いて実現できる。この技術は強誘電体層の形成に用いられてきたが、金属電極の形成は熱蒸着を用いて広く行われており、これによりキャパシタの容量が決定されている。この電極形成技術によれば高い素子性能を期待できるが、この場合には、完全なコストの最小化は未だ達成されていない。
特許文献1には、有機高分子交差部アレイ用の無機電極の形成法について(特に、上部電極の形成について)記載されている。素子の電極は真空蒸着によって成膜された金属(すなわち、チタン)からなる。しかし、この開示ではインクジェット印刷技術は用いられていない。
特許文献2には、有機半導体上の誘電体として高分子強誘電体材料を用いて、有機強誘電体薄膜トランジスタを形成することが記載されている。このような「Ferro−OTFT」はアクティブマトリクスアレイにおいても用いることができる。
特許文献3には強誘電体材料ではなく有機半導体膜を単純マトリクス交差部アレイの活性媒体として用いることが概略記載されている。この半導体膜は有機添加物を含んでおり、その濃度を変えることにより、交差部の所望の特性を「調整」する。
上述したようなフッ化高分子は強誘電体キャパシタにおいて使用することができ、また、2-ブタノンのような極性溶媒に可溶である。構造内でのフッ素原子の高い電気陰性度により、この材料の高い極性、すなわちそのような溶媒への可溶性がもたらされる。高い極性に加えて、これらの高分子にフッ素が含有されていることにより、十分にフッ素処理された材料では強い疎水性と疎油性とがもたらされる。この種の高分子の薄膜表面上の水滴の接触角は90度以上である。このような高い接触角を示すことから、このような表面上に材料の水ベースの分散液又は溶液を塗布又は印刷することは困難である。
PEDOT:PSSは、以上説明したように、多くの有機素子において導電性高分子として広く用いられている。PEDOT:PSSは、例えば、スタルク株式会社(H.C. Starck Ltd)製のバイトロンP溶液などの形態で広く市販されている。市販のバイトロンP溶液は、ポリスチレンスルホン酸(PSS)を含むポリエチレンジオキシチオフェン(PEDOT)の水性溶液であり、コロイド安定剤及び添加物として作用する。これにより、材料は水に分散した(ナノメータサイズの)粒子となり、従って、この材料がPVDF(又はその共重合体)膜上に堆積された場合、同様の撥水作用が現れる。
この問題は以前から認識されており、特許文献4において取り上げられている。具体的には、特許文献4においては、強誘電体薄膜の両側に第1及び第2の電極が設けられた形態の強誘電体メモリセルを有する強誘電体メモリ回路が開示されている。その電極は導電性高分子の電極であり、スタルク社のバイトロンP溶液のスピンコーティングや、そのような溶液へのディッピングにより、強誘電体薄膜の上面に堆積されている。特許文献4には、均一で平坦なPEDOT/PSS膜の形成を可能とするためには、スピンコーティングの際に一定量の界面活性剤をバイトロンP溶液に添加しなければならない旨が開示されている。しかしながら、特許文献4には、スピンコーティング溶液に添加すべき界面活性剤の量についても、性質についても開示されていない。
特許文献5においても、PEDOT:PSS水溶液が強誘電高分子層上にスピンコーティングにより堆積された強誘電体素子が開示されている。強誘電高分子層の撥水性を克服するために、表面張力低下剤として3%以下の濃度のn−ブタノールを水溶液に添加して、溶液が単一の層として残留できるようにする。加えて、架橋剤をその水溶液に添加してもよい。
従来、及び特許文献4、特許文献5において、PEDOT:PSSはスピンコーティングやディッピングにより、強誘電体層の表面全体が覆われるように、強誘電体層上に堆積される。その後、PEDOT:PSS層は、フォトリソグラフィなどの公知の技術を用いてパターニングされる。
しかしながら、そのようなパターニング技術では、パターニングされる層の上にマスクを高精度に位置決めしなくてはならないため、それらのパターニング技術の利用は好ましくない。トランジスタや強誘電体素子などの電子素子や電子回路の形成では一般的であるように、何層かの層のパターニングが必要な場合には、位置決めは一層困難なものとなる。これにより、製造速度は低下し、素子のコストは上昇する。
更に、真空中で熱蒸着した金属の代替として、インクジェット印刷可能な分散液や溶液をインクジェット印刷してもよい。加えて、十分に微小な構成粒子サイズ(通常は100nmより小)の金属コロイド分散を溶媒中に用意して、それらを通常の環境条件下でインクジェット印刷することも可能である。
強誘電体キャパシタの上部及び底部の端子に用いる蒸着金属を溶液処理可能な導電性材料で置き換えることにより、十分に機能する交差型素子を実現することが可能である。電極用の材料の選択は、コロイドが用意されるインクの組成によって、主として決定される。ポリスチレンスルホン酸(PSS)の添加されたポリエチレンジオキシチオフェン(PEDOT)の場合は、水性懸濁液が通常である。PSSは水溶性であり、従って、PEDOT(本来、嫌水性である)を懸濁液中に分散させるように作用する。このような材料は、底部電極として多くの表面に容易に印刷できる。
強誘電体材料の疎水性に対処するための水性懸濁液の変更は、特許文献6に開示されている。ここでは、疎水性表面に対する接触角を減少させるために、表面張力低下剤を水性溶液に添加する。この方法を用いれば、スピンコーティングされた強誘電体膜上に材料の連続した線路を堆積させることが可能となり、これにより、上部電極を完成させることが可能となる。
水性導電性インクに対して十分な濡れ性を有する表面を作成する第2の技術は、親水性の層を溶液からスピンコーティングによって堆積することである。強誘電体P(VDF−TrFE)層上面に形成したポリビニルフェノール(PVP)膜を用いることにより、接触角を変化させることができ、PEDOT:PSSや金属コロイドのような水性導電性材料の線路を印刷することができる。このような層の厚さは非常に薄く(すなわち、10nm程の薄さ)でき、広い面積(すなわち、数平方センチ程度)にわたって効果が及ぶ。P(VDF−TrFE)表面上での水性材料の本来の接触角は90度である。PVPの層を堆積することにより、この接触角を30度に減少させることができる。極端に濡れ性の高い表面(接触角が10度未満)ではインクジェット印刷された液滴が横に広がって幅の広い線路となってしまうことから、このような接触角は理想的な値である。このような広がりは、例えば表示素子の画素電極等の領域を塗りつぶすためには有用であるが、導線や交差型素子の配線には必ずしも好ましくない。
有機材料を用いて電子素子を形成することの魅力的な側面は、可撓性を有する基板を利用することが可能であり、また、巻き取り生産処理(リールツーリール処理)が可能なことである。しかしながら、パターンニング技術で必要となる位置決めの困難さは深刻であり、克服できない。
交差型素子の公知の製造工程では、電気的機能を有する活性材料(すなわち、強誘電体又は半導体材料)は、スピンコーティングその他の従来のCMOS型の製造工程を用いて堆積される。また、電極等の素子の他の層の堆積は、通常、スピンコーティング及び/又はCVD、他の蒸着又はフォトリソグラフィ技術を用いて行われる。
米国特許出願公開第2004/0209420号明細書 米国特許出願公開第2004/0040094号明細書 国際特許公開第WO03/107426号パンフレット 国際特許公開第WO02/43071号パンフレット 国際特許公開第WO2005/064705号パンフレット 英国特許出願公開第0525449.5号明細書
交差型素子は、それぞれの部品を層毎に堆積して形成する「縦型」素子である。層毎のリソグラフィに基づく従来の製造方法(CMOS技術で行われるような)では、層平坦化等の技術が必要となる。その代わりとして、上述のように、溶液中の強誘電体材料をスピンコーティングした後、溶媒を揮発させることによって、強誘電体材料の平坦な層を得ることができる。このように、従来の技術は、多数の材料、それらの準備、及び成膜工程を含み、また、種々の異なった製造装置を必要とする。
本発明の目的は、単純マトリクス有機強誘電体メモリアレイ又は他のアレイ素子の生産を、インクジェット印刷を用いて金属又は金属に類似した材料、必要に応じて強誘電体及び絶縁性材料をも堆積することによって行うための製造工程及び交差型素子を提供することにある。本発明の更なる目的は、通常の環境条件で製造を行い、特に溶液からのインクジェット印刷によって、製造コストの最小化を実現することである。
