JP2007237809A - 車両用電源システム - Google Patents

車両用電源システム Download PDF

Info

Publication number
JP2007237809A
JP2007237809A JP2006060223A JP2006060223A JP2007237809A JP 2007237809 A JP2007237809 A JP 2007237809A JP 2006060223 A JP2006060223 A JP 2006060223A JP 2006060223 A JP2006060223 A JP 2006060223A JP 2007237809 A JP2007237809 A JP 2007237809A
Authority
JP
Japan
Prior art keywords
battery
starter
power supply
state
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006060223A
Other languages
English (en)
Other versions
JP4884031B2 (ja
Inventor
Minoru Fukazawa
実 深澤
Takashi Senda
崇 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2006060223A priority Critical patent/JP4884031B2/ja
Publication of JP2007237809A publication Critical patent/JP2007237809A/ja
Application granted granted Critical
Publication of JP4884031B2 publication Critical patent/JP4884031B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】本発明は、エンジンを始動させる始動機に始動電流をまかなう蓄電装置であるか否かにかかわらず、車載電源として併用される複数の蓄電装置の内部状態を推定する機能を備える車両用電源システムの提供を目的とする。
【解決手段】バッテリA及びBと、DC/DCコンバータ30と、車両のエンジン70を始動させる始動機3とを備え、バッテリAは始動機3に接続され、バッテリBはDC/DCコンバータ30を介して始動機3に接続される、車両用電源システムであって、始動機3に電力を供給する際のDC/DCコンバータ30の電圧変換方向がバッテリB側から始動機3側への方向に設定されるとともに、始動機3に電力を供給する際のバッテリA及びBの電力供給状態に基づいてバッテリA及びBの内部状態を推定するECU40を備えることを特徴とする、車両用電源システム。
【選択図】図1