上記課題を解決するために、本発明に係る交差型素子は、複数の第1の電極と、前記第1の電極と交差する複数の第2の電極と、前記第1及び前記第2の電極の間に設けられた電気的機能材料の複数の領域とを有し、少なくとも二の交差部が、電気的機能材料の分離された領域を前記第1及び前記第2の電極間に有することを特徴とする。
上記の発明に係る交差型素子は、それぞれの交差部が前記電気的機能材料の分離された領域を前記第1及び前記第2の電極間に有することを特徴とする。
上記の発明に係る交差型素子は、更に、前記第1の電極間又は前記第2の電極間の隙間に配置され、前記第1又は前記第2の電極から電気的に絶縁された複数の第3の電極と、前記第2の電極間又は前記第1の電極間の隙間に配置され、前記第1又は前記第2の電極から電気的に絶縁され、前記複数の第3の電極と交差する複数の第4の電極と、前記第3と前記第4との電極の交差部であって、前記第1の電極間の隙間、前記第2の電極間の隙間、及び前記電気的機能材料の前記第1の領域間の隙間における前記電気的機能材料の複数の第2の領域とを有し、少なくとも二の交差部が、前記電気的機能材料の分離された領域を前記第1及び前記第2の電極間に有することを特徴とする。
上記の発明に係る交差型素子は、前記第3及び前記第4の電極が、前記第3及び第4の電極の交差部のそれぞれと前記第1及び前記第2の電極の交差部との間に配置された誘電体材料によって、前記第1及び前記第2の電極と電気的に絶縁されていることを特徴とする。
上記の発明に係る交差型素子は、更に互いに交差する電極であって、前記電気的機能材料の更なる領域を、当該交差部において当該電極間に有する電極のグループの更なる組と、前記電極グループの前記更なる組は、前記基板上の、互いに交差する電極のグループが既に形成された領域以外の領域の上方に形成され、前記電気的機能材料の前記更なる領域は、前記基板上の、電気的機能材料の領域が既に形成された領域以外の領域の上方に形成されることを特徴とする。
上記の発明に係る交差型素子は、更に、前記第2の電極及び前記電気的機能材料の前記第1の領域の両方の上方に設けられた、前記電気的機能材料の更なる領域と、前記電気的機能材料の前記更なる領域の上方に設けられた更なる電極とを有し、これにより、前記第2の電極と前記更なる電極とが、前記電気的機能材料の前記更なる領域を挟持する交差部を形成することを特徴とする。
上記の発明に係る交差型素子は、前記電極と前記電気的機能材料の前記領域とをアレイと称し、更に、前記アレイ上方に設けた保護層と、前記保護層の上方に形成された更なるアレイとを有することを特徴とする。
上記の発明に係る交差型素子は、更なる保護層とアレイとを更に有することを特徴とする。
上記の発明に係る交差型素子は、少なくとも一の前記アレイの前記電極が、少なくとも一の他の前記アレイの電極と平行又は直交以外の角度を成すことを特徴とする。
本発明に係る交差型素子は、第1の電極の上方の電気的機能材料と、前記電気的機能材料の上方の濡れ特性層と、前記濡れ特性層の上方の第2の電極とを有し、第1及び第2の電極は互いに交差することを特徴とする。
上記の発明に係る交差型素子は、前記第1及び前記第2の電極が、互いに平行又は垂直以外の角度を成していることを特徴とする。
本発明に係る交差型素子は、少なくとも一の第1の電極を有する基板と、前記少なくとも一の第1の電極の上方の電気的機能材料と、前記電気的機能材料の上方の少なくとも一の第2の電極とを有し、前記第1及び前記第2の電極は、少なくとも一の交差部を形成し、交差部において、前記電気的機能材料を、前記第1及び前記第2の電極の間に有し、前記第1及び前記第2の電極は、互いに平行、あるいは直交する以外の角を成すことを特徴とする。
上記の発明に係る交差型素子は、更に、前記電気的機能材料と前記第2の電極との間に、濡らし層を有することを特徴とする。
上記の発明に係る交差型素子は、少なくとも二の交差部が、前記電気的機能材料の分離された領域を、前記第1及び前記第2の電極の間に有することを特徴とする。
上記の発明に係る交差型素子は、前記電気的機能材料の前記それぞれの領域が、複数の前記第1の電極上に設けられ、単一の前記第2の電極が前記電気的機能材料のそれぞれの領域上に設けられたことを特徴とする。
上記の発明に係る交差型素子は、少なくとも第2の電極がPEDOTを有することを特徴とする。
上記の発明に係る交差型素子は、前記電気的機能材料が、少なくとも、強誘電体材料、発光材料、及び容量性材料の一であることを特徴とする。
上記の発明に係る交差型素子は、前記電気的機能材料が、P(VDF−TrFE)を有することを特徴とする。
交差型素子の製造方法であって、基板上に少なくとも一の第1の電極を設ける工程と、電気的機能材料の第1の領域を前記少なくとも一の第1の電極の上方に設ける工程と、少なくとも一の第2の電極を前記少なくとも一の第1の電極、及び前記電気的機能材料の前記第1の領域の上方に設け、これにより、前記第1及び前記第2の電極が、前記電気的機能材料を前記第1及び前記第2の電極の間に有する少なくとも一の交差部を形成する工程とを有し、少なくとも二の交差部が、電気的機能材料の分離された領域を前記第1及び前記第2の電極間に有することを特徴とする。
好ましくは、第1及び第2の電極は複数形成され、更に好ましくは、それぞれの交差部においては電気的機能材料の領域が分離されており、第1及び第2の電極によって挟持される。
第2の電極を設けた後、更に、少なくとも一の第3の電極を前記第1の電極間の隙間又は前記第2の電極間の隙間に設ける工程と、前記電気的機能材料の第2の領域を、前記少なくとも一の前記第3の電極の上方であって、前記第1及び前記第2の電極の間の隙間に設ける工程と、少なくとも一の第4の電極を、前記少なくとも一の前記第3の電極の上方であって、前記第2の電極間の隙間、又は前記第1の電極間の隙間に設け、これにより、前記第3及び前記第4の電極が、前記電気的機能材料の前記第2の領域を前記第3及び前記第4の電極の間に有して交差する工程とを有し、少なくとも二の交差部が、前記電気的機能材料の分離した前記第2の領域を、前記第3及び前記第4の電極の間に有することが好ましい。このようにして、織り交ぜられた電極の配列が得られる。
この場合にも、第3及び第4の電極は複数設けられることが好ましい。更に、少なくとも一の第3の電極を設ける前に、誘電体材料の領域を、少なくとも前記第1及び前記第2の電極の部分であって、前記電気的機能材料の前記第1の領域間に露出している部分の上方に設ける工程を更に有することが好ましい。
この方法は、更に、互いに交差する電極であって、前記電気的機能材料の更なる領域を、当該交差部において当該電極間に有する電極のグループの更なる組を形成する工程を更に有する方法であって、前記電極グループの前記更なる組は、前記基板上の、互いに交差する電極のグループが既に形成された領域以外の領域の上方に形成され、前記電気的機能材料の前記更なる領域は、前記基板上の、電気的機能材料の領域が既に形成された領域以外の領域の上方に形成されることが好ましい。
更に、前記電気的機能材料の更なる領域を少なくとも一の前記第2の電極と前記電気的機能材料の前記第1の領域との両方の上方に設ける工程と、少なくとも一の更なる電極を、前記電気的機能材料の前記更なる領域の上方に設け、これにより、前記少なくとも一の前記第2の電極と、前記更なる電極とが、交差部を形成し、当該交差部において、前記電気的機能材料の前記更なる領域を、前記少なくとも一の前記第2の電極と、前記更なる電極との間に有するようにすることが好ましい。
電極と電気的機能材料の領域とが、アレイを形成する場合には、更に、保護層を前記アレイ上方に設ける工程と、上記の工程を繰り返し、更なるアレイを前記保護層上に形成する工程とを有することが好ましい。
また、保護層及びアレイを更に設けることが好ましい。少なくとも一のアレイの電極は、少なくとも一の他のアレイの電極と平行又は直交以外の角度を成すことが好ましい。
交差型素子の製造方法であって、電気的機能材料を複数の第1の電極に堆積する工程と、複数の第2の電極を、前記第1と前記第2の電極が複数の交差部を形成するように、前記電気的機能材料の上方に堆積する工程とを有し、前記電気的機能材料と前記第2の電極とが印刷工程によって堆積されることを特徴とする。なお、インクジェット印刷によって堆積を行うことが好ましい。
上記交差型素子の製造方法において、前記電気的機能材料の複数の領域を堆積する工程を更に有することが好ましい。
上記交差型素子の製造方法において、前記少なくとも一の第1の電極を基板上に印刷する工程を更に有することが好ましい。