Description

本発明は、複数の蓄電装置を併用する車両用電源システムであって、より詳細には、複数の蓄電装置の内部状態を検知する機能を備える車両用電源システムに関する。
従来から、バッテリ残容量を推定するバッテリ残容量推定方法が知られている(例えば、特許文献1参照)。このバッテリ残容量推定方法は、エンジンを始動させる始動機への放電時の電流・電圧変動に基づいて、車両に搭載されたバッテリの残容量を推定する方法である。
特開2004−42799号公報
ところで、複数のバッテリ等の蓄電装置を併用する車両用電源システムが近年登場しているが、複数の蓄電装置のうちエンジンの始動時にエンジンを始動させる始動機に始動電流をまかなわない蓄電装置については、その残容量などの内部状態を上述の従来技術のままでは推定することができない。
そこで、本発明は、エンジンを始動させる始動機に始動電流をまかなう蓄電装置であるか否かにかかわらず、車載電源として併用される複数の蓄電装置の内部状態を推定する機能を備える車両用電源システムの提供を目的とする。
上記課題を解決するため、本発明として、
第1の蓄電装置と、
第2の蓄電装置と、
電圧変換手段と、
車両のエンジンを始動させる始動機とを備え、
前記第1の蓄電装置は前記始動機に接続され、前記第2の蓄電装置は前記電圧変換手段を介して前記始動機に接続される、車両用電源システムであって、
前記始動機に電力を供給する際の前記電圧変換手段の電圧変換方向が前記第2の蓄電装置側から前記始動機側への方向に設定されるとともに、
前記始動機に電力を供給する際の前記第1及び第2の蓄電装置の電力供給状態に基づいて前記第1及び第2の蓄電装置の内部状態を推定する内部状態推定手段を備えることを特徴とする、車両用電源システムを提供する。
ここで、前記第2蓄電装置の内部状態の検出に適した電力供給状態にするにあたり、前記電圧変換手段は、前記第2の蓄電装置側から前記第1の蓄電装置側へ電力供給量を調整することが好適であり、さらには、前記電圧変換手段は、前記第2の蓄電装置の電力供給状態について電力供給を制限することを定めた所定の制限条件に従って前記電力供給量を制限することが好適である。
また、前記第1及び第2の蓄電装置の電力供給状態として、電流状態、電圧状態、温度状態などが挙げられ、前記内部状態は、充電状態、劣化状態、充放電能力などが挙げられる。また、前記第1の蓄電装置と前記第2の蓄電装置は、互いに異なる電圧系であってもよい。
本発明によれば、エンジンを始動させる始動機に始動電流をまかなう蓄電装置であるか否かにかかわらず、車載電源として併用される複数の蓄電装置の内部状態を推定することができる。
以下、図面を参照して、本発明を実施するための最良の形態の説明を行う。図1は、本発明の車両用電源システムの第1の実施形態を示す構成図である。本発明の車両用電源システムが搭載される車両は、所定の電圧値の電圧系(以下、「A電圧系」という)の蓄電装置であるバッテリAと、所定の電圧値の電圧系(以下、「B電圧系」という)の蓄電装置であるバッテリBと、A電圧系の電圧をB電圧系の電圧に電圧変換してA電圧系からB電圧系への電力供給を行う電圧変換モード(以下、「A/B変換モード」という)及びB電圧系の電圧をA電圧系の電圧に電圧変換してB電圧系からA電圧系への電力供給を行う電圧変換モード(以下、「B/A変換モード」という)及び電圧変換を停止して電力供給を行わない停止モードを有するDC/DCコンバータ30と、DC/DCコンバータ30を制御する電子制御ユニット40(以下、「ECU40」という)とを備えている。なお、DC/DCコンバータ30とECU40が一体になっていてもよい。
車両上には複数の電気負荷が存在し電圧系の異なる電気負荷が混在する場合があり、バッテリAはA電圧系の電圧で作動する電気負荷50への電力供給に主に対応し、バッテリBはB電圧系の電圧で作動する電気負荷60への電力供給に主に対応する。バッテリAやバッテリBの具体例として、鉛バッテリ、リチウムイオンバッテリ、ニッケル水素電池、電気二重層キャパシタなどが挙げられる。なお、バッテリAやバッテリBは、鉛バッテリとリチウムイオンバッテリとニッケル水素電池と電気二重層キャパシタの中でいずれかを組み合わせたものでもよい。
DC/DCコンバータ30は、入力電圧と出力電圧の電圧変換を行う電圧変換手段である。DC/DCコンバータ30は、トランスやスイッチングレギュレータやシリーズレギュレータ等のDC/DCコンバータ30内部にある電圧変換機構によって、バッテリA側(後述の始動機3側)の入力電圧を電圧変換してバッテリB側に出力し、あるいは、バッテリB側の入力電圧を電圧変換してバッテリA側(始動機3側)に出力する。変換された出力電圧は、ECU40やDC/DCコンバータ30内部にあるコンバータ制御回路などによって監視され、出力電圧が一定となるように制御される。DC/DCコンバータ30は、バッテリA側の入力電圧を電圧変換してバッテリB側に出力するA/B変換モード、バッテリB側の入力電圧を電圧変換してバッテリA側に出力するB/A変換モード、電圧変換を停止して電圧出力を行わない停止モードのうち、動作中いずれかのモードに設定される。このDC/DCコンバータ30の電圧変換機能を使用することによって、バッテリA側の入力電圧を電圧変換して電気負荷60に電力供給を行ったりバッテリBに充電を行ったりすることが可能となり、バッテリB側の入力電圧を電圧変換して電気負荷50や始動機3に電力供給を行ったりバッテリAに充電を行ったりすることが可能となり、そして、電圧変換を停止して電力供給を行わないことが可能となる。
また、DC/DCコンバータ30は、一方から他方へ電力供給する際に、その出力電流を所望の値に調整する。DC/DCコンバータ30が存在しない場合は、例えば図1において、バッテリAとバッテリBが単に並列接続されることになる。しかしこの場合には、バッテリAとバッテリB(電気負荷50と電気負荷60)は互いに異なる電圧系に設定できず、また、一方のバッテリから他方のバッテリに流れる電流をコントロールすることができないため成り行きで電流が流れることになる。しかしながら、DC/DCコンバータ30が存在することによって、バッテリAとバッテリB(電気負荷50と電気負荷60)は互いに異なる電圧系に設定することができるとともに、DC/DCコンバータ30の電流調整機能によって、一方のバッテリから他方のバッテリに流れる電流をコントロールすることができる。
バッテリAには、A電圧系電源ライン19を介して、運動エネルギーを電気エネルギーに変換することにより発電を行う発電機1が接続されている。発電機1は、車両を走行させるためのエンジン70の出力によって発電を行う。発電機1によって発電された電力は、電気負荷50に供給されたりバッテリAに充電されたりする。A/B変換モードであれば、DC/DCコンバータ30を介して、電気負荷60への供給やバッテリBへの充電もありうる。発電機1の具体例として、オルタネータがある。エンジン70の回転数が上昇するにつれてオルタネータの発電量も増加する。なお、バッテリAへの充電等はモータ(電動機)を回生動作させても可能なので、発電機1は回生制御が可能なモータでもよい。例えば、車両の制動力を確保するために、車輪駆動軸に連結されるモータを回生制御することによって、インバータを介して、バッテリAに充電をすることができたり、電気負荷50に電力の供給をすることができたりする。
また、発電機1が停止している状態では、バッテリBから電気負荷50に電力を供給し得る。例えば、エンジン70が停止してオルタネータの不作動状態である駐車状態で必要される電力は、バッテリBから電気負荷50に電力を供給することができる。
バッテリAには、さらに、A電圧系電源ライン19を介して、エンジン70を始動させるための始動機3が接続されている。始動機3は停止しているエンジン70をクランキングによって始動させる必要があるため、始動機3の始動時には大きな作動電流(始動電流)を始動機3に供給する必要がある。始動機3は、例えば、電動のモータである。
始動機3を始動させる操作信号が入力された場合、始動機3への通電がなされ、始動機3のピニオンギアとエンジン70のフライホイールのリングギアとが噛み合う(接続する)。これにより、始動機3が回転することによってフライホイールを介してエンジン70のクランクシャフトが回転し、エンジン70が始動する。始動機3を停止させる操作信号が入力された場合(始動機3を始動させる操作信号の入力が無くなった場合)、始動機3のピニオンギアとエンジン70のフライホイールのリングギアは離れ、非通電となって、始動機3の回転は停止する。
ECU40は、バッテリAの充放電電流(バッテリ電流)を検出する電流センサ4aの出力値に基づいてバッテリAの充放電電流値を算出し、バッテリBの充放電電流(バッテリ電流)を検出する電流センサ4bの出力値に基づいてバッテリBの充放電電流値を算出する。また、ECU40は、バッテリAの電圧を検出する電圧センサ5aの出力値に基づいてバッテリAの電圧値を算出し、バッテリBの電圧を検出する電圧センサ5bの出力値に基づいてバッテリBの電圧値を算出する。バッテリAの電圧あるいはバッテリBの電圧とは、図1からも明らかなように、A電圧系電源ライン19あるいはB電圧系電源ライン29の電圧であって、電気負荷50あるいは電気負荷60に印加される電圧に相当する。さらに、ECU40は、バッテリAの温度を検出する温度センサ6aの出力値に基づいてバッテリAの温度を算出し、バッテリBの温度を検出する温度センサ6bの出力値に基づいてバッテリBの温度を算出する。
ECU40は、始動機3に電力を供給する際のバッテリA及びバッテリBの放電電流、電圧、温度などの状態を上述のように算出することによって、バッテリA及びバッテリBの内部状態を推定する。内部状態には、劣化度を示す劣化状態(SOH)や残容量を示す充電状態(SOC)や充放電能力といわれるものがある。
ECU40は、エンジン70の始動時のバッテリ電圧の降下度合に応じてバッテリA及びBの劣化状態を推定する。エンジン70が始動する際には始動機3に通常時より非常に大きな電流(突入電流ともいう)がバッテリから流れるため、その突入電流が流れても高いバッテリ電圧が維持できていればバッテリは劣化していないとみなすことができ、高いバッテリ電圧が維持できていなければバッテリは劣化しているとみなすことができる。そこで、ECU40は、バッテリの劣化状態の推定方法の一例として、始動機3に電力を供給する際の放電初期時に降下するバッテリ電圧の極小値が所定閾値以下のときバッテリが劣化していると推定する。なお、ECU40は、始動機3に電力を供給する際の放電初期時に降下するバッテリ電圧が所定電圧に降下するまでの時間が所定時間以下のときバッテリが劣化していると判定してもよい。すなわち、大電流を流したときにバッテリ電圧が所定電圧になるまでの放電持続時間を計測することによって、バッテリの劣化状態を判定している。放電持続時間が長いほど劣化していないとみなすことができる。