交差型素子の製造方法であって、電気的機能材料を第1の電極の上方に堆積する工程と、濡れ特性層を前記電気的機能材料の上方に堆積する工程と、第2の電極を前記濡れ特性層の上方に堆積する工程であって、第1及び第2の電極は互いに交差する工程を有することを特徴とする。
交差型素子の製造方法であって、基板上に少なくとも一の第1の電極を設ける工程と、電気的機能材料を前記少なくとも一の第1の電極の上方に設ける工程と、少なくとも一の第2の電極を前記電気的機能材料の上方に設ける工程とを有し、前記第1及び前記第2の電極は、少なくとも一の交差部を形成し、交差部において、前記電気的機能材料を、前記第1及び前記第2の電極の間に有し、前記第1及び前記第2の電極は、互いに平行、あるいは直交する以外の角を成すことを特徴とする。
上記交差型素子の製造方法において、前記少なくとも一の第2の電極は、インクジェット印刷によって堆積されることが好ましい。
上記交差型素子の製造方法において、前記電気的機能材料は、インクジェット印刷によって堆積されることが好ましい。
上記交差型素子の製造方法において、前記少なくとも一の第1の電極は、インクジェット印刷によって堆積されることが好ましい。
上記交差型素子の製造方法において、複数の織り交ぜられた第2の電極を設ける工程を有することが好ましい。
上記交差型素子の製造方法において、少なくとも二の交差部は、前記電気的機能材料の分離された領域を、前記第1及び前記第2の電極の間に有することが好ましい。
上記交差型素子の製造方法において、それぞれの交差部は前記電気的機能材料の分離された領域を前記第1及び前記第2の電極間に有することが好ましい。
上記交差型素子の製造方法において、前記第1及び前記第2の電極は、互いに平行及び直交以外の角を成して配置されることが好ましい。
上記交差型素子の製造方法において、更に、濡らし層を、前記電気的機能材料の前記第1の領域に、前記第2の電極を堆積する前に、堆積する工程を更に有することが好ましい。
上記交差型素子の製造方法において、前記第1の電極は、ソフトリソグラフィ技術によって堆積されることが好ましい。
上記交差型素子の製造方法において、前記第1の電極は、少なくともスタンピング又はエンボシングの一方によって堆積されることが好ましい。
上記交差型素子の製造方法において、前記第1の電極は、少なくとも化学気相堆積又は熱蒸着のいずれか一によって堆積され、更にリソグラフィ技術によってパターニングされることが好ましい。
上記交差型素子の製造方法において、少なくとも前記第2の電極はPEDOT:PSS水溶液を用いて印刷されることが好ましい。
上記交差型素子の製造方法において、前記電気的機能材料は、少なくとも、強誘電体材料、発光材料、及び容量性材料の一であることが好ましい。
上記交差型素子の製造方法において、前記電気的機能材料は、P(VDF−TrFE)を有することが好ましい。
以上説明したような技術及びインク組成を用いることにより、単層、多層、又は織り交ぜ多層の交差部アレイを製造することが可能となる。このような製造技術によれば、交差部の電極を蒸着により形成する際のコストの問題を克服できる。更に、ポジティブデポジション技術としてインクジェット印刷を用いることにより、材料の堆積を直接観察できるようになる。このような技術は、電極をシャドウマスクを用いたデポジションで形成する場合には位置決めが非常に困難であるとわかるような、高密度の構造の形成に有用である。更に、このようにプロセス中の観察ができることによって、プラスチック基板上に素子を形成する場合においても正確な位置決めが可能となる。
以下、本発明の実施形態を、単なる実施例の形態で、添付の図面を参照しながら説明する。
本明細書において、「電気的機能材料」の語は、アレイ素子における材料であって所望の電気的効果を奏する材料、すなわち、強誘電体材料、発光材料、容量性材料、及び半導体材料等を示すことを意図している。しかしながら、電極その他の、所望の電気的特性を有する材料をも示すことができる。
本発明の一の側面では、強誘電体メモリ素子等のアレイ素子はインクジェット堆積技術を用いて全て製造することができるか、又は少なくともインクジェット技術を用いて電気的機能材料(例えば、強誘電体材料等)及び上部電極を印刷可能である。特に、従来の技術と異なり、本発明のこの側面では、インクジェット印刷を電気的機能材料のパターニングに用いることができる。更に、スピンコーティングによる場合も、他の技術による場合も、製造工程において平坦化を行う必要がない。
このように、従来の層毎にリソグラフィを行うことに基づく製造技術(CMOS技術において行われるような)と比較して、本発明のインクジェット印刷製造方法によれば、層平坦化のような技術の必要性が克服される。これにより、材料の数及びその準備、また、成膜工程の数をも低減できる。
本発明に係るインクジェット印刷によって実現される交差部アレイ(以下、単にアレイという)の基本的な構造の平面図を図3に示す。簡単に言えば、図3のアレイは基板1000(図2参照)上に配置された複数の底部電極100を有している。それぞれの底部電極100は、基板1000上に設けられたコンタクトパッド110にそれぞれ接続されている。強誘電体材料150の領域はそれぞれの底部電極100上に間隔を置いて設けられている。複数の上部電極200は底部電極100と直角に配置されており、それぞれの強誘電体材料150の領域がそれらの交差部に、且つ底部電極100及び上部電極200の間に配置されている。
以下、インクジェット印刷によってこのような素子を実現するための製造工程について説明する。始めに、基板1000表面又は基板1000の上に付与された材料の上での液滴の本来の接触角を本質的に用いて線路の幅寸法を画定する「フリーフォーマット」のインクジェット印刷工程により、底部電極100を形成できる。線路幅は表面上に印刷された材料が示す接触角に反比例する。フリーフォーマット技術は、インクジェット印刷する線路を画定するために予備パターニングを必要としないため、非常に有用であり、また、膜を素子上に塗布するだけで良く、直接インクジェット印刷できる多層構造に本質的に応用可能である。層間の予備パターニングの位置合わせ(フォトリソグラフィには必要である)の必要性は、この処理により回避される。
底部電極100をインクジェット印刷する際に用いられる溶液に対する基板1000の濡れ性によっては、基板1000表面への直接印刷のみで底部電極100を基板1000表面上に要求どおりに画定できないこともある。インクジェット印刷する線路の濡れ特性を調節するために、基板1000表面を表面「濡らし」層で覆う必要がある場合も少なくない。なお、「濡らし層」の語は、本明細書においては濡れ性を調節する層を意味すること、従って濡れ性を増加する層及び濡れ性を減少する層の両者を含むことを意図している。PEDOT:PSS等の水性導電性材料、及びガラスやポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)等の基板1000を例にとれば、印刷可能な導線の基板1000上での異なる濡れ性を得ることができる。PVP等の親水性物質の薄膜を用いることにより、スピンコーティングされた膜から一様な濡れ性を得ることができる。あるいは、濡らし材料を基板1000上の必要な箇所にインクジェット印刷してもよい。これにより、規則性の高い印刷線路を得ることができる。このことは、いかなる水性導電性材料を用いても実現可能である。溶液に対する基板1000の濡れ性が許容できる箇所には、濡らし層を設ける必要はないことは言うまでもない。
図3に示すコンタクトパッド110はインクジェット印刷してもよく、また、金属蒸着等の前工程で予備パターニングされた接点であってもよい。
底部電極100を堆積した後、線路から残留溶媒を除去するため、又は線路の導電性の増加を助長するために、乾燥工程又はアニーリング工程が必要となるであろう。この工程で用いられる温度は、材料に応じて異なる。通常は、可撓性基板へのインクジェット印刷については、150℃の上限温度が許容できる。
電極のアニーリング工程を行った後、強誘電体材料(以下、強誘電体層ともいう)150(多くの異なる領域の形態で)を堆積する。高分子強誘電体P(VDF−TrFE)(以下、P(VDF−TrFE)という)の例では、この材料は多くの溶液からインクジェット印刷可能である。溶媒への高い溶解性とは別に、インクジェット印刷に用いる溶媒を選択する上で、沸点(すなわち、溶媒の蒸気圧)が重要なパラメータである。このような工程でP(VDF−TrFE)を印刷するための主要な溶媒は、それぞれの沸点が225℃及び202℃であることから、1,3−ジメチル−2−イミダゾリジノン(DMI)及び1−メチル−2−ピロリジノン(NMP)である。シクロヘキサン(沸点168℃)、1−アセチル−1−シクロヘキサン(沸点201℃)、及びベンジルアセトン(沸点235℃)等の他の溶媒も適合する候補となり得る。それぞれの強誘電体層150は1滴のインクジェット塗布材料で形成されることが好ましい。