また、ECU40は、エンジン70の始動時のバッテリ電圧の降下度合に応じてバッテリA及びBの充電状態を推定する。ECU40は、バッテリA及びBの充電状態を推定するため、エンジン70の始動時のバッテリ電圧の極小値を算出する。始動機3に電力を供給する際の放電初期時に降下するバッテリ電圧の極小値と充電状態は相関があることが知られているため、ECU40は、その相関関係(例えば、マップデータ)に基づいて充電状態を推定することができる。
また、ECU40は、始動機3に電力を供給する際の放電初期時のバッテリA及びBの内部抵抗を測定することによってバッテリA及びBの充電状態を推定してもよい。内部抵抗は、測定された初期放電電流と初期放電電圧との関係に基づいて算出され得る。内部抵抗と充電状態は相関があることが知られているため、ECU40は、その相関関係(例えば、マップデータ)に基づいて充電状態を推定することができる。
なお、バッテリA及びBは温度特性を有しており、その劣化状態や充電状態や充放電能力などの内部状態は温度によって変化する。したがって、ECU40は、バッテリA及びBの実温度データとバッテリA及びBの温度特性を参照して、充電状態や劣化状態や充放電能力などの内部状態を補正することによって、その精度が向上する。
また、ECU40は、詳細は後述するが、所定の条件に基づいてDC/DCコンバータ30のモード切替や出力電圧や出力電流を制御する制御信号を出力する。
なお、ECU40は、制御プログラムや制御データを記憶するROM、制御プログラムの処理データを一時的に記憶するRAM、制御プログラムを処理するCPU、外部と情報をやり取りするための入出力インターフェースなどの複数の回路要素によって構成されたものである。また、ECU40は一つの制御ユニットとは限らず、制御が分担されるように複数の制御ユニットであってよい。
それでは、本発明の車両用電源システムの第1の実施形態の動作について図4及び図5に従って説明する。図4は、DC/DCコンバータ30の状態遷移図の一例である。図5は、本発明の車両用電源システムの第1の実施形態の動作シーケンスの一例である。
ECU40は、始動機3の動作状態を取得し、始動機3の動作状態を示す「始動機動作中フラグ」がOFFからONに変化すると、DC/DCコンバータ30の制御状態を「駐車状態」から「Eng(エンジン)始動状態」に状態遷移させる(図5(b),(c))。Eng始動状態に状態遷移したDC/DCコンバータ30は、動作モードを停止モードからB/A変換モードに設定変更することによって、バッテリB側からバッテリA側への電力供給を開始する(図5(d),(e))。
ECU40は、DC/DCコンバータ30の制御状態がEng始動状態においてバッテリA及びBの放電電流、電圧、温度などの状態を算出することによって、バッテリA及びBの劣化状態や容量状態や充放電能力などの内部状態を推定する。Eng始動状態においてB/A変換モードに設定されていることによりバッテリB側からバッテリA側への電力供給が行われているので、バッテリA及びBの両方から始動機3へ電力が供給されることになる。この際、ECU40は、B/A変換モードに設定されているDC/DCコンバータ30の出力電流を調整することによって、始動機3への電力供給量を所望の配分比でバッテリAとBに配分することができる。例えば、始動機3に供給すべき電流量が500Aの場合、DC/DCコンバータ30によるバッテリB側からバッテリA側の出力電流の限界値を100Aと調整すれば、バッテリAからは400Aの電流が始動機3に供給される一方で、バッテリBからは100Aの電流が始動機3に供給されることになる。
そして、ECU40は、エンジン70の回転数の情報を取得し、エンジン70の回転数が所定値まで上昇することによってエンジン70の回転動作状態を示す「Eng回転中フラグ」がOFFからONに変化すると、DC/DCコンバータ30の制御状態を「Eng始動状態」から「Eng回転状態」に状態遷移させる(図5(a),(c),(f))。Eng回転状態に状態遷移したDC/DCコンバータ30は、動作モードをB/A変換モードからA/B変換モードに設定変更することによって、バッテリB側からバッテリA側への電力供給をバッテリA側からバッテリB側への電力供給に変更する(図5(d),(e))。なお、始動機3の停止によって「始動機動作中フラグ」はONからOFFに変化する。
そして、ECU40は、エンジン70の回転数の情報を取得し、エンジン70の回転数が所定値まで降下することによって(あるいは、エンジン70の回転が停止することによって)Eng回転中フラグがONからOFFに変化すると、DC/DCコンバータ30の制御状態を「Eng回転状態」から「駐車状態」に状態遷移させる。駐車状態に状態遷移したDC/DCコンバータ30は、動作モードをA/B変換モードから停止モードに設定変更することによって、電圧変換の停止により電力供給を終了する。
したがって、本発明の車両用電源システムの第1の実施形態によれば、エンジン始動時にDC/DCコンバータ30の動作モードをB/A変換モードに設定することによって、エンジン始動時に始動機3へ供給する電力を始動機3が直接接続しているバッテリAだけでなく、DC/DCコンバータ30を介してバッテリBからも供給することができるようになる。したがって、始動機3に直接つながっているバッテリAだけでなく始動機3に直接つながっていないバッテリBに関しても大電力を放電させることによる内部状態の推定を行うことが可能になる。