強誘電体層150の堆積を行った後、残留溶媒の除去を行う必要があるであろう。インクジェット印刷に用いられる溶媒は通常より高い乾燥温度を有し、印刷工程により長い期間を必要とする場合がある。インクジェット印刷の際に多少の乾燥は行われるが、乾燥した膜の実現を確実にするために、加熱による主溶媒の更なる除去が必要となるであろう。これは試料をホットプレート上で加熱(2−ブタノン中から形成される膜では、60℃で20分間加熱すれば十分)することによって行われる。更に、材料の結晶化作用によって材料の強誘電性を増加させるために、試料のアニーリングを行ってもよい。材料の秩序化によるかかる増加を達成するためには、140℃で1時間のアニーリングを行えば十分である。
次に、上部電極200を堆積する。しかしながら、上述したように、そのままのP(VDF−TrFE)表面上では、水性導電体の接触角が高い接触角を示す。PVP濡らし層(再び10nm程度の厚さである)をインクジェット印刷又はスピンコーティングで形成することができる。スピンコーティングによってPVP濡らし層を形成するための溶媒としては、エタノール又はイソプロパノールを用いることができる。それぞれのPVP領域をそれぞれの電気的機能領域にインクジェット印刷する場合には、低蒸気圧の溶媒が必要である。ベンジルアルコール(沸点205℃)等の溶媒を印刷可能なインクの作成に用いることができる。
PVP濡らし層はそれぞれの強誘電体層150の領域の上(スピンコーティングにより堆積した場合には、更に基板1000表面上にも)に連続しているため、上部電極200を個々の強誘電体層150とPVP濡らし層との積層の上に堆積させることができ、これにより、強誘電体キャパシタ構造が完成する。
あるいはその代替として、疎水性表面との接触角を減少させるために、トリトンX界面活性剤等の表面張力低下剤を水性溶液に添加してもよい。
本発明に係る単純アレイは従来のCMOS型の方法(図2(a))及び本発明のインクジェット印刷(図2(b))により製造できるが、それらの比較を図2に示す。図2(a)には素子構造の多層状態を示し、ここでは、底部電極1100は基板1000上に堆積され、リフトオフ技術やエッチングによってパターニングされる。同様の技術が強誘電体層1150についても採用される(この場合には、無機のセラミックが用いられる)。上部電極1200を正常に堆積するためには、パターニング工程に加えて、誘電体層1300が必要である。上部電極1200を堆積する前に滑らかで平坦な表面を実現するために、誘電体層1300(二酸化ケイ素等の材料が一般的)も化学機械研磨によって平坦化しなければならない。更に、層間接続部1210を強誘電体層1150にパターニングすることも必要であろう。このような製造方法によれば、それぞれの材料の層が互いに縦方向に分割された、純粋に縦型の構造となる。この種の製造方法の制限、及び以降の層に対する必要条件のため、所望の構造が制約を受け、また、製造に多くの費用がかかる。
図2(b)に示す素子構造は、図2(a)の構造と同一の機能を実現するアレイのものである。図からわかるように、上部電極200(左から右に走っている)は、交差部の中間位置において底部電極100(紙面の中に向かって走っている)と縦方向のレベルが同一であり、従って前述したように、「横方向」積層素子となっているので、構造の平坦化は必要ない。このような素子の製造方法は、従来の感覚の多層素子を、必要に応じて横方向に形成できることを意味している。このパターニング技術は、多層素子のための厳格な製造工程(及び付随する要求事項)にこだわることなく、異なる機能素子を必要に応じて基板1000上の同一のレベルに形成できることを意味している。
異なる機能材料を任意の順序及び位置に印刷することが可能であるため、集積化や配線を任意の時期に形成できる。この製造工程は、素子のどの一の縦方向のレベルにおいても唯一の材料しか堆積できない従来のCMOS型製造工程におけるものより柔軟性が高い。
印刷によるアレイの密度を高めるために、多重アレイ、横方向積層構造を形成してもよい。これは、印刷による強誘電体層150の横方向の寸法が、底部電極100の横方向のピッチよりも大きい場合には、好ましいであろう。印刷された強誘電体層150の一つの液滴の上に二つの交差部を形成するのではなく、第2のアレイを第1のアレイ上に形成して、織り交ぜ構造とすることができる。「コーヒーの染み」効果と呼ばれる乾燥現象により、印刷された液滴の断面形状は一定の厚さとはならない。従って、印刷された強誘電体層150の一つの液滴を用いて二つの交差部を形成した場合には、強誘電体層150の厚さの差のために、その二つは同一の特性を有しないかもしれない。一つの交差部につき一つの印刷液滴を用いる織り交ぜ構造によれば、このような問題を克服できる。織り交ぜ構造によれば、インクジェット印刷によって達成可能な最大の解像度を実現できる。
本発明によって得られる横方向構造によれば、第一にいかなる平坦化をも行うことなく、また、素子構造全体にわたる保護層を設けることなく、強誘電体層を挟んだ第1及び第2の電極の更なる組を交差部分に形成可能となる。特に、本発明によれば、複数の第1の電極と、この第1の電極と直角をなし、第1電極と交差する複数の第2の電極と、それぞれの交差部における第1及び第2の電極のそれぞれの間にある強誘電体層の別々の領域とによって第1のサブアレイが形成されているという構造が得られる。このようなサブアレイは、図3に示すアレイと類似している。その後、平坦化を行うことなく、素子の第2のサブアレイが設けられる。具体的には、第2のサブアレイは第1のサブアレイの直上に設けられるのではなく、第1のサブアレイの第1の電極間、第2の電極間、及び強誘電体層の領域間の隙間に設けられる。第3以降のサブアレイは、その後必要に応じて、やはり平坦化を行うことなく残りの隙間に形成される。このようにして、異なるサブアレイ及びサブアレイ内の異なる層が基板から等しい距離に存在しうる、「横方向」素子構造が実現される。
図4にこのような織り交ぜアレイ構造の製造工程を示す。図4(a)には図3に示す単層のアレイの平面図を示すが、アレイの中間位置には、追加される上部及び底部の接点130,230の組が示されている。図4(b)には図4(a)の一部の断面を概略断面図として示してある。具体的には、底部電極100と上部電極200との間に強誘電体層150の液滴が示されている。
第2サブアレイ用の底部電極120を形成するために、図5に示すように、第1のサブアレイの底部電極100、上部電極200の残りの露出領域上に誘電体材料としての誘電体層160を堆積する。図5(b)の概略断面図には、強誘電体層150の液滴の左及び右の誘電体層160の二つの液滴160a,160cが強誘電体層150の液滴と同一のレベルにある様子を示してある。
これとは逆に、図5(a)の平面図において強誘電体層150の液滴の上下にある二つの誘電体層160の液滴160b,160dは、上部電極200上に堆積されているため、少なくとも部分的に、強誘電体層150の液滴より高い位置にある。
この誘電体層160は多くの材料から選択することが可能である。いくつかを例示すれば、ポリビニルフェノール、ポリメチルメタクリレート、ポリスチレン、ポリイソブチレン、ポリイミド、及びベンゾシクロブテン等である。上記に例示の材料は全てインクジェット印刷可能な溶媒によって溶解可能(又は処理可能)である。アルコール、ケトン、及び極性又は無極性の有機溶媒(ある材料に全てが使用できるわけではない)等の溶媒も、インクジェット印刷可能な溶液の作成に利用可能であろう。誘電体層160は、インクジェット印刷によって堆積することが好ましい。しかしながら、スピンコーティングによって誘電体膜を形成することも可能である。また、図5では上部電極200及び底部電極100の露出している部分が全て誘電体により覆われているが、サブアレイとしての第1及び第2の電極(底部電極100及び上部電極200)の露出部の内、その上に更に電極が印刷される部分が覆われていればよい。