また、本発明の車両用電源システムの第1の実施形態によれば、バッテリBがエンジン70の始動時に始動機3に始動電流をまかなわない蓄電装置であっても、DC/DCコンバータ30を用いることによって、バッテリBから始動機3に電力を供給することが可能になる。したがって、エンジン70の始動時に始動機3に始動電流をまかなわないバッテリBに関しても大電力を放電させることによる内部状態の推定を行うことが可能になる。なお、エンジン70の始動時に始動機3に始動電流をまかなわない蓄電装置とは、始動機3を作動させる放電能力を予め有していない蓄電装置、あるいは、始動機3に始動電流を予め供給できない構成になっている蓄電装置のことをいう。
また、本発明の車両用電源システムの第1の実施形態によれば、エンジン始動時にDC/DCコンバータ30の出力電流を調整することによって、バッテリAの放電電流や電圧等の電力供給状態とバッテリBの放電電流や電圧等の電力供給状態が内部状態の推定にできるだけ最適な状態になるように調整することができる。バッテリの内部状態を推定するにはある程度のバッテリからの放電が無ければ推定することが困難なため、バッテリAからの始動機3への放電電流が少なすぎればバッテリAの内部状態の推定が困難になり、バッテリBからの始動機3への放電電流が少なすぎればバッテリBの内部状態の推定が困難になるからである。
また、本発明の車両用電源システムの第1の実施形態によれば、始動機3にバッテリA,Bの両方から電力を供給するので、バッテリAのみからの放電電流によるエンジン70の始動時間に比べエンジン70の始動時間は短縮されるので、エンジン70の始動性向上に貢献する。
図2は、本発明の車両用電源システムの第2の実施形態を示す構成図である。第2の実施形態において、第1の実施形態と同一の符号及び機能については、その説明を省略または簡略する。図2に示される第2の実施形態では、始動機3はDC/DCコンバータ30に対しバッテリB側に接続されているとともに、発電機1と始動機3はDC/DCコンバータ30を介して接続されている。
第2の実施形態のDC/DCコンバータ30は、トランスやスイッチングレギュレータやシリーズレギュレータ等のDC/DCコンバータ30内部にある電圧変換機構によって、バッテリA側の入力電圧を電圧変換してバッテリB側(始動機3側)に出力し、あるいは、バッテリB側(始動機3側)の入力電圧を電圧変換してバッテリA側に出力する。このDC/DCコンバータ30の電圧変換機能を使用することによって、バッテリA側の入力電圧を電圧変換して電気負荷60や始動機3に電力供給を行ったりバッテリBに充電を行ったりすることが可能となり、バッテリB側の入力電圧を電圧変換して電気負荷50に電力供給を行ったりバッテリAに充電を行ったりすることが可能となり、そして、電圧変換を停止して電力供給を行わないことが可能となる。
それでは、本発明の車両用電源システムの第2の実施形態の動作について図4及び図6に従って説明する。図6は、本発明の車両用電源システムの第2の実施形態の動作シーケンスの一例である。
ECU40は、始動機3の動作状態を取得し、始動機3の動作状態を示す「始動機動作中フラグ」がOFFからONに変化すると、DC/DCコンバータ30の制御状態を「駐車状態」から「Eng(エンジン)始動状態」に状態遷移させる(図6(b),(c))。Eng始動状態に状態遷移したDC/DCコンバータ30は、動作モードを停止モードからA/B変換モードに設定変更することによって、バッテリA側からバッテリB側への電力供給を開始する(図6(d),(e))。
ECU40は、DC/DCコンバータ30の制御状態がEng始動状態においてバッテリA及びBの放電電流、電圧、温度などの状態を算出することによって、バッテリA及びBの劣化状態や容量状態や充放電能力などの内部状態を推定する。Eng始動状態においてA/B変換モードに設定されていることによりバッテリA側からバッテリB側への電力供給が行われているので、バッテリA及びBの両方から始動機3へ電力が供給されることになる。この際、ECU40は、A/B変換モードに設定されているDC/DCコンバータ30の出力電流を調整することによって、始動機3への電力供給量を所望の配分比でバッテリAとBに配分することができる。
そして、ECU40は、エンジン70の回転数の情報を取得し、エンジン70の回転数が所定値まで上昇することによってエンジン70の回転動作状態を示す「Eng回転中フラグ」がOFFからONに変化すると、DC/DCコンバータ30の制御状態を「Eng始動状態」から「Eng回転状態」に状態遷移させる(図6(a),(c),(f))。Eng回転状態に状態遷移したDC/DCコンバータ30は、動作モードをA/B変換モードに設定したままでよく、バッテリA側からバッテリB側への電力供給を継続する(図6(d),(e))。なお、始動機3の停止によって「始動機動作中フラグ」はONからOFFに変化する。
そして、ECU40は、第1の実施形態と同様に、Eng回転状態から駐車状態に状態遷移したDC/DCコンバータ30は、動作モードをA/B変換モードから停止モードに設定変更することによって、電圧変換の停止により電力供給を終了する。
したがって、本発明の車両用電源システムの第2の実施形態によれば、エンジン始動時にDC/DCコンバータ30の動作モードをA/B変換モードに設定することによって、エンジン始動時に始動機3へ供給する電力を始動機3が直接接続しているバッテリBだけでなく、DC/DCコンバータ30を介してバッテリAからも供給することができるようになる。したがって、始動機3に直接つながっているバッテリBだけでなく始動機3に直接つながっていないバッテリAに関しても大電力を放電させることによる内部状態の推定を行うことが可能になる。
また、本発明の車両用電源システムの第2の実施形態によれば、バッテリAがエンジン70の始動時に始動機3に始動電流をまかなわない蓄電装置であっても、DC/DCコンバータ30を用いることによって、バッテリAから始動機3に電力を供給することが可能になる。したがって、エンジン70の始動時に始動機3に始動電流をまかなわないバッテリAに関しても大電力を放電させることによる内部状態の推定を行うことが可能になる。
また、本発明の車両用電源システムの第2の実施形態によれば、第1の実施形態と同様に、エンジン始動時にDC/DCコンバータ30の出力電流を調整することによって、バッテリAの放電電流や電圧等の電力供給状態とバッテリBの放電電流や電圧等の電力供給状態が内部状態の推定にできるだけ最適な状態になるように調整することができる。
また、本発明の車両用電源システムの第2の実施形態によれば、第1の実施形態と同様に、始動機3にバッテリA,Bの両方から電力を供給するので、バッテリBのみからの放電電流によるエンジン70の始動時間に比べエンジン70の始動時間は短縮されるので、エンジン70の始動性向上に貢献する。
以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形及び置換を加えることができる。
例えば、図3は、本発明の車両用電源システムの第3の実施形態を示す構成図である。第3の実施形態において、第1の実施形態と同一の符号及び機能については、その説明を省略または簡略する。図3に示される第3の実施形態は、図1に示される第1の実施形態の発電機1と始動機3が、MG(いわゆる、始動発電機)2に置き換わっている。MG2は、発電機1の機能と始動機3の機能を両方兼ね備えるものである。したがって、第3の実施形態も、図4に示されるDC/DCコンバータ30の状態遷移図に従い、図5と同様の動作シーケンスで動作させることによって、第1の実施形態と同様に、MG2に直接つながっているバッテリAだけでなくMG2に直接つながっていないバッテリBに関しても大電力を放電させることによる内部状態の推定を行うことが可能になる。また、エンジン70の始動時にMG2に始動電流をまかなわないバッテリBに関しても大電力を放電させることによる内部状態の推定を行うことが可能になる。
また、本発明の車両用電源システムの第3の実施形態によれば、第1の実施形態と同様に、エンジン始動時にDC/DCコンバータ30の出力電流を調整することによって、バッテリAの放電電流や電圧等の電力供給状態とバッテリBの放電電流や電圧等の電力供給状態が内部状態の推定にできるだけ最適な状態になるように調整することができる。
また、本発明の車両用電源システムの第3の実施形態によれば、第1の実施形態と同様に、MG2にバッテリA,Bの両方から電力を供給するので、エンジン70の始動性向上に貢献する。
ところで、上述のA電圧系とB電圧系の電圧値の関係は、同じ値でも、異なる値でもよく、本発明は、それぞれの電圧系の電圧値に特に限定されるものではない。バッテリA側の電圧系とバッテリB側の電圧系の電圧値が同一であっても、上述した実施形態のようにDC/DCコンバータ30による電圧変換を行うことが可能である。つまり、上述の実施形態の効果と同様に、始動機3に直接つながっているバッテリだけでなく始動機3に直接つながっていないバッテリに関しても大電力を放電させることによる内部状態の推定を行うことが可能になり、エンジン70の始動時にMG2に始動電流をまかなわないバッテリに関しても大電力を放電させることによる内部状態の推定を行うことが可能になる。また、バッテリAの放電電流や電圧等の電力供給状態とバッテリBの放電電流や電圧等の電力供給状態が内部状態の推定にできるだけ最適な状態になるように調整することができ、MG2にバッテリA,Bの両方から電力を供給するので、エンジン70の始動性向上に貢献する。
さらに、上述の実施形態では、ECU40がバッテリAやBの内部状態を推定していたが、ECU40以外の電源管理ECU等のECUがバッテリAやBの内部状態を推定してもよいし、電流センサ4などのセンサが演算器を有していれば、その演算器がバッテリAやBの内部状態を推定してもよい。
本発明の車両用電源システムの第1の実施形態を示す構成図である。 本発明の車両用電源システムの第2の実施形態を示す構成図である。 本発明の車両用電源システムの第3の実施形態を示す構成図である。 DC/DCコンバータ30の状態遷移図の一例である。 本発明の車両用電源システムの第1及び第3の実施形態の動作シーケンスの一例である。 本発明の車両用電源システムの第2の実施形態の動作シーケンスの一例である。
符号の説明
1 発電機
2 MG
3 始動機
30 DC/DCコンバータ
40 ECU
50,60 電気負荷
70 エンジン
A,B バッテリ