誘電体層160が堆積され、乾燥した後、図6に示すように、次のアレイ用の底部電極120を印刷してもよい。この場合も、強誘電体層150上に電極を堆積する場合と同様に、例えば上記に示したリストからの材料の選択によっては、誘電体層160の上面に濡らし層が必要となるかもしれない。例えば、ポリメチルメタクリレート、ポリイソブチレン、及びポリスチレン等の誘電体層160は、水性導電性材料に対する濡れ性が比較的劣っている。この場合には、上述のとおり、誘電体層160に加えて親水性の層が必要となる。しかしながら、これらの無極性の誘電体層160は、無極性有機溶媒ベースの導電性材料に対して強い濡れ性を示す。従って、それらを用いる場合には濡らし層は必要ないであろう。この場合にも、必要な濡らし材料を必要な箇所にインクジェット印刷によって堆積することが好ましい。しかしながら、濡らし層はスピンコーテイングによって形成してもよい。
強誘電体層151の第2の領域を図7に示す位置に堆積する。この場合も、図8に示す上部電極220に印刷に先立って濡らし層が必要となる場合があるが、これによって、横方向に織り交ぜられた二重のアレイが完成する。この横方向に織り交ぜられた二重のアレイは、第1のサブアレイ(底部電極100、強誘電体層150、上部電極200)と、第2のサブアレイ(底部電極120、強誘電体層151、上部電極220)とを有し、第1のサブアレイは第2のサブアレイと織り交ぜられており、少なくともいくつかの部分は縦方向に同一のレベルに配置されている。
電極100,120,200、及び220のピッチと、強誘電体層150,151及び誘電体層160のサイズとによっては、第3及びそれ以降のサブアレイを積層して、高密度の横方向織り交ぜ配列を形成することができる。
3つのサブアレイを有し、横方向に織り交ぜられた三重アレイ構造を形成する例を図13〜図21に示す。図13は第1及び第2のサブアレイ用の底部電極100及び上部電極200のコンタクトパッド110,130,210、及び230を有する点において図4と同様であるが、本図の場合底部電極200は紙面の上部から底部へ走っており、また、上部電極100は紙面左から右へ走っている。更に、図13には第3のサブアレイ用のコンタクトパッド145,250が含まれている。
図14において、誘電体層160は連続した3つの液滴として堆積されており、第1のサブアレイを第2のサブアレイから絶縁している。この例では、3つの液滴は直線状に堆積されている。誘電体層160は短い線路を印刷してもよく、異なる数の液滴を堆積してもよく、異なるパターンを用いてもよく、又はスピンコーティングにより誘電体層160を堆積してもよいことは言うまでもない。
図15には第1のサブアレイの底部電極200に平行な第2サブアレイの底部電極220を示す。しかしながら、他の例と同様に、第2のサブアレイの底部電極220を第1のサブアレイの上部電極100と平行に設けてもよいことに留意する必要がある。
図16には堆積された強誘電体層151の第2の液滴を示す。図17には堆積され、コンタクトパッド130に接続された第2のサブアレイの上部電極120を示す。図18には第2と第3のサブアレイを分離するために、誘電体層160と同様にして堆積された誘電体層161を示す。また、図19〜図21には、底部電極240、強誘電体層152、及び上部電極140を有するように堆積された第3のサブアレイを示す。
単層のアレイ構造、又は二重(又はそれ以上)の織り交ぜアレイ構造が完成した後、保護膜を堆積して工程を繰り返すことにより、アレイを更に追加することができる。このような例を図9に示す。特に、図9には更に二重の横方向織り交ぜアレイを図4に示す構造と類似の構造の上に形成するために、基板1000上に設けられた追加のコンタクトパッドの組135,235を示す。この追加のコンタクトパッドの組135,235は、第1のアレイに用いられているコンタクトパッドの組110,130,210、及び230とアレイを隔てて反対の側に設けられる。
図4の横方向織り交ぜアレイが完成した後、図9に示すように、保護層300を設ける。このような保護層300はインクジェット印刷された材料の多くの層により生じた素子形状における表面の凹凸を減少させ、また、下部に形成されているアレイからの電気絶縁性を確保する。このような保護層300は、必要に応じて、インクジェット印刷又はスピンコーティングにより堆積することができる。このアレイは素子中の個々の交差部と比べて大規模な構造体であり、また、コンタクトパッドの組はアレイと重ならない位置にあるので、保護層300を堆積する際に要求される精度の程度は比較的低い。従って、このような技術は重大な困難性を生じることがなく、また、重大なコストへの影響も生じない。
続いて、図10に示すように、底部及び上部電極がパッドの組135,235にそれぞれ接続された更なる横方向織り交ぜアレイを、図4に最初に示した方法と同一の方法で堆積することができる。
必要なメモリサイズを作成するために、保護層300を堆積して更なるアレイを形成するという、この工程を必要なだけ繰り返すことができる。このような手順により、メモリチップの横方向のサイズを効率的に縮小することができる。織り交ぜアレイ用にここに示した素子の製作の例は、重畳したアレイ構造やそのアレイ内の他のいかなる位置や角度にも適用することができる。
更なる例として、図22〜図46に三重のアレイを有するメモリ素子の段階的な製造過程を示す。それぞれのアレイは第1及び第2のサブアレイを有する二重のアレイである。
具体的には、図22には第1のアレイ用のコンタクトパッドの組110a,130a,210a、及び230a、第2のアレイ用のコンタクトパッドの組110b,130b,210b、及び230b、第3のアレイ用のコンタクトパッドの組110c,130c,210c、及び230cを示す。
図23〜図30には第1のアレイの堆積を示す。具体的には、図23には第1のアレイの第1のサブアレイ用の底部電極100aの堆積を示す。図24には第1のサブアレイの強誘電体層150aの堆積を示す。図25には第1のサブアレイの上部電極200aの堆積を示す。図26には第1及び第2のサブアレイを分離するための第1のアレイの誘電体層160aの堆積を示す。図27には第1のアレイの第2のサブアレイの底部電極120aの堆積を示す。図28には第2のサブアレイの強誘電体層151aの堆積を示す。図29には第2のサブアレイの上部電極220aの堆積を示す。図30には第1及び第2のアレイを分離するための第1の保護層300aの堆積を示す。
図31〜図38には第2のアレイの堆積を示す。具体的には、図31には第2のアレイの第1のサブアレイ用の底部電極100bの堆積を示す。図32には第1のサブアレイの強誘電体層150bの堆積を示す。図33には第1のサブアレイの上部電極200bの堆積を示す。図34には第1及び第2のサブアレイを分離するための第2のアレイの誘電体層160bの堆積を示す。図35には第2のアレイの第2のサブアレイの底部電極120bの堆積を示す。図36には第2のサブアレイの強誘電体層151bの堆積を示す。図37には第2のサブアレイの上部電極220bの堆積を示す。図38には第2及び第3のアレイを分離するための第2の保護層300bの堆積を示す。
最後に、図39〜図46には第3のアレイの堆積を示す。具体的には、図39には第3のアレイの第1のサブアレイ用の底部電極100cの堆積を示す。図40には第1のサブアレイの強誘電体層150cの堆積を示す。図41には第1のサブアレイの上部電極200cの堆積を示す。図42には第1及び第2のサブアレイを分離するための第3のアレイの誘電体層160cの堆積を示す。図43には第3のアレイの第2のサブアレイの底部電極120cの堆積を示す。図44には第2のサブアレイの強誘電体層151cの堆積を示す。図45には第2のサブアレイの上部電極220cの堆積を示す。図46には第3のアレイを絶縁するための第3の保護層300cを必要に応じて堆積する様子を示す。
上部及び底部の電極を互いに角度を有して堆積することには、より多くの織り交ぜられたアレイを保護層を用いることなく堆積できるという利点と、交差部の面積を調節し増加することができるという利点とがある。例えば、上部及び底部の電極のそれぞれの幅をWであり、上部及び底部の電極の成す角がθである場合には、交差部における面積はW2/sinθとなる。上部及び底部の電極に角度をつけて配置することの利点は、従って、多層構造に対する解決策を与えるだけでなく、交差部の面積を増大することでもあり、これによりそれぞれの強誘電体キャパシタの切替え電荷を増加させることができる。
素子全体のサイズ及び複雑さを低減する他の素子形成方法は、交差型素子において「共有」の底部及び上部電極を用いることである。このような素子の断面及び平面図を図11に示す。図11には底部電極BEと上部電極TEとが強誘電体層FEによって分割され、これによって一組の交差部が形成される様子を示してある。更に、他の組の電極BE’を用いることにより、上部電極TEが第2の強誘電体層FE’を有する第2の組の交差部の電極としても作用することができる。このような構造を駆動する方法の一つは、TEに固定した電位を保持し、従来のセルの単一の組の電極の場合と同様に、BE及びBE’の電位を正又は負に掃引することである。
濡らし層及び誘電体層をスピンコーティングやその他の適切な方法により堆積することは可能であるが、アレイの形成はインクジェット印刷に基づく技術についてのみ説明した。この技術は複雑な製造装置を必要とせず、また、製造工程において基板を異なる装置間で入れ替える必要もなく、素子を完全に溶液から製造することが可能であるため、製造コストを低減する最も効率のよい方法と見られている。
しかしながら、蒸着やリソグラフィ等の従来の工程と、インクジェット印刷を用いた工程とを組み合わせて電極を形成することも考えられる。このような場合には、このようなリソグラフィに基づく技術によって形成された底部電極の組は、必要なリソグラフィ工程が一つだけであり、素子のコストの観点から許容できるものである。上部電極をインクジェット印刷により形成できるため、マスクアライナによるこれらのパターンの位置合わせは必要ない。更に、製造工程中の装置間の移動も最小限である。
リソグラフィによって形成された電極の組と、インクジェット印刷によって形成されたものとを組み合わせることにより、フリーフォーマットのインクジェット印刷単独の場合より高い交差部の解像度を得ることができる。図12にはこのような素子の構造を示し、底部電極3100がリソグラフィによって画定されている。強誘電体材料3150の領域は、それぞれの領域が全ての底部電極3100を覆うように、インクジェット印刷されている。強誘電体材料3150の領域を、全てではなく複数の底部電極3100を覆うように堆積してもよいことは言うまでもない。それぞれの強誘電体材料3150の領域上には、一つの上部電極200がインクジェット印刷されている。上部電極200はインクジェット印刷されているので、その線幅はフォトリソグラフィによって画定された底部電極3100の線幅より広い。従って、底部電極3100はより高密度に詰め込まれ、より多くの電極を形成できる。このようにして、インクジェット印刷された一つの上部電極200とリソグラフィにより画定された底部電極3100とによって、純粋にインクジェット印刷のみによる場合よりも多くの交差部を形成することができる。インクジェット印刷された一連の強誘電体材料3150の外観を図示してあるが、このとおりである必要はなく、スピンコーティングされた膜を用いることも可能である。上述したとおり、アレイを形成するために、強誘電体材料3150と上部電極200との間に濡らし層が必要な場合がある。
更なる置き換え、又は追加として、コンタクトパッドをリソグラフィ技術、スタンプ、マイクロエンボシング、フラッド印刷等の任意の適した技術により予め形成し、電極をインクジェット印刷して、コンタクトパッドと接続してもよい。
要するに、インクジェット印刷という柔軟性の高いパターニング工程を追加することにより、本発明は種々の基板上で用いることができ、また、必要なアレイの解像度の要求に合わせるように調節することができる。
本発明は多数の交差部のアレイを横方向及び縦方向に積層された状態で形成できる技術を提供するものである。この技術の効果は、通常の環境条件において材料を液相から堆積することによって、低コストで信頼性の高い交差部アレイを製造可能なことである。後の材料に適するように調整した濡らし層を用いることにより、上記の材料を用いて、多数の異なる基板材料の上に素子を形成することができる。
以上の説明は例示のみを目的として行われたものであり、当業者であれば、本発明の技術的範囲を逸脱することなく変形が可能であることが理解されるであろう。
特に、本発明は強誘電体メモリに関連して説明した。しかしながら、電気的機能材料は強誘電体に限られず、交差型素子の用途に適した他の、又は追加の特性を有していてもよい。例えば、電気的機能材料は発光材料であってもよく、また、交差型素子はLEDやOLEDディスプレイ又は光起電素子であってもよい。または、電気的機能材料は交差部においてキャパシタを形成するのに適した材料であってもよい。なお、二つ又はそれ以上の異なる電気的機能材料を一つの交差型素子内に用いてもよい。
強誘電体アレイ素子の概略を示す図。 (a)は従来のCMOS型技術を用いて製造された交差部構造の概略を示す図、(b)は本発明によって製造される交差部構造の概略を示す図。 本発明に係るアレイ素子構造の基本構成の概略を示す図。 本発明に係る更なるアレイ素子構造の製造方法を示す図。 本発明に係る更なるアレイ素子構造の製造方法を示す図。 本発明に係る更なるアレイ素子構造の製造方法を示す図。 本発明に係る更なるアレイ素子構造の製造方法を示す図。 本発明に係る更なるアレイ素子構造の製造方法を示す図。 本発明に係る更なるアレイ素子構造の製造方法を示す図。 本発明に係る更なるアレイ素子構造の製造方法を示す図。 本発明の更なるアレイ素子構造の概略断面図。 本発明に係る更なるアレイ素子構造の基本構成の概略を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。 本発明に係るアレイ素子構造の更なる製造方法を示す図。
符号の説明
100…底部電極、110,130,210,230…コンタクトパッド、150…強誘電体層、200…上部電極。

Claims (18)

  1. 交差型素子であって、
    複数の第1の電極と、
    前記第1の電極と交差する複数の第2の電極と、
    前記第1及び前記第2の電極の間に設けられた電気的機能材料の複数の領域とを有し、
    少なくとも二の交差部が、電気的機能材料の分離された領域を前記第1及び前記第2の電極間に有する交差型素子。
  2. 請求項1に記載の交差型素子において、それぞれの交差部は前記電気的機能材料の分離された領域を前記第1及び前記第2の電極間に有する交差型素子。
  3. 請求項1又は2に記載の交差型素子において、更に、
    前記第1の電極間又は前記第2の電極間の隙間に配置され、前記第1又は前記第2の電極から電気的に絶縁された複数の第3の電極と、
    前記第2の電極間又は前記第1の電極間の隙間に配置され、前記第1又は前記第2の電極から電気的に絶縁され、前記複数の第3の電極と交差する複数の第4の電極と、
    前記第3と前記第4との電極の交差部であって、前記第1の電極間の隙間、前記第2の電極間の隙間、及び前記電気的機能材料の前記第1の領域間の隙間における前記電気的機能材料の複数の第2の領域とを有し、
    少なくとも二の交差部が、前記電気的機能材料の分離された領域を前記第1及び前記第2の電極間に有する交差型素子。
  4. 請求項3に記載の交差型素子において、前記第3及び前記第4の電極は、前記第3及び第4の電極の交差部のそれぞれと前記第1及び前記第2の電極の交差部との間に配置された誘電体材料によって、前記第1及び前記第2の電極と電気的に絶縁されている交差型素子。
  5. 請求項3又は4に記載の交差型素子において、更に
    互いに交差する電極であって、前記電気的機能材料の更なる領域を、当該交差部において当該電極間に有する電極のグループの更なる組と、
    前記電極グループの前記更なる組は、前記基板上の、互いに交差する電極のグループが既に形成された領域以外の領域の上方に形成され、
    前記電気的機能材料の前記更なる領域は、前記基板上の、電気的機能材料の領域が既に形成された領域以外の領域の上方に形成される交差型素子。
  6. 請求項1乃至5のいずれか一項に記載の交差型素子において、更に、
    前記第2の電極及び前記電気的機能材料の前記第1の領域の両方の上方に設けられた、前記電気的機能材料の更なる領域と、
    前記電気的機能材料の前記更なる領域の上方に設けられた更なる電極とを有し、これにより、前記第2の電極と前記更なる電極とが、前記電気的機能材料の前記更なる領域を挟持する交差部を形成する交差型素子。
  7. 請求項1乃至6のいずれか一項に記載の交差型素子において、前記電極と前記電気的機能材料の前記領域とをアレイと称し、更に、
    前記アレイ上方に設けた保護層と、
    前記保護層の上方に形成された更なるアレイとを有する交差型素子。
  8. 請求項7に記載の交差型素子において、更なる保護層とアレイとを更に有する交差型素子。
  9. 請求項7又は8に記載の交差型素子において、少なくとも一の前記アレイの前記電極は、少なくとも一の他の前記アレイの電極と平行又は直交以外の角度を成す交差型素子。
  10. 交差型素子であって、
    第1の電極の上方の電気的機能材料と、
    前記電気的機能材料の上方の濡れ特性層と、
    前記濡れ特性層の上方の第2の電極とを有し、第1及び第2の電極は互いに交差する交差型素子。
  11. 交差型素子であって、
    少なくとも一の第1の電極を有する基板と、
    前記少なくとも一の第1の電極の上方の電気的機能材料と、
    前記電気的機能材料の上方の少なくとも一の第2の電極とを有し、
    前記第1及び前記第2の電極は、少なくとも一の交差部を形成し、交差部において、前記電気的機能材料を、前記第1及び前記第2の電極の間に有し、
    前記第1及び前記第2の電極は、互いに平行、あるいは直交する以外の角を成す交差型素子。
  12. 請求項1乃至10のいずれか一項に記載の交差型素子において、前記第1及び前記第2の電極は、互いに平行又は垂直以外の角度を成している交差型素子。
  13. 請求項1乃至9、請求項11のいずれか一項に記載の交差型素子において、更に、前記電気的機能材料と前記第2の電極との間に、濡らし層を有する交差型素子。
  14. 請求項11又は12に記載の交差型素子において、少なくとも二の交差部は、前記電気的機能材料の分離された領域を、前記第1及び前記第2の電極の間に有する交差型素子。
  15. 請求項1乃至14のいずれか一項に記載の交差型素子において、前記電気的機能材料の前記それぞれの領域は、複数の前記第1の電極上に設けられ、単一の前記第2の電極が前記電気的機能材料のそれぞれの領域上に設けられた交差型素子。
  16. 請求項1乃至15のいずれか一項に記載の交差型素子において、少なくとも第2の電極はPEDOTを有する交差型素子。
  17. 請求項1乃至16のいずれか一項に記載の交差型素子において、前記電気的機能材料は、少なくとも、強誘電体材料、発光材料、及び容量性材料の一である交差型素子。
  18. 請求項1乃至17のいずれか一項に記載の交差型素子において、前記電気的機能材料は、P(VDF−TrFE)を有する交差型素子。
JP2007086774A 2006-03-31 2007-03-29 交差型単純マトリクス素子のインクジェット印刷 Withdrawn JP2007273990A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0606592A GB2436893A (en) 2006-03-31 2006-03-31 Inkjet printing of cross point passive matrix devices

Publications (1)

Publication Number Publication Date
JP2007273990A true JP2007273990A (ja) 2007-10-18

Family

ID=36425075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007086774A Withdrawn JP2007273990A (ja) 2006-03-31 2007-03-29 交差型単純マトリクス素子のインクジェット印刷

Country Status (3)

Country Link
US (1) US20070243678A1 (ja)
JP (1) JP2007273990A (ja)
GB (1) GB2436893A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518454A (ja) * 2011-06-27 2014-07-28 シン フイルム エレクトロニクス エイエスエイ フレキシブルな基板上に設けられた積層体を含む強誘電体メモリセル中の短絡回路の低減
JP2015156449A (ja) * 2014-02-21 2015-08-27 国立研究開発法人産業技術総合研究所 有機強誘電体薄膜の製造方法
JP2020057778A (ja) * 2018-10-02 2020-04-09 ゼロックス コーポレイションXerox Corporation Xerox Printed Memoryラベルにインターフェースするための向きに依存しない方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9666815B2 (en) * 2008-12-12 2017-05-30 Palo Alto Research Center Incorporated Surface treatment of hydrophobic ferroelectric polymers for printing
US10935514B2 (en) * 2017-08-10 2021-03-02 International Business Machines Corporation Low power combustible gas sensing
US10593684B2 (en) * 2018-07-18 2020-03-17 Xerox Corporation Printed electronic devices exhibiting improved yield
CN113644224A (zh) * 2021-08-09 2021-11-12 光华临港工程应用技术研发(上海)有限公司 有机发光二极管的制备方法以及有机发光二极管

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0490189A (ja) * 1990-08-03 1992-03-24 Hitachi Ltd 半導体装置、その駆動方法、その読み出し方法
JPH06204424A (ja) * 1992-09-30 1994-07-22 Texas Instr Inc <Ti> 強誘電体集積回路
JP2002064187A (ja) * 2000-08-22 2002-02-28 Seiko Epson Corp 強誘電体キャパシタを有するメモリセルアレイおよびその製造方法並びに強誘電体メモリ装置
JP2002197857A (ja) * 2000-05-26 2002-07-12 Sony Corp 強誘電体型不揮発性半導体メモリ及びその駆動方法
JP2003518332A (ja) * 1999-12-21 2003-06-03 プラスティック ロジック リミテッド インクジェットで作成された集積回路
JP2003528354A (ja) * 2000-03-22 2003-09-24 シン フイルム エレクトロニクス エイエスエイ 電子装置の多次元アドレス動作アーキテクチュア
JP2004515055A (ja) * 2000-11-27 2004-05-20 シン フイルム エレクトロニクス エイエスエイ 強誘電性メモリ回路及びその製造方法
JP2004296685A (ja) * 2003-03-26 2004-10-21 Seiko Epson Corp 強誘電体キャパシタの製造方法
WO2005106890A1 (en) * 2004-04-28 2005-11-10 Thin Film Electronics Asa An organic electronic circuit with functional interlayer and method for making the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6087196A (en) * 1998-01-30 2000-07-11 The Trustees Of Princeton University Fabrication of organic semiconductor devices using ink jet printing
DE19823826A1 (de) * 1998-05-28 1999-12-02 Burkhard Hillebrands MRAM-Speicher sowie Verfahren zum Lesen/Schreiben digitaler Information in einen derartigen Speicher
GB9921752D0 (en) * 1999-09-15 1999-11-17 Wang Frank Z Diode-free cross-point array architecture for magnetic random access memories
JP3749079B2 (ja) * 2000-04-10 2006-02-22 シャープ株式会社 太陽電池セル及びその製造方法
US6566698B2 (en) * 2000-05-26 2003-05-20 Sony Corporation Ferroelectric-type nonvolatile semiconductor memory and operation method thereof
US6610455B1 (en) * 2002-01-30 2003-08-26 Eastman Kodak Company Making electroluminscent display devices
GB2388709A (en) * 2002-05-17 2003-11-19 Seiko Epson Corp Circuit fabrication method
NO322192B1 (no) * 2002-06-18 2006-08-28 Thin Film Electronics Asa Fremgangsmate til fremstilling av elektrodelag av ferroelektriske minneceller i en ferroelektrisk minneinnretning, samt ferroelektrisk minneinnretning
KR100536592B1 (ko) * 2002-11-01 2005-12-14 삼성전자주식회사 자기 메모리 및 그 제조 방법
JP2008518452A (ja) * 2004-10-29 2008-05-29 アグフア−ゲヴエルト プリント可能な有機質不揮発性受動記憶要素とその製法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0490189A (ja) * 1990-08-03 1992-03-24 Hitachi Ltd 半導体装置、その駆動方法、その読み出し方法
JPH06204424A (ja) * 1992-09-30 1994-07-22 Texas Instr Inc <Ti> 強誘電体集積回路
JP2003518332A (ja) * 1999-12-21 2003-06-03 プラスティック ロジック リミテッド インクジェットで作成された集積回路
JP2003528354A (ja) * 2000-03-22 2003-09-24 シン フイルム エレクトロニクス エイエスエイ 電子装置の多次元アドレス動作アーキテクチュア
JP2002197857A (ja) * 2000-05-26 2002-07-12 Sony Corp 強誘電体型不揮発性半導体メモリ及びその駆動方法
JP2002064187A (ja) * 2000-08-22 2002-02-28 Seiko Epson Corp 強誘電体キャパシタを有するメモリセルアレイおよびその製造方法並びに強誘電体メモリ装置
JP2004515055A (ja) * 2000-11-27 2004-05-20 シン フイルム エレクトロニクス エイエスエイ 強誘電性メモリ回路及びその製造方法
JP2004296685A (ja) * 2003-03-26 2004-10-21 Seiko Epson Corp 強誘電体キャパシタの製造方法
WO2005106890A1 (en) * 2004-04-28 2005-11-10 Thin Film Electronics Asa An organic electronic circuit with functional interlayer and method for making the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518454A (ja) * 2011-06-27 2014-07-28 シン フイルム エレクトロニクス エイエスエイ フレキシブルな基板上に設けられた積層体を含む強誘電体メモリセル中の短絡回路の低減
US10453853B2 (en) 2011-06-27 2019-10-22 Thin Film Electronics Asa Short circuit reduction in a ferroelectric memory cell comprising a stack of layers arranged on a flexible substrate
JP2015156449A (ja) * 2014-02-21 2015-08-27 国立研究開発法人産業技術総合研究所 有機強誘電体薄膜の製造方法
JP2020057778A (ja) * 2018-10-02 2020-04-09 ゼロックス コーポレイションXerox Corporation Xerox Printed Memoryラベルにインターフェースするための向きに依存しない方法

Also Published As

Publication number Publication date
US20070243678A1 (en) 2007-10-18
GB0606592D0 (en) 2006-05-10
GB2436893A (en) 2007-10-10

Similar Documents

Publication Publication Date Title
JP2007273990A (ja) 交差型単純マトリクス素子のインクジェット印刷
EP1894203B1 (en) A method in the fabrication of a ferroelectric memory device
US8748242B2 (en) Electronic circuit structure and method for forming same
KR100891391B1 (ko) 메모리 장치의 제조 방법
US20130051116A1 (en) Integrated circuit with face-to-face bonded passive variable resistance memory and method for making the same
JP6115008B2 (ja) 配線部材、および、電子素子の製造方法と、それを用いた配線部材、積層配線、電子素子、電子素子アレイ及び表示装置。
JP5251068B2 (ja) アクティブマトリクス基板及び電子表示装置
KR20040028972A (ko) 기판 상에 패턴 층을 제조하는 방법
JP2008042043A (ja) 表示装置
CN101154712A (zh) 有机半导体元件及其制造方法、有机晶体管阵列及显示器
EP1815541A1 (en) Self-aligned process to manufacture organic transistors
KR20100022110A (ko) 적층 구조체, 전자 소자, 및 표시 장치
US20070148797A1 (en) Forming electronic devices
KR20020086870A (ko) 용액 처리 디바이스
JP2014516421A (ja) ピクセルキャパシタ
US7955869B2 (en) Nonvolatile memory devices and methods of fabricating the same
JP2011100831A (ja) 半導体装置及び半導体装置を用いた表示装置
KR101182522B1 (ko) 나노 패턴 형성 방법과 그를 이용한 박막트랜지스터 및액정표시장치의 제조 방법
JP2007073856A (ja) 導電性パターンの形成方法、半導体装置の製造方法、および有機電界発光素子の製造方法
JP6491086B2 (ja) 導体組成物インク、積層配線部材、半導体素子および電子機器、並びに、積層配線部材の製造方法
JP2010087118A (ja) 薄膜パターンの形成方法、並びに、圧電素子および表示素子の製造方法
JP6711350B2 (ja) 薄膜トランジスタアレイ形成基板、画像表示装置用基板および薄膜トランジスタアレイ形成基板の製造方法
JP2005277204A (ja) 有機電界効果トランジスタ
CN102655174B (zh) 薄膜晶体管及制造该薄膜晶体管的方法
KR101363255B1 (ko) 유기 박막 트랜지스터 및 이의 제조방법

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100514