Claims (6)

  1. 第1の蓄電装置と、
    第2の蓄電装置と、
    電圧変換手段と、
    車両のエンジンを始動させる始動機とを備え、
    前記第1の蓄電装置は前記始動機に接続され、前記第2の蓄電装置は前記電圧変換手段を介して前記始動機に接続される、車両用電源システムであって、
    前記始動機に電力を供給する際の前記電圧変換手段の電圧変換方向が前記第2の蓄電装置側から前記始動機側への方向に設定されるとともに、
    前記始動機に電力を供給する際の前記第1及び第2の蓄電装置の電力供給状態に基づいて前記第1及び第2の蓄電装置の内部状態を推定する内部状態推定手段を備えることを特徴とする、車両用電源システム。
  2. 前記電圧変換手段は、前記第2の蓄電装置側から前記始動機側へ電力供給量を調整する、請求項1記載の車両用電源システム。
  3. 前記電圧変換手段は、前記第2の蓄電装置の電力供給状態について電力供給を制限することを定めた所定の制限条件に従って前記電力供給量を制限する、請求項2に記載の車両用電源システム。
  4. 前記第1及び第2の蓄電装置の電力供給状態として、電流状態、電圧状態、温度状態の少なくとも一つが取得される、請求項1から3のいずれかに記載の車両用電源システム。
  5. 前記第1の蓄電装置と前記第2の蓄電装置は、互いに異なる電圧系である、請求項1から4のいずれかに記載の車両用電源システム。
  6. 前記内部状態は、充電状態及び劣化状態及び充放電能力の少なくとも一つである、請求項1記載の車両用電源システム。
JP2006060223A 2006-03-06 2006-03-06 車両用電源システム Expired - Fee Related JP4884031B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006060223A JP4884031B2 (ja) 2006-03-06 2006-03-06 車両用電源システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006060223A JP4884031B2 (ja) 2006-03-06 2006-03-06 車両用電源システム

Publications (2)

Publication Number Publication Date
JP2007237809A true JP2007237809A (ja) 2007-09-20
JP4884031B2 JP4884031B2 (ja) 2012-02-22

Family

ID=38583766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006060223A Expired - Fee Related JP4884031B2 (ja) 2006-03-06 2006-03-06 車両用電源システム

Country Status (1)

Country Link
JP (1) JP4884031B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047380A (ja) * 2009-08-28 2011-03-10 Autonetworks Technologies Ltd 車両用電源装置
JP2012130108A (ja) * 2010-12-13 2012-07-05 Denso Corp 電源装置
JP2015012803A (ja) * 2013-06-28 2015-01-19 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c.F. Porsche Aktiengesellschaft 車両電気分配システムの安定化

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05336670A (ja) * 1992-06-02 1993-12-17 Nippondenso Co Ltd 車両用電源装置
JP2000102177A (ja) * 1998-09-25 2000-04-07 Denso Corp ハイブリッド車用充電装置
JP2001352690A (ja) * 2000-06-08 2001-12-21 Auto Network Gijutsu Kenkyusho:Kk 車両の電力供給回路および車両に用いられるdc−dcコンバータ回路
JP2002325373A (ja) * 2001-04-25 2002-11-08 Toyota Motor Corp バッテリ容量制御装置
JP2004194410A (ja) * 2002-12-10 2004-07-08 Denso Corp 電源装置及びその制御方法
JP2004532768A (ja) * 2001-06-29 2004-10-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 例えば複数のエネルギー蓄積器を有する車載電源網における電気的なエネルギーの供給能力を突き止めるための装置および/または方法
JP2004328988A (ja) * 2003-04-09 2004-11-18 Denso Corp 車両用電源システム
JP2004350426A (ja) * 2003-05-22 2004-12-09 Denso Corp 車両用電力供給システム
JP2005229675A (ja) * 2004-02-10 2005-08-25 Honda Motor Co Ltd 電源装置
JP2006038664A (ja) * 2004-07-28 2006-02-09 Nissan Motor Co Ltd 残存容量推定装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05336670A (ja) * 1992-06-02 1993-12-17 Nippondenso Co Ltd 車両用電源装置
JP2000102177A (ja) * 1998-09-25 2000-04-07 Denso Corp ハイブリッド車用充電装置
JP2001352690A (ja) * 2000-06-08 2001-12-21 Auto Network Gijutsu Kenkyusho:Kk 車両の電力供給回路および車両に用いられるdc−dcコンバータ回路
JP2002325373A (ja) * 2001-04-25 2002-11-08 Toyota Motor Corp バッテリ容量制御装置
JP2004532768A (ja) * 2001-06-29 2004-10-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 例えば複数のエネルギー蓄積器を有する車載電源網における電気的なエネルギーの供給能力を突き止めるための装置および/または方法
JP2004194410A (ja) * 2002-12-10 2004-07-08 Denso Corp 電源装置及びその制御方法
JP2004328988A (ja) * 2003-04-09 2004-11-18 Denso Corp 車両用電源システム
JP2004350426A (ja) * 2003-05-22 2004-12-09 Denso Corp 車両用電力供給システム
JP2005229675A (ja) * 2004-02-10 2005-08-25 Honda Motor Co Ltd 電源装置
JP2006038664A (ja) * 2004-07-28 2006-02-09 Nissan Motor Co Ltd 残存容量推定装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047380A (ja) * 2009-08-28 2011-03-10 Autonetworks Technologies Ltd 車両用電源装置
JP2012130108A (ja) * 2010-12-13 2012-07-05 Denso Corp 電源装置
JP2015012803A (ja) * 2013-06-28 2015-01-19 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c.F. Porsche Aktiengesellschaft 車両電気分配システムの安定化
US9616830B2 (en) 2013-06-28 2017-04-11 Dr. Ing. Porsche Aktiengesellschaft Vehicle electrical distribution system stabilization

Also Published As

Publication number Publication date
JP4884031B2 (ja) 2012-02-22

Similar Documents

Publication Publication Date Title
US10381695B2 (en) Cooling system for secondary battery
JP4961830B2 (ja) 蓄電装置の充放電制御装置および充放電制御方法ならびに電動車両
US9855854B2 (en) Charge control device and charge control method
US9073541B2 (en) Power source system for vehicle, vehicle, and vehicle control method
JP5307847B2 (ja) 車両用電源システム
US9236745B2 (en) Vehicle control device and vehicle control method
US9327591B2 (en) Electrically powered vehicle and method for controlling same
US10054097B2 (en) Vehicular control apparatus
US8774993B2 (en) Hybrid vehicle and method of controlling the same
JP5288170B2 (ja) バッテリの昇温制御装置
JP5040065B2 (ja) バッテリ充放電制御装置
US20130338867A1 (en) Vehicle and deterioration diagnosis method for power storage device
JP2008228403A (ja) 車両用電源装置
JP5202576B2 (ja) 車両用電源システム
JPWO2012131864A1 (ja) 電動車両およびその制御方法
JP2007161000A (ja) 車両用電源制御装置
JP2006304574A (ja) 電源装置およびその制御方法
JP6577981B2 (ja) 電源システム
JP2009194997A (ja) 電源システムおよびそれを備えた車両ならびに電源システムの出力制限制御方法
JP2010115035A (ja) 電池保護装置
JP2016201250A (ja) 車載二次電池の冷却システム
JP4884031B2 (ja) 車両用電源システム
JP2011073643A (ja) 車両の制御装置
JP7373113B2 (ja) 車両用電源制御装置
JP2012010503A (ja) 電動車両の電源システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4884031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